S1E9UNALASINIUNITIDNKUUINATHASBIAMAY LA Tun1w VHDL

Neunsalyery n1suan n1sau N13AM WASNTINTT ﬁ?Lﬁ‘Ug'Mﬁ'EN‘Uu‘]ﬂ N Ua

@Tn: 1 gAY guisuum (65-010126-3003-4)

9

[y

2. goxfu dundiFes (65-010126-3014-0)

Tuseauatuil Usenauluene
o am a¥ & ¥
- anSeiemshranuleswmu

- feganadnslaainnistyany

- NM13BNLUUINT

= ad ¥ ﬂw ¥
#15035n15 v uUaenuy

MuualnaIulIzNaUnN 9 unutinsil

START

or Intel FPGA University Program' . .

il e T2 . { RESET

LEDR3_ADD
LEDR2_SUB
LEDR1_MUL

LEDRO_DIV
BCD3, BCD2, BCD1 BCD6, BCD5, BCD4 SW9, SW8, SWT. ..., SWO

1. @eisulyau wyusnAensidensaiay lng BCD2, BCD1, BCD5 Uag BCD4 A8UanuavguduasIvian 2 1uiumud iy 9198
g1nnsly SW9-0 Wuainvdmiunsonian leaewduiavgiuaessia Signed wind1waudfinsend Sign bit (SW9 waz SWa) iuiaw

1 9vaanalyt BCD3 way/v38 BCD6 9¢dlAsnanungauniu

2

s (T

ot
Download DE10-Lite CD L

http://de10-lite terasic.com/cd T s

\Wlonayu START uadUase azivguynisiden Operator tng BCD nnwanazuanuaviduiay 0, 1, 2 W38 3 donnasiiuiaugiu
douiivauain SW1 uar SWO Amunlvunasdnuiudoninumnenall

a. ‘000000 Jun1smIs A = B

<

‘111111 WJun1saas A x B
c. ‘222222’ \Junsau A- B

333333” 1 Jun1suin A + B

o

3. Wenayu START uaUasednAss 0 1aun1suaning lnsunas Operator 3eiNSLAAINALANANAIUAST

a.

@

mndun1suan BCD2 waz BCD1 asuanvavgiuduassndn 1 $1uu vnidudiwiuau BCD3 azuansuaidy
\3eeveay BCD6, BCD5 way BCDA agluuansuanyls mnuadwsiAureulnias -16 i 15 asuansidns “Err”
YU BCD3, BCD2 uaw BCD1 auafu i InlanaEnIuE al s LEDR3_ADD avAnTy

vnidunisau BCD2 wag BCD1 azuanaavguduaomdn 1 s mnidudiuiuay BCD3 azuanwmatuieiomng

au BCD6, BCD5 way BCD4 agluuaninanyls nuadwsiiuvauntas -16 4 15 9zuansdadnes “Err” uu BCD3,

v
=

BCD2 waw BCD1 muidiu annifu Iviansaa e s suvis LEDR2 SUB 9fntu
vnudunisga BCD2 wag BCD1 szuansiavguduasman 1 $1uau snnududiuauau BCD3 asuanswaiiuindesmng
au BCD6, BCDS wax BCDA axluuansuasyls vnnuadwsiiuvauiuaiay -99 fs 99 aguansiadnes “Er” uu BCD3,
BCD2 waw BCD1 gy anniiu Tvuansaanuz a suwis LEDRL MUL agfntu

ynidunsms BCD2 uas BCD1 azuansiavgiuduaesvan 1 $1uau iuanavng mnwamsidudiuauau BCD3 g
wanwwaliuiiesvaneay BCD5 uay BCDA WHAAWAVFIUAVADIVAN 1 T1UIU \uAA¥INNIINT MIniEwaINNIs
vaudiuau BCD6 ssuanwaliuiniaangay mﬂﬁ’awﬁ‘ﬁ'rﬁi‘gﬁaulfgﬂwﬁu’umuﬁ 110 0 9zuansfnes
“Err000” Ut BCD6, BCDS, BCDA, BCD3, BCD2 uay BCD1 anwddu 91nthu Tuuamsaaiuy o #umus LEDRO DIV 4z

