Universidade de Sao Paulo
Escola Politécnica

Laboratoério de Técnicas Inteligentes

Saci Programming Guide

(version 0.9)

Jomi Fred Hubner

e-mail:jomi@pcs.usp.br

Jaime Simao Sichman

e-mail:jaime@pcs.usp.br

Sao Paulo, July 2003

Abstract

Saci is a tool that turns programming communication among distributed agents easier. Two
kinds of features are provided by Saci: an API for composing, sending, and receiving KQML
messages; and a collection of tools that simplify some inherent difficulties to distribution (agent
name service, yellow pages service, remote launching, communication debug, etc.). This manual
explains the Saci’s fundamentals, describe how to program agents using Saci’s API, and how

to use Saci’s tools.

Acknowledgments

We would like to thank Rafael Heitor Bordini for his motivation and his contributions in the
development of Saci. We also would like to thank Irene Durval Fichman for her valuable

revision of this manual text.

Contents

1 Introduction

2 Agent Communication
2.1 KQML . . .o

3 Saci’s Specification

3.1 Sacisociety’smodel
3.2 Saci’s architecture
3.2.1 Entering and leaving societies oo
3.2.2 Sending and receiving messageso oo c L
3.2.3 Announcing skills. oL oL

4 Using Saci to Develop Agents

4.1 Asimplesample
4.1.1 Compiling an agent L L
4.1.2 Running an agent Lo

4.2 Entering and leaving societies oo

4.3 Sending and receiving messageso i e e

4.4 Announcing skills oL

4.5 Message handlers Lo

4.6 Making agents applets Lo

5 Saci’s Tools

5.1 Launcher Demon e
5.1.1 Enabling an agent to be launched
5.2 Agent Launcher

10
10
10
11

14
14
16
16
17
19
22
25
27

Chapter 1

Introduction

The implementation of a Multi-Agent System (MAS) usually requires communication between
agents in a distributed environment [9]. However, sometimes this is not a simple task. Devel-
opers need some knowledge about network protocols, TCP/IP ports, distributed programming
(RMI, CORBA, DCOM), and some other technologies. In order to help the MAS designer,
there are Multi-Agent System Development Environment (MDE) that provide tool boxes for
the development of software applications using a MAS approach. Four tool boxes are proposed

by Demazeau [3] (Figure 1.1):

Agent software skeletons ranging from simple reactive to cognitive agents.
Environment software skeletons containing domain topological models.
Interaction software skeletons for language and protocols that agents can use.

Organisation software skeletons for optimising the functioning of all the agents as a whole,

ranging from unstructured to more structured organisations.

Thus, to develop a MAS the designer must choose agents, environment, interaction, and or-
ganisation models suitable for his application and available in these tool boxes. Saci (Simple
Agent Communication Infrastructure) is a tool that can be considered an interaction tool box.

Saci enables distributed agents to communicate in an easy way. It is a set of Java classes
and facilities that can be used in order to help the development of distributed agent societies.

It provides the following main features:
e Agents are grouped in societies.

e Agents communicate using Knowledge Query and Manipulation Language (KQML) mes-

sages [7]. Saci has procedures for composing, sending, and receiving KQML messages.

e Agents are identified by name. They can send messages to other agents just using
the receiver’s name. Its location in the network is made transparent to the user by
a facilitator agent (this facility is also know as “white pages service” or “agent name

service”).

MAS Applications

MAS Development Environment

Agents Environments| | Interactions | |Organisations

Distributed System (RMI, CORBA, DCOM, ...)

Network of Workstations

Figure 1.1: MAS Development tool boxes

e Agents may know others by a “yellow pages service”. Agents can register their services
with a facilitator and query this facilitator to find out what services are offered by which

agents.
e Agents can be implemented as applets and run on web browsers.
e Agents can be launched remotely.

e Agents can be monitored. Social events (entrance, leaving, sending, or receiving mes-

sages) can be logged for further analysis.

This document sets out how to program agents using Saci’s facilities. It does not aim to
show how to install and configure Saci, this sort of information is available on Saci’s home-page
(http://www.lti.pcs.usp.br/saci).

Chapter 2 describes some MAS tools used for agent communication that have inspired
Saci’s development. In Chapter 3, Saci’s infrastructure and functioning are specified. Chapter 4
describes how to program an agent using Saci’s Application Program Interface (API), how to
use Saci’s facilitator services, and how to implement agents as applets. Finally, Chapter 5 shows

how to use the facilities that come together with Saci.

http://www.lti.pcs.usp.br/saci

Chapter 2

Agent Communication

2.1 KQML

Agents developed with Saci’s infrastructure communicate among themselves using messages
written in KQML. KQML is a language and a protocol specification that supports high level
communication among agents [7, 8]'. As an Agent Communication Language (ACL), KQML
provides agents with the means of exchanging information and knowledge.

KQML is widely adopted because it has some effective features:
e Any language can be used for the content of the message (KIF, SQL, Prolog, etc.).

e The information used to understand the content of a message is included in the commu-

nication itself.

e When agents exchange messages at KQML level, they could ignore the transport mech-
anism (TCP/IP, RMI, IIOP, etc.), i.e., how the message will leave the sender agent and

arrive at the receiver.
o KQML message format is simple, it is easy to parse and readable by humans.

