Generalize Polarization Analysis for Saving KDE Plots

Modified wavefrom_processing function

def waveform processing(waveforms VBB, rotation, BAZ, differentiate,
timing P, timing S, timing noise,
tstart, tend):

coﬁpbﬁenté - S ‘0'; i Gl

elif 'NA' in rotation: # if specified as no rotation
print('specified as no rotation')

components = ['Z', 'R', 'T']

else:
raise Exception("Sorry, please pick valid rotation system: ZNE, RT, LQT")

#trim the waveforms in length
#Note on trimming: when data is de-ticked later, the trimming affects the results - traces do not line up perfec

#Important to use consistent trimming for all operations ‘NRT, has Overlap With ‘RT,

#trim time = [900., 900.]

#st Copy.trim(starttime=utct(tstart) - trim time[@], #o0g: -50, +850 d d d -f
#endtime=utct(tend) + trim time[1]) SO I €C1 e tO SpeC]. y aS

#print("skip the trimming process")

#print(“"st Copy after trim the waveforms: ", st Copy) ‘NA’ for no rotation

Search for corresponding files in HRV (ending with RTZ)

added two parameters baz only and kde only

all three are boolean. so if want kde only, use @, 0, 1 The ﬁles have been rotated

def polarisation(event name, plot, baz only, kde only, ptime, stime, name='Pol plot'):

print("Entering polarisation function") t() I{f]ﬂzz, ‘Af}lilff t}1(3 fil(?IlElIIl(ES
v 169]

[-5 ,
[-5, 10] are correctly in RTZ, the
‘/scratch/tolugboj lab/Lucia WS/polarisation-package/HRV/{event name}.*R'

f'/scratch/tolugboj lab/Lucia WS/polarisation-package/HRV/{event_name}.*T’ traceS lIlfO are Stlll 1n
f'/scratch/tolugboj lab/Lucia WS/polarisation-package/HRV/{event name}.*Z'

original form. The bottom

#print("R file: ", file r)
#print("T file: ", file t)

#print(*Z file: *, file z) section of the screenshots
Original st is replaced by combining all three traces of the event bypass thlS problem by

st = read(file z) + read(file r) + read(file t)
#print("Check st: ", st) c
| changing them to correct
for tr in st:
if 'BHZ' in tr.id: o
el o e L trace channel after rotation.
elif 'BHN' im tr.id or 'BHl1’ 1in tr.id:
tr.stats.channel = 'BHR’
elif 'BHE' in tr.id or 'BH2' in tr.id:
tr.stats.channel = 'BHT'

Set time (Still in polarisation function)

All time except for tstart are calculated as seconds after the start time

#tstart = utct('2024-01-01T00:00:00"')

tstart = utct(tr_z.stats.starttime) # Retrieve event start time from one of the traces, here I chose Z
tend = utct(tstart + event length)

#Phase arrivals/anchors for windows

timing P = utct(tstart + ptime)

timing S = utct(tstart + stime)

timing noise = [utct(tstart), utct(timing P-5)]

Actual event start time is needed for correctly processing data

New option in polarisation function
All parameters remain unchanged compared to the plotting option.

elif kde only:

print("Entering save kde only function")

save kde only(st,
t pick P, t pick S, #secs before/after pick which defines the polarisation window
timing P, timing S, timing noise,#P and S pick timing as strings
'P', 'S', #Which phases/picks are used for the P and S windows - used for labeling
rotation = 'NA', # added this line here to test
BAZ=None, #change to None for else

fmin=0.1, fmax=10.,

tstart=tstart, tend=tend, vmin=-190,

vmax=-135, fname='f'"'{name}’',

path = '.’',

alpha_inc = None, alpha elli = 1.0, alpha_azi = None,
f band density=f band,

zoom=True, differentiate = True)

Read file and Call polarisation function

if _name__ == ' main_ ': Reads the text file with three
s mrabatel parts: event name (with R, T, Z),
args.file = '/scratch/tolugboj lab/Lucia WS/polarisation-package/Ptime Stime results.txt' g 2 2 o
print(f'File read: {args.file}') ptlme m SGCOIldS, Stlme m
with open(args.file, 'r') as file: SCCOHdS.
Skip heading
next(file)
for index, line in enumerate(file):
if index % 3 == 0: # Only process the first line of each triplet Read one hne for every triplets
partsl = line.split(':') to obtain event name, ptime
remaining = partsl[1].strip() .
parts2 = remaining.split() ,aIl(i stime.
get event name
event name RTZ = parts2[0]
event name = event name RTZ.rstrip('RTZ.')
get p and s time Call the polarisation function
ptime = float(parts2[1])
stime = float(parts2[2]) for current event. (0, 0, 1)
print("Event: ", event_name) 5 .
print(f'Ptime: {ptime}, Stime: {stime}') 1nd1cates Save_kde_only.

Call the polarisation function for the current event with save kde only
polarisation(event name, 0, 0, 1, ptime, stime, args.arg event name)

Save_kde_only function

def save kde only(st,

t_pick P, t_pick S,

timing P, timing S, timing noise,
phase P, phase S,

delta P = '', delta S = '

rotation = None, BAZ=None, # the original code has rotation = 'ZNE'

BAZ fixed=None, inc_fixed=None,
kind='cwt', fmin=0.1, fmax=10.,
winlen_sec=20., overlap=0.5,
tstart=None, tend=None, vmin=-180,
vmax=-140, log=True, fname='Polarisation plot’,
path=".",
dop_winlen=16, dop_specwidth=1.1,
nf=100, we=8,

alpha_inc = None, alpha_elli = None, alpha_azi = None,

f_band density = (0.3, 1.),

zoom = False,

differentiate=False, detick 1lHz=False):
#print("Reached the end of the plot polarization event noise function")

print('Processing waveforms..."')

plt.close()

Adjusted based on
plot_polarization_event_noise function

Does not generate a plot.

Everything after kde data collection are
deleted.

All structures remained the same.

#Make dictionary for P, S, and noise with data and their respective weights for the KDE plot

for i in range(nrows):
kde dataframe P[i] = {'P': kde list[i][0],
'weights': kde weights[i][©]}
kde dataframe S[i] = {'S': kde list[i][1],

'weights': kde weights[i][1]}
kde noiseframe[i] = {'Noise': kde list[i][2],
'weights': kde weights[i][2]}

save kde data to csv

save kde data to csv(kde dataframe P, kde dataframe S, kde noiseframe, prefix=event name)

print("KDE saved.")

Save kde data to_csv function

For each event,

def save kde data to csv(kde dataframe P, kde dataframe S, kde noiseframe, output dir='kde df data', prefix='"):

if not os.path.exists(output dir): generates thI‘ee ﬁleS

os.makedirs(output_dir)

row_names = ['amplitude', 'azimuth', 'inclination'] Correspondlng tO P S
val _labels = [f"{name} val" for name in row_names] 2 &
freq_labels = [f"{name} freq" for name in row_names] .
and noise.

Save P-phase data
p_phase data = {}
for i, kde data in enumerate(kde dataframe P):

p_phase data[val labels[i]] = kde data['P']

p_phase data[freq labels[i]] = kde data['weights']

f = pd.DataFrame(p phase data)
f.to_csv(f'{output _dir}/{prefix} kde p.csv', index=False)

pd
pd

Save S-phase data
s phase data = {}
for i, kde data in enumerate(kde dataframe S):
s phase data[val labels[i]] = kde data['S']
s phase data[freq labels[i]] = kde data['weights']

= pd.DataFrame(s phase data)

s df
s:df.tofcsv(f'{outputfdir}/{prefix} kde s.csv', index=False)

Sample kde data file

" jupyter IU.HRV.1037.10_kde_p.csvw aminute ago

File Edit View Language

amplitude val,amplitude freq,azimuth val,azimuth freq,inclination val,inclination freq
99.75143798825884,0.8825397873242518,214.036007805443,0.8825397873242518,23.252761183492943,0.8825397873242518
99.81737166030558,0.8804729457278904,213.75540119400713,0.8804729457278904,23.261143221243415,0.8804729457278904
99.87748588728127,0.8782655051132788,213.48116489798542,0.8782655051132788,23.266141077454957,0.8782655051132788
99.93199055795114,0.8759353748651447,213.21296534287842,0.8759353748651447,23.267793144284095,0.8759353748651447
99.98107435735902,0.873498262656249,212.95047454884482,0.873498262656249,23.26614305821012,0.873498262656249
100.02490602602067,0.8709678135204302,212.6933685802107,0.8709678135204302,23.2612396676225,0.8709678135204302
100.06363568602342,0.8683557593320292,212.4413261377771,0.8683557593320292,23.2531370878771,0.8683557593320292
100.09739616486237,0.8656720703704737,212.19402728030948,0.8656720703704737,23.241894800547687,0.8656720703704737
100.12630426819923,0.8629251030882129,211.95115226645825,0.8629251030882129,23.227577759916297,0.8629251030882129
100.1504619696664,0.8601217402134724,211.71238051148885,0.8601217402134724,23.21025647612337,0.8601217402134724
100.16995749913406,0.8572675208881295,211.47738965490868,0.8572675208881295,23.190007050795817,0.8572675208881295
100.18486632077276,0.8543667597028871,211.24585473563974,0.8543667597028871,23.166911147336773,0.8543667597028871
100.19525199927844,0.8514226543093137,211.01744747103635,0.8514226543093137,23.141055884293745,0.8514226543093137

Actually after I saved all the files I figured out he frequencies are the same for each row as it is
designed for consistency in each row so the file size can be further reduced if necessary.

Plot from saved kde files

def plot _kde from file(file path, phase name, save directory):

data = pd.read csv(file path)

Extract event name (the part before first)
event name = os.path.basename(file path).split(' ')[0]

Create figure with 3 subplots
fig, axes = plt.subplots(1l, 3, figsize=(18, 5))
fig.suptitle(f'Event: {event name} - {phase name} Plots', fontsize=16)

Amplitude

sns.kdeplot(data=data, x='amplitude val', weights=data['amplitude freq'], ax=axes[0], fill=True)
axes[0].set_title(f'{phase_name} Amplitude')

axes[0].set xlabel('Amplitude’)

axes[0].set_ylabel('Frequency')

Azimuth

sns.kdeplot(data=data, x='azimuth val', weights=data['azimuth freq'], ax=axes[1l], fill=True)
axes[1].set_title(f'{phase name} Azimuth')

axes[1].set xlabel('Azimuth')

axes[1].set ylabel('Frequency')

Inclination

sns.kdeplot(data=data, x='inclination val', weights=data['inclination freq'], ax=axes[2], fill=True)
axes[2].set_title(f'{phase name} Inclination')

axes[2].set xlabel('Inclination’)

axes[2].set_ylabel('Frequency"')

Sample plot output

plot_kde_from file("kde df data/IU.
plot_kde from file("kde df data/IU.

plot_kde from_file("kde df data/IU.HRV.1000.60

Frequency

g 2
g 8

2
8

e 8 8
& 3 &

1U HRV 1000 60 P Wave Amplitude

Frequency

40 50
Amplitude

1U HRV 1000 60 S Wave Amplitude

£
H

“
Amplitude

1U HRV 1000 60 Noise Amplitude

Frequency

HRV.1000.60 kde s.csv",
kde noise.csv",

1U HRV 1000 60 P Wave Plots

1U HRV 1000 60 P Wave Azimuth

250
Azimuth

1U HRV 1000 60 S Wave Plots

1U HRV 1000 60 S Wave Azimuth

Anwth
1U HRV 1000 60 Noise Plots

1U HRV 1000 60 Noise Azimuth

HRV.1000.60 kde p.csv", "IU HRV 1000 60 P Wave")
"IU HRV 1000 60 S Wave")
"IU HRV 1000 60 Noise")

Frequency

1U HRV 1000 60 P Wave Inclination

nclination

1U HRV 1000 60 S Wave Inclination

)
nclination

1U HRV 1000 60 Noise Inclination

Three plots (each with 3 subplots) are
generated and saved for each event.

