
CS 240: Server Facade Transcript 

[00:00:00] INSTRUCTOR: So in phase five, this is where you're going to have to write some 

code that allows your client to communicate with your server. So obviously, 

there's going to be a lot of interaction between your chess client and your chess 

server. 

[00:00:16] And in the first two parts of the user interface for chess, essentially what is 

happening is the user is typing in commands, and then based on the command 

that the user types in, the client is going to make a web API called your server to 

actually execute the command requested by the user. 

[00:00:33] And so you're going to need to write code in your client that calls your web APIs. 

And so to encapsulate that code that calls your web APIs, we require you to 

implement a class called a server facade. 

[00:00:52] A server facade is really just a class that calls the server. So for example, if a user 

tries to log in, that means the client is going to need to send a login request to 

the server's login API, and then the server will return with a response indicating 

whether that succeeded or failed. 

[00:01:13] And so the server facade class will contain the code that creates the HTTP 

request that goes to the server and then receives the HTTP response back from 

the server and then processes that. Now in a previous video, we talked about 

how to write a class like this. 

[00:01:33] So it was in a video called client HTTP. And so you want to review that video if 

you don't remember what that was all about. And so using that information, 

you'll create a class that looks something like this. 



[00:01:47] So you type class server facade. And the methods that are on the server facade 

would map directly to the web APIs that are supported by the server. So let's see, 

let's do a register. So it might have a, for example, a register method. 

[00:02:13] It takes a register request as a parameter and then it returns a register result as 

an output. And of course inside the register method that's where you would use 

the HTTP URL connection class in Java to create an HTTP request that calls the 

register API on the server, gets back a result, then returns the result. 

[00:02:41] So the client, whenever it wants to call the server's web API, it would simply 

create a server facade object and then call whatever method it wants to call. And 

then the facade would do all the work of communicating with the server and 

returning back the result. 

[00:02:57] So as far as the rest of the client is concerned, it doesn't really know how we're 

calling the server. It doesn't know that we're using HTTP. It doesn't know that 

we're using JSON to format their requests and responses. 

[00:03:10] All that information is encapsulated inside the server facade. So if those details 

ever needed to change, the only class in the client that would be affected would 

be the server facade. And of course, you'll have several other methods here as 

well. 

[00:03:25] You might have a join result, join a game, join request, et cetera. And so the 

server facade is probably the first thing I would build if I were working on this 

project on phase five. I would probably implement my server facade first and get 

it working. 

Start visual description. Instructor types the following code: 

Class ServerFacade { 

Public RegisterResult register(RegisterRequest request) {…} 



Public JoinResult join(JoinRequest request) {…} 

End visual description. 

[00:03:51] And then based on that working facade, then you can build the rest of the client 

around that. So consider that as probably a good place to begin your 

implementation. Now, one thing we can do if we want more help with the server 

facade is we can look at the pet shop example again. 

[00:04:09] So if we go to the pet shop project, if we go to the shared module, go into the 

server package, there is the pet shop server facade. And this is what we looked at 

in the client HTTP video. But you can see here that it provides lots of example 

code for what a server facade would look like. 

Start visual description. Instructor shows the server façade founder under the 

server folder for the pet shop project. End visual description. 

[00:04:39] And so you can see all these methods for pet shop or just calling the web APIs on 

the pet shop server. It's got this nice make request method down here that you 

can use to actually send the requests and receive the responses and so on. 

[00:04:51] So I would go back and study the pet shop server facade before I implemented 

my chess server facade. 


