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A new function for Bayesian R2

A new function for computing the Bayesian R2 not only for the Gaussian and binomial families, but also for
potentially any response family implemented in R and stanreg models. This includes GLMMs and GAMMs
with group-specific random effect terms as implemented in the stan_glmer function of the rstanarm package.
bayes_R2_new <- function(fit)
{

fam <- family(fit) # family dist. of the response
eta <- posterior_linpred(fit) # linear predictor: eta
mu <- fam$linkinv(eta) # conditional mean
varfit <- apply(mu, 1, var)
# conditional variance: adjust for dispersion parameter
varres <- switch(fam$family, gaussian={

as.matrix(fit, pars="sigma")ˆ2
}, binomial={

v <- fam$variance(mu)
apply(v, 1, mean)

}, poisson={
v <- fam$variance(mu)
apply(v, 1, mean)

}, Gamma={
v <- fam$variance(mu)
apply(v, 1, mean) / as.matrix(fit, pars="shape")

}, beta={
v <- fam$variance(mu)
apply(v, 1, mean)

}, neg_binomial_2={
size <- as.matrix(fit, pars="reciprocal_dispersion")
v <- fam$variance(mu, theta=c(size))
apply(v, 1, mean)

}, inverse.gaussian={
v <- family(fit)$variance(mu)
apply(v, 1, mean) / as.matrix(fit, pars="lambda")

}, stop("the speciefied family is not implemented"))
R2 <- varfit / (varres + varfit) # Bayesian R-squared
attributes(R2) <- list(varfit=varfit, varres=varres)
return(R2)

}

The new function produces identical results to the bayes_R2 function in the rstantools package for Gaussian
and binomial families.

Fitting a linear model with a Gaussian distribution for the response variable to the toy data with n = 5
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observation, as presented by Gelman et al. (2019), and a GLM with a binomial distribution and logistic link
function for the binary response variable to a toy data with n = 20 observations as given in this webpage.
library("rstanarm")
xy <- data.frame(x=1:5 - 3, y=c(1.7, 2.6, 2.5, 4.4, 3.8) - 3)
fit1 <- stan_glm(y ~ x, family=gaussian(), data=xy, refresh=0)
set.seed(20)
data <- data.frame(income=1:20, rvote=rbinom(n=20, size=1, prob=(1:20 - 0.5) / 20))
fit2 <- stan_glm(rvote ~ income, family=binomial(link="logit"), data=data, refresh=0)
fit1_R2 <- bayes_R2(fit1); fit1_R2_new <- bayes_R2_new(fit1)
fit2_R2 <- bayes_R2(fit2); fit2_R2_new <- bayes_R2_new(fit2)
par(mfrow=c(2, 2))
hist(fit1_R2); abline(v=median(fit1_R2), col="blue", lty=2)
hist(fit1_R2_new); abline(v=median(fit1_R2_new), col="blue", lty=2)
hist(fit2_R2); abline(v=median(fit2_R2), col="blue", lty=2)
hist(fit2_R2_new); abline(v=median(fit2_R2_new), col="blue", lty=2)
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Partial Bayesian R2

Partial R2 can be defined by comparing a reduced model that includes either only fixed or only random
effects with the full model that includes both. It represents how much of the total variation explained by
the full model is due to inclusion of new terms (e.g., random effects) to the reduced model. This idea is
implemented in the following function.
bayes_R2_partial <- function(fit, term=NULL, randall=FALSE)
{

if (is.null(term))
{

term <- attr(terms(fit), "term.labels") # fixed effects
}
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fam <- family(fit)
eta <- posterior_linpred(fit)
mu <- fam$linkinv(eta)
R2 <- bayes_R2_new(fit)
varfit <- attr(R2, "varfit")
varres <- attr(R2, "varres")
theta <- as.matrix(fit) # extract the posterior sample
dat <- na.omit(fit$data)
eta0 <- matrix(NA, nrow=nrow(theta), ncol=nrow(dat)) # reduced model
for (i in 1:nrow(theta))
{

eta0[i, ] <- theta[i, "(Intercept)"]
for (xt in term)

eta0[i, ] <- eta0[i, ] + theta[i, xt] * dat[, xt]
}
if (randall)
{

eta0 <- eta - eta0 + theta[, "(Intercept)"]
}
mu0 <- fit$family$linkinv(eta0)
varterm <- apply(mu - mu0, 1, var)
R2_par <- varterm / (varres + varterm)
attributes(R2_par) <- list(varterm=varterm, varres=varres, varfit=varfit)
return(R2_par)

