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Our Proposed framework
Efficient Training of Deep Neural Operator Networks
via Randomized Sampling
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Traditional approach of training DeepONet

Training Dataset
[Dtrain — (55, up)] Vg noutfielddata 8 = 1si(m),si(n2), ..., s:(nN.. )]

Output field data W; = [uz (fl), U, (62), e ooy Ug (§Nout)]

Branch Net \ i=1 j=1
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Trunk Net Outputfield
predictions

‘Ng’ Input fields
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‘Nout’ evaluation points

Periteration: (Ng X Ny,t) evaluations

In each iteration of training for a given input field, output field is evaluated at all ‘N, sensor locations.
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Shortcomings

The training cost increases drastically as the number of
* training samples in a batch (N,) increases
* evaluation points (N, ) increases
Therefore, not an efficient training architecture for high-dimensional systems.

The advantages of employing a stochastic gradient descent optimizer is not
leveraged
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Training Dataset

Our approach of training DeepONet K A

‘NS’ |n put f|elds Outputfield data U; = [ul(fl), ui(fg), N ,ui(fNout):

N, ]\feva
f\/ L ¢))”
Say’ NS = 3 wvvf/. - BranCh Net ( ) N Neval ; 321 S )( j))
|dea: Randomized ) \/h\ \
X

sampling of ‘N’ sensor locations
evaluation points
\__duringtraining ) s

&2 Ee Zs §11 813 .
— — Trunk Net Output field
&3 Es 29210 $14 predictions

T & & ks

eva] = D’ evaluation points

\ 4

Periteration: (Ng X Nay4;) €valuations

¢

(v Training time would be faster. )
v Loss converges to a given value faster.
v' Same accuracy as traditional approach can be achieved faster.
v’ Traditional approach of training is like over training and memorizing.

Hypothesis
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Our approach of training DeepONet

Algorithm 1 The proposed sampling technique to train DeepONet.
Require: Branch and trunk networks architecture, number of training

samples Nirain, training data Diran = {(si,ui)}i\i’iain, where s8; =
[si(m)s 8i(m2), - - - s si(nwv,,)] and w; = [u;(61), ui(§2), - - - s ui(én,,, )], out-
put sensor locations 2 = [£1,&s,...,&N,,,], batch size bs, number of

batches Npatcn = f%], number of evaluation points Ngy,1, learning
rate «, and number of epochs Nepochs-

1: Initialize parameters of branch and trunk networks .

2: for k =1 to Nepochs do

Shuffle training data: Dy, < {(sa(i),uo(i))}é\r:*?i“, where o is

3 a permutation.
Algor].t hm : for 7 =1 to Npaten do

«

4:
5: start < (j — 1) x bs+ 1, end « min(j x bs, Ni;ain)
6: Get mini-batch: Diain j + {(5a, 1)}
7: for a = start to end do
8: Get = C E such that |Z| = Neyal.
9: Select Nevar distinct indices {i(4,1),%9(a,2)s - - »i(a,Novay) } URI-
formly at random from {1,2,..., Nout} With i(q ) # i(a,q) for p #q.
i 10: B = [icayr Gicayr - Giangyan ]
COde In 11: end for
PyTO rc h 12: Compute loss:
E 'F 1 end Noval 2
- L: 9 = U i - S )
1 [] " ( ) (end — start + ].) : Neva.l a:s%\,rt ; ( a(gi(“’l)) ge( a)(éz(“’l)))
13: Update parameters by computing V¢ L(8) (backpropagation)
14: end for
15: end for
16: return 6* > Return trained DeepONet parameters.

https://arxiv.org/pdf/2409.13280
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Case Dynamical System Diffusion-reaction Heat Equation
Oou 0%u 9
5t —DPagz thv + s(x), — V- (a(z)Vu(z)) =0,

T = (wlaxQ)’
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-y Training settings (Nepochs = 1000)
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Diffusion reaction dynamics contd..

R test
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Heat equation

Train Loss

Test Loss

10-14 H _ Training settings (Nepochs = 20, 000)
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Heat equation contd..

R test
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Take-away

The lower effective batch sizes with our randomized
evaluation leads to flatter minima, improving
generalization while reducing the training time.

‘ ¢’ Input fields

".i-:}j/ —— Branch Net \

‘ in sensor locations ® — ) —> \\_/

£ T 2, T 15 / .
e X3¢ Trunk Net Output field
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ME1 EmG m9M12 mls

 eval €valuation points

Per iteration: ( ¢IxI1,,,) evaluations
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https://github.com/Centrum-IntelliPhysi DeepONet-Efficient-Training-with-Random-Sampling
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