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DeepONet architecture
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Traditional approach of training DeepONet
Training Dataset

Input field data

Output field data

Trunk Net

⊗

Branch NetSay, 𝑁s = 3

‘𝑁s’ Input fields

‘𝑁out’ evaluation points

ξ1 ξ2 … … … … … … . ξNout

x   x  x  x  x  x  x  x  x  x  x Output field 
predictions

Per iteration: (𝑁s x 𝑁out) evaluations 

In each iteration of training for a given input field, output field is evaluated at all ‘Nout’ sensor locations.

‘𝑁in’ sensor locations
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Shortcomings

The training cost increases drastically as the number of
• training samples in a batch (Ns) increases
• evaluation points (Nout) increases

Therefore, not an efficient training architecture for high-dimensional systems.

The advantages of employing a stochastic gradient descent optimizer is not 
leveraged.
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Our approach of training DeepONet
Training Dataset

Branch Net

Trunk Net

⊗

‘𝑁s’ Input fields

Say, 𝑁s = 3

x              x    x        x    x 
ξ2 ξ6 ξ8 ξ11 ξ13

‘𝑁eval = 5’ evaluation points

x         x          x  x          x 
ξ3 ξ5 ξ9ξ10 ξ14 

‘𝑁in’ sensor locations

x                   x      x         x      x 
ξ1 ξ6 ξ9 ξ12 ξ15 

Output field 
predictions

Idea: Randomized 
sampling of 

evaluation points 
during training

Per iteration: (𝑁𝑠 x 𝑁eval) evaluations 

✓ Training time would be faster.
✓ Loss converges to a given value faster.
✓ Same accuracy as traditional approach can be achieved faster.
✓ Traditional approach of training is like over training and memorizing.H
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Our approach of training DeepONet

Code in 
PyTorch

https://arxiv.org/pdf/2409.13280

https://arxiv.org/pdf/2409.13280
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Diffusion reaction 
dynamics
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Diffusion reaction dynamics contd..
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Heat equation
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Heat equation contd..
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The lower effective batch sizes with our randomized 
evaluation leads to flatter minima, improving 

generalization while reducing the training time.

Take-away

Branch Net

Trunk Net
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Thank you


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