The KQML message format is based on a LISP syntax, however, the arguments are iden-
tified by keywords preceded by a colon:

(performative
:language word message layer
:ontology word
:sender word
‘receiver word communication layer
:reply-with word
:content eTpression } content layer

)

LA good introduction to KQML can be found on [2](in portuguese)

The message layer includes information that helps the receiver understand the content of the

message. The performative field identifies the sender’s intention with the message (inform,

query, ask, ...), the value of the :language keyword is the language in which the message is

expressed, and the value of :ontology is the vocabulary used for the “words” in the message. The

communication layer describes the lower-level communication parameters, such as the identity

of the sender and receiver, and a unique identifier for the message (:reply-with keyword). For

example, with the message:

(ask-one
:ontology bovespa
:language SQL

‘receiver stock-server

:sender agl

:reply-with gl

:content “select price from stocktable where ent = Conectiva”)

agent agl is asking agent stock-server something, the query is written using the SQL language

under bovespa ontology. Since it is a performative query?, the agent stock-server must answer

it: 3

(tell
:language prolog
:ontology bovespa
‘receiver agl
:sender stock-server
:in-reply-to ql
:reply-with a2
:content “[price(10.0)]")

This example shows just one possible use of the ask-one performative, but KQML specifies

the use of many others. These performatives may be organised into seven basic categories:

Query (evaluate, ask-one, ask-all, ...)
Multiresponse query (stream-in, stream-all, ...)
Response (reply, sorry, ...)

Information (tell, achieve, cancel, untell, ...)
Generator (standby, ready, next, ...)
Capability (advertise, subscribe, .. .)

Networking (register, forward, broadcast, ...)

2This is a KQML protocol specification: every message with the ask performative must be
answered. So, agents that implement the ask performative must follow this rule.

3The reply-with and in-reply-to fields may maintain, if the agent designer wishes, the conver-
sation’s history among the agents.

Although KQML has a predefined set of reserved performatives and keywords, it is neither a
minimal required set nor a closed one. However, agents that choose to implement one of the

reserved performatives must implement it in the standard way.

Chapter 3

Saci’s Specification

3.1 Saci society’s model

Almost all agent’s definitions agree that an agent exists within an environment and interact
with it [4, 5, 1, 6, 10]. Moreover, we see a MAS as a system where agents are grouped in societies
and can communicate with each other using agents’ identification and a common language. The
agent’s identification is a name that uniquely identifies an agent as unique inside its society.

Saci provides a way for an agent to know others and communicate with them. In a certain
way, we could say that some of the social features of a MAS is provided by the tool. In order
to enable agents to know who are the others in their society, the agents’ identifications are
available to all agents. However, sometimes an agent needs to know more than just the other
agents’ identification to co-operate, it has to know their problem solving skills.

Formally, a society’s structure state is defined as a tuple
Soc = (A, S, 1,0)
such that

A={o | ais an agent’s identification within the society},

S = {0 | o is an available skill in the society },

l is a society’s language, and

§: A+ P(S) is a partial function that maps agents to skills, such that
d(a) ={o | ois an o’s skill}.

For instance:

Iti = ({Jomi, Jaime, Julio, Jose},
{Java, C, Prolog, Teach},
Portuguese,
{Jomi + {Java}, Jaime — {C,Teach}, Julio — {Java}})

Q enter =© leave =®

send. receive. announce

Figure 3.1: Agent Live Cycle

This structure state may change over time by some social event, like agent entrance, skill

announcement, etc:
Soc; = Soc; 11 | some social event happened at moment 4.

In Saci, the internal agent functioning does not matter: it could be reactive, cognitive, or
whatever. There is only one restriction on the agent behaviour, they must have the following

life cycle (cf. Figure 3.1):

Enter into a society: the agent gets a social identification. The entrance of agent « at moment

1 will change the society’s structure as follows:
<A,S, l, 6)1 = <A/,S, l,5>i+1 | A =AU {a}

Announce skills: optionally, one agent may announce a skill to the society. If agent o an-

nounce a skill o, the society’s structure will change as follow:

(A,8,1,0); = (A8, 1,841 | S'=SU{o}
5,(3:):{ o(x) if x # «

0(z)U{o} otherwise
Send/receive messages to/from agents in the same society; and

Leave the society: agent « looses its identity inside the society.

<A787 175>2 = <A/7S/7 la§/>i+1 | -’4/ =A - {Oé}
5,@):{ 5(z) ifzeA

{} otherwise

S'={o|oed(z)}

Agl.SocA Facilitator.SocA

Ag3.SocA
Agl.SocB

Ag2.SocB Facilitator.SocB

Figure 3.2: Saci environment sample

3.2 Saci’s architecture

3.2.1 Entering and leaving societies

As suggested by the KQML architecture, every Saci society has a facilitator agent that maintains
its structure: the identity, the location®, and the services provided by the society’s agents.
Figure 3.2 shows an example of a Saci environment where there are two societies (SocA and
SocB) with two agents and a facilitator in each one. When an agent wants to enter into a
society it has to contact the society’s facilitator and register its name. The facilitator will bind
the agent’s name with its location and give it a unique identification. Notice that when leaving

the society, an agent has to notify the societies’ facilitator to which it belongs.

3.2.2 Sending and receiving messages

A MBox component serves as an interface between the agent and the society. Its main aim
is to deliver a message to the receiver and to turn transport network mechanisms and remote
locations transparent to the agent developer. Thus, in order to communicate, Saci agents
use MBox’s methods that encapsulate interaction tasks (sending messages, receiving messages,
advertising, etc.). Of course, an agent may have more than one or two MBox objects, each of
them corresponding to a single society to which it belongs.

In the case of Figure 3.3, agent Ag2 of society SocA wants to communicate with agent

Agl which belongs to the same society SocA, Ag2 also knows Agl’s name (these are two

'Some architectural components were introduced in the society model presented at Sec-
tion 3.1, like the agent’s location in the network.

