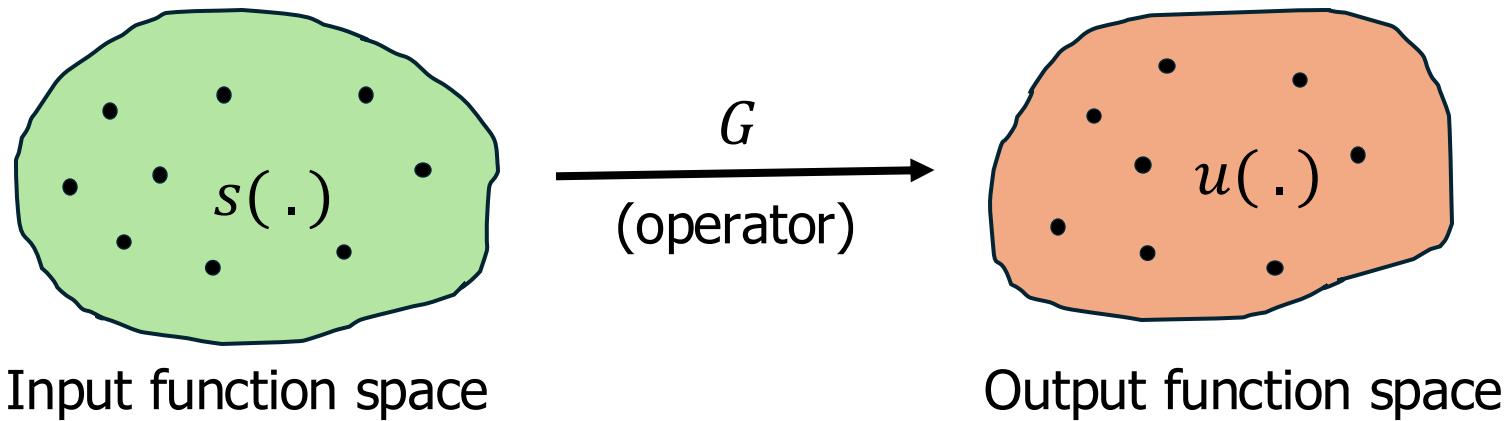


Our Proposed framework

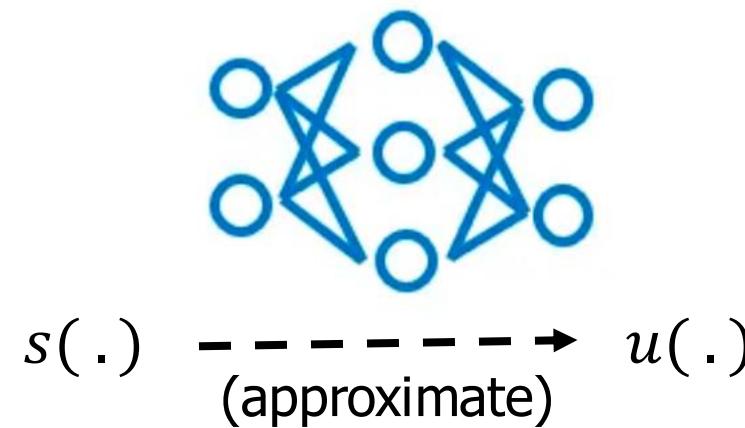
Efficient Training of Deep Neural Operator Networks via Randomized Sampling

Karumuri Sharmila, Lori Graham-Brady, and Somdatta Goswami. "Efficient Training of Deep Neural Operator Networks via Randomized Sampling." *arXiv preprint arXiv:2409.13280* (2024).