fRTU

wazillonlymoenis Reset iieluatuneudl 1 8nase nnayu RESET 1 ase Wudwadedunszuiuns

Download DE10-Lite CD

| http://de10-lite.terasic.com/cd |

s ' L ‘ﬂl ¥ ¥
frvgnsaansilaainnislveu

Jouly
fvualn
A=01
B=01

Operator tJuuan (3)

NAANS = 02

el
A =01
B =01

Operator tJuau (2) 2 3 pEfdlis]

222288

A
—

NaaWs = 00

el
A=01
B =01

juEEEE:"
N

Operator wJuga (1) 5 i E: oEiblis

! DE10-Lite

NAaNs = 01

fvusl

A=01

B=01

Operator tJums (0)

HASNS = 01 LW 00

el
A=13
B =-03

Operator tJuuan (3)

Svunl

A=13

B=-03

Operator tJuau (2)

NAaNG = Err

el
A=13
B =-03

Operator Lﬂugm (1)

fmusl

A=13

B=-03

Operator tJums (0)

HASNS = -04 LAty 01

el
A =-07
B = -04

Operator tJuuan (3)

B =-04
Operator tJuau (2)

NAGWS = -03

fvusl
A =-07
B = -04
Operator Lﬂugm (1)

NAANG = 28

-

-

DE10-Lite

4l

o

T bl

' DE10-Lite

1| DE10-Lite

! DE10-Lite

i DE10-Lite

Svunl

A =-07

B =-04

Operator tJums (0)

HAGNS = 02 L -01

o
-

|

el
A=-01
B =00

Operator tJums (0)

HASWS = Err000

N1392NLUUINIT

| AT |

ST ' fasun:

DE10-Lite | DE10-Lite

1 DE10-Lite

T ieeeeaaaas

L

7

o

ﬂ’li@’ﬂﬂLL‘l.J‘l.J’Nﬁ]i‘i]%LL‘UQE]'P]ﬂLijU 15 @unaneal

1. FSM: 1uauiisumn Input unidu Clock, Reset, Start way Switches 8n 10 fruiio5uAflawn3e Operator FIanNN15¥19U

2997299541 Fzuuaeanily 3 State lawn

a. Select A and B state : Tu State # 925UA1 A uag B w1 Switches %14 10 Aifundu Input Tne SW5-9 aziduan A

wag SWO-4 aziduan B eylunayu Start wda91nUsu Switches Twiduaaguassdiuau N-bit aufineanisuas Aae

Wiuadulalu A out wag B_out 18939a5uaIRIMUA state_out = "00" wazaziunllg State dnlU waviniinsna Reset

92911l A out waz B out gn Reset nduluifuaniuzifiuuag State 9zeounaduuil Select A and B state (50

State 15u0AU)

b. Select Operator state : Tu State #§ 9¥5UA1 State n1u Switches 2 fafisunndy Input Tneazidenly sws-9 iu

fimua Operator a1unsaidanta 4 Operators laun van au ARG Imaammwﬂma%gmﬁm 2-bit fadl

Operation
Operation
Operation

Operation

@

“117 \Junisnsevinlandunisuin A + B
“10” Wunsnszyiwandunisau A - B
“01” Lﬂumsmsv’iﬁm%’umiﬂm AxB

“00” Wun13nszyiwandunisuis A = B

Wenlynayu Start naea1nUsu Switches Inmduargiuass 2-bit muiineanisuad Avzifiuai Operator Hulilu

operator_out kaafnuA state_out = "01" uavaziunlua State dald wanmininisna Reset 3¢l operator_out gn