10

Agl.SocA

Ag2.SocA

(5) communication

(3) ask Agl location
(4) answer host a

(1) register Agl.SocA

(2) register Ag2.SocA

host ¢

Facilitator.SocA

white pages
Agl: hosta
Ag2: host b

Figure 3.3: White pages service

preconditions for an agent to send a message to another). At first, Ag2’s MBox needs to know
Ag1’s location, so it asks SocA’s facilitator for the location (arrow (3)). Having the location

(arrow (4)), Ag2 starts to communicate with Agl through its MBox (arrow (5)).

3.2.3 Announcing skills

In Saci societies, the agents can advertise their skills with the society’s facilitator (analogous
to a “yellow page” list) in order to be known inside its society. When an agent decides to ask
another for a task and do not know the other’s name, it may query the facilitator for a set of
agents’ names that have the required skill. For instance (see Figure 3.4), considering agent Ag2
has advertised a skill that Agl needs (arrow (1)), Agl asks the facilitator for such a skill (arrow
(2)), the facilitator gives Ag2 as the answer (arrow (3)), and then Agl can start to communicate
with agent Ag2 (arrow (4)). Indeed, this is just one model available for presentation. Saci agents
can use other ways to be known, for instance: broadcasting its skills to all agents.

In the sample of Figure 3.4, the KQML message Ag2 uses for advertising one skill to the

facilitator (arrow (1)) is

(advertise

receiver Facilitator

11

(2) recommend-all(ask(X+Y))

Agl.SocB

()

Ag2.SocB @

Figure 3.4: Yellow pages service

yellow pages
Agl=ask(X+Y)

Facilitator.SocB
(1) advertise(ask(X+Y))

:sender Ag2
:language KQML
:ontology yp

:content (ask-one
:receiver Ag2
:language alg
:ontology math
:content "X+Y"))

that means agent Ag2 can answer messages with the performative ask-one, the language alg, the
ontology math, and formulae with two operands. Then Agent Agl uses the following message
to get a list of agents (arrow (2)):

(recommend-all
‘receiver Facilitator
:sender Agl
:reply-with id1
:language KQML

:ontology yp

:content (ask-one
:language alg
:ontology math
:content "X+ Y"))

and the answer from the facilitator (arrow (3)) is

(tell
‘receiver Agl
:sender Facilitator
:in-reply-to idl

12

:language
:ontology

.content

KQML

yp
(Ag2))

13

Chapter 4

Using Saci to Develop Agents

4.1 A simple sample

One of the easiest way to learn a new API is by an example. So let us consider an agent’s

source that sends and receives a message:

1 import saci .x;
2

3 public class SampleSaciAg extends Agent {

5 public void run() {

6 try {

7 Message m = new Message(" (ask—one” +

8 " _content.\"244\"" +

9 " _: receiver _LAPlusServer” +

10 " _: reply —with_rAdd)");

11 mbox.sendMsg(m);

12 boolean ok = false;

13 while (! ok) {

14 Message r = mbox.polling();

15 String irt = (String)r.get(" in—reply—to");
16 if (irt.equals("rAdd")) {

17 String ans = (String) r.get(" content”);
18 System.out. println (" Answer.is_" + ans);
19 ok = true;

20 }

21 }

22 } catch (Exception e) {

23 System.err. printin (" Error." + e);

14

27 public static void main(String [] args) {
28 SampleSaciAg a = new SampleSaciAg();

29 if (a.enterSoc(”SampleSaciAg”)) {
30 a.run();

31 a.leaveSoc();

32 System.exit (0);

33 }
34 }}

The first thing to notice in the code is the main method (line 27). Agent’s life cycle is coded
there: the agent enters into a society (line 29), sends and receives messages (line 30, through
run method), and leaves the society (line 31). In the run method, the agent creates a KQML
message (line 7), sends it asynchronously using its inherited mail box interface (line 11), gets
an incoming message (line 14), and, if the message is a reply to the previous sent message (line
16), shows the answer (line 18). The following run method is equivalent to the above code, but
it uses the ask method instead of send and polling (the ask method sends the message and waits

for an answer for it).

1 public void run() {

2 try {

3 Message m = new Message(" (ask—one” +
4 " _:content.\"2+4\"" +

5 " _: receiver _APlusServer” +

6 " _: reply —with_rAdd)");

7 Message r = mbox.ask(m);

8 String ans = (String)r.get(" content”);

9 System.out. printin (" Answer._is." + ans);
10 } catch (Exception e) {

11 System.err. printin (" Error." + e);

12 }

13}

It is also possible to send messages by the KQML broker protocol. In this protocol, the
agent do not need to know the name of the agent that will answer it. The following source

samples how to use this protocol:

1 public void run() {

2 try {

3 Message m = new Message("” (ask—one” +
4 " _:content.\"2+4\"" +

5 " _:language_algebra)”;

15

11

12

Message r = mbox.brokerOne(m);

String ans = (String)r.get(" content”);

System.out. printin (" Answer._is_" + ans);
} catch (Exception e) {

System.err. printin (" Error.” + e);

4.1.1 Compiling an agent

To compile the program, make sure that Saci’s saci.jar file is in the class path. Considering

Saci was installed under /opt directory, the class path variable should be set and the program

can be compiled with:

export CLASSPATH=/opt /saci/bin/saci.jar:$CLASSPATH !

javac SampleSaciAg.java

4.1.2 Running an agent

Saci agents can be started in many ways: by a Java Virtual Machine (JVM), by an agent

launcher tool, or by a web browser. However, in order to start Saci agents in a host, a Saci

launcher must be already running there. So, before starting the agent example compiled in the

previous section, the launcher has to be started and the APlusServer agent, which will be asked

by the SampleSaciAg agent to sum, must be running. Then, the SampleSaciAg agent can be
started by a JVM with the command:?

java SampleSaciAg

Figure 4.1 illustrates the steps for starting this society:

1.

