CS 240: Java Collections — Overview Transcript

[00:00:00]

[00:00:04]

[00:00:14]

[00:00:17]

[00:00:21]

[00:00:31]

[00:00:39]

[00:00:48]

[00:00:52]

[00:01:03]

[00:01:13]

This video shows a split screen of Professor Rodham on the right and a
PowerPoint screen on the left. Any text displayed or action performed that is not

verbalized will be included in italics as visual descriptions.

KEN RODHAM!: In this video, we’re going to talk about Java collections.

Java collections are the data structures that are built into the Java language, and

as you’d expect, most languages have a library of data structures built-in.

In C++, they call those containers.

In Java, they call those collections, but it’s pretty much the same thing.

One of the restrictions on Java collections that you should be aware of is that

you can only store objects in the Java collections classes.

The lists, and the sets, and the maps, and all the things that you can use; they

can only store objects.

Primitive values like integers, floats, Booleans, and so forth cannot be stored in

the Java collections.

This is one place where the wrapper classes that Java provides are important.

For example, if you wanted to store a list of integers, what you would need to do

is store a list of integer objects, Not in primitives.

Whatever primitive value you might want to store, you’ll need to store the

wrapper objects instead of the primitive values.

Other than that, the Java collections library, in my opinion, is very well-designed,

and so it’s a really good example of library design.

[00:01:21]

[00:01:24]

[00:01:35]

[00:01:48]

[00:01:52]

[00:02:05]

[00:02:09]

[00:02:11]

[00:02:17]

[00:02:21]

[00:02:26]

[00:02:40]

[00:02:48]

[00:02:52]

We're going to just cover the basics.

We’re not going to belabor it too much because you’re familiar with a lot of the
concepts here, but we do want to at least provide an overview so that you’ll

know what’s available.

Then the purpose of the Evil Hangman project, which is the next one, the
purpose of that lab is to give you experience using the Java collections in a

program.

All right, let’s do a brief overview here.

This slide shows the inheritance hierarchy, the different types, the major types

that are in the Java collections library.

At a high level, there’s three different kinds of objects in this library.

The first is the collections themselves.

The list classes, the set classes, the queue classes, etc.

Those are part of the library.

The next part of the library that’s important to understand is iterators.

The notion of an iterator is, you learn in CS 235, an iterator is an object that lets

you enumerate or iterate over the values inside a collection.

If | wanted to process all the values in a list, for example, | could use an iterator

to write a loop to process all the values in a list.

We'll talk about what iterators look like in Java.

The other part of the Java collections library is they actually provide a number of

algorithms that are commonly used in writing programs.

[00:03:02]

[00:03:12]

[00:03:19]

[00:03:24]

[00:03:30]

[00:03:39]

[00:03:48]

[00:03:51]

[00:03:57]

[00:04:05]

[00:04:15]

[00:04:20]

[00:04:23]

[00:04:37]

[00:04:42]

As programmers, there’s certain algorithms that we use fairly often, like sorting

searching, randomization, and things like that.

Java does provide a set of basic algorithms that you can use in your code.

These three things make up the Java collections library.

Now we’re going to start by talking about the collection classes, which is what’s

depicted on the slide.

You can see, at the root of the inheritance hierarchy, they have this interface

called Collection.

In Java, if you go to the documentation, which we’re going to do now. (Rodham

opens the Java documentation website in a browser window.)

Go over to the Java documentation.

We're going to go to the package called java.util. U-T-I-L.

This is where you’ll find the data structures in Java.

If you look at this java.util package, you’ll find lots of interfaces and classes that

implement on the collections.

One of them is called Collection.

There’s an interface called Collection.

Most of the collections inherit from Collection because the Collection interface
defines some methods that are universally supported by almost all data

structures, at least everything except the maps.

If you go to the Collection interface, you’ll find methods like add.

That would be like an insert method on a collection.

[00:04:45]

[00:04:48]

[00:04:51]

[00:04:59]

[00:05:05]

[00:05:13]

[00:05:15]

[00:05:21]

[00:05:23]

[00:05:28]

[00:05:31]

[00:05:37]

[00:05:44]

[00:05:50]

[00:05:55]

[00:06:06]

[00:06:07]

You have a clear method which would empty out the collection.

You have a contains method, which is like a find method.

You can pass in an object and ask, is this value in the collection? Is empty.

Iterators. A very important method on a collection.

If you want to enumerate all the values that are inside the collection, you call the

iterator method and it returns an iterator object to you.

There’s also an interface called Iterator.

If you look at the Iterator interface, it has a couple of important methods here.

One is hasNext.

That method tells you if there are any values remaining in the iteration.

It returns false at the end when there’s no more values to return.

If hasNext returns true, you can call the next method to get the next value out of

the collection.