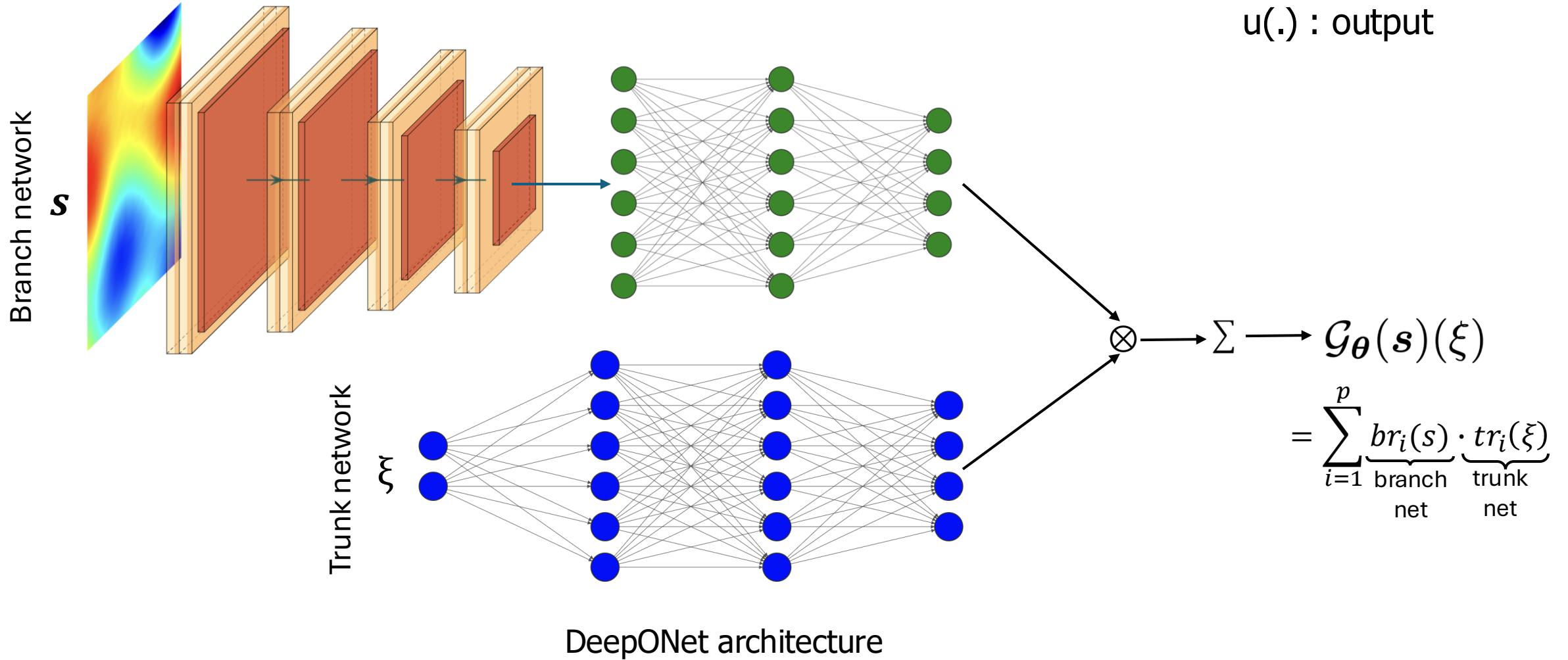
Operator learning



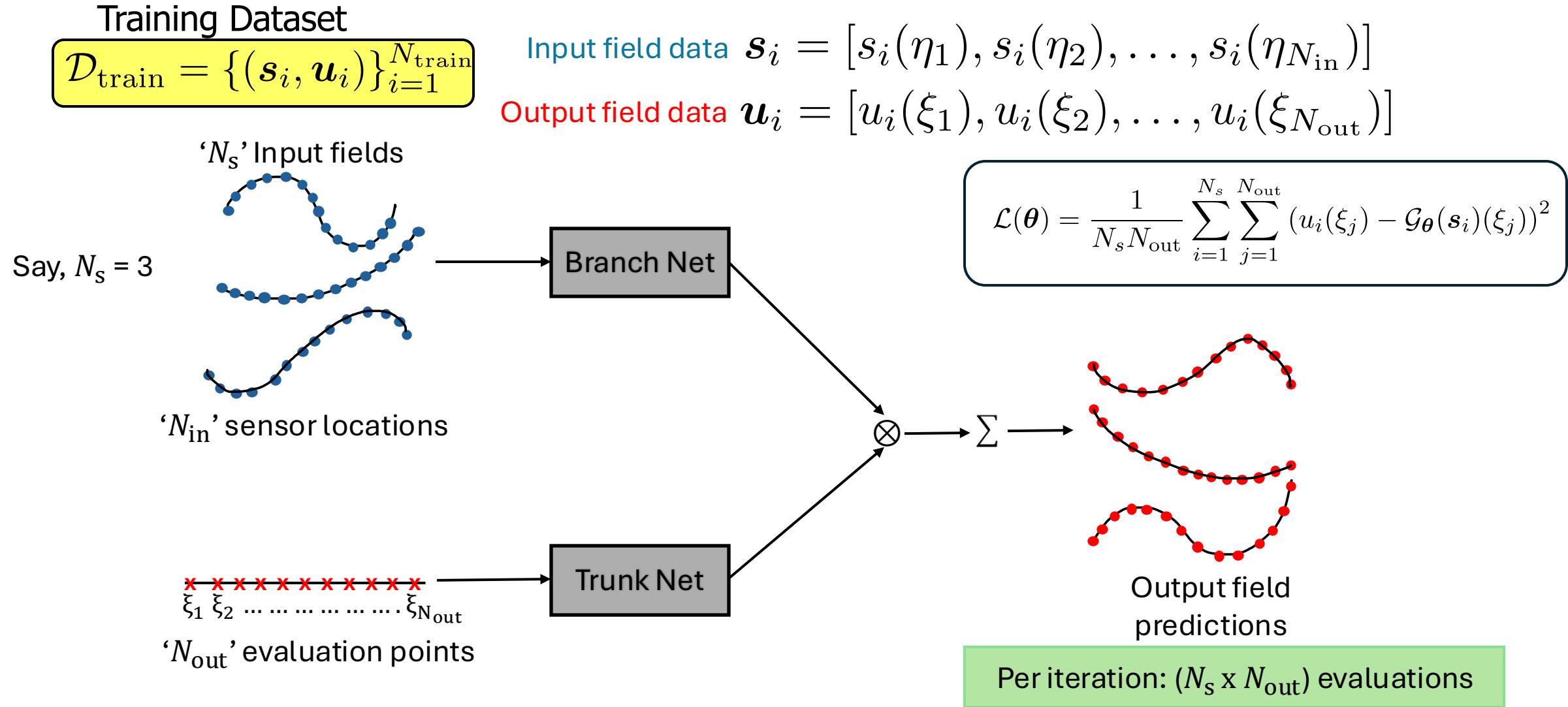
Neural Operator learning



DeepONet



Traditional approach of training DeepONet



In each iteration of training for a given input field, output field is evaluated at all ' N_{out} ' sensor locations.

Shortcomings

The training cost increases drastically as the number of

- training samples in a batch (N_s) increases
- evaluation points (N_{out}) increases