5.
6.

Saci’s Menu is started by running the saci or the saci.bat script that is in the Saci’s bin

directory (Figure 4.2 shows this menu);

. Saci’s Menu starts a launcher demon automatically;

a society launcher is started by Saci’s Menu;

. the society launcher asks the launcher demon to create a new society with no name (*”

is the default society);
W,

the launcher demon starts a new facilitator for the society “”;

by Saci Menu, an agent launcher is started;

n window systems where Saci was installed under “c:\” directory, this command should
be: set CLASSPATH=c:\saci\bin\saci.jar;%CLASSPATH%
2See in Section 5.1.1 what to do to start this agent from Saci Agent Launcher tool.

16

o
>
Q APLusServer SampleSACIAg
>
=
[3)
T) Society’s
) "
b Facilitator

(8)
_ (4.) I -{ Society Launcher
g Launcher U
o demon Y
2] agent Launch
e gent Launcher
8 (3) 9)
=
‘O
© (6)
0

Saci Menu

€ @
Q
-
2
7 JVM JVM
o
c
= o
© ----# communication
8_ —> creation
o

Figure 4.1: Starting a Saci Society

7. the agent launcher asks the launcher demon to create a new agent with the name

“APlusServer” from PlusServer class;
8. the launcher demon starts such agent; and finally

9. the agent “SampleSaciAg” is stared by a JVM with the command
java SampleSACIAg.

4.2 Entering and leaving societies

If one agent extends the Agent or AppletAgent class, the enterSoc and leaveSoc methods imple-
ment respectively the entry and exit in the society. The enterSoc method receives as a parameter
the preferable name for the agent in the society. If the name already exists in the society, the
facilitator will chose another one. The real agent’s name in the society can be obtained by
getMbox().getName() method. Since a Saci context can have many societies, sometimes it is

necessary to give more parameters to the entry operation, for instance, the society’s name that

17

K Saci at jomilze

Launcher Admin
Consett 10 a remare laS"2'¢

L
¥OU TO STar new societies
* Er@omilze

Figure 4.2: Saci Menu

the agent wants to enter. Thus, the enterSoc method also has an optional parameter: a Config

object. Config could be set with two arguments (both are optional)?:

e society.name: society’s name where the agent is entering, the default value is “”. The

(133

society with name “” is also know as “<default society>”. The default society is used

when an agent does not specify one.

e facilitator.host: host’s name where the society’s facilitator is running, the default value
is “localhost”. If this parameter is not informed, the Saci will try to find out the host.

The following source samples the Config use for entering the society “simsoc” which facilitator

is running at host “nantes.pcs.usp.br”:

1 SampleSaciAg a = new SampleSaciAg();
2 Config ¢ = new Config();

3 c.set(” facilitator .host”, "nantes.pcs.usp.br");

4 c.set (" society .name”, "simsoc”);

5 if (a.enterSoc(”SampleSaciAg”, c)) {

6 System.out. println (" My_name.is_" + a.getMBox().agentName());

7

If an agent’s project does not allow extending the Saci’s Agent class, it is possible to use

an instance of the MBoxSAg class to enter and leave societies. An example may be:

1 import saci .x;

2 class Sample2 {

3If the agent launcher tool is used to start the agent, this tool will set Config’s parameters
automatically.

18

3 public static void main(String[] args) {

4 try {

5 MBoxSAg mbox = new MBoxSAg(" AnAgName”);
6 mbox.init ();

7 mbox.sendMsg(new Message(

8 " (tell _:content.hello _: receiver _Rafa)"));

9 mbox.disconnect();

10 } catch (Exception e) {

11 System.err. println (" Error." + e);

12 }

13 System. exit (0);

14 }

15}
The MBoxSAg constructor receives the same parameters as the enterSoc method (an agent’s
name and a Config object) and its construction means that the agent will enter in a society
(line 5). The MBoxSAg’s init method starts the thread that delivers messages from an outgoing
queue (see Figure 4.3). The agent leaves the society by using the disconnect method (line 9).
Once the above agent does not extends the Agent class, this agent can only be started from the
operating system, it can not be launched by the launcher tool (in order to make it launchable,
see Section 5.1.1).

4.3 Sending and receiving messages

Before sending a message, an agent needs to create a Message object and set the corresponding
KQML fields to it. Messages are simply mappings from field tags to values. In the Message
construction, the string argument is parsed and the corresponded fields are put in the message’s
mapping. Because Message is a subclass of Hashtable (a Java mapping data structure), fields

can also be set with the put(<field>, <value>) method. For instance:

”

1 Message r = new Message(" (tell_:content._45)");
2 r.put(” receiver”, "jomi");

3 r.put(”in—reply—to", id3);

after line 3, the message r will have the following fields:

Field Value
performative tell
content 45
receiver jomi

in-reply-to id3

To send and receive messages, the following methods of the MBox interface may be used

(see Figure 4.3):

19

e sendMsg(Message) sends a KQML message by adding it in the outcome queue. If there
is neither “sender” nor “reply-with” fields in the message, these KQML fields will be

automatically added.

e sendSyncMsg(Message) is the same as sendMsg, but it sends the message synchronously

(the sender will wait until the receiver reads the message).
e receive() returns the first message in the agent’s mail box.

e receive(Pattern) is the same as receive(), but select the first message that match Pattern.

