/

.. JOHNS HOPKINS
2 WHITING SE S
w7 of ENGIN EERING

Our Proposed framework
Efficient Training of Deep Neural Operator Networks
via Randomized Sampling

Karumuri Sharmila, Lori Graham-Brady, and Somdatta Goswami. "Efficient
Training of Deep Neural Operator Networks via Randomized
Sampling." arXiv preprint arXiv:2409.13280 (2024).

Operator learning

G —p-
(operator)
Input function space
Neural Operator learning

O

ogoX°

O O @)

S(.) =====~- > u(.)

(approximate)

Centrum-IntelliPhysics Lab Johns Hopkins University

Input
u(.) : output

S(.) i

DeepONet

Go(s)(E)

p
> bris) -
-

)
%

310M18U youelq

Y

tr;(§)
=1 branch trunk

net

g

net

.<:
5

)
]
PAES

A

"
o
e
é&«
A
A\

SI0MIB U uUNI|

DeepONet architecture

Johns Hopkins University

Centrum-IntelliPhysics Lab

Traditional approach of training DeepONet

Training Dataset
[Dtrain — (55, up)] Vg noutfielddata 8 = 1si(m),si(n2), ..., s:(nN..)]

Output field data W; = [uz (fl), U, (62), e ooy Ug (§Nout)]

Branch Net \ i=1 j=1
/®

Trunk Net Outputfield
predictions

‘Ng’ Input fields

\/"‘

‘Nj,,’ sensor locations

A 4

\ 4

AN AN AN AN AN AT AW wr wy

E1 E2 wor e oeeere e e N

‘Nout’ evaluation points

Periteration: (Ng X Ny,t) evaluations

In each iteration of training for a given input field, output field is evaluated at all ‘N, sensor locations.

Centrum-IntelliPhysics Lab Johns Hopkins Universit

Shortcomings

The training cost increases drastically as the number of
* training samples in a batch (N,) increases
* evaluation points (N,) increases
Therefore, not an efficient training architecture for high-dimensional systems.

The advantages of employing a stochastic gradient descent optimizer is not
leveraged

Centrum-IntelliPhysics Lab Johns Hopkins University

Training Dataset

Our approach of training DeepONet K A

‘NS’ |n put f|elds Outputfield data U; = [ul(fl), ui(fg), N ,ui(fNout):

N,]\feva
f\/ L ¢))”
Say’ NS = 3 wvvf/. - BranCh Net () N Neval ; 321 S)(j))
|dea: Randomized) \/h\ \
X

sampling of ‘N’ sensor locations
evaluation points
__duringtraining) s

&2 Ee Zs §11 813 .
— — Trunk Net Output field
&3 Es 29210 $14 predictions

T & & ks

eva] = D’ evaluation points

\ 4

Periteration: (Ng X Nay4;) €valuations

¢

(v Training time would be faster.)
v Loss converges to a given value faster.
v' Same accuracy as traditional approach can be achieved faster.
v’ Traditional approach of training is like over training and memorizing.

Hypothesis

Centrum-IntelliPhysics Lab Johns Hopkins Universit

Our approach of training DeepONet

Algorithm 1 The proposed sampling technique to train DeepONet.
Require: Branch and trunk networks architecture, number of training

samples Nirain, training data Diran = {(si,ui)}i\i’iain, where s8; =
[si(m)s 8i(m2), - - - s si(nwv,,)] and w; = [u;(61), ui(§2), - - - s ui(én,,,)], out-
put sensor locations 2 = [£1,&s,...,&N,,,], batch size bs, number of

batches Npatcn = f%], number of evaluation points Ngy,1, learning
rate «, and number of epochs Nepochs-

1: Initialize parameters of branch and trunk networks .