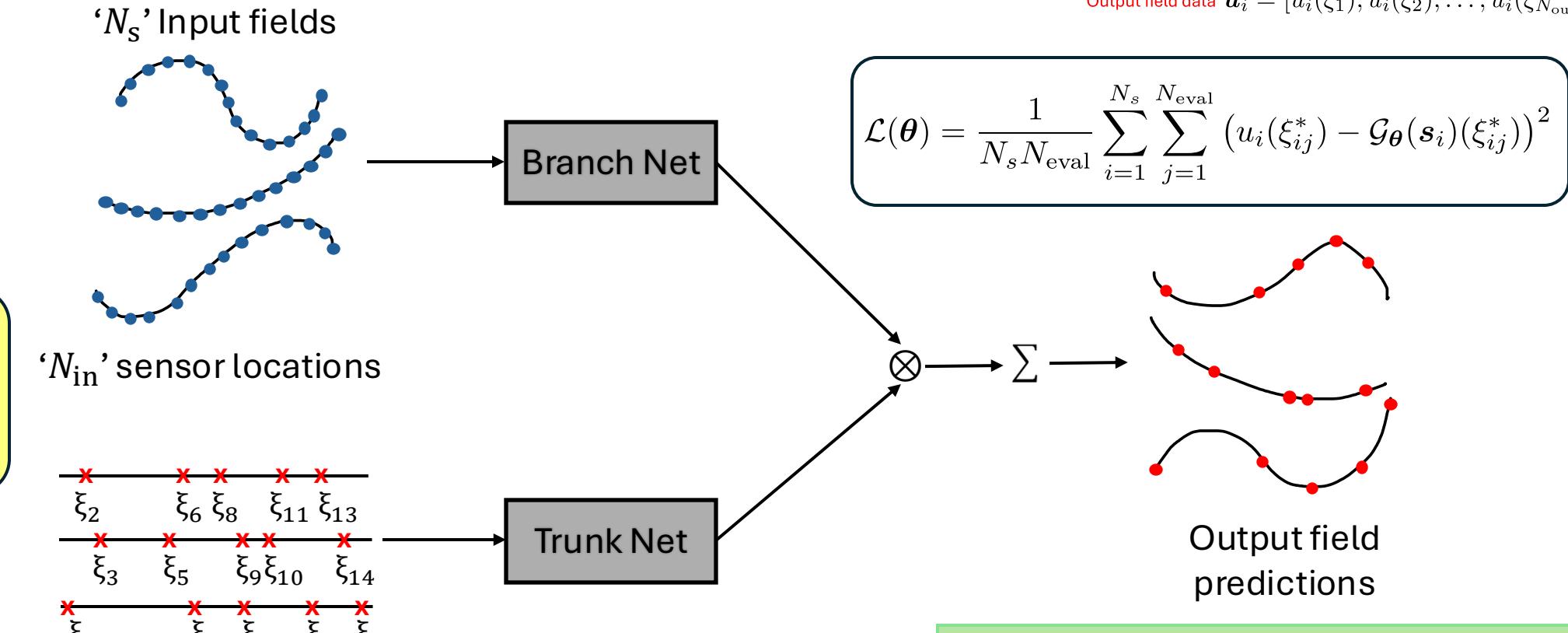
Therefore, not an efficient training architecture for high-dimensional systems.

The advantages of employing a stochastic gradient descent optimizer is not leveraged.

Our approach of training DeepONet

Say, $N_s = 3$

Idea: Randomized sampling of evaluation points during training



Per iteration: $(N_s \times N_{eval})$ evaluations

Hypothesis

- ✓ Training time would be faster.
- ✓ Loss converges to a given value faster.
- ✓ Same accuracy as traditional approach can be achieved faster.
- ✓ Traditional approach of training is like over training and memorizing.

Our approach of training DeepONet

Algorithm

Code in PyTorch

Algorithm 1 The proposed sampling technique to train DeepONet.

Require: Branch and trunk networks architecture, number of training samples N_{train} , training data $\mathcal{D}_{\text{train}} = \{(\mathbf{s}_i, \mathbf{u}_i)\}_{i=1}^{N_{\text{train}}}$, where $\mathbf{s}_i = [s_i(\eta_1), s_i(\eta_2), \dots, s_i(\eta_{N_{\text{in}}})]$ and $\mathbf{u}_i = [u_i(\xi_1), u_i(\xi_2), \dots, u_i(\xi_{N_{\text{out}}})]$, output sensor locations $\Xi = [\xi_1, \xi_2, \dots, \xi_{N_{\text{out}}}]$, batch size bs , number of batches $N_{\text{batch}} = \lceil \frac{N_{\text{train}}}{\text{bs}} \rceil$, number of evaluation points N_{eval} , learning rate α , and number of epochs N_{epochs} .

```

1: Initialize parameters of branch and trunk networks  $\theta$ .
2: for  $k = 1$  to  $N_{\text{epochs}}$  do
3:   Shuffle training data:  $\mathcal{D}_{\text{train}} \leftarrow \{(\mathbf{s}_{\sigma(i)}, \mathbf{u}_{\sigma(i)})\}_{i=1}^{N_{\text{train}}}$ , where  $\sigma$  is
   a permutation.
4:   for  $j = 1$  to  $N_{\text{batch}}$  do
5:     start  $\leftarrow (j - 1) \times \text{bs} + 1$ , end  $\leftarrow \min(j \times \text{bs}, N_{\text{train}})$ 
6:     Get mini-batch:  $\mathcal{D}_{\text{train},j} \leftarrow \{(\mathbf{s}_a, \mathbf{u}_a)\}_{a=\text{start}}^{\text{end}}$ 
7:     for  $a = \text{start}$  to end do
8:       Get  $\Xi_a^* \subset \Xi$  such that  $|\Xi_a^*| = N_{\text{eval}}$ .
9:       Select  $N_{\text{eval}}$  distinct indices  $\{i_{(a,1)}, i_{(a,2)}, \dots, i_{(a,N_{\text{eval}})}\}$  uniformly at random from  $\{1, 2, \dots, N_{\text{out}}\}$  with  $i_{(a,p)} \neq i_{(a,q)}$  for  $p \neq q$ .
0:        $\Xi_a^* = [\xi_{i_{(a,1)}}, \xi_{i_{(a,2)}}, \dots, \xi_{i_{(a,N_{\text{eval}})}}]$ 
1:     end for
2:     Compute loss:

$$\mathcal{L}(\theta) = \frac{1}{(\text{end} - \text{start} + 1) \cdot N_{\text{eval}}} \sum_{a=\text{start}}^{\text{end}} \sum_{l=1}^{N_{\text{eval}}} \left( u_a(\xi_{i_{(a,l)}}) - \mathcal{G}_{\theta}(\mathbf{s}_a)(\xi_{i_{(a,l)}}) \right)$$

3:     Update parameters by computing  $\nabla_{\theta} \mathcal{L}(\theta)$  (backpropagation)
4:   end for
5: end for
6: return  $\theta^*$                                  $\triangleright$  Return trained DeepONet parameters.