}

An example
To demonstrate the use of the Bayesian R2 and its partial variants, we simulate a dataset with 200 observations
from a negative binomial model with a size parameter of ϕ = 2.
n <- 200
u1 <- runif(n, 0, 1)
f1 <- 2250 * (20 * u1ˆ11 * (1 - u1)ˆ6 + u1ˆ3 * (1 - u1)ˆ10) - 3/4
b1 <- rnorm(2, 0, 1)
dat <- data.frame(x1=runif(n, 0, 1),

z1=sample(1:2, size=n, replace=TRUE),
u1=u1, f1=f1)

eta <- 3 + 2 * dat$x1 + b1[dat$z1] + dat$f1
dat$y <- rnbinom(n, mu=exp(eta), size=2)

We then fit three models to the data using the rstanarm package in R:

• A model with only fixed effects,
• A model with both fixed and random effects,
• A model that includes fixed effects, random effects, and a smooth term.

fit0 <- stan_glm(y ~ x1, data=dat, family=neg_binomial_2, refresh=0)
fit1 <- stan_glmer(y ~ x1 + (1|z1), data=dat, family=neg_binomial_2, refresh=0)
fit2 <- stan_gamm4(y ~ x1 + s(u1), random= ~ (1|z1),

data = dat, family=neg_binomial_2, refresh=0)

library("ggplot2")
plot_nonlinear(fit2) + geom_line(aes(x=u1, y=f1), linetype=2, col="red")
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ggplot(data=data.frame(R2=c(bayes_R2_new(fit0), bayes_R2_new(fit1), bayes_R2_new(fit2)),
y=rep(c("fit0", "fit1", "fit2"), each=4000)),

aes(x=R2)) +
geom_histogram() + facet_wrap(~y, nrow=3) + theme_classic()
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Simulation study
For n = 100 observations, we consider the linear combination of two fixed effect covariates and two group-
specific random effects; i.e.,

ηi = β0 + β1xi,1 + β2xi,2 + bj(i),1 + bl(i),2, i = 1, . . . , n.

In addition, we consider different scenarios for the response variable yi, which may follow different distributions:

• Gaussian distribution with the identity link function:
– yi ∼ N(µi, σ2) with µi = ηi and σ2 > 0
– E[yi] = µi = ηi and Var[yi] = σ2

– variance function V (x) = 1 and dispersion parameter ϕ = 1/σ2

• binomial distribution with the logistic link function:
– yi ∼ Bin(1, pi) with pi = exp(ηi)/(1 + exp(ηi)))
– E[yi] = pi = exp(ηi)/(1 + exp(ηi))) and Var[yi] = pi(1 − pi) = exp(ηi)/(1 + exp(ηi)))2

– variance function V (x) = x(1 − x) and no dispersion parameter
• Poisson distribution with the logarithmic link function:

– yi ∼ P (λi) with λi = exp(ηi)
– E[yi] = λi = exp(ηi) and Var[yi] = λi = exp(ηi)
– variance function V (x) = x and no dispersion parameter

• Gamma distribution with the inverse link function:
– yi ∼ G(α, βi) with α > 0 and βi = ηi

– E[yi] = α/βi = 1/ηi and Var[yi] = α/β2
i = αη2

i

– variance function V (x, ϕ) = x2/ϕ and dispersion parameter ϕ = 1/α
• Beta distribution with the logistic link function:

– yi ∼ B(αi, βi) with αi = ϕ exp(ηi)/(1 + exp(ηi)) and βi = ϕ/(1 + exp(ηi))
– E[yi] = αi/(αi + βi) = exp(ηi)/(1 + exp(ηi))) and Var[yi] = αiβi

(αi+βi)2(αi+β+1) = exp(ηi)
(1+exp(ηi))2(1+ϕ)
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– variance function V (x) = x(1 − x)/(1 + ϕ) and dispersion parameter ϕ > 0
• negative binomial distribution with the logarithmic link function:

– yi ∼ NBin(r, r/(r + µi)) with µi = exp(ηi) and r > 0
– E[yi] = µi = exp(ηi) and Var[yi] = µi + µ2

i /r = exp(ηi) + exp(2ηi)/r
– variance function V (x) = x + x2/ϕ and and dispersion parameter ϕ = r

• inverse Gaussian distribution with the
– yi ∼ IG(µi, λ) with µi = 1/

√
ηi and λ > 0

– E[yi] = µi = 1/
√

(ηi) and Var[yi] = µ3
i /λ

– variance function V (x) = x3/ϕ and and dispersion parameter ϕ = λ

n <- 200 # number of observations
x1 <- runif(n, -1, 1); x2 <- rnorm(n, 0, 1 / 3) # fixed effect covariates
beta <- c(0.6, -0.75) # intercept and fixed effect coefficients
b1 <- rnorm(n / 2, 0, 0.5); b2 <- rnorm(n / 10, 0, 1) # random effects
idx1 <- sample(rep(1:(n / 2), each=2)) # group indices for random effects
idx2 <- sample(rep(1:(n / 10), each=10)) # group indices for random effects
eta <- beta[1] * x1 + beta[2] * x2 + b1[idx1] + b2[idx2] # linear predictor
dat <- data.frame(x1=x1, x2=x2, idx1=idx1, idx2=idx2,

y1=rnorm(n, 10 + eta, sd=1), # Gaussian response
y2=rbinom(n, 1, exp(eta) / (1 + exp(eta))), # binomial response
y3= rpois(n, 10 * exp(eta)), # Poisson response
y4=rgamma(n, shape=2, rate=(10 + eta)), # Gamma response
y5=rbeta(n, 2 * exp(eta) / (1 + exp(eta)),

2 * 1 / (1 + exp(eta))), # beta response
y6=rnbinom(n, size=3, mu=exp(eta)), # negative binomial response
y7=actuar::rinvgauss(n, 1 / sqrt(eta - min(eta) + 1e-06), shape=3))

Fitting the appropriate model (correct distribution family and link function) to each of the above response
scenarios.
fit1 <- stan_glmer(y1 ~ x1 + x2 + (1|idx1) + (1|idx2), data=dat,

family=gaussian(), refresh=0)
fit2 <- stan_glmer(y2 ~ x1 + x2 + (1|idx1) + (1|idx2), data=dat,

family=binomial(link="logit"), refresh=0)
fit3 <- stan_glmer(y3 ~ x1 + x2 + (1|idx1) + (1|idx2), data=dat,

family=poisson(link="log"), refresh=0)
fit4 <- stan_glmer(y4 ~ x1 + x2 + (1|idx1) + (1|idx2), data=dat,

family=Gamma(link="inverse"), refresh=0)
fit5 <- stan_glmer(y5 ~ x1 + x2 + (1|idx1) + (1|idx2), data=dat,

family=mgcv::betar(link="logit"), refresh=0)
fit6 <- stan_glmer(y6 ~ x1 + x2 + (1|idx1) + (1|idx2), data=dat,

family=neg_binomial_2(link="log"), refresh=0)
fit7 <- stan_glmer(y7 ~ x1 + x2 + (1|idx1) + (1|idx2), data=dat,

family=inverse.gaussian(), refresh=0)

Computing the Bayesian R2 for the full (including both fixed and random effects) model and partial Bayesian
R2 for two the reduced models:

• containing only fixed effects
• containing only random effects (fixed intercept is included)