Pattern is a Message object with some fields used to filter the existing messages.

e polling([timeout]) is the same as receive(), but if there isn’t a message, it will wait for
one. If time-out is reached, it returns null. If time-out is not informed, this method will

wait until one message comes (i.e., timeout is infinite).

e polling(Pattern, timeout) is the same as polling(), but waits for a message that matches

Pattern.

o ask(Message [,timeout]) sends Message and waits until the agent receives a message with
the appropriate “in-reply-with” for the Message. If time-out is reached, it returns null.

If time-out is not informed, it will wait until one answer comes.

o getMessages(Pattern [, quantity, timeout, remove]) returns at least quantity messages from
the MailBox that match Pattern. If there is not such number of messages, the method
waits timeout milliseconds (at most) for them. If Pattern is null, waits at most timeout
milliseconds for quantity messages. If timeout is -1, waits until quantity messages arrive
(may be forever). If some error happens, returns null. If remove is true, the messages

will be removed from the MailBox.

The following methods just encapsulate the use of facilitator’s services:

e broadcast(Message) sends a message to the facilitator which broadcasts it to all the

society’s agents.

o brokerOne(Message|[, timeOut) sends a message to the facilitator which will find one agent
to answer it, say agent b. The method returns the answer b gives to the facilitator (see

[7] for more information about the KQML broker protocol).

o forward(Message) sends a message through the facilitator. The facilitator will send it
to the “receive” agent. It is useful if an agent can not contact an other agent with its
network resources. In that case, the agent can ask the society’s facilitator to send the

message.

Instead of using these methods, one can send messages to facilitator to ask him services
(see [7]). For example, instead of using the forward(new Message(“(tell :receiver Ag3 :language
alg :ontology math :content "1 + 3")")) method, one can send the following message:

20

Mbox S .

— address cache -
MBOX Interface - 77777777777777 >@
sendSyncMsg
outgoing queue

sendMsg — (- [T1] send messages)...........\. o
thread :
polling()
receive() \
incomming queue :
(""" receive messages;<” - .
thread :
Figure 4.3: Agent Mail Box Functioning
(forward
:from Ag2
‘to Ag3
‘receiver Facilitator
:sender Ag2
:language kgml
:ontology kgml-ontology
:content (tell
:receiver Ag3
:language alg
:ontology math
:content "143"))

Instead of using the brokerOne(new Message(“(ask-one :receiver AgS :language alg :ontology

math :content "1 + 3")")) method, one can send the following message:

(broker-one

‘receiver Facilitator

:sender Ag2

:language kgml

:ontology kgml-ontology

:content (ask-one
:language alg
:ontology math
:content "1+ 3")

21

4.4 Announcing skills

To announce skills, agents may send an advertise message to the society’s facilitator (Cf. Sec-
tion 3.2.3) or they should use MBox’s method (that wraps the sending of the message):

o advertise(performative, language, ontology, term): advertises facilitator that the agent can
receive messages of performative, language, ontology, and term. If some of the parameters

are not relevant, they may have the null value.

In order to consult the facilitator’s yellow pagea table, agents either send an recommend-all

message or they should use the following MBox method that encapsulates the communication:

o recommdAll(performative, language, ontology, term): asks the facilitator to give a list of

agents that advertise such skill, then it returns a Vector object with agent’s names.
The source bellow shows the code for the Ag2 of Figure 3.4:

1 import saci .x;

3 public class PlusServer extends Agent {

4 public static void main(String [] args) {
5 Agent a = new PlusServer();

6 if (a.enterSoc("Ag2")) {

7 a.initAg (null);

8 a.run();

0o}

11

12 public void initAg(String [] args) {

13 try {

14 mbox.advertise(” ask—one”, null, "math”, "X_+.Y");
15 } catch (Exception e) {

16 System.err. println (" Error.” + e);

17 }
18 }

19

20 public void run() {

21 while (true) {

22 Message m;

23 try {

24 m = mbox.polling();
25 } catch (Exception e) {
26 m = null;

27 }

28 if (m == null)

22

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

continue;

if (m.get(" performative”). equals("ask—one")) {
Message r = new Message(" (tell)");
r.put(” receiver”, m.get("sender”));
r.put(”in—reply—to”, m.get(" reply—with"));
r.put(”content”, sum((String)m.get(" content”)));
mbox.sendMsg(r);

String sum(String formula) {
try {

formula = formula. substring (1,formula.length()—1);
int posMais = formula.indexOf(" +");

String opEsq = formula.substring (0, posMais);
String opDir = formula. substring (posMais+1);
float fEsq = (new Float(opEsq)).floatValue ();
float fDir = (new Float(opDir)). floatValue ()

return """+ (fEsq + fDir);

} catch (Exception e) {

return " Error_in _formula” ;

In the initAg() method (line 14) the agent advertises its skill to the facilitator.* Notice that the
Ag?2 ignores the language used to ask its services, since the language parameter is null.
The Ag1’s source should be:

1

2

8

9

10

import saci .x;

public class PlusClient extends Agent {
public static void main(String [| args) {
PlusClient a = new PlusClient();
if (a.enterSoc("Agl")) {

a.run(args [0]);
a.leaveSoc();

4The agent must be initialized in the method initAg() because this method is called by the
launcher before the agent starts running (see Section 5.1.1).