Reset ndulUiduanugifnuaz State 9zsounauluyl Select A and B state (W3e State 15umw)

c. Finished : lu State Tazfinnsrimun state_out = "10" wa done = 1 FwNedaninIs3u Input MmuniSeuTos 39
80NN FSM Fapiaseanaedl A out fu B out 7y STD_LOGIC_VECTOR 210 N - 1 bit 3 0 bit, operator_out

fu state_out 7 STD_LOGIC_VECTOR 910 1 &4 0 waz done #iidu STD LOGIC

FSM:FSM

A_out[4..0]
B out[4..0]

operator_out[1..0]

done

state_out[1..0]

FINISHED

done =1

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY FSM IS
GENERIC (N : INTEGER := 5); -- 0123
PORT (
clk, rst_n, start : IN STD_LOGIC;
switches : IN STD_LOGIC_VECTOR(2 * N - 1 DOWNTO @);
A_out, B_out : OUT STD_LOGIC_VECTOR (N - 1 DOWNTO @);
operator_out : OUT STD_LOGIC_VECTOR(1 DOWNTO ©);
state_out : OUT STD_LOGIC_VECTOR(1 DOWNTO @);
done : OUT STD_LOGIC
)
END FSM;

ARCHITECTURE Behavioral OF FSM IS
TYPE state_type IS (GET_AandB, GET_OPERATOR, FINISHED);
SIGNAL current_state : state_type := GET_AandB;

BEGIN
PROCESS (clk, rst_n, start)
BEGIN
IF rst_n = '1" THEN
done <= '@";
current_state <= GET_AandB;
ELSIF falling_edge(start) THEN
CASE current_state IS
WHEN GET_AandB => current_state <= GET_OPERATOR;
WHEN GET_OPERATOR => current_state <= FINISHED;
WHEN FINISHED => current_state <= FINISHED;
END CASE;
END IF;

CASE current_state IS
WHEN GET_AandB =>
A_out <= switches(2 * N - 1 DOWNTO (2 * N - 1) - (N - 1));
B_out <= switches(N - 1 DOWNTO @);
state_out <= "@0";
WHEN GET_OPERATOR =>
operator_out <= switches(1 DOWNTO ©);
state_out <= "01";
WHEN FINISHED =>
done <= '1
state_out <= "10";
END CASE;

END PROCESS;

END Behavioral;

Operator Selector : Wuaiuii fuan Input 1L Clock, Enable WAy operator in ¥u1# 2-bit 970 operator out 9112993

FsM Ipgazasatoanidu STD LOGIC Tnafi%esil enaop adder, enaop_subtractor, enaop multiplier, enaop_divider @
nu1v8sunazv19zidunns Enable 1935 Adder, Subtractor, Multiplier, Divider Litgapgslaaenenile 29asifinunniden

v

Operator Tv¥9unIu1 enable 719 9 Faazly trigger 1asAuwInlnineun operator Muluidenta

OperatorSelector:OperatorSelector

enaop_adder

enaop_divider

yperator_in[1..0] enaop_multiplier

enaop_subtractor

LIBRARY TEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE TEEE.STD_LOGIC_ARITH.ALL;

ENTITY OperatorSelector IS
PORT (
clk, enable, resetop : IN STD_LOGIC; -- "enable’ will derived from the "DONE" signal
operator_in : IN STD_LOGIC_VECTOR(1 DOWNTO ©);
enaop_adder, enaop_subtractor, enaop_multiplier, enaop_divider : OUT STD_LOGIC -- will be used to enable the adder, subtractor, multiplier and dividerr
)

END OperatorSelector;

ARCHITECTURE Behavioral OF OperatorSelector IS
BEGIN
PROCESS (clk, enable, resetop, operator_in)
BEGIN
IF rising_edge(clk) THEN
IF resetop = '1' THEN
enaop_divider <= '@';
enaop_subtractor <= '0';
enaop_multiplier <= '8';
enaop_adder <= '0';
ELSIF enable = "1' THEN
CASE operator_in IS
WHEN "@@" => -- Division
enaop_divider <= '1";
enaop_subtractor <= '@';
enaop_multiplier <= '@';
enaop_adder <= '0";
WHEN "@1" => -- Multiplication
enaop_divider <= '0";
enaop_subtractor <= '@';
enaop_multiplier <= '1';
enaop_adder <= '0";
WHEN “10" => -- Subtraction
enaop_divider <= '0";
enaop_subtractor <= '1';
enaop_multiplier <= '0';
enaop_adder <= '0";
WHEN "11" => -- Addition
enaop_divider <= '0';
enaop_subtractor <= '@';
enaop_multiplier <= '@';
enaop_adder <= '1°;
END CASE;
END IF;
END IF;
END PROCESS;
END Behavioral;

'
o

SignDetectorPreview : iJuauisuan Input 1wy Clock uay A_out U B_out 9117923 FSM Favimuniiasiaduaiiuau
LLE;I’JV'I’W 2’s complement wazd Output minus ﬁgﬂﬁﬁqmﬂ MSB va3an s _detect uagldon Output M1 Sign bit

a. WU MSB (Sign bit) 1u 0 Tn Output o WusuAnfisusnan s_detect

b. Wy MSB (Sign bit) vdu 1 i Output o wJumves s _detect finunnsii 2’ complement

%Q?\i%iﬁﬂﬂﬁ??ﬁﬁ]%ﬂ?UﬂMﬂ’]iLLﬁﬁIx‘i Preview 984¥19A1 A LazA1 B

SignDetectorPreview:SignDetectorPreviewA SignDetectorPreview:SignDetectorPreviewB

clk minus

s_detect[4..0] 0[4..0] s_detect[4..0]

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY SignDetectorPreview IS
GENERIC (N : INTEGER := 5);
PORT (
s_detect : IN STD_LOGIC_VECTOR(N - 1 DOWNTO @);
clk : IN STD_LOGIC;
minus : OUT STD_LOGIC;
0 : OUT STD_LOGIC_VECTOR(N - 1 DOWNTO @));
END SignDetectorPreview;

VNV A WN R

ARCHITECTURE Structural OF SignDetectorPreview IS
SIGNAL complemented : STD_LOGIC_VECTOR(N - 1 DOWNTO ©);
SIGNAL zero : STD_LOGIC_VECTOR(N - 1 DOWNTO ©) := (OTHERS => '8');

BEGIN
adder : ENTITY work.BinaryAdderAndSubtractor(Structural) GENERIC MAP (N) -- Add 1 to the input
PORT MAP(
a => zero, b => s_detect, m => '1', clock => clk, enable => '1', s => complemented -- complemented is the output of the adders

)

minus <= s_detect(N - 1);

WITH s_detect(N - 1) SELECT -- Detect MSB
o <= s_detect WHEN '@', -- If MSB is ©, output is s_detect
complemented WHEN OTHERS; -- If MSB is 1, output is complemented
END ARCHITECTURE;

4.

' '
o o

BinaryToBCDConverterPreview : 1uaaufisuan Input andu Clock, minus_con #15UA131910 minus way data A¥uALN
911 0 v84 SignDetectorPreview dsluasasiazdunisutas data fdu STD LOGIC VECTOR N-bit 1usuau Integer Tuun
avwdn 35lu Component Havuvadu

a. BCD digit 1, BCD digit 2 fiifunisuuas Integer 1 STD LOGIC_VECTOR wua N-1 bit

b. e minus_con = '1' vl BCD digit 3 = "1011" FafoinIoamneay (Segment g)

c. ilo minus_con = '0' 9x¥iiln BCD_digit 3 = "1010" JsAensluuansuala q uu 7-Segment ndnii 3

BinaryToBCDConverterPreviewA:BinaryToBCDConverterPreviewA

clk
data[4..0]

BCD_digit_1[3.0]
BCD_digit_2[3.0]
BCD_digit_3[3.0]

minus_con

BinaryToBCDConverterPreviewB:BinaryToBCDConverterPreviewB

clk BCD_digit_1[3.0]
data[4.0] BCD_digit_2[3.0]
minus_con BCD_digit_3[3.0]