```

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{(\text{end} - \text{start} + 1) \cdot N_{\text{eval}}} \sum_{a=\text{start}}^{\text{end}} \sum_{l=1}^{N_{\text{eval}}} \left(u_a(\xi_{i_{(a,l)}}) - \mathcal{G}_{\boldsymbol{\theta}}(\mathbf{s}_a)(\xi_{i_{(a,l)}}) \right)^2$$

13: Update parameters by computing $\nabla_{\theta}\mathcal{L}(\theta)$ (backpropagation)

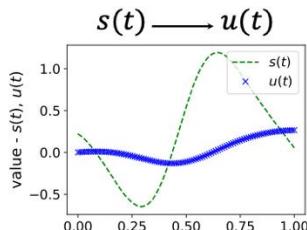
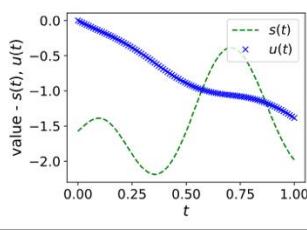
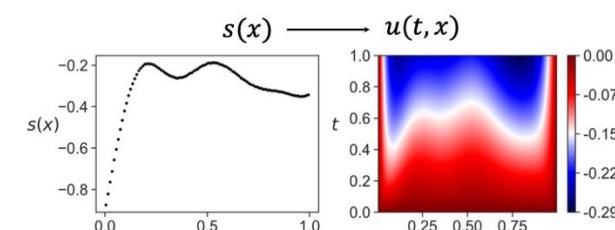
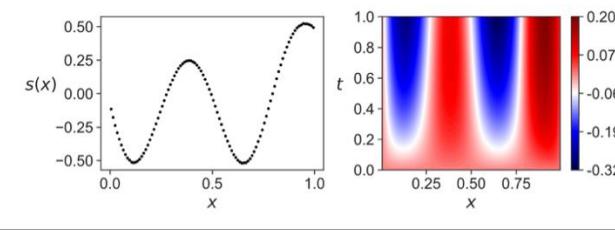
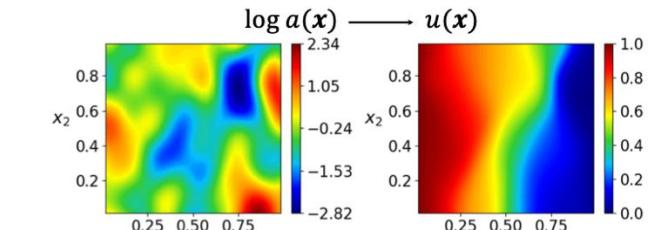
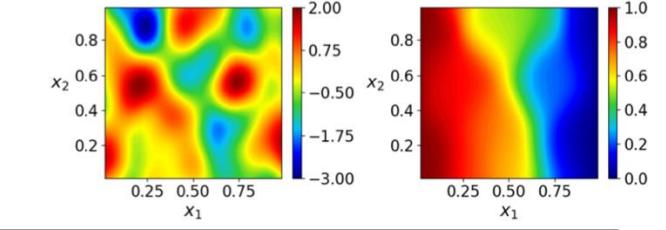
14: **end for**

15: **end for**

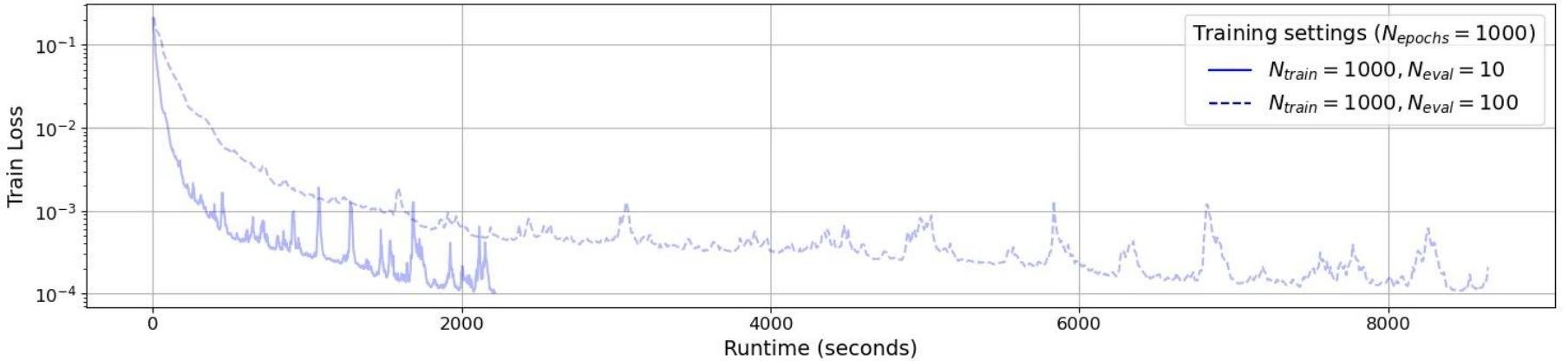
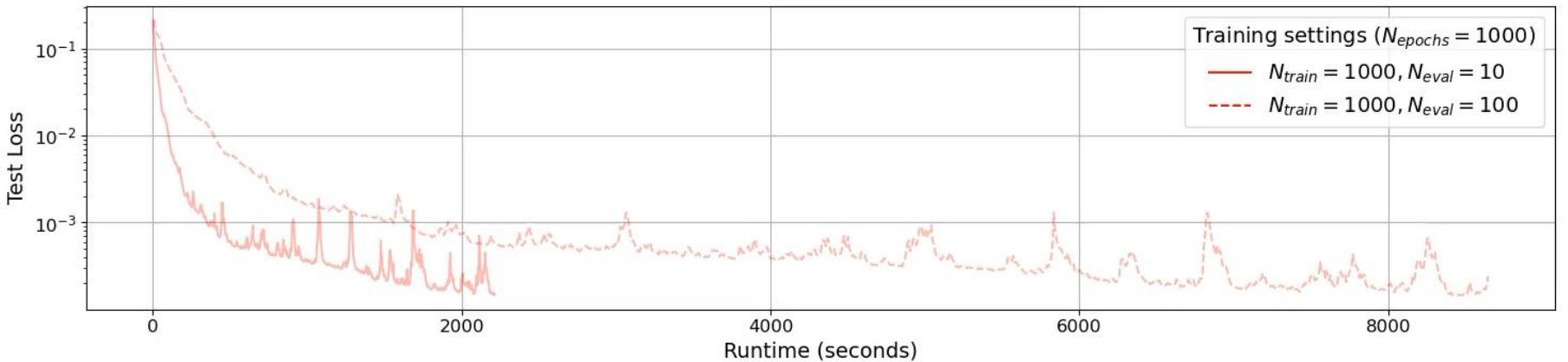
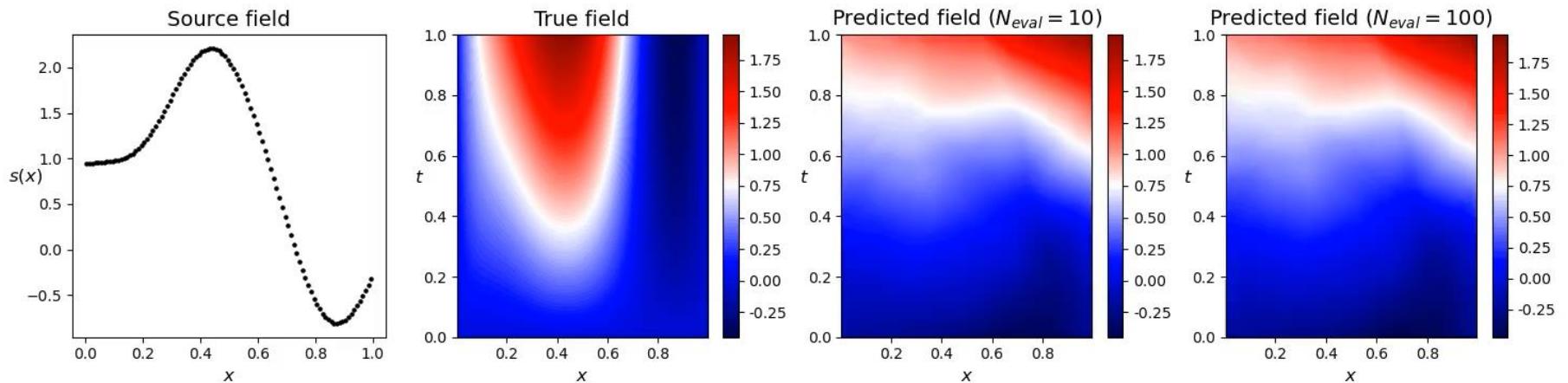
16: **return** θ^*