2: for k =1 to Nepochs do

Shuffle training data: Dy, < {(sa(i),uo(i))}é\r:*?i“, where o is

3 a permutation.
Algor].t hm : for 7 =1 to Npaten do

«

4:
5: start < (j — 1) x bs+ 1, end « min(j x bs, Ni;ain)
6: Get mini-batch: Diain j + {(5a, 1)}
7: for a = start to end do
8: Get = C E such that |Z| = Neyal.
9: Select Nevar distinct indices {i(4,1),%9(a,2)s - - »i(a,Novay) } URI-
formly at random from {1,2,..., Nout} With i(q) # i(a,q) for p #q.
i 10: B = [icayr Gicayr - Giangyan]
COde In 11: end for
PyTO rc h 12: Compute loss:
E 'F 1 end Noval 2
- L: 9 = U i - S)
1 [] " () (end — start +].) : Neva.l a:s%\,rt ; (a(gi(“’l)) ge(a)(éz(“’l)))
13: Update parameters by computing V¢ L(8) (backpropagation)
14: end for
15: end for
16: return 6* > Return trained DeepONet parameters.

https://arxiv.org/pdf/2409.13280

Centrum-IntelliPhysics Lab Johns Hopkins Universit

https://arxiv.org/pdf/2409.13280

Case Dynamical System Diffusion-reaction Heat Equation
Oou 0%u 9
5t —DPagz thv + s(x), — V- (a(z)Vu(z)) =0,

T = (wlaxQ)’

025 050 0.75

0.25 050 0.75

du D =0.01, k= 0.01,
= = 2
= (), (t,z) € (0,1] x (0,1], xz € Q2 =[0,1]°,
oo “) =0 and £ €01 u(0,2) =0, z € (0,1) u(0,22) = 1, u(l, z2) =0,
Ge : s(t) — u(t). u(t,0) =0, t € (0,1) Ou(zx1,0) _ Ou(zq,1) —5
’
u(t,1) =0, t € (0,1) . On on
: — .
Go : s(x) — u(t, x). o al@) = uie)
s(t) ~ GP(0,k(t,t")), s(z) ~ GP(0, k(z, ")), log(a(x)) ~ GP(u(x), k(z,x'))
2
Input et = 02’ 02 — 1'0’ te [0, 1] ea: = 02, 0'2 = 10, ,U(m) = 0’ e“"l = 01 e-’rz = 015 c“=1.0
. t—1¢t 2 _ 2 ! 2
=on k(t,t") = o” exp —u ; k(z,z') = 0% exp —M . k(z,x') = 0?exp Z lzs —) il ;
202 202 202
s(t) — u(t) s(x) u(t, x) 108 a(x) u(x)
Lo = e 10 0.00 st ke
% ’ ,, X u(t) '_.-"\/.\— 08 i 1.05 ¥ 0.8
S 05 041 ! o6 ,06 0.6 0.6
Z 0.0 .a_’f S(x)_o‘s : t - -0.15 -0.24 ‘ B
§ ' o 0:2 -0.22 : -1.53 y 0
Samples | 0B 0 030 075 1d0 00 05 % o 0% 0.8 o 025 050 075 a8 0.25 oso 0.75 00
7 i j . o
; s(x) o A ' t 06 ' , 0.6 0. 0.6
Z 0001 5 04 0o 0.4 ; 0.4
‘ R T T Tw 0o 05 1w %% o2 0% 078 o2 . 0.0

Centrum-IntelliPhysics Lab

Johns Hopkins University

-y Training settings (Nepochs = 1000)
—— Ntrain =1000, Neval =10
& ====Ntrain = 1000, Neyz = 100
-2 4
_Ol 10
[o=
5 '
T —— =
|
10-4 4 | % |
0 2000 4000 6000 8000
Runtime (seconds)
=14 , ‘ | Training settings (Nepochs = 1000)
Diffusion reaction T e e =10
W ==== Ngrain = 1000, Neyg = 100
. T
dynamics g 10
B
2]
@
10734
0 2000 4000 6000 8000
Runtime (seconds)
Source field True field Predicted field (Neya; = 10) Predicted field (Neya; = 100)
; 1.0 1.0
2.0 1.75 1.75 1.75
150 o8 150 o8 1.50
1.5 | 1.25 125 1.25
1.0 - 1.00 100 0.6 1.00
s(x) 0.75 075 t 0.75
48 0.50 050 0.4 0.50
0.0 A 0.25 0.25 0.25
- 0.00 0.00 02 0.00
' -0.25 0.25 -0.25
0.0
02 04 06 08
X

Centrum-IntelliPhysics Lab Johns Hopkins Universit

Diffusion reaction dynamics contd..

R test
Nirain =500 N¢rain = 1000 N¢rain = 2000
0.998 - % I
0.996 -
o]
20.994 |
o~
x
0.992 -
0.990 -
0.988 - : : : : : : : . :
10 50 100 10 50 100 10 50 1C 25000
Neyas at each time step
20000 -
(2]
©
c
o
[&]
o)
9 15000 -
£
)
£
g’ 10000 -
£
©
—
|_
5000

Training time

Nrain = 500 Nrain = 1000 Ntrain = 2000
[——]
? !
10 50 100 10 50 100 10 50 100

Neya at each time step

Centrum-IntelliPhysics Lab

Johns Hopkins University

Heat equation

Train Loss

Test Loss

10-14 H _ Training settings (Nepochs = 20, 000)
—— Ntrain = 2500, Neya = 16
SES Ntrain = 2500, Neva[=1024
10725 :
10734 N ‘
10_4 i | L ' = | o 7-41,,.-.
|
0 10000 20000 30000 40000 50000
Runtime (seconds)
: Training settings (Nepochs = 20, 000)
10714 :
—— Ntrain = 2500, Neya = 16
= Ntrain - 2500, Neva/ =1024
10724 i
1073 == B I i
T
0 10000 20000 30000 40000 50000
Runtime (seconds)
log(Conductivity) True Temperature Predicted Temperature (Neya = 16) Predicted Temperature (Neya = 1024)
1.35

0.8
0.6
X2
0.4
0.2
0.2 04 06 08
X1

0.90
0.45
0.00
—0.45
—0.90
-1.35
-1.80
=2:25
-2.70

Centrum-IntelliPhysics Lab

Johns Hopkins University

Heat equation contd..

R test
Nirain = 500 Nirain = 2500 o N¢rain = 5000
0.995 - =]
———
0.985 1
., 0.980+
8
‘¢ 0.975-
0.970] %
0.965 1 é
0960 7 T . . t 3
16 512 1024 16 512 1024 16 512 Noar =500 Near = 2500 Noar = 5000
Neval 80000 -
70000
3
< 60000
o
(6]
(0]
50000 -
£
0
£ 40000
= —
(@)
.€ 30000 -
=
©
= 20000 -
10000 é
N S
16 512 1024 16 512 1024 16 512 1024

Neval

Centrum-IntelliPhysics Lab Johns Hopkins University

Take-away

The lower effective batch sizes with our randomized
evaluation leads to flatter minima, improving
generalization while reducing the training time.

‘ ¢’ Input fields

".i-:}j/ —— Branch Net \

‘ in sensor locations ® —) —> _/

£ T 2, T 15 / .
e X3¢ Trunk Net Output field

TP 3y (PP s T € 1 (T 4 predictions
ME1 EmG m9M12 mls

 eval €valuation points

Per iteration: (¢IxI1,,,) evaluations

Karumuri Sharmila, Lori Graham-Brady, and Somdatta Goswami. "Efficient Training of Deep
Neural Operator Networks via Randomized Sampling." arXiv preprint
arXiv:2409.13280 (2024).

https://arxiv.org/pdf/2409.13280

https://github.com/Centrum-IntelliPhysi DeepONet-Efficient-Training-with-Random-Sampling

Johns Hopkins Universit

Centrum-IntelliPhysics Lab

https://arxiv.org/pdf/2409.13280
https://github.com/Centrum-IntelliPhysics/DeepONet-Efficient-Training-with-Random-Sampling

References

1. Keskar, Nitish Shirish, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
"On large-batch training for deep learning: Generalization gap and sharp minima." arXiv preprint
arXiv:1609.04836 (2016).

2. Lu, Lu, Pengzhan Jin, Guofei Pang, Zhongqgiang Zhang, and George Em Karniadakis. "Learning nonlinear
operators via DeepONet based on the universal approximation theorem of operators." Nature machine
intelligence 3, no. 3(2021): 218-229.

3. Lu, Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhonggiang Zhang, and George Em
Karniadakis. "A comprehensive and fair comparison of two neural operators (with practical extensions)

based on fair data." Computer Methods in Applied Mechanics and Engineering 393 (2022): 114778.

Centrum-IntelliPhysics Lab Johns Hopkins Universit

Thank you

Centrum-IntelliPhysics Lab Johns Hopkins University

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