Rsq1 <- bayes_R2_new(fit1); Rsq2 <- bayes_R2_new(fit2); Rsq3 <- bayes_R2_new(fit3)
Rsq4 <- bayes_R2_new(fit4); Rsq5 <- bayes_R2_new(fit5); Rsq6 <- bayes_R2_new(fit6)
Rsq7 <- bayes_R2_new(fit7)
Rsqfix1 <- bayes_R2_partial(fit1); Rsqfix2 <- bayes_R2_partial(fit2)
Rsqfix3 <- bayes_R2_partial(fit3); Rsqfix4 <- bayes_R2_partial(fit4)
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Rsqfix5 <- bayes_R2_partial(fit5); Rsqfix6 <- bayes_R2_partial(fit6)
Rsqfix7 <- bayes_R2_partial(fit7)
Rsqran1 <- bayes_R2_partial(fit1, randall=TRUE); Rsqran2 <- bayes_R2_partial(fit2, randall=TRUE)
Rsqran3 <- bayes_R2_partial(fit3, randall=TRUE); Rsqran4 <- bayes_R2_partial(fit4, randall=TRUE)
Rsqran5 <- bayes_R2_partial(fit5, randall=TRUE); Rsqran6 <- bayes_R2_partial(fit6, randall=TRUE)
Rsqran7 <- bayes_R2_partial(fit7, randall=TRUE)
par(mfrow=c(7, 3), mar=c(2, 2, 1.5, 1))
hist(Rsq1, main="Gaussian:full"); abline(v=median(Rsq1), col="blue", lty=2)
hist(Rsqfix1, main="Gaussian:fixed"); abline(v=median(Rsqfix1), col="blue", lty=2)
hist(Rsqran1, main="Gaussian:rand"); abline(v=median(Rsqran1), col="blue", lty=2)
hist(Rsq2, main="binom:full"); abline(v=median(Rsq2), col="blue", lty=2)
hist(Rsqfix2, main="binom:fixed"); abline(v=median(Rsqfix2), col="blue", lty=2)
hist(Rsqran2, main="binom:rand"); abline(v=median(Rsqran2), col="blue", lty=2)
hist(Rsq3, main="Poisson:full"); abline(v=median(Rsq3), col="blue", lty=2)
hist(Rsqfix3, main="Poisson:fixed"); abline(v=median(Rsqfix3), col="blue", lty=2)
hist(Rsqran3, main="Poisson:rand"); abline(v=median(Rsqran3), col="blue", lty=2)
hist(Rsq4, main="Gamma:full"); abline(v=median(Rsq4), col="blue", lty=2)
hist(Rsqfix4, main="Gamma:fixed"); abline(v=median(Rsqfix4), col="blue", lty=2)
hist(Rsqran4, main="Gamma:random"); abline(v=median(Rsqran4), col="blue", lty=2)
hist(Rsq5, main="Beta:full"); abline(v=median(Rsq5), col="blue", lty=2)
hist(Rsqfix5, main="Beta:fixed"); abline(v=median(Rsqfix5), col="blue", lty=2)
hist(Rsqran5, main="Beta:rand"); abline(v=median(Rsqran5), col="blue", lty=2)
hist(Rsq6, main="nbinom:full"); abline(v=median(Rsq6), col="blue", lty=2)
hist(Rsqfix6, main="nbinom:fixed"); abline(v=median(Rsqfix6), col="blue", lty=2)
hist(Rsqran6, main="nbinom:rand"); abline(v=median(Rsqran6), col="blue", lty=2)
hist(Rsq7, main="invGauss:full"); abline(v=median(Rsq7), col="blue", lty=2)
hist(Rsqfix7, main="invGauss:fixed"); abline(v=median(Rsqfix7, na.rm=TRUE), col="blue", lty=2)
hist(Rsqran7, main="invGauss:rand"); abline(v=median(Rsqran7, na.rm=TRUE), col="blue", lty=2)
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The first row of plots in the above figure displays the Bayesian R2 for the full model across various distribution
scenarios for the response variable. In the second row, we observe the partial Bayesian R2 for the reduced
model containing only fixed effects compared to the full model. This metric represents the proportion of
residual variation not explained by the reduced model, attributable to the inclusion of random effects in
the reduced model of fixed effects. In the last row, we see the partial Bayesian R2 for the reduced model
containing only the intercept term and random effects versus the full model. Here, we measure the proportion
of variation not explained by the reduced model due to the inclusion of fixed effects in the reduced model
of random effects. It is important to note that because of potential interactions between random and fixed
effects and also non linearity of the link function, there is no linear relation between marginal Bayesian R2

for reduced models and the Bayesian R2 for the full model.

For example, in the Gaussian model scenario, the full model explains approximately 60% of the variation in
the future values of the response variable. When random effects are included in the reduced model, which
initially contains only fixed effects, they account for around 40% of the variation that is not explained by
the reduced model. However, about 50% of the variation not explained by the reduced model with random
effects and intercept can be attributed to the inclusion of fixed effects. This indicates that fixed effects have a
slightly higher contribution than random effect in explaining the variation in the future values of the response
variable.
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