The Impact of Regional Resources and Technology Availability on Carbon Dioxide Removal Potential in the United States

Parisa Javadi¹, Patrick O'Rourke², Jay Fuhrman³, Haewon McJeon⁴, Scott C. Doney⁵, William Shobe⁶, and Andrés F. Clarens¹

26th September 2024

¹ Department of Civil and Environmental Engineering, University of Virginia.

- ² School of Public Policy, University of Maryland.
- ³ Joint Global Change Research Institute, Pacific Northwest National Laboratory.
- ⁴ Graduate School of Green Growth & Sustainability, KAIST.
- ⁵ Department of Environmental Sciences, University of Virginia.
- ⁶ Batten School of Leadership and Public Policy, University of Virginia.

Introduction

How close are we to 1.5°C?

Introduction

Motivation and Objectives

• The U.S. has committed to achieving net-zero GHG emissions by 2050 to combat climate change

- The U.S. may need to rely on CDR to offset emissions from difficult-to-decarbonize sectors
- CDR can be delivered using many approaches with different requirements for:

Land, water, energy, geologic carbon storage capacity, and other resources

1- How do regional resources and technology availability influence the deployment and effectiveness of CDR approaches across different U.S. states to reach net-zero emissions by mid-century?

2- What are the implications of the U.S. net-zero emissions goal and large-scale CDR deployment, particularly in terms of regional impacts on energy, water, and land?

Global Change Analysis Model

GCAM-USA Capability

CDR technology	Description	
Bioenergy with Carbon Capture and Storage	Biomass paired with geologic carbon storage for electricity, liquid fuels refining, hydrogen production, and industrial energy use	
Afforestation	Storage of atmospheric carbon by restoring deforested lands or planting new forests where none existed previously	
Direct Air Capture with Carbon Storage	Solvent and sorbent-based processes using a combination of electricity and natural gas to separate and geologically store CO ₂ from the atmosphere	
Enhanced Rock Weathering	Crushed basalt application to croplands	
Biochar	Slow pyrolysis of second-generation biomass	Constantion of the second
Direct Ocean Capture	Electrochemical stripping of CO_2 from seawater paired with geologic storage	6

Bioenergy with CO₂ Capture and Storage

Biochar for Soil Enhancement

Direct CO₂ Capture from Air and Ocean with Storage

Energy production

Enhanced Rock Weathering

Grinding rock

Global Change Analysis Model

GCAM documentation: http://jgcri.github.io/gcam-doc/

U.S. Net-Zero 2050

CO₂ emissions by sector in USA region

U.S. Net-Zero 2050

Full Portfolio Scenario

State-level positive and negative CO₂ emissions

U.S. Net-Zero 2050

Full Portfolio Scenario

Sensitivity Analysis

Sensitivity of CDR deployment in the Full Portfolio Scenario in 2050

Sensitivity of CDR deployment in the Full Portfolio Scenario in 2050

Sensitivity of CDR deployment in the Full Portfolio Scenario in 2050

Fraction of Final Energy Consumed by CDR in 2050 (%)

Fraction of Water Consumed by CDR in 2050 (%)

Low Bio

Low ERW

Fraction of Biomass Croplands in 2050 (%)

Low Bio

Low ERW

Fraction of Biochar Croplands in 2050 (%)

Low CCS

Forestland Growth, 2015 to 2050 (%)

Low CCS

-10 to 0

CO2 Abatement Cost in 2050

Cost of Policy

- 1-1.9 GtCO,/yr removal is required to meet U.S. national net-zero goal by mid-century
- ERW may provide up to 683 MtCO₂ removal by 2050 at a lower cost without relying on geological storage
- Relying only on **technology-intensive CDRs** results in higher final energy consumption
- The disparity in **regional concentration** of CDR approaches highlights the need for policies that consider regional advantages and constraints, ensuring that decarbonization efforts are both **effective** and **economically viable**

Collaborators

Pacific Northwest National Laboratory

Jay Fuhrman Patrick O'Rourke

KAIST Graduate School of Green Growth & Sustainability Haewon McJeon

ALFRED P. SLOAN FOUNDATION

Thank You!

kcw8qq@virginia.edu

Cost of Policy

Reference: GCAM v7.1 Documentation: GCAM Policies (<u>https://jqcri.github.io/gcam-doc/policies.html</u>)