Using hasNext and next, you can just write a simple loop that enumerates over a

collection.

The way you get an iterator from a collection is you call the iterator method.

That’s different than in C++. In C++, they have iterators that look like pointers.

They overload all the pointer operators like asterisk and the arrow, and that’s

the C++ way of doing iterators.

Java uses a different approach.

They just have an Iterator interface with the hasNext and the next methods.

[00:06:11]

[00:06:22]

[00:06:26]

[00:06:31]

[00:06:33]

[00:06:38]

[00:06:46]

[00:06:51]

[00:07:00]

[00:07:05]

[00:07:16]

[00:07:19]

[00:07:22]

[00:07:25]

[00:07:29]

[00:07:37]

On the Collection interface, we also have a remove method, a size method, just a

lot of methods that every collection would support.

That’s the Collection interface. (Rodham returns to the PowerPoint slides.)

Subclasses of Collection are list, set, and queue.

We’ll talk about those a little more detail in a minute.

Each of these interfaces add additional methods that are only supported by

those specific data structures.

In CS 235, you learned about lists, sets, queues, maps, and all those things.

Really, these are just the Java classes that implement those datatypes.

Then there’s some other datatypes here that are maybe less common but still

important, like a double-ended queue, the deque, sorted set, so forth.

The other major datatype in the Java collections library is the map.

A map is also a collection, but a map is different than other collections because a

map is basically a set of key-value pairs.

That makes it fundamentally different from the other collections.

That’s why it’s got its own interface here.

Then there’s different implementations of map.

These are the abstract data types that are defined by the Java library.

What | haven’t shown you is the concrete classes that actually implement these

interfaces and that’s what you’d be most interested in your programs.

Let’s talk about some of the concrete classes that implement these datatypes.

[00:07:42] First we have the List interface.

[00:07:46] The List interface has all the methods that we just talked about on the Collection

interface like add and remove, an iterator, and those kinds of things.

[00:07:55] The methods that are added by the List interface are the get and set methods

because what distinguishes lists is that they’re an ordered collection.

[00:08:06] There is an order. There is a first element, the second element, the third

element, and so forth.

[00:08:10] With a list, you can access the elements by their index, and you can also set the

elements by their index.

[00:08:18] Those are the methods that are unique to the list interface.

[00:08:23] The most common class that we would use for lists in Java would be the

ArraylList.

[00:08:30] That’s equivalent to the vector class in C++.

[00:08:34] Arraylist is usually the best default list if you need to pick a class for it, but you

can also use a LinkedList if you want to have that.

[00:08:46] A LinkedLists is a doubly-linked list in this case.

[00:08:49] Essentially, you have a choice between an array-based list and a doubly-linked

list.

[00:08:54] Those two implementations have their strengths and weaknesses, as you’ve

learned about in CS 235.

[00:09:00] For example, in an ArraylList, it’s very fast to do random access on the list.

[00:09:06]

[00:09:12]

[00:09:23]

[00:09:29]

[00:09:37]

[00:09:47]

[00:09:54]

[00:09:59]

[00:10:07]

[00:10:12]

[00:10:18]

[00:10:22]

[00:10:24]

[00:10:31]

You can access any element of the list in constant time because it’s really just an

array access.

A LinkedList is very effective when you’re inserting or deleting elements in the

list, either at the beginning or in the middle of the list somewhere.

It is perhaps more efficient than an ArrayList for doing insertions, and deletions.

Of course, an ArrayList can do inserts and deletes at the end very efficiently, but

it’s only at the beginning, and in the middle that it’s slower.

You just have to pick the list implementation that seems to fit the data access
patterns of your program and pick the one that you think would be more

efficient.

Lists also have a Listlterator, which is a little more powerful than the iterator |

just showed you.

With lists, the iterators can move forward and backward in the list.

They have a hasNext method as well as a hasPrevious method.

Because a list is ordered, you can iterate in both directions: forward and

backward.

The Listlterator is a little bit more powerful than the generic iterator.

That’s how lists look in Java.

Let’s talk about sets next.

As you know from your prior training, a set is a collection of values that are

unique.

Duplicates are not allowed in a set.

[00:10:35]

[00:10:39]

[00:10:44]

[00:10:51]

[00:10:58]

[00:11:03]

[00:11:08]

[00:11:16]

[00:11:22]

[00:11:26]

[00:11:35]

[00:11:41]

[00:11:47]

[00:11:57]

[00:12:00]

If you add the same value to a set multiple times, it’ll still only be in there once.

Also, sets are unordered or unsorted.

That’s what distinguishes a set: no duplicates, no order.

Sets support the dictionary operations that we’ve discussed previously.

There’s an add method, there’s a contains method, and there’s a remove

method.

All of those methods actually come from the Collection interface itself.

These were all inherited. But set does add the extra constraints that duplicates

are not allowed, and that there’s no order.

In Java, there’s basically two different set implementations you can choose from.

One is called HashSet, which uses a hash table underneath to implement the set.

The other one is a TreeSet, which uses a balanced binary search tree underneath

to implement the set.

Again, you can pick the implementation that best meets your needs.

As we talked about before, hash tables are very fast, but they also take more

memory.

If you want speed and you don’t mind spending a little bit of extra memory, then

a HashSet’s probably a good choice.

TreeSet would be more memory efficient but somewhat slower.

TreeSets, of course, use binary search trees, which are Big O of log(N) in

performance, whereas HashSets are amortized constant time.

[00:12:13]

[00:12:16]

[00:12:22]

[00:12:29]

[00:12:35]

[00:12:42]

[00:12:46]

[00:12:59]

[00:13:03]

[00:13:07]

[00:13:12]

[00:13:23]

[00:13:28]

[00:13:34]

[00:13:45]

Just pick the one that meet your needs the best.

Of course, if you're going to use a HashSet, you have to think about overriding

the hash code and the equals methods on your class.

If you’re going to use a TreeSet, you have to implement the comparable

interface on your class.

I'll show you how to do that later in this video.

Those are your basic choices for sets in Java.

Queues would be the next data type.

A queue is defined in Java as a collection designed for holding elements prior to

processing which is a really long sentence that says very little.

Every collection is designed to hold elements prior to processing.

But | admire their attempt there to define a queue.

As you learned about in CS 235, there’s different queues.

There’s FIFO queues (first in, first out) where you insert elements at the end of

the queue and they come out the front of the queue.

Basically, the element that’s been in the queue the longest is the next one that

comes out.

We have LIFO queues (last in, first out) queues, which we usually call stack.

We also have PriorityQueues, which is a queue where you insert elements into

the queue, but when you take the elements out, they come out in priority order.

There’s some notion of some elements are more important than other elements

and so the highest priority elements come out first.

[00:13:52]

[00:14:00]

[00:14:08]

[00:14:13]

[00:14:19]

[00:14:24]

[00:14:30]

[00:14:34]

[00:14:39]

[00:14:41]

[00:14:43]

[00:14:47]

[00:14:55]

[00:15:01]

[00:15:07]

If you think about it, FIFO queues, LIFO queues, and priority queues, they’re

really the same method interface.

They have the same methods on them, it just depends on which end of the

gueue things are coming out of.

For a FIFO queue, elements come out of the front.

For a stack, the most recently inserted element comes out the back.

For a priority queue, they just come out in priority order.

The methods on a queue in Java would be add.

That’s how you insert a value into the queue. You can peek.

You can call the peek method to look at the next value that will come out of the

queue.

But peek will leave it in there, it won’t take it out.

It'll just tell you who's going to come out next.

Then the remove method would actually remove the next value from the queue

and return it.

Depending on which data structure you’re looking for, which queue you want,

you would use different classes.

In Java, they have an ArrayDeque, which is an array-based implementation of a

queue.

ArrayDeque would be used for a FIFO queue.

You can also use it for a LIFO queue as a stack.

[00:15:11]

[00:15:16]

[00:15:20]

[00:15:27]

[00:15:32]

[00:15:37]

[00:15:45]

[00:15:47]

[00:15:53]

[00:15:59]

[00:16:01]

[00:16:05]

[00:16:15]

[00:16:29]

[00:16:32]

[00:16:35]

ArrayDeque is really useful for anything but a priority queue.

You can also use the LinkedList in the same fashion.

LinkedLists can be used to implement the FIFO queues as well as LIFO queues.

Usually it’s...on which one you use there.

Then we do have a PriorityQueue class in Java, which is a specialized

implementation of a priority queue.

It’s based on a data structure called a binary heap, which you may have learned

about in your data structures class.

Queues are pretty simple.

Use ArrayDeque, LinkedList, or PriorityQueue based on your needs.

Another data type in Java’s library is the double-ended queue or the deque.

This word isn’t pronounced DQ.

This is deque, double-ended queue.

A double-ended queue is a queue that you can insert and remove elements at

both ends of the queue efficiently.

For the other queues that we just talked about, you only insert at one end and
you only remove elements from one end, but in a double-ended queue, you can

insert values and remove values at both ends of the queue.

The method interface on a double-ended queue is a little bit different.

It's got addFirst, addLast.

You can see you can add at both ends of the queue.

[00:16:37]

[00:16:42]

[00:16:48]

[00:16:55]

[00:17:07]

[00:17:13]

[00:17:21]

[00:17:32]

[00:17:40]

[00:17:43]

[00:18:00]

[00:18:02]

You can peekFirst, peekLast, removeFirst, removelast.

A double-ended queue is guaranteed to be efficient for all of those operations.

The classes that implement the deque interface are the same as the ones that

implemented the queue interface.

The ArrayDeque and the LinkedList can be used for a double-ended queue, as

well as FIFO and LIFO queues.

Java does have a Stack class, which is deprecated.

In programming languages, they deprecate various library features when they

don’t want you to use them anymore.

The Java Stack class was part of the original Java language, but it had a
regrettable design and they eventually decided to deprecate it, which means you

shouldn’t use it.

It could go away eventually, although it’s been 20 plus years since they
deprecated it and it’s still hasn’t gone away, so | doubt it’s ever going to go away

actually.

But it does have some efficiency problems.

The current advice is if you need to implement a Stack in a program that you
would use one of the double-ended queue options, the ArrayDeque or the

LinkedList.

Let’s talk about maps.

As we said earlier, maps are fundamentally different than the other collection
types because a map contains a set of key-value pairs, where the keys and the

entries are unique.

[00:18:21]

[00:18:26]

[00:18:40]

[00:18:43]

[00:18:51]

[00:18:56]

[00:19:03]

[00:19:07]

[00:19:20]

[00:19:26]

[00:19:34]

[00:19:42]

It requires a different method interface because you have to deal with key-value

pairs.

The most important methods on the map interface, first of all, would be the put

method, which allows you to put a key-value pair into the map.

Again, the key values are going to be unique.

If you put an entry into the map that uses the same key as an existing entry, it’s

going to replace the old entry with the new one.

You can retrieve the value for a particular key from the map by calling the get

method.

You can ask the map if it contains an entry with a particular key by calling

contains.

You can remove an entry with the remove method, just pass in the key.

You can also ask a map for a set of all the keys that are in the map and because
the keys are unique then, it’s appropriate to use a set for that because the

elements of a set are also unique.

You can ask a map to return a collection of all the values that are in the map.

Now that’s not going to be a set because the values are not guaranteed to be

unique, so that would return a collection rather than a set.

The last thing you can ask a map for is a set of all the entries or all the key-value

pairs in the set.

This is actually a really useful method if you want to iterate over all the pairs or

all the entries in the set.

[00:19:48]

[00:20:00]

[00:20:06]

[00:20:20]

[00:20:27]

[00:20:32]

[00:20:40]

[00:20:47]

[00:21:04]

[00:21:08]

[00:21:11]

[00:21:16]

Calling entrySet gives you back a set of all those entries that you can then iterate

over and very efficiently process every key-value pair in the whole map.

In Java, there’s basically two different implementations of the map interface.

There’s a HashMap, which is based on a hash table implementation, and a
TreeMap, which internally uses a balanced binary search tree to implement the

map, very similar to sets.

Again, if you’re going to use a HashMap, then whatever your key type is, has to

have a hashCode method on it.

It has to have an equals method on it that work the way you want them to work.

For a TreeMap, the key type has to implement the comparable interface so that

Java can sort the keys and build the tree.

I’ll talk more about that in a few minutes.

One thing | neglected to mention when we were talking about sets—I’'m going to
go back to sets for a minute—is we talked about how HashSets are faster than

TreeSets, but they also use more memory than TreeSets.

The other advantage of a TreeSet is that it’s actually sorted.

By definition, a set is unsorted.

But actually, we know that if we implement a set with a binary search tree, that

itis in fact sorted.

A TreeSet is an example of what’s called a sorted set, which doesn’t make sense

probably to a mathematician to even say sorted set, but we do it anyway.

[00:21:28]

[00:21:40]

[00:21:44]

[00:21:50]

[00:21:54]

[00:21:59]

[00:22:05]

[00:22:09]

[00:22:13]

[00:22:19]

[00:22:28]

[00:22:34]

[00:22:46]

For example, if you wanted to create a set such that when you iterate over the
elements of the set, the values come out in sorted order, you would want to use

a TreeSet.

A HashSet would not return the values in sorted order.

It would return them in some random looking order.

When we talk about maps, you get a similar trade-off.

HashMaps use more memory, but they’re faster.

But if you iterate over the key-value pairs, they’re not sorted in any way.

Whereas with a TreeMap, it doesn’t use as much memory.

It's slower, but the key-value pairs are sorted.

If you iterate over them, they’ll come out in sorted order.

Now one thing to know about all these collection types in Java is that they are all

implemented so that they work with the for each loop.

Java has a for each loop, which has a syntax here at the bottom.

The following lines of code are the for each loop syntax:

Set<String> words;

for (String w : words) {...}

End of code.

This loop says for each string in the words collection (words is a set) —that’s one

way in Java you can iterate over all the values in a collection.

All of these collections are written to work with the for each loop.

[00:22:50] That’s typically the way you would iterate over them, with a for each loop.

