
Unset

Vulnerability analysis
OIDCC

Example to illustrate the vulnerability.

{ok, Claims} =

oidcc:retrieve_userinfo(

Token,

myapp_oidcc_config_provider,

<<"client_id">>,

<<"client_secret">>,

#{}

)

The vulnerability is present in oidcc_provider_configuration_worker:get_ets_table_name/1
The function get_ets_table_name is calling erlang:list_to_atom/1

get_ets_table_name(WorkerName) when is_atom(WorkerName) ->
{ok, erlang:list_to_atom(erlang:atom_to_list(WorkerName) ++ "_table")};

get_ets_table_name(_Ref) ->
error.

There might be a case (Very highly improbable) where the 2nd argument of
oidcc:retrieve_userinfo/5 is called with a different atom each time which eventually leads to
the atom table filling up and the node crashing.

It is recommended to add a note in your documentation about this issue because even
though it is highly improbable, it is still possible to use it in a vulnerable way.

{ok, Claims} =

oidcc:retrieve_userinfo(

Token,

Myapp_oidcc_config_provider, %Make sure to not create atoms dynamically here

<<"client_id">>,

<<"client_secret">>,

#{}

)

Our audit used Static Analysis with Data flow and control flow analysis.
The OIDCC Erlang code is secure✅

https://github.com/erlef/oidcc
https://github.com/erlef/oidcc