23

11

12 public void run(String exp) {

13 try {

14 Vector receptores =

15 mbox.recommendAll(" ask—one”, null, "math”, "X_+.Y");
16

17 if (receptores . size() == 0) {

18 System.out. println (" There_is_no_agent_to_answer_me!”);
19 } else {

20 for (int i=0; i < receptores.size (); i++) {

21 String ag = (String) receptores .elementAt(i);

22 Message m = new Message(

23 " (ask—one_:content.\""+ exp + "\")");
24 m.put(” receiver” , ag);

25 m.put(” reply—with”, "rSum”);

26 mbox.sendMsg(m);

27 }

28 Message pattern = new Message();

29 pattern . put(” in—reply—to”, "rSum");

30 Vector answers = mbox.getMessages(pattern,

31 receptores . size (),
32 4000, true);

33 for (int i=0; i<answers.size (); i++) {

34 Message answer = (Message)answers.elementAt(i);
35 System.out. println (" Answer_from” +

36 answer.get("sender”) + " _was.” +

37 answer.get (" content”));

38 }

39 }

40 } catch (Exception e) {

41 System.err. printin (" Error." + e);
42 }

43 }

44 }

In line 15 Agl gets as a result from method MBox.recommendAll() a Vector with all agents in
its society that can add two number. If there is at least one, it sends a message to each one (in

the loop of lines 20-27), and waits for the answers (lines 30 ss.).

24

4.5 Message handlers

Instead of using the agent main thread to handle incoming messages, as the agent PlusServer

does, one can use message handlers. Message handlers are objects plugged in the MBox that

“listen” messages which match a pattern and call back a method when a message arrives. The

PlusServer agent could be coded as:

1

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

import saci .x;

public class PlusServer extends Agent {

public static void main(String [| args) {
Agent a = new PlusServer();
try {
if (a.enterSoc(" APlusServer”)) {
a.initAg (null);
//a.run(); no run for this agent!
// It uses message handlers to anwser messages
}
} catch (Exception e) {
System.err. println (" Error=""+¢);

JES:
% initiate the agent
*/
public void initAg(String [] args) {
try {
mbox.advertise(” ask—one”, "alg”, "math”, "X_+.Y");

// add a message handler that prints the arriving messages
mbox.addMessageHandler(null,null,null, null, new MessageHandler() {
public boolean processMessage(Message m) {
System.out. println (" Msg="+m);

return false ; // other message handler also gives this message

1
// add a message handler to answer sum asks

// this handler filter is
// . any content (null)

25

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

60

61

62

63

64

66

67

68

69

70

71

72

73

74

75

76

// . performative "ask—one"

// . language " alg
// . ontology "math”

mbox.addMessageHandler(null,” ask—one”," alg” " math”, new MessageHandler() {

public boolean processMessage(Message m) {

try {

System.out. println (" Adding...");
Message r = new Message(" (tell)");

r.put(” receiver”, m.get("sender”));

r.put(” in—reply—to”, m.get(" reply—with"));

r.put("ontology” , m.get(" ontology”));

r.put(” content”,

sum((String)m.get("content”)));

System.out. println ("sending” + r);

mbox.sendMsg(r);

} catch (Exception e) {
System.err. println (" Error_sending_message\n" +e);

}

return true; // no other message handler gives this message

H;

} catch (Exception e) {
n (

”

System.err. printl

String sum(String formula) {
try {

Error._ starting _agent:” +e);

formula = formula. substring (1, formula. length()—1);
int posPlus = formula.indexOf(" +");
String opL = formula.substring (0, posPlus);

String opR = formula.substring(posPlus+1);
float fL = (new Float(opL)).floatValue ();
float fR = (new Float(opR)).floatValue ();

return "" 4 (fL + fR);
} catch (Exception e) {
return "Erro”;

26

If an incoming message match the content, performative, language, and ontology of some
handler (null means any), the processMessage method of this handler will be called. In case
this method returns true, no other handler will try the message neither the message will be

included in the mailbox.

4.6 Making agents applets

Implementing a Saci agent as an Applet is very simple: one might just extend the AppletAgent
class instead of the Agent class. AppletAgent uses a remote MBox that runs on a web server
host instead of the browser’s JVM.® This is necessary because MBox needs special privileges to
run (it is a message receiver server) and usually an Applet does not have them.

The applet agent could be coded as follow:

1 import java.awt.x;
2 import saci .¥;

3 public class PlusClientApplet extends AppletAgent {

5 public void init () {

6 if (enterSoc("Agl")) {
7 run();
8 leaveSoc ();

10 }
11 public void run() {

12 try {

13 Vector receptores =

14 mbox.recommendAll(" ask—one”, null, "math”, "X_+.Y");
15

16 if (receptores.size() == 0) {

17 add (new Label(" There_is_no_agent_to_answer.me!"));
18 } else {

19 Message m = new Message(" (ask—one_:content.\"2+4\")");
20 m.put("” receiver”, receptores .elementAt(0));

21 Message r = mbox.ask(m);

22 String ans = (String) r.get(" content”);

23 add (new Label(ans));

24 }

25 } catch (Exception e) {

26 System.err. println (" Error." +e);

27 }

°Thus, a launcher must be running on that web server host (see Section 5.1).

27

Although this program uses a remote MBox, MBox’s methods are called as if they were local
methods (lines 14 and 21).

To publish an applet at some web server, it is necessary to put in the appropriate web server
directory (i) the agent’s classes, (ii) a HTML page that calls the agent, and (iii) the saciapplet.jar
file (this file contains all Saci’s classes needed by a Saci applet). Here is an example of a HTML
page that calls the agent coded above:

1 <hl>Demo Saci Agent Applet</h1>

2 <applet

3 code=PlusClientApplet

4 archive="saciapplet. jar”
5 width = 200 height = 50

6 ></applet>

28

Chapter 5

Saci’s Tools

Last Chapter has shown how to program an agent using Saci’s API and this Chapter will show
how to maintain societies of agents using those agents. Saci has two kinds of tools: some that
should be used in order to create agents and societies; and some that should be used to see

what is happening in a society.