▷ Return trained DeepONet parameters.

<https://arxiv.org/pdf/2409.13280>

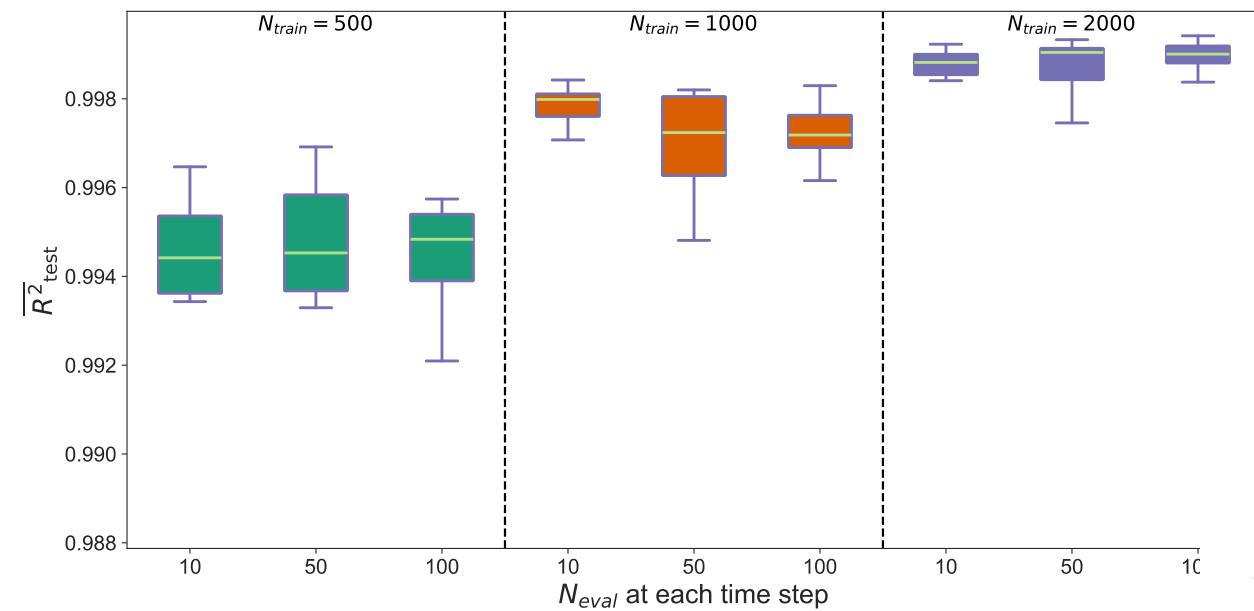
Case	Dynamical System	Diffusion-reaction	Heat Equation
Model Output	$\frac{du}{dt} = s(t),$ $u(0) = 0$ and $t \in [0, 1]$ $\mathcal{G}_{\theta} : s(t) \rightarrow u(t).$	$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + ku^2 + s(x),$ $D = 0.01, k = 0.01,$ $(t, x) \in (0, 1] \times (0, 1],$ $u(0, x) = 0, x \in (0, 1)$ $u(t, 0) = 0, t \in (0, 1)$ $u(t, 1) = 0, t \in (0, 1)$ $\mathcal{G}_{\theta} : s(x) \rightarrow u(t, x).$	$-\nabla \cdot (a(\mathbf{x}) \nabla u(\mathbf{x})) = 0,$ $\mathbf{x} = (x_1, x_2),$ $\mathbf{x} \in \Omega = [0, 1]^2,$ $u(0, x_2) = 1, u(1, x_2) = 0,$ $\frac{\partial u(x_1, 0)}{\partial n} = \frac{\partial u(x_1, 1)}{\partial n} = 0,$ $\mathcal{G}_{\theta} : a(\mathbf{x}) \rightarrow u(\mathbf{x}).$
Input Function	$s(t) \sim \text{GP}(0, k(t, t')),$ $\ell_t = 0.2, \sigma^2 = 1.0, t \in [0, 1]$ $k(t, t') = \sigma^2 \exp \left\{ -\frac{\ t - t'\ ^2}{2\ell_t^2} \right\}.$	$s(x) \sim \text{GP}(0, k(x, x')),$ $\ell_x = 0.2, \sigma^2 = 1.0,$ $k(x, x') = \sigma^2 \exp \left\{ -\frac{\ x - x'\ ^2}{2\ell_x^2} \right\}.$	$\log(a(\mathbf{x})) \sim \text{GP}(\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$ $\mu(\mathbf{x}) = 0, \ell_{x_1} = 0.1, \ell_{x_2} = 0.15, \sigma^2 = 1.0$ $k(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp \left\{ -\sum_{i=1}^2 \frac{\ x_i - x'_i\ ^2}{2\ell_{x_i}^2} \right\}.$
Samples	 	 	 

