
รายงานผลโครงงานการออกแบบวงจรเครื่องคิดเลขโดยใช้ภาษา VHDL

ที่สามารถใช้งาน การบวก การลบ การคูณ และการหาร ตัวเลขฐานสองขนาด N บิต

สมาชิก: 1. คุณาพจน์ สุทธินนท์ (65-010126-3003-4)

2. ภูตะวัน จันทร์เรือง (65-010126-3014-0)

ในรายงานฉบับนี้ ประกอบไปด้วย

- สาธิตวิธีการใช้งานเบื้องต้น

- ตัวอย่างผลลัพธ์ที่ได้จากการใช้งาน

- การออกแบบวงจร

สาธิตวิธีการใช้งานเบื้องต้น

กําหนดให้ส่วนประกอบต่าง ๆ แทนชื่อดังนี้

1. เมื่อเริ่มใช้งาน เมนูแรกคือการเลือกตัวเลข โดย BCD2, BCD1, BCD5 และ BCD4 จะแสดงเลขฐานสิบสองหลัก 2 จํานวนตามลําดับ อ้างอิง

จากการใช้ SW9-0 เป็นสวิตช์สําหรับกรอกเลข โดยเป็นเลขฐานสองชนิด Signed หากจํานวนที่กรอกมี Sign bit (SW9 และ SW4) เป็นเลข

1 จะส่งผลให้ BCD3 และ/หรือ BCD6 จะมีเครื่องหมายลบกํากับ

BCD3, BCD2, BCD1 BCD6, BCD5, BCD4 SW9, SW8, SW7, ..., SW0

LEDR3_ADD

LEDR2_SUB

LEDR1_MUL

LEDR0_DIV

START

RESET

2. เมื่อกดปุม่ START แล้วปล่อย จะเข้าสู่เมนกูารเลือก Operator โดย BCD ทุกหลักจะแสดงเลขเป็นเลข 0, 1, 2 หรือ 3 สอดคล้องกับเลขฐาน

สอนที่ป้อนจาก SW1 และ SW0 กําหนดให้แต่ละจํานวนสื่อความหมายดังนี้

a. ‘000000’ เป็นการหาร A ÷ B

b. ‘111111’ เป็นการคูณ A × B

c. ‘222222’ เป็นการลบ A - B

d. ‘333333’ เป็นการบวก A + B

3. เมื่อกดปุ่ม START แล้วปล่อยอีกครั้ง จะเข้าสู่เมนูการแสดงผล โดยแต่ละ Operator จะมีการแสดงผลแตกต่างกันดังนี้

a. หากเป็นการบวก BCD2 และ BCD1 จะแสดงเลขฐานสิบสองหลัก 1 จํานวน หากเป็นจํานวนลบ BCD3 จะแสดงผลเป็น

เครื่องหมายลบ BCD6, BCD5 และ BCD4 จะไม่แสดงผลอะไร หากผลลัพธ์เกินขอบเขตเลข -16 ถึง 15 จะแสดงตัวอักษร “Err”

บน BCD3, BCD2 และ BCD1 ตามลําดับ จากนั้น ไฟแสดงสถานะ ณ ตําแหน่ง LEDR3_ADD จะติดขึ้น

b. หากเป็นการลบ BCD2 และ BCD1 จะแสดงเลขฐานสิบสองหลัก 1 จํานวน หากเป็นจํานวนลบ BCD3 จะแสดงผลเป็นเครื่องหมาย

ลบ BCD6, BCD5 และ BCD4 จะไม่แสดงผลอะไร หากผลลัพธ์เกินขอบเขตเลข -16 ถึง 15 จะแสดงตัวอักษร “Err” บน BCD3,

BCD2 และ BCD1 ตามลําดับ จากนั้น ไฟแสดงสถานะ ณ ตําแหน่ง LEDR2_SUB จะติดขึ้น

c. หากเป็นการคูณ BCD2 และ BCD1 จะแสดงเลขฐานสิบสองหลัก 1 จํานวน หากเป็นจํานวนลบ BCD3 จะแสดงผลเป็นเครื่องหมาย

ลบ BCD6, BCD5 และ BCD4 จะไม่แสดงผลอะไร หากผลลัพธ์เกินขอบเขตเลข -99 ถึง 99 จะแสดงตัวอักษร “Err” บน BCD3,

BCD2 และ BCD1 ตามลําดับ จากนั้น ไฟแสดงสถานะ ณ ตําแหน่ง LEDR1_MUL จะติดขึ้น

d. หากเป็นการหาร BCD2 และ BCD1 จะแสดงเลขฐานสิบสองหลัก 1 จํานวน เป็นค่าผลหาร หากผลหารเป็นจํานวนลบ BCD3 จะ

แสดงผลเป็นเครื่องหมายลบ BCD5 และ BCD4 จะแสดงเลขฐานสิบสองหลัก 1 จํานวน เป็นค่าเศษจากการหาร หากเศษจากการ

หารเป็นจํานวนลบ BCD6 จะแสดงผลเป็นเครื่องหมายลบ หากตัวหารที่ผู้ใช้ป้อนเข้าในขั้นตอนที่ 1 เป็น 0 จะแสดงตัวอักษร

“Err000” บน BCD6, BCD5, BCD4, BCD3, BCD2 และ BCD1 ตามลําดับ จากนั้น ไฟแสดงสถานะ ณ ตําแหน่ง LEDR0_DIV จะ

ติดขึ้น

และเมื่อผู้ใช้ต้องการ Reset เพื่อไปสู่ขัน้ตอนที่ 1 อีกครั้ง ให้กดปุ่ม RESET 1 ครั้ง เป็นอันเสร็จสิ้นกระบวนการ

ตัวอย่างผลลัพธ์ที่ได้จากการใช้งาน

เงื่อนไข รูปภาพ

กําหนดให้

A = 01

B = 01

Operator เป็นบวก (3)

ผลลัพธ์ = 02

กําหนดให้

A = 01

B = 01

Operator เป็นลบ (2)

ผลลัพธ์ = 00

กําหนดให้

A = 01

B = 01

Operator เป็นคูณ (1)

ผลลัพธ์ = 01

กําหนดให้

A = 01

B = 01

Operator เป็นหาร (0)

ผลลัพธ์ = 01 เศษ 00

กําหนดให้

A = 13

B = -03

Operator เป็นบวก (3)

ผลลัพธ์ = 10

กําหนดให้

A = 13

B = -03

Operator เป็นลบ (2)

ผลลัพธ์ = Err

กําหนดให้

A = 13

B = -03

Operator เป็นคูณ (1)

ผลลัพธ์ = -39

กําหนดให้

A = 13

B = -03

Operator เป็นหาร (0)

ผลลัพธ์ = -04 เศษ 01

กําหนดให้

A = -07

B = -04

Operator เป็นบวก (3)

ผลลัพธ์ = -11

กําหนดให้

A = -07

B = -04

Operator เป็นลบ (2)

ผลลัพธ์ = -03

กําหนดให้

A = -07

B = -04

Operator เป็นคูณ (1)

ผลลัพธ์ = 28

กําหนดให้

A = -07

B = -04

Operator เป็นหาร (0)

ผลลัพธ์ = 02 เศษ -01

กําหนดให้

A = -01

B = 00

Operator เป็นหาร (0)

ผลลัพธ์ = Err000

การออกแบบวงจร

การออกแบบวงจรจะแบ่งออกเป็น 15 ส่วนหลักดังนี้

1. FSM: เป็นส่วนที่รับค่า Input มาเป็น Clock, Reset, Start และ Switches อีก 10 ตัวเพื่อรับค่าตัวเลขหรือ Operator ซึ่งหลักการทํางาน

ของวงจรนี้ จะแบ่งออกเป็น 3 State ได้แก ่

a. Select A and B state : ใน State นี้ จะรับค่า A และ B ผ่าน Switches ทั้ง 10 ที่รับมาเป็น Input โดย SW5-9 จะเป็นค่า A

และ SW0-4 จะเป็นค่า B เมื่อผู้ใช้กดปุ่ม Start หลังจากปรับ Switches ให้เป็นเลขฐานสองจํานวน N-bit ตามที่ต้องการแล้ว ก็จะ

เก็บค่านั้นไว้ใน A_out และ B_out ของวงจรแล้วกําหนด state_out = "00" และจะเข้าไปสู่ State ถัดไป แต่หากมีการกด Reset

จะทําให้ A_out และ B_out ถูก Reset กลับไปเป็นสถานะเดิมและ State จะย้อนกลับมาที่ Select A and B state (หรือ

State เริ่มต้น)

b. Select Operator state : ใน State นี้ จะรับค่า State ผ่าน Switches 2 ตัวที่รับมาเป็น Input โดยจะเลือกใช้ SW8-9 เป็น

ตัวกําหนด Operator สามารถเลือกได้ 4 Operators ได้แก่ บวก ลบ คูณ และหาร โดยจะแทนเป็นเลขฐานสอง 2-bit ดังนี้

i. Operation = “11” เป็นการกระทําฟังก์ชันการบวก A + B

ii. Operation = “10” เป็นการกระทําฟังก์ชันการลบ A - B

iii. Operation = “01” เป็นการกระทําฟังก์ชันการคูณ A x B

iv. Operation = “00” เป็นการกระทําฟังก์ชันการหาร A ÷ B

เมื ่อผู ้ใช้กดปุ่ม Start หลังจากปรับ Switches ให้เป็นเลขฐานสอง 2-bit ตามที่ต้องการแล้ว ก็จะเก็บค่า Operator นั้นไว้ใน

operator_out แล้วกําหนด state_out = "01" และจะเข้าไปสู่ State ถัดไป แต่หากมีการกด Reset จะทําให้ operator_out ถูก

Reset กลับไปเป็นสถานะเดิมและ State จะย้อนกลับไปที่ Select A and B state (หรือ State เริ่มต้น)

c. Finished : ใน State นี้จะมีการกําหนด state_out = "10" และ done = 1 ซึ่งหมายถึงว่าทําการรับ Input ทั้งหมดเรียบร้อย จึง

ออกจาก FSM ซึ่งค่าที่ส่งออกจะมี A_out กับ B_out ที่เป็น STD_LOGIC_VECTOR จาก N - 1 bit ถึง 0 bit, operator_out

กับ state_out ที่เป็น STD_LOGIC_VECTOR จาก 1 ถึง 0 และ done ที่เป็น STD_LOGIC

2. Operator Selector : เป็นส่วนที่รับค่า Input มาเป็น Clock, Enable และ operator_in ขนาด 2-bit จาก operator_out จากวงจร

FSM โดยจะส่งค่าออกเป็น STD_LOGIC โดยมีชื ่อดังนี ้ enaop_adder, enaop_subtractor, enaop_multiplier, enaop_divider ซึ่ง

หน้าที ่ของแต่ละขาจะเป็นการ Enable วงจร Adder, Subtractor, Multiplier, Divider เพียงอย่างใดอย่างหนึ่ง วงจรนี้มีหน้าที ่เลือก

Operator ให้ทํางานผ่านขา enable ต่าง ๆ ซึ่งจะไป trigger วงจรคํานวณให้ทํางานตาม operator ที่ผู้ใช้เลือกไว ้

3. SignDetectorPreview : เป็นส่วนที่รับค่า Input มาเป็น Clock และ A_out กับ B_out จากวงจร FSM ซึ่งทําหน้าที่ตรวจจับค่าที่เป็นลบ

แล้วทํา 2’s complement และมี Output minus ที่อ้างอิงจาก MSB ของค่า s_detect และเลือก Output ตาม Sign bit

a. พบ MSB (Sign bit) เป็น 0 ให้ Output o เป็นค่าเดิมที่รับมาจาก s_detect

b. พบ MSB (Sign bit) เป็น 1 ให้ Output o เป็นค่าของ s_detect ที่ผ่านการทํา 2’s complement

ซึ่งวงจรดังกล่าวนี้จะควบคุมการแสดง Preview ของทั้งค่า A และค่า B

4. BinaryToBCDConverterPreview : เป็นส่วนที่รับค่า Input มาเป็น Clock, minus_con ที่รับค่ามาจาก minus และ data ที่รับค่ามา

จาก o ของ SignDetectorPreview ซึ่งในวงจรนี้จะเป็นการแปลง data ที่เป็น STD_LOGIC_VECTOR N-bit เป็นจํานวน Integer ในแต่

ละหลัก ซึ่งใน Component นี้จะแบ่งเป็น

a. BCD_digit_1, BCD_digit_2 ที่เป็นการแปลง Integer เป็น STD_LOGIC_VECTOR ขนาด N-1 bit

b. เมื่อ minus_con = '1' จะทําให้ BCD_digit_3 = "1011" ซึ่งคือเครื่องหมายลบ (Segment g)

c. เมื่อ minus_con = '0' จะทําให้ BCD_digit_3 = "1010" ซึ่งคือการไม่แสดงผลใด ๆ บน 7-Segment หลักที่ 3

5. BinaryToBCDConverterPreviewOperator : เป็นส่วนรับค่า Input เป็น data จาก operator_out ของ FSM และเป็น

STD_LOGIC_VECTOR ขนาด 2-bit หน้าที่คือการเพิ่ม bit ให้กับค่า operator_out ที่มาจาก FSM และส่งค่าออกให้กับ BCDto7Segment

เพื่อนําไปแสดงผลต่อไป

6. MUX18to3_Result : เป็นส่วนที่ควบคุมการเลือกแสดงค่าบน 7-Segment โดยขา control จะรับจากขา state_out ขนาด 2 bit ที่มา

จาก FSM

เมื่อ control = 00 และ control = 01 จะแสดงค่า Preview ตาม Select A and B state (เฉพาะส่วนตัวเลข A) กับ Select

Operator state และจะแสดงค่า Result ใน Finished state เมื่อ control = 10 ซึ่งจะแบ่งเป็นเงื่อนไขดังนี ้

i. Operation = “11” เป็นการกระทําฟังก์ชันการบวก A + B

ii. Operation = “10” เป็นการกระทําฟังก์ชันการลบ A - B

iii. Operation = “01” เป็นการกระทําฟังก์ชันการคูณ A x B

iv. Operation = “00” เป็นการกระทําฟังก์ชันการหาร A ÷ B

และค่า Output จะออกเป็น BCD ขนาด N-2 bit จํานวน 3 หลัก เพื่อจะนําไปเชื่อมต่อกับ BCD to 7-Segment จํานวน 3 หลัก

7. MUX18to3_Remainder : เป็นส่วนที่ควบคุมการเลือกแสดงค่าบน 7-Segment โดยขา control จะรับจากขา state_out ขนาด 2 bit

ที่มาจาก FSM

เมื่อ control = 00 และ control = 01 จะแสดงค่า Preview ตาม Select A and B state (เฉพาะส่วนตัวเลข B) กับ Select Operator

state และจะแสดงค่า Result ใน Finished state เมื่อ control = 10 ซึ่งจะแบ่งเป็นเงื่อนไขดังนี ้

i. Operation = “11” เป็นการกระทําฟังก์ชันการบวก A + B (ออกมาเป็นเครื่องหมาย - - -)

ii. Operation = “10” เป็นการกระทําฟังก์ชันการลบ A – B (ออกมาเป็นเครื่องหมาย - - -)

iii. Operation = “01” เป็นการกระทําฟังก์ชันการคูณ A x B (ออกมาเป็นเครื่องหมาย - - -)

iv. Operation = “00” เป็นการกระทําฟังก์ชันการหาร A ÷ B

และค่า Output จะออกเป็น BCD ขนาด N-2 bit จํานวน 3 หลัก เพื่อจะนําไปเชื่อมต่อกับ BCD to 7-Segment จํานวน 3 หลัก สําหรับ

ฟังก์ชั่นการบวก ลบ และคูณ จะแสดงค่า BCD ออกมาเป็นค่า ‘1011’ โดยเมื่อนําไปเชื่อมต่อกับ BCD to 7-Segment จํานวน 3 หลัก จะ

แสดงออกมาเป็น ‘---'

8. BCDto7Segment : เป็นส่วนที่แปลง BCD เป็น 7-Segment ที่เป็น STD_LOGIC_VECTOR ขนาด 7 bit โดยจะเลือกกรณีการปล่อย

สัญญาณ 7 Segment จาก BCD_i หากเป็นค่าเท่าไหร่ ก็จะแสดงค่าออกมาเป็นเลขนั้น

9. BinaryAdder และ BinarySubtractor : เป็นส่วนที่รับค่า Input มาเป็น Clock, Enable และ A กับ B ขนาด N-bit จาก A out และ B

out ที่เก็บค่าจากวงจร FSM โดยจะส่งค่าออกเป็น STD_LOGIC_VECTOR เป็นค่า sum ขนาด N-bit ที่ได้จากการคํานวณและ STD_LOGIC

เป็นค่า V ซึ่งเป็นขา overflow โดยจะส่งค่านี้ไปที่ BinaryToBCDConverter เพื่อประมวลการแสดงผลต่อไป หน้าที่ของวงจรนี้คือการบวก

หรือลบจํานวน 2 จํานวนด้วยวงจร Binary adder and subtractor โดยหากเป็นการบวก กําหนดขา m เป็น 0 และหากเป็นการลบ กําหนด

ขา m เป็น 1

10. BinaryMultiplier : เป็นส่วนที่รับค่า Input มาเป็น Clock, Enable, Reset และ A กับ B ขนาด N-bit จาก A out และ B out ที่เก็บค่า

จากวงจร FSM โดยจะส่งค่าออกเป็น STD_LOGIC_VECTOR เป็นค่า result ขนาด 2*N-bit ที่ได้จากการคํานวณ โดยจะส่งค่านี ้ไปที่

BinaryToBCDConverter เพื่อประมวลการแสดงผลต่อไป หน้าที่ของวงจรนี้คือการคูณจํานวน 2 จํานวน หากค่า A หรือ B ที่ได้มาค่าใดค่า

หนึ่งมี MSB = 1 จะทํา 2 compliment ก่อนที่จะเข้าสู่กระบวนการคูณ

11. BinaryDivider : เป็นส่วนที่รับค่า Input มาเป็น Clock, Enable, Reset และ A กับ B ขนาด N-bit จาก A out และ B out ที่เก็บค่าจาก

วงจร FSM โดยจะส่งค่าออกเป็น STD_LOGIC_VECTOR เป็นค่า Quotient ขนาด N-bit, STD_LOGIC_VECTOR เป็นค่า Remainder

ขนาด 2*N-bit, STD_LOGIC เป็นค่า MINUS_QUOTIENT และ STD_LOGIC เป็นค่า MINUS_REMAINDER ที่ได้จากการคํานวณ โดยการ

แสดงค่าผลการหารว่าจะกําหนดให้เป็นบวกหรือเป็นลบก็จะแตกต่างกันตามค่า MINUS_QUOTIENT และ MINUS_REMAINDER ซึ่งถูก

กําหนดโดย Sign bit ของ Input (แทนบวกเป็น 0 แทนลบเป็น 1) เช่น

a. หาก A เป็น + และ B เป็น + ให้กําหนดค่า MINUS_QUOTIENT เป็น 0 และ MINUS_REMAINDER เป็น 0

b. หาก A เป็น - และ B เป็น + ให้กําหนดค่า MINUS_QUOTIENT เป็น 1 และ MINUS_REMAINDER เป็น 0

c. หาก A เป็น + และ B เป็น - ให้กําหนดค่า MINUS_QUOTIENT เป็น 1 และ MINUS_REMAINDER เป็น 1

d. หาก A เป็น - และ B เป็น - ให้กําหนดค่า MINUS_QUOTIENT เป็น 0 และ MINUS_REMAINDER เป็น 1

12. SignDetectorAdder และ SignDetectorSubtractor : เป็นส่วนที่รับค่ามาจากขา s ของ BinaryAdder กับ BinarySubtractor ซึ่ง

ต่อเข้ากับขา s_detector ซึ่งทั้งคู่เป็น STD_LOGIC_VECTOR ขนาด N-bit และเลือก Output ตาม Sign bit

a. พบ MSB เป็น 0 ให้ Output o เป็นค่าเดิมที่รับมาจาก s_detect

b. พบ MSB เป็น 1 ให้ Output o เป็นค่าของ s_detect ที่ผ่านการทํา 2’s complement

9

13. BinaryToBCDConverterAdder และ BinaryToBCDConverterSubtractor : เป็นส่วนที่รับค่า Input มาเป็น Clock, minus_con ที่

รับค่ามาจาก minus และ data ที่รับค่ามาจาก o ของ SignDetector_Adder และ SignDetector_Subtractor และมีขา Input V ที่เป็น

ขาสําหรับรับค่า Overflow จาก Sign Detector ของ Adder และ Subtractor โดยในวงจรนี้จะเป็นการแปลง data ที่เป็น

STD_LOGIC_VECTOR N-bit เป็นจํานวน Integer ในแต่ละหลัก ซึ่งใน Component นี้จะแบ่งเป็น

a. BCD_digit_1, BCD_digit_2 ที่เป็นการแปลง Integer เป็น STD_LOGIC_VECTOR ขนาด N-1 bit

b. เมื่อ minus_con = '1' จะทําให้ BCD_digit_3 = "1011" ซึ่งคือเครื่องหมายลบ (Segment g)

c. เมื่อ minus_con = '0' จะทําให้ BCD_digit_3 = "1010" ซึ่งคือการไม่แสดงผลใด ๆ บน 7-Segment หลักที่ 3

14. BinaryToBCDConverterMultiplier : เป็นส่วนที่รับค่า Input มาเป็น Clock, minus_con ที่รับค่ามาจาก minus และ data ที่รับค่ามา

จาก o ของ SignDetector_Multiplier ซึ่งในวงจรนี้จะเป็นการแปลง data ที่เป็น STD_LOGIC_VECTOR N-bit เป็นจํานวน Integer ในแต่

ละหลัก ซึ่งใน Component นี้จะแบ่งเป็น

a. BCD_digit_1, BCD_digit_2 ที่เป็นการแปลง Integer เป็น STD_LOGIC_VECTOR ขนาด N-1 bit

b. เมื่อ minus_con = '1' จะทําให้ BCD_digit_3 = "1011" ซึ่งคือเครื่องหมายลบ (Segment g)

c. เมื่อ minus_con = '0' จะทําให้ BCD_digit_3 = "1010" ซึ่งคือการไม่แสดงผลใด ๆ บน 7-Segment หลักที่ 3

15. BinaryToBCDConverterDivider : เป็นส่วนที่รับค่า Input มาเป็น Clock, data_err, data_q, data_r, minus_q และ minus_r โดย

data_err รับค่ามาจากขา output ERR ของ BinaryDivider, data_q รับค่ามาจาก Output Quotient ของ BinaryDivider, data_r รับ

ค่ามาจาก Output Remainder ของ BinaryDivider, minus_q รับค่ามาจาก Output MINUS_QUOTIENT ของ BinaryDivider และ

minus_r รับค่ามาจาก Output MINUS_REMAINDER ของ BinaryDivider ซึ่งในวงจรนี้จะเป็นการแปลง data ที่เป็น

STD_LOGIC_VECTOR N-bit เป็นจํานวน Integer ในแต่ละหลัก ซึ่งใน Component นี้จะแบ่งเป็น

a. BCD_digit_1, BCD_digit_2 ที่เป็นการแปลงค่าจาก data_q และ data_r เป็น STD_LOGIC_VECTOR ขนาด N-1 bit

b. BCD_digit_4, BCD_digit_5 ที่เป็นการแปลงค่าจาก minus_q และ minus_r เป็น STD_LOGIC_VECTOR ขนาด N-1 bit

c. เมื่อ minus_con = '1' จะทําให้ BCD_digit_3 = "1011" ซึ่งคือเครื่องหมายลบ (Segment g)

d. เมื่อ minus_con = '0' จะทําให้ BCD_digit_3 = "1010" ซึ่งคือการไม่แสดงผลใด ๆ บน 7-Segment หลักที่ 3

e. เมื่อ minus_con = '1' จะทําให้ BCD_digit_6 = "1011" ซึ่งคือเครื่องหมายลบ (Segment g)

f. เมื่อ minus_con = '0' จะทําให้ BCD_digit_6 = "1010" ซึ่งคือการไม่แสดงผลใด ๆ บน 7-Segment หลักที่ 6