5.1 Launcher Demon

The launcher demon main purpose is to enable agents and societies to be started in a distributed

environment. Every machine that will run agents has to have a launcher demon running

(Figure 4.1 gives a good example of the launcher role). The launcher can be asked for the

following services':

e Agents and societies’ facilitators creation in the local host or in a remote host. If launcher
is asked to start an agent or society, it first checks if it is a local or remote creation. In
the first case, the launcher demon creates the agent in its own JVM, and, in the second
case, it looks for the launcher at the remote host and asks him to proceed the creation.

This service is used by agent and society launcher tools (see Section 5.2).

e Remote mail box creation: in this case the agent’s mail box will run in launcher host
and not in agent’s host (it happens with applet agents because MBox can’t run in web
browsers). It is also useful if the agents decide to de-active themselves and stop running,

so the incoming messages will be received by the launcher.

e Kill an agent: the launcher kills the agent if it is local, otherwise ask the appropriate

launcher to proceed the killing.

'Tt is a partial list, a complete and detailed launcher’s RMI interface is available as java doc
in Saci’s home pages (see http://www.lti.pcs.usp.br/saci/doc/api).

29

In order to get a launcher running, the Saci’sMenu can be used (see Section 4.1.2) or the

launcher can be started by the launcherd script. In the last case, the following parameters may

be informed:

-applications filename: indicates a file where a list of resources (agents classes, for ex-
ample) used by an application are defined. The default value is “applications.xml”.
-facilitator [societyName]: starts a society’s facilitator, optionally with a specific society
name. The user may start several facilitator within the same command.

-agent class name [society]: starts a new agent that will be created from class with

preferred name and optionally in the society society.

-connect host[:port] : connects to another launcher, so the other launcher will be known

by this launcher.

-registry host[:port] : specifies a host/port where the launcher could find a rmiregistry

running. If not specified, localhost will be used.

5.1.1 Enabling an agent to be launched

Launcher demon can start agents that satisfy the following conditions:

1.

The agent implements the LaunchableAg interface. Thus, an agent is launchable whether
it extends the Agent/AppletAgent class or it implements this interface behavior.? This

interface has the following methods:
e enterSoc(name, config): this method has to implement the entrance in society with
name and config (as saw in Section 4.2);
e leaveSoc(): implements the leaving society act;

o initAg(String|[] args): initializes the agent before it starts running and gives it an

array of arguments sent by the launcher;
e run(): implements the agent behaviour;

e stopAg(): this agent’s method is called when the infrastructure or the user want

the agent stops running;
e getMBox(): returns the agent’s mail box;
e setProperty(String id, Object value): set an agent’s property.
e Object getProperty(String id): get an agent’s property.
When the launcher creates a new agent, it calls the LaunchableAg methods in the follow-
ing order: enterSoc, initAg, and run. Optionally the launcher also calls getMBox, stopAg,

setProperty, and leaveSoc. Note that agent’s main method will not be executed when

the agent is launched.

%It is very easy to give such an interface to an agent, see <saci dir>/src/saci/tools/Agent.java
source for a sample.

30

2. A description of the agent has to be added in the appropriate application resource
file (in the default file “applications.xml” there are instructions about how to give this

description).

3. The agent’s classes have to be found by the JVM where the launcher runs. So, before
starting the launcher, either set the CLASSPATH variable to a directory where your
agent’s classes are or put your classes/jar files in the ulib directory (the ulib directory

and its jar files are already in the classpath).

For example, considering the program of Section 4.1, which has the LaunchableAg behavior

since it extends Agent class, the following commands will turn it launchable:

e put the agent’s classes in the launcher class path:
cp SampleSaciAg.class <saci dir>/ulib?
e add the following lines at the end of the “applications.xml” file:

<application id="Demo">

<agentType id="d1"
description="My First Agent"
class="SampleSacilAg" />
</application>

In summary, a Saci Agent can be started in many ways: as a Java application (Section 4.1.2,
page 16), as an home-page applet (Section 4.6, page 27), or by the launcher agent tool (as seen

in this Section).

5.2 Agent Launcher

Agent launcher is a launcher demon client. It asks launcher demon to create new agents. To
do this operation, the launcher demon requires as parameters the agent’s name, the agents’s
arguments, the agent’s type*, the agent’s society, and the host where the new agent will run.

Figure 5.1 shows how the user interface agent launcher gets these parameters:

e The first parameter (agent’s type), is a choice list whose options the agent launcher has

got from the launcher demon.

e The agent’s society parameter is also a choice list whose options the agent launcher has
got from the launcher demon. The demon makes this list from the societies it has created

plus the societies created by other known launchers.

3The <saci dir> /ulib directory is always in the launcher demon class path. So, instead of
setting the CLASSPATH variable, one can copy the classes to this directory.
“4Indeed, it is the Java class that encodes the agent and implements LauchableAg interface.

31

K Saci at jomilze

[7] Agent Launcher
gent's type i,iﬁiii"ii-_ -

iu“l able to sum two numbers (ps2)

gent's society idn-u!"m-c |:‘

jent's name [tag |

jent's arnumntﬂ |

gent will run at ij-ﬂnilu |-Hllnllnﬁ v]

| create agent | oo il

Figure 5.1: Agent Launcher Interface

e The host where the new agent will run is a text field or a choice list. The choice list is
created from the information given by the launcher demon (i.e., the launcher demon’s

host plus the hosts it knows there are launchers running).
e The agent’s name which is a text field.
e The agent’s arguments which is a text field. The arguments must be separeted by spaces.