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.STD_LOGIC_ARITH.ALL;

ENTITY BinaryToBCDConverterPreviewA IS
GENERIC (
N : INTEGER := 5

NV A WN =

)5
PORT (
clk : IN STD_LOGIC;
minus_con : IN STD_LOGIC;
data : IN STD_LOGIC_VECTOR(N - 1 DOWNTO @);
BCD_digit_1 : OUT STD_LOGIC_VECTOR(N - 2 DOWNTO @);
BCD_digit_2 : OUT STD_LOGIC_VECTOR(N - 2 DOWNTO @);
BCD_digit_3 : OUT STD_LOGIC_VECTOR(N - 2 DOWNTO @)
)s

END BinaryToBCDConverterPreviewA;

ARCHITECTURE Structural OF BinaryToBCDConverterPreviewA IS

SIGNAL signal_integerl : INTEGER := @;

SIGNAL signal_integer2 : INTEGER :
BEGIN
PROCESS (clk)
BEGIN
IF rising_edge(clk) THEN
signal_integerl <= conv_integer(unsigned(data)) MOD 10;
signal_integer2 <= (conv_integer(unsigned(data)) / 10) MOD 10;

H

BCD_digit_1 <= conv_std_logic_vector(signal_integerl, N - 1);
BCD_digit_2 <= conv_std_logic_vector(signal_integer2, N - 1);

IF (minus_con = '1') THEN -- if MSB is 1
BCD_digit_3 <= "1011"; -- minus
ELSE
BCD_digit_3 <= "1018"; -- none
END IF;
END IF;
END PROCESS;
END Structural;

5. BinaryToBCDConverterPreviewOperator : wJuanuduan Input 1u data 270 operator_out U894 FSM wazidu
STD_LOGIC_VECTOR wu1@ 2-bit viundifenisifisl bit Inffuan operator_out #isnain FSM warasaaaniniiu BCDto7Segment
iothluanwanaly

BinaryToBCDConverterPreviewOperator:BinaryToBCDConverterPreviewOperator

data[1..0]
clk

BCD_digit_1(3.0]

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY BinaryToBCDConverterPreviewOperator IS
PORT (
clk : IN STD_LOGIC;
data : IN STD_LOGIC_VECTOR(1 DOWNTO ©);
BCD_digit_1 : OUT STD_LOGIC_VECTOR(3 DOWNTO @)

W 00 NGOV B WN R

)5

END BinaryToBCDConverterPreviewOperator;

[N
N R e

ARCHITECTURE Structural OF BinaryToBCDConverterPreviewOperator IS
SIGNAL signal_integer : INTEGER := 0;
BEGIN
PROCESS (clk)
BEGIN
IF rising_edge(clk) THEN
BCD_digit_1 <= "@0" & data;
END IF;
END PROCESS;
END Structural;

NN R R R RR R R
R ® VLNV MW

MUX18to3_Result : Lﬁuéauﬁmuqmmﬂﬁaﬂmmﬁwu 7-Segment lagw1 control 4z5Ua1n7 state_out YuU1A 2 bit fisn
31N FSM

Wl control = 00 wag control = 01 ILLAAIAT Preview ANy Select A and B state (lan1zalusilay A) Nu Select

Operator state Wagazlaninl Result Tu Finished state 1ile control = 10 Faazuwuadudeuludsil

i. Operation = “11” 1Jumsnsgyandunisuan A + B

i. Operation = “10” \unsnsyyimiandunisau A - B
iii. Operation = “01” Wunsnszyilandunisnes A x B

iv. Operation = “00” \Jumsnsgywandunsms A + B

wazAn Output 9zeenidu BCD aw1a N-2 bit 117y 3 wdn iieazihluideunafiu BCD to 7-Segment $1uau 3 ndn

MUX9to3_Result:MUX_Result
Lierany ece;

USE TEEE.STD_LOGIC_1164.ALL;

BCD_digit_1_ADD[3.0]
ENTITY MUX18to3_Result IS
GENERIC (N : INTEGER <= 5);
PORT (

BCD_digit 1_A[3.0]
BCD_digit 1A : IN STO_LOGIC_VECTOR(N - 2 DOHNTO 0);

6Co_digit 2_A + TN STo_LOSIC_VECTORCN - 2 DOMNIO 0} BCD digit 1_B[3.0)
BCD_digit_3_A : IN STD_LOGIC_VECTOR(N - 2 DOWNTO 8);

BCD_digit_1 8 : IN STD_LOGIC_VECTOR(N - 2 DOWNTO 8);
BCD_digit_2 B : IN STD_LOGIC_VECTOR(N - 2 DOWNTO 8);

BCD_digit_3_8 : IN STD_LOGIC_VECTOR(N - 2 DOWNTO ©);

4'h0 BCD_digit_1_DIV[3.0]
BCD_digit 1_MUL[3.0]

5C0_d1pit_1_ADD : N STO_LOGIC_VECTOR(H - 2 0OWNTO 0); BCD_digit_1_SUB[3.0]
6CD_¢1g1€ 2 A0D : TN STO_LOGIC VECTOR(N - 2 DOWTO 0);

BCD_digit_3_ADD : IN STD_LOGIC_VECTOR(N - 2 DOWNTO 6);

BCD_digit_2_ADDI[3..0]

BCD_digit_1_SUB : IN STD_LOGIC_VECTOR(N - 2 DOWNTO 8);

BCD_digit 2_A[3.0]
BCD_digit_2_SUB : IN STD_LOGIC_VECTOR(N - 2 DOWNTO 0);
BCD_digit : : IN STO_LOGIC_VECTOR(N - 2 DOWNTO 0);

BCD _digit 2_B[3.0]
: IN STO_LOGIC_VECTOR(N - 2 DOMNTO 0); | .
¢ IN STO_LOGIC_VECTOR(N - 2 DOWNTO 0); 4'h0 BCD_digit 2_DIV[3.0]

: IN STD_LOGIC_VECTOR(N - 2 DOWNTO 0);

BCD TO SEGMENT 1[3.0]

BCD_digit 2 MUL[3.0]
BCD_digit_1_DIV : IN STD_LOGIC_VECTOR(N - 2 DOWNTO); .
BCD_digit_2_0IV : IN STO_LOGIC_VECTOR(H - 2 DOWNTO 0); BCD_digit 2_SUB[3.0]
BCD_digit_3_DIV : IN STD_LOGIC_VECTOR(N - 2 DOKWNTO 8);

BCD_TO _SEGMENT _2[3.0]
BCD_TO_SEGMENT 3[3.0]

BCD_digit 3 ADD[3.0]
6C0_To_SEGHENT_1 & OUT STo_LOGIC_VECTORQN - 2 DOWTO);

5C0_To_SEGNENT_2 : 0UT STO_LOGIC_VECTORQN - 2 DOWNTO 0); BCD_digit 3 A[3.0]
BCD_TO_SEGMENT_3 : OUT STD_LOGIC_VECTOR(N - 2 DOWNTO 8);

boNE_LED_400 : oUT ST, LoGiC; 5CD digit 3 BI3.0]
DONE_LED_SUB : OUT STD_LOGIC;

4'h0 BCD_digit_3_DIV[3.0]
control : IN STD_LOGIC_VECTOR;
operate : IN STO_LOGIC_VECTOR;

BCD d_i&it 3 MUL[3.0]
el sTeLosie BCD_digit 3 SUB[3.0]

%
END MUX18t03_Result;

ARCHITECTURE Behavioral OF MUX18to3_Result IS
SIGNAL BCD_TO_SEGMENT_1_temp : STD_LOGIC_VECTOR(N - 2 DOWNTