
CS 240: Race Conditions in Chess Transcript

[00:00:00] Now that you know how to create threads, how to use thread pools, you know

about different race conditions and you know how to protect those with um a

combination of database transactions, synchronized methods, synchronized code

blocks and atomic variables.

[00:00:15] Um I want to show you uh some of the race conditions in your, in your chess

code, your client in your server.

 Start visual description. The professor demonstrates various race conditions in the

chess code, including multiple users registering concurrently with the same

username, multiple users claiming the same side of the game, and joining and

leaving games. The professor shows how these race conditions can occur and

explains that these are not hypothetical but likely exist in the students' code. End

visual description.

[00:00:22] Um I already pointed out a few, I want to show you those again and show you

some others.

[00:00:27] And these are, are not hypothetical things.

[00:00:29] These are things that probably do exist in your code.

[00:00:32] Um and as I said, in a previous video, we don’t expect you to resolve these.

[00:00:36] Um You don’t necessarily have time for that in the class. If we had um time for a

few more phases of the project, maybe this would be another phase we would

add is tell you to go back and fix all of your, all of your potential race conditions.

[00:00:49] Um So this is just instructional. You don’t have to do this. Although if you want to

get serious about using your chess server and your chess client, you would need

to do this OK. So, we’ve already seen some of these, we’ve seen that multiple

users registering concurrently with the same username would, would create or

could create a, a race condition, multiple users claiming the same side of the

game um is a potential race condition.

[00:01:15] And joining and leaving the games are potential race conditions.

[00:01:19] And depending on how you are doing your code, even joining and leaving

different games could, could cause these race conditions.

[00:01:25] So for example, if you create the um the data structure that holds connections

the first time you need it, then that that’s a race condition that could span even

multiple games.

[00:01:38] OK.

[00:01:39] So if we have so, so if we have the situation, but you do have the situation where

multiple threads could write to the same web socket at the same time.

[00:01:50] Another um situation that’s similar to that is your server could create too many

database connections.

 Start visual description. The professor explains a situation where multiple threads

could write to the same web socket simultaneously, leading to potential race

conditions. The professor also discusses the issue of creating too many database

connections, which could result in running out of connections. The professor

demonstrates how to prevent these scenarios using game locks and synchronized

code blocks. End visual description.

[00:01:56] You could have um a situation where you have multiple users connecting and

multiple database connections are getting created, you could actually run out of

database connections.

[00:02:07] And so both of those scenarios can be prevented with what we call game locks or

um have some lock that will lock the entire game or some um subset of the game

for multiple instances.

[00:02:21] So that would be synchronized code blocks um create some game lock object

that is a static variable somewhere and access that from the methods. Um And

what I mean by that is have your methods have a synchronized code block in

them that synchronize on that lock object, and you would be protecting all those

methods from each other.

[00:02:42] Um One thing that you should be aware of is your chess client actually has two

threads.

[00:02:48] So I’ve already pointed out that your server with your processing of web socket

messages, those create separate threads, even though you didn’t explicitly create

them, your client has multiple threads as well because you have the main thread

that’s executing your code and you have your web socket code that is receiving

messages from the server every time it gets a message that’s processed in a

separate thread.

[00:03:13] So even though you didn’t write separate threads, you do have separate

threads.[00:03:17] So multiple threads could access the same instance of your

game object.

[00:03:22] So you have your game object that you’re probably using in your client to print

out your game.

[00:03:28] Well, if your web socket, uh if you get a message from your web socket and that

causes something that uses your game, you have a potential race condition

there.

[00:03:40] So that can happen by um you could synchronize all code that rise to the same

game object, synchronize those methods.

[00:03:49] If the game object is managed within one instance of a class, or if it’s multiple

classes or multiple instances, you could use a synchronized code block one that

you may have actually seen when usually when I teach this uh this class in

person, I will ask students if they’ve had a situation where they printed out their

game board.

[00:04:10] And every once in a while, they see a message in the middle of the board.

 Start visual description. The professor describes a situation where a message

could appear in the middle of the chess board due to multiple threads printing to

the terminal simultaneously. The professor demonstrates how to synchronize all

code that prints to the terminal to avoid this issue. The professor provides

examples of synchronized methods and code blocks to ensure proper

synchronization. End visual description.

[00:04:14] So they see part of the chess board and then some message that maybe says

John just joined the game as user black something like that, that could appear in

the middle of your chess board.

[00:04:24] And the reason for that is because as I said a minute ago, you have multiple

threads.

[00:04:29] So if one thread is in the process of printing out the game and it’s not done with

that.

[00:04:35] And a web socket message comes in that web socket message could be printed

right in the middle of your game board.

[00:04:41] Um So some of you um probably most of you won’t see that, but some of you

probably will see that if you play your game enough.

[00:04:48] Um So the way you can do that is synchronize all the code that prints to the

terminal. So if you have all those, if you have methods being called from one

instance, maybe you have a chess client instance, a chess client class and you

have one instance and everything is being printed from that one class, then

probably a synchronized method would work.

[00:05:13] If you, if you could potentially be printing to your terminal from multiple classes,

then you’d need a synchronized code block.

[00:05:19] So those are just a few examples, there might be a few others.

[00:05:23] Um a few other cases where you could have a race condition in your chess

program, but you definitely could have those.

[00:05:29] So those are just a few examples of things that in a, in an actual production chess

server and client, you would need to resolve those with the, with the techniques

you’ve learned about concurrent programming and multi-threading.