There is a status area, in the middle of the window, where the results of the creation process
are shown. Below, both known agents and known societies are listed.
This agent launcher can also run as an applet in a home-page. In this case, one should add

the folloing lines in a home-page in order to get the applet running:

7 <applet
8 code=saci.launcher.AppletAglLauncher
9 archive ="saciapplet. jar ,appletAglLauncher.jar”

10 width=600 height=500>
11 </applet>

32

File Edit View Go Communicator s
" Bookmarks & Location: hetp //nantes pes usil /| @ what's Related 3

i53 Bod &0 @

M@ttﬁﬁ@nmm»nﬂml

i L 3
L ik D P A N2

Agent Launcher Applet

Figure 5.2: Agent launcher running as an applet.

Optionally, some parameters can be added to the applet tag:

e askHost: values can be true or false. If the value is true, the hosts choice is shown in

the applet’s user interface, otherwise the agent will run at the launcher’s host. If the

parameter is omitted, the default value is true.

e showStatus: values can be true or false. If the value is false, the applet’s interface will

not have the status area. If the parameter is omitted, the default value is true.

e agentSoc: value is a String with the society’s name the agent will enter. If the parameter

is omitted, the applet’s interface will show the society choice list.

e agentName: value is a String with the name of the agent. If the parameter is omitted,

the applet’s interface will show the agent’s name field.

e agentArgs: value is a String with arguments, separeted by spaces, for agent initialization

(the agent will receive this value in his initAg method). If the parameter is omitted, the

applet’s interface will show the agent’s argument field.

e agentType: value is a String with the Java class for the agent creation. If the parameter

is omitted, the applet’s interface will show the agent’s type choice list.

e buttonName: value is a String with the text for the creation button. If the parameter is

omitted, the text will be “create agent”.

e askMethod: value can be true or false. If the value is false, the applet’s interface will not

give the user the choice for the creation method (thread or process). If the parameter is

omitted, the default value is true.

For instance, the page

33

12

13

14

15

16

17

18

19

20

21

22

23

24

<applet
code=saci.launcher.AppletAglLauncher
archive="saciapplet. jar ,appletAglLauncher.jar”
width=200 height=50>
<param name="askHost" value="false" >
<param name="askMethod" value=""false" >
<param name="showStatus” value=""false" >

nn

<param name="agentSoc” value="">
<param name="agentName" value="agT" >
<param name="agentArgs" value="">

<param name="agentType" value="PlusServer2" >
<param name="buttonName" value="Start_a_PlusServer_agent” >
</applet>

will show only a button with text “start PlusServer agent”. When clicked, it creates an agent

in default society with name agT, type PlusServer2, and which will run at the launcher’s host

(see Figure 5.2).

Instead of using the agent launcher, you can write a program that asks the launcher to

create/kill/stop/move agents, run scripts, etc. For more information, see the launcher API

documentation and the sample/geral/RemoteAgentCreation.java example.

34

Bibliography

[1]

3]

[4]

[5]

(6]

[7]

8]

Luiz Otavio Alvares and Jaime Simao Sichman. Introducdo aos sistemas multiagentes.
In Claudia Maria Bauzer Medeiros, editor, Jornada de Atualizagdo em Informdtica, vol-

ume 16, chapter 1, page 1ss. SBC, Brasilia, agosto 1997.

Rafael Heitor Bordini, Renata Vieira, and Alvaro Freitas Moreira. Fundamentos de sis-
temas multiagentes. In Carlos Eduardo Ferreira, editor, XX Jornada de Atualizacdo em
Informdtica (JAI), volume 2, chapter 1, pages 3-44. SBC, Fortaleza, CE, Brazil, 2001.

Yves Demazeau. From interactions to collective behaviour in agent-based systems. In

Proceedings of the European Conference on Cognitive Science, Saint-Malo (France), 1995.

Yves Demazeau and Jean-Pierre Miiller, editors. Decentralized Artificial Intelligence. El-

sevier, Amsterdam, 1990.

Stan Franklin and Art Graesser. Is it an agent or just a program? a taxonomy for
autonomous agents. In Jorg P. Miiller, Michael Wooldridge, and Nicholas R. Jennings,
editors, Proceedings of the 3rd International Workshop on Agent Theories, Architectures,
and Languages (ATAL’96), Lecture Notes in Computer Science, Vol. 1193, pages 21-35.
Springer, 1997.

Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent research
and development. Autonomous Agents and Multi-Agent Systems, (1):7-38, 1998.

Yannis Labrou and Tim Finin. A proposal for a new KQML specification. UMBC, Balti-
more, 1997.

Yannis Labrou, Tim Finin, and Yun Peng. Agent communication languages: the current
landscape. IEEFE Intelligent Systems, 14(2):45-52, March/April 1999.

Gerhard WeiB, editor. Multiagent Systems: A modern approach to distributed artificial
intelligence. MIT Press, London, 1999.

Michel Wooldridge. Intelligent agents. In Gerhard Weif}, editor, Multiagent Systems: A
modern approach to distributed artificial intelligence, chapter 1, pages 27-78. MIT Press,
London, 1999.

35

	Introduction
	Agent Communication
	KQML

	Saci's Specification
	Saci society's model
	Saci's architecture
	Entering and leaving societies
	Sending and receiving messages
	Announcing skills

	Using Saci to Develop Agents
	A simple sample
	Compiling an agent
	Running an agent

	Entering and leaving societies
	Sending and receiving messages
	Announcing skills
	Message handlers
	Making agents applets

	Saci's Tools
	Launcher Demon
	Enabling an agent to be launched

	Agent Launcher

