
jq manual (excerpt)

A jq program is a “filter”: it takes an input, and produces an output.
There are a lot of builtin filters for extracting a particular field of an
object, or converting a number to a string, or various other standard
tasks.

Filters can be combined in various ways - you can pipe the output of
one filter into another filter, or collect the output of a filter into an
array.

Some filters produce multiple results, for instance there’s one that
produces all the elements of its input array. Piping that filter into a
second runs the second filter for each element of the array. Generally,
things that would be done with loops and iteration in other languages
are just done by gluing filters together in jq.

It’s important to remember that every filter has an input and an
output. Even literals like “hello” or 42 are filters - they take an input
but always produce the same literal as output. Operations that
combine two filters, like addition, generally feed the same input to
both and combine the results. So, you can implement an averaging
filter as add / length - feeding the input array both to the add filter and
the length filter and then performing the division.

But that’s getting ahead of ourselves. :) Let’s start with something
simpler:

Types and Values

jq supports the same set of datatypes as JSON - numbers, strings,
booleans, arrays, objects (which in JSON-speak are hashes with only
string keys), and “null”.

Booleans, null, strings and numbers are written the same way as in
JSON. Just like everything else in jq, these simple values take an input
and produce an output - 42 is a valid jq expression that takes an input,
ignores it, and returns 42 instead.

Numbers in jq are internally represented by their IEEE754 double
precision approximation. Any arithmetic operation with numbers,
whether they are literals or results of previous filters, will produce a
double precision floating point result.

However, when parsing a literal jq will store the original literal string.
If no mutation is applied to this value then it will make to the output
in its original form, even if conversion to double would result in a loss.

Array construction: []

As in JSON, [] is used to construct arrays, as in [1,2,3]. The elements
of the arrays can be any jq expression, including a pipeline. All of the
results produced by all of the expressions are collected into one big
array. You can use it to construct an array out of a known quantity of
values (as in [.foo, .bar, .baz]) or to “collect” all the results of a filter
into an array (as in [.items[].name])

Once you understand the “,” operator, you can look at jq’s array
syntax in a different light: the expression [1,2,3] is not using a built-in
syntax for comma-separated arrays, but is instead applying the []
operator (collect results) to the expression 1,2,3 (which produces
three different results).

If you have a filter X that produces four results, then the expression
[X] will produce a single result, an array of four elements.

Examples

Filter [.user, .projects[]]

Input {"user":"stedolan", "projects": ["jq", "wikiflow"]}

Output ["stedolan", "jq", "wikiflow"]

Run

Filter [.[] | . * 2]

Input [1, 2, 3]

Output [2, 4, 6]

Run

Object Construction: {}

Like JSON, {} is for constructing objects (aka dictionaries or hashes),
as in: {"a": 42, "b": 17}.

If the keys are “identifier-like”, then the quotes can be left off, as in
{a:42, b:17}. Variable references as key expressions use the value of
the variable as the key. Key expressions other than constant literals,
identifiers, or variable references, need to be parenthesized, e.g.,
{("a"+"b"):59}.

The value can be any expression (although you may need to wrap it in
parentheses if, for example, it contains colons), which gets applied to
the {} expression’s input (remember, all filters have an input and an

https://jqplay.org/jq?q=%5B.user%2C+.projects%5B%5D%5D&j=%7B%22user%22%3A%22stedolan%22%2C+%22projects%22%3A+%5B%22jq%22%2C+%22wikiflow%22%5D%7D
https://jqplay.org/jq?q=%5B.user%2C+.projects%5B%5D%5D&j=%7B%22user%22%3A%22stedolan%22%2C+%22projects%22%3A+%5B%22jq%22%2C+%22wikiflow%22%5D%7D
https://jqplay.org/jq?q=%5B+.%5B%5D+%7C+.+%2A+2%5D&j=%5B1%2C+2%2C+3%5D
https://jqplay.org/jq?q=%5B+.%5B%5D+%7C+.+%2A+2%5D&j=%5B1%2C+2%2C+3%5D

output).

{foo: .bar}

will produce the JSON object {"foo": 42} if given the JSON object
{"bar":42, "baz":43} as its input. You can use this to select particular
fields of an object: if the input is an object with “user”, “title”, “id”,
and “content” fields and you just want “user” and “title”, you can
write

{user: .user, title: .title}

Because that is so common, there’s a shortcut syntax for it: {user,
title}.

If one of the expressions produces multiple results, multiple
dictionaries will be produced. If the input’s

{"user":"stedolan","titles":["JQ Primer", "More JQ"]}

then the expression

{user, title: .titles[]}

will produce two outputs:

Putting parentheses around the key means it will be evaluated as an
expression. With the same input as above,

{(.user): .titles}

produces

Variable references as keys use the value of the variable as the key.
Without a value then the variable’s name becomes the key and its
value becomes the value,

"f o o" as $foo | "b a r" as $bar | {$foo, $bar:$foo}

produces

Examples

Filter {user, title: .titles[]}

Input {"user":"stedolan","titles":["JQ Primer", "More JQ"]}

Output {"user":"stedolan", "title": "JQ Primer"}

{"user":"stedolan", "title": "More JQ"}

{"user":"stedolan", "title": "JQ Primer"}
{"user":"stedolan", "title": "More JQ"}

{"stedolan": ["JQ Primer", "More JQ"]}

{"foo":"f o o","b a r":"f o o"}

Run

Filter {(.user): .titles}

Input {"user":"stedolan","titles":["JQ Primer", "More JQ"]}

Output {"stedolan": ["JQ Primer", "More JQ"]}

Run

Recursive Descent: ..

Recursively descends ., producing every value. This is the same as the
zero-argument recurse builtin (see below). This is intended to
resemble the XPath // operator. Note that ..a does not work; use .. |
.a instead. In the example below we use .. | .a? to find all the values
of object keys “a” in any object found “below” ..

This is particularly useful in conjunction with path(EXP) (also see
below) and the ? operator.

Examples

Filter .. | .a?

Input [[{"a":1}]]

Output 1

Run

Conditionals and Comparisons

==, !=

The expression ‘a == b’ will produce ‘true’ if the results of evaluating
a and b are equal (that is, if they represent equivalent JSON values)
and ‘false’ otherwise. In particular, strings are never considered equal
to numbers. In checking for the equality of JSON objects, the ordering
of keys is irrelevant. If you’re coming from JavaScript, please note
that jq’s == is like JavaScript’s ===, the “strict equality” operator.

!= is “not equal”, and ‘a != b’ returns the opposite value of ‘a == b’

Examples

Filter . == false

Input null

Output false

Run

https://jqplay.org/jq?q=%7Buser%2C+title%3A+.titles%5B%5D%7D&j=%7B%22user%22%3A%22stedolan%22%2C%22titles%22%3A%5B%22JQ+Primer%22%2C+%22More+JQ%22%5D%7D
https://jqplay.org/jq?q=%7Buser%2C+title%3A+.titles%5B%5D%7D&j=%7B%22user%22%3A%22stedolan%22%2C%22titles%22%3A%5B%22JQ+Primer%22%2C+%22More+JQ%22%5D%7D
https://jqplay.org/jq?q=%7B%28.user%29%3A+.titles%7D&j=%7B%22user%22%3A%22stedolan%22%2C%22titles%22%3A%5B%22JQ+Primer%22%2C+%22More+JQ%22%5D%7D
https://jqplay.org/jq?q=%7B%28.user%29%3A+.titles%7D&j=%7B%22user%22%3A%22stedolan%22%2C%22titles%22%3A%5B%22JQ+Primer%22%2C+%22More+JQ%22%5D%7D
https://jqplay.org/jq?q=..+%7C+.a%3F&j=%5B%5B%7B%22a%22%3A1%7D%5D%5D
https://jqplay.org/jq?q=..+%7C+.a%3F&j=%5B%5B%7B%22a%22%3A1%7D%5D%5D
https://jqplay.org/jq?q=.+%3D%3D+false&j=null
https://jqplay.org/jq?q=.+%3D%3D+false&j=null

Filter . == {"b": {"d": (4 + 1e-20), "c": 3}, "a":1}

Input {"a":1, "b": {"c": 3, "d": 4}}

Output true

Run

Filter .[] == 1

Input [1, 1.0, "1", "banana"]

Output true

true

false

false

Run

if-then-else-end

if A then B else C end will act the same as B if A produces a value
other than false or null, but act the same as C otherwise.

if A then B end is the same as if A then B else . end. That is, the else
branch is optional, and if absent is the same as .. This also applies to
elif with absent ending else branch.

Checking for false or null is a simpler notion of “truthiness” than is
found in JavaScript or Python, but it means that you’ll sometimes have
to be more explicit about the condition you want. You can’t test
whether, e.g. a string is empty using if .name then A else B end; you’ll
need something like if .name == "" then A else B end instead.

If the condition A produces multiple results, then B is evaluated once
for each result that is not false or null, and C is evaluated once for
each false or null.

More cases can be added to an if using elif A then B syntax.

Examples

Filter
if . == 0 then "zero" elif . == 1 then "one" else "many"
end

Input 2

Output "many"

Run

>, >=, <=, <

The comparison operators >, >=, <=, < return whether their left
argument is greater than, greater than or equal to, less than or equal

https://jqplay.org/jq?q=.+%3D%3D+%7B%22b%22%3A+%7B%22d%22%3A+%284+%2B+1e-20%29%2C+%22c%22%3A+3%7D%2C+%22a%22%3A1%7D&j=%7B%22a%22%3A1%2C+%22b%22%3A+%7B%22c%22%3A+3%2C+%22d%22%3A+4%7D%7D
https://jqplay.org/jq?q=.+%3D%3D+%7B%22b%22%3A+%7B%22d%22%3A+%284+%2B+1e-20%29%2C+%22c%22%3A+3%7D%2C+%22a%22%3A1%7D&j=%7B%22a%22%3A1%2C+%22b%22%3A+%7B%22c%22%3A+3%2C+%22d%22%3A+4%7D%7D
https://jqplay.org/jq?q=.%5B%5D+%3D%3D+1&j=%5B1%2C+1.0%2C+%221%22%2C+%22banana%22%5D
https://jqplay.org/jq?q=.%5B%5D+%3D%3D+1&j=%5B1%2C+1.0%2C+%221%22%2C+%22banana%22%5D
https://jqplay.org/jq?q=if+.+%3D%3D+0+then+%22zero%22+elif+.+%3D%3D+1+then+%22one%22+else+%22many%22+end&j=2
https://jqplay.org/jq?q=if+.+%3D%3D+0+then+%22zero%22+elif+.+%3D%3D+1+then+%22one%22+else+%22many%22+end&j=2

to or less than their right argument (respectively).

The ordering is the same as that described for sort, above.

Examples

Filter . < 5

Input 2

Output true

Run

and, or, not

jq supports the normal Boolean operators and, or, not. They have the
same standard of truth as if expressions - false and null are
considered “false values”, and anything else is a “true value”.

If an operand of one of these operators produces multiple results, the
operator itself will produce a result for each input.

not is in fact a builtin function rather than an operator, so it is called
as a filter to which things can be piped rather than with special
syntax, as in .foo and .bar | not.

These three only produce the values true and false, and so are only
useful for genuine Boolean operations, rather than the common Perl/
Python/Ruby idiom of “value_that_may_be_null or default”. If you want
to use this form of “or”, picking between two values rather than
evaluating a condition, see the // operator below.

Examples

Filter 42 and "a string"

Input null

Output true

Run

Filter (true, false) or false

Input null

Output true

false

Run

Filter (true, true) and (true, false)

Input null

Output true

https://jqplay.org/jq?q=.+%3C+5&j=2
https://jqplay.org/jq?q=.+%3C+5&j=2
https://jqplay.org/jq?q=42+and+%22a+string%22&j=null
https://jqplay.org/jq?q=42+and+%22a+string%22&j=null
https://jqplay.org/jq?q=%28true%2C+false%29+or+false&j=null
https://jqplay.org/jq?q=%28true%2C+false%29+or+false&j=null

false

true

false

Run

Filter [true, false | not]

Input null

Output [false, true]

Run

Alternative operator: //

The // operator produces all the values of its left-hand side that are
neither false nor null, or, if the left-hand side produces no values
other than false or null, then // produces all the values of its right-
hand side.

A filter of the form a // b produces all the results of a that are not
false or null. If a produces no results, or no results other than false or
null, then a // b produces the results of b.

This is useful for providing defaults: .foo // 1 will evaluate to 1 if
there’s no .foo element in the input. It’s similar to how or is
sometimes used in Python (jq’s or operator is reserved for strictly
Boolean operations).

some_generator // defaults_here is not the same as some_generator | .
// defaults_here. The latter will produce default values for all non-
false, non-null values of the left-hand side, while the former will not.
Precedence rules can make this confusing. For example, in false, 1 //
2 the left-hand side of // is 1, not false, 1 – false, 1 // 2 parses the
same way as false, (1 // 2). In (false, null, 1) | . // 42 the left-
hand side of // is ., which always produces just one value, while in
(false, null, 1) // 42 the left-hand side is a generator of three
values, and since it produces a value other false and null, the default
42 is not produced.

Examples

Filter empty // 42

Input null

Output 42

Run

Filter .foo // 42

Input {"foo": 19}

Output 19

https://jqplay.org/jq?q=%28true%2C+true%29+and+%28true%2C+false%29&j=null
https://jqplay.org/jq?q=%28true%2C+true%29+and+%28true%2C+false%29&j=null
https://jqplay.org/jq?q=%5Btrue%2C+false+%7C+not%5D&j=null
https://jqplay.org/jq?q=%5Btrue%2C+false+%7C+not%5D&j=null
https://jqplay.org/jq?q=empty+%2F%2F+42&j=null
https://jqplay.org/jq?q=empty+%2F%2F+42&j=null

Run

Filter .foo // 42"

Input {}

Output 42

Run

Filter (false, null, 1) // 42

Input null

Output 1

Run

Filter (false, null, 1) | . // 42

Input null

Output 42

42

1

Run

try-catch

Errors can be caught by using try EXP catch EXP. The first expression
is executed, and if it fails then the second is executed with the error
message. The output of the handler, if any, is output as if it had been
the output of the expression to try.

The try EXP form uses empty as the exception handler.

Examples

Filter try .a catch ". is not an object"

Input true

Output ". is not an object"

Run

Filter [.[]|try .a]

Input [{}, true, {"a":1}]

Output [null, 1]

Run

Filter try error("some exception") catch .

Input true

Output "some exception"

https://jqplay.org/jq?q=.foo+%2F%2F+42&j=%7B%22foo%22%3A+19%7D
https://jqplay.org/jq?q=.foo+%2F%2F+42&j=%7B%22foo%22%3A+19%7D
https://jqplay.org/jq?q=.foo+%2F%2F+42%22&j=%7B%7D
https://jqplay.org/jq?q=.foo+%2F%2F+42%22&j=%7B%7D
https://jqplay.org/jq?q=%28false%2C+null%2C+1%29+%2F%2F+42&j=null
https://jqplay.org/jq?q=%28false%2C+null%2C+1%29+%2F%2F+42&j=null
https://jqplay.org/jq?q=%28false%2C+null%2C+1%29+%7C+.+%2F%2F+42&j=null
https://jqplay.org/jq?q=%28false%2C+null%2C+1%29+%7C+.+%2F%2F+42&j=null
https://jqplay.org/jq?q=try+.a+catch+%22.+is+not+an+object%22&j=true
https://jqplay.org/jq?q=try+.a+catch+%22.+is+not+an+object%22&j=true
https://jqplay.org/jq?q=%5B.%5B%5D%7Ctry+.a%5D&j=%5B%7B%7D%2C+true%2C+%7B%22a%22%3A1%7D%5D
https://jqplay.org/jq?q=%5B.%5B%5D%7Ctry+.a%5D&j=%5B%7B%7D%2C+true%2C+%7B%22a%22%3A1%7D%5D

Run

Breaking out of control structures

A convenient use of try/catch is to break out of control structures like
reduce, foreach, while, and so on.

For example:

Repeat an expression until it raises "break" as an
error, then stop repeating without re-raising the error.
But if the error caught is not "break" then re-raise it.
try repeat(exp) catch if .=="break" then empty else error

jq has a syntax for named lexical labels to “break” or “go (back) to”:

label $out | ... break $out ...

The break $label_name expression will cause the program to act as
though the nearest (to the left) label $label_name produced empty.

The relationship between the break and corresponding label is lexical:
the label has to be “visible” from the break.

To break out of a reduce, for example:

label $out | reduce .[] as $item (null; if .==false then break $out
else ... end)

The following jq program produces a syntax error:

break $out

because no label $out is visible.

Error Suppression / Optional Operator: ?

The ? operator, used as EXP?, is shorthand for try EXP.

[.[] | .a?]
[{}, true, {"a":1}]
[null, 1]

[.[] | tonumber?]
["1", "invalid", "3", 4]
[1, 3, 4]

I/O

At this time jq has minimal support for I/O, mostly in the form of
control over when inputs are read. Two builtins functions are provided

https://jqplay.org/jq?q=try+error%28%22some+exception%22%29+catch+.&j=true
https://jqplay.org/jq?q=try+error%28%22some+exception%22%29+catch+.&j=true

for this, input and inputs, that read from the same sources (e.g., stdin,
files named on the command-line) as jq itself. These two builtins, and
jq’s own reading actions, can be interleaved with each other. They are
commonly used in combination with the null input option -n to prevent
one input from being read implicitly.

Two builtins provide minimal output capabilities, debug, and stderr.
(Recall that a jq program’s output values are always output as JSON
texts on stdout.) The debug builtin can have application-specific
behavior, such as for executables that use the libjq C API but aren’t
the jq executable itself. The stderr builtin outputs its input in raw
mode to stder with no additional decoration, not even a newline.

Most jq builtins are referentially transparent, and yield constant and
repeatable value streams when applied to constant inputs. This is not
true of I/O builtins.

input

Outputs one new input.

Note that when using input it is generally be necessary to invoke jq
with the -n command-line option, otherwise the first entity will be lost.

echo 1 2 3 4 | jq '[., input]' # [1,2] [3,4]

inputs

Outputs all remaining inputs, one by one.

This is primarily useful for reductions over a program’s inputs. Note
that when using inputs it is generally necessary to invoke jq with the -
n command-line option, otherwise the first entity will be lost.

echo 1 2 3 | jq -n 'reduce inputs as $i (0; . + $i)' # 6

debug, debug(msgs)

These two filters are like . but have as a side-effect the production of
one or more messages on stderr.

The message produced by the debug filter has the form

where <input-value> is a compact rendition of the input value. This
format may change in the future.

The debug(msgs) filter is defined as (msgs | debug | empty), . thus
allowing great flexibility in the content of the message, while also
allowing multi-line debugging statements to be created.

["DEBUG:",<input-value>]

For example, the expression:

1 as $x | 2 | debug("Entering function foo with $x == \($x)", .) | (.
+1)

would produce the value 3 but with the following two lines being
written to stderr:

stderr

Prints its input in raw and compact mode to stderr with no additional
decoration, not even a newline.

input_filename

Returns the name of the file whose input is currently being filtered.
Note that this will not work well unless jq is running in a UTF-8 locale.

input_line_number

Returns the line number of the input currently being filtered.

["DEBUG:","Entering function foo with $x == 1"]
["DEBUG:",2]