Diffusion reaction dynamics

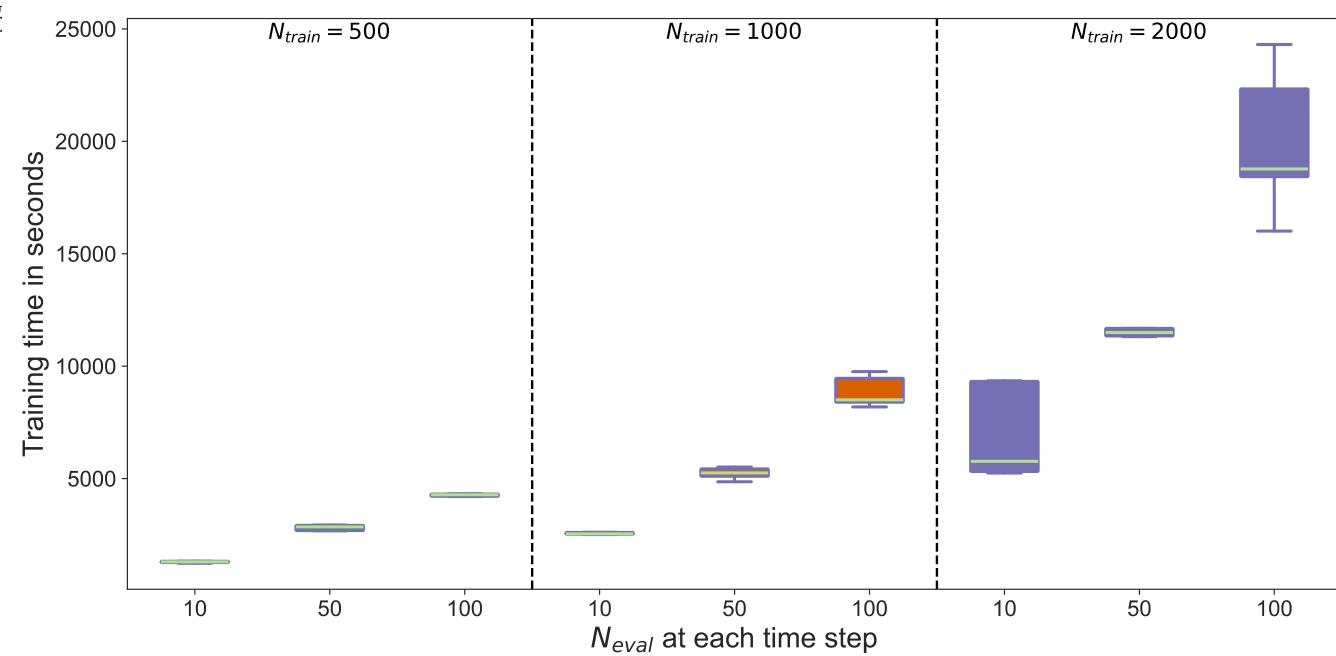


Diffusion reaction dynamics contd..

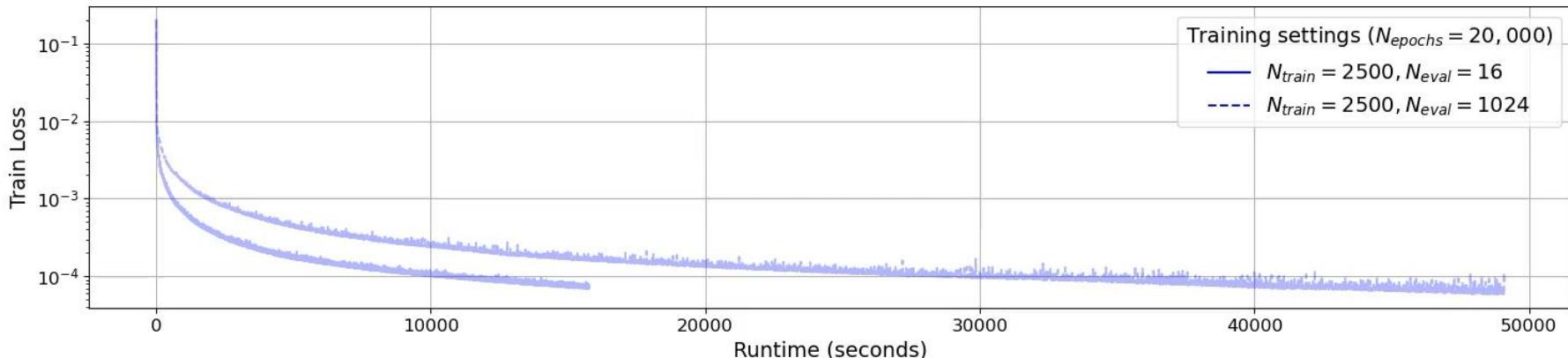
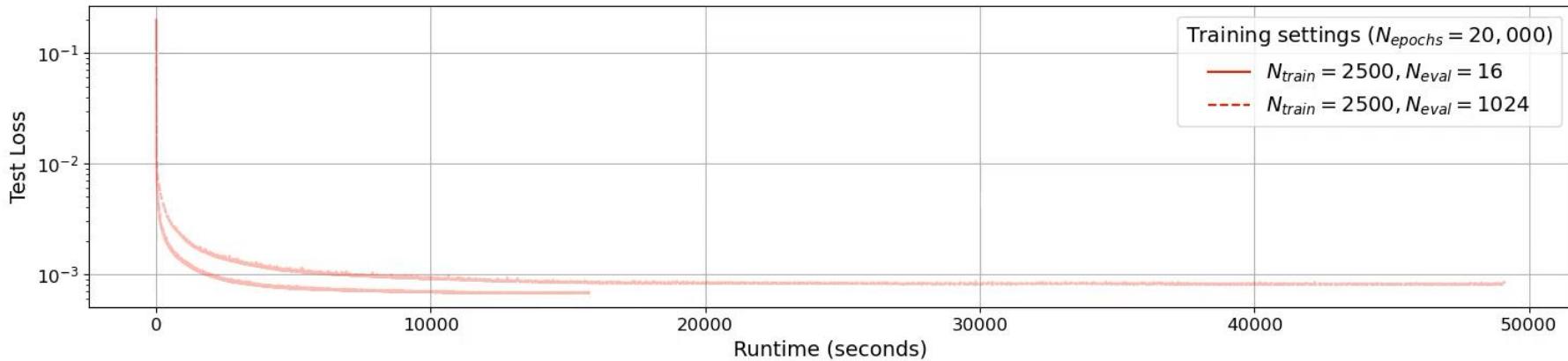
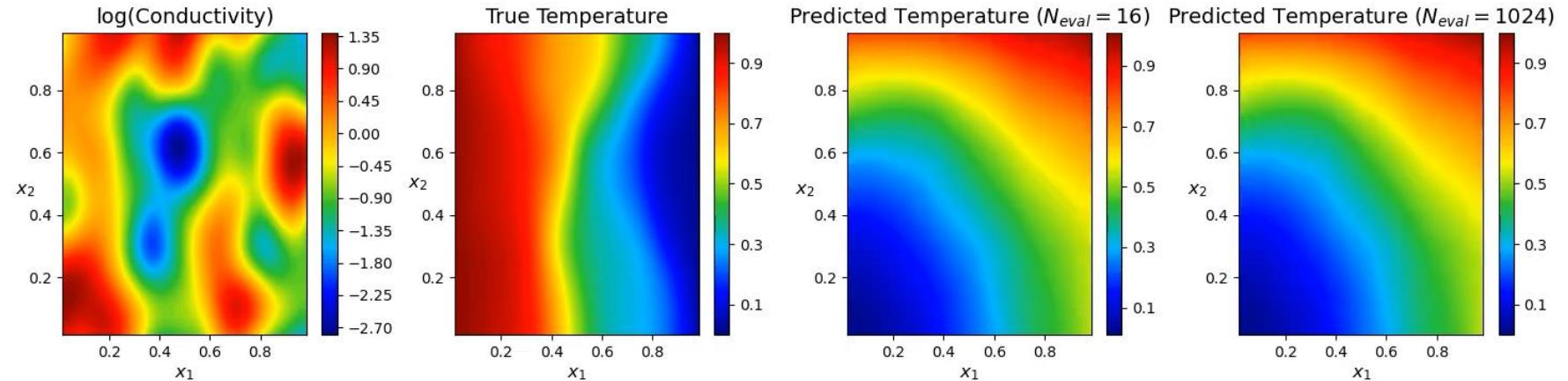
\bar{R}^2_{test}



Training time

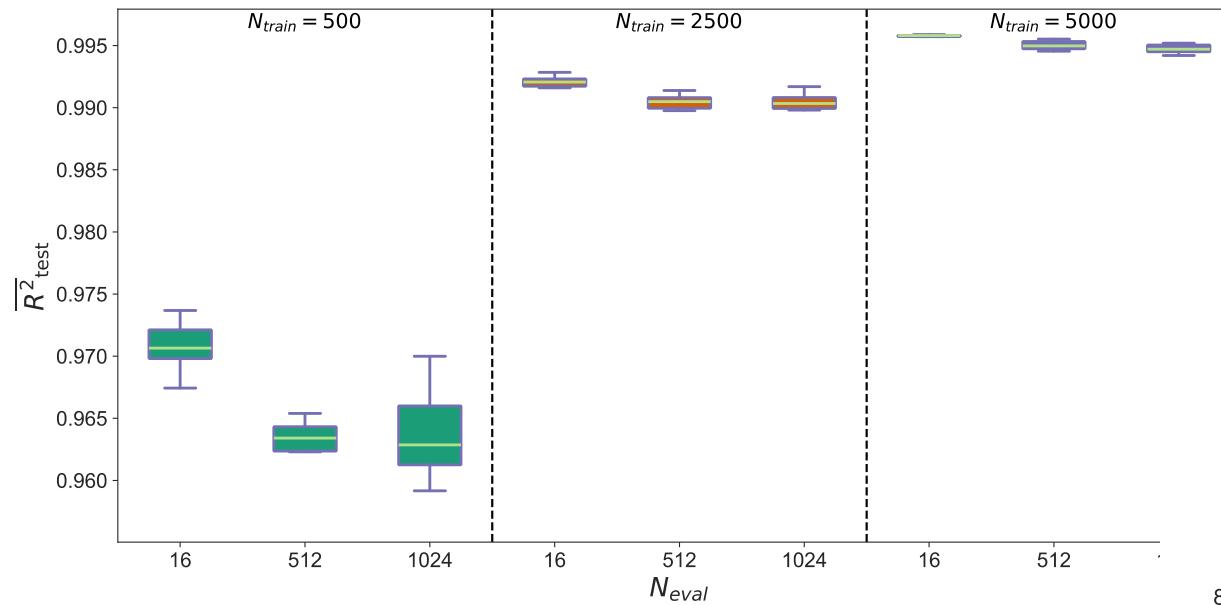


Heat equation

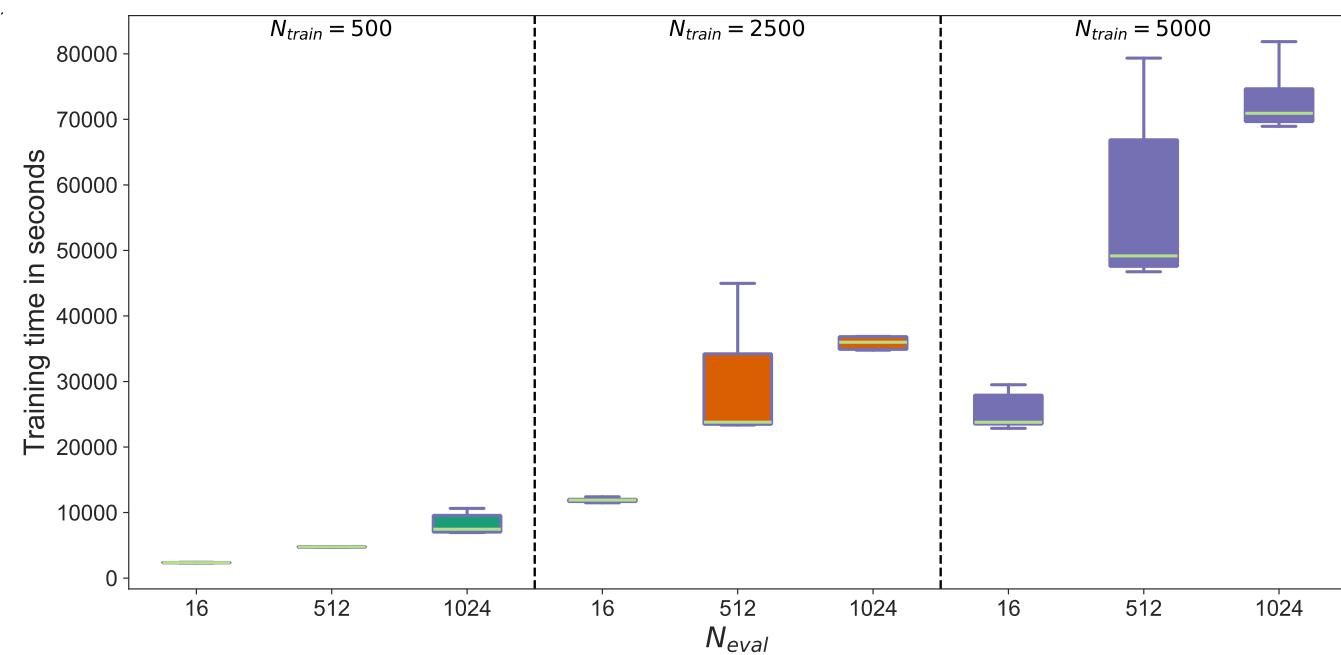


Heat equation contd..

\bar{R}^2_{test}

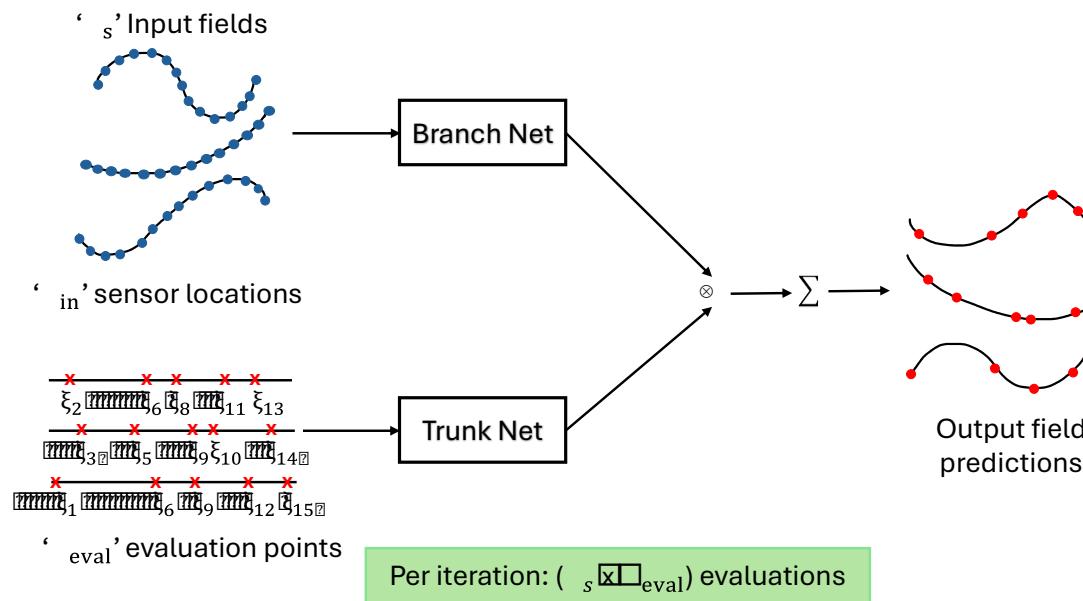


Training time



Take-away

The lower effective batch sizes with our randomized evaluation leads to flatter minima, improving generalization while reducing the training time.



Karumuri Sharmila, Lori Graham-Brady, and Somdatta Goswami. "Efficient Training of Deep Neural Operator Networks via Randomized Sampling." *arXiv preprint arXiv:2409.13280* (2024).

<https://arxiv.org/pdf/2409.13280.pdf>

<https://github.com/Centrum-IntelliPhysics/DeepONet-Efficient-Training-with-Random-Sampling>

References

1. Keskar, Nitish Shirish, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. "On large-batch training for deep learning: Generalization gap and sharp minima." *arXiv preprint arXiv:1609.04836* (2016).
2. Lu, Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. "Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators." *Nature machine intelligence* 3, no. 3 (2021): 218-229.
3. Lu, Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and George Em Karniadakis. "A comprehensive and fair comparison of two neural operators (with practical extensions) based on fair data." *Computer Methods in Applied Mechanics and Engineering* 393 (2022): 114778.

Thank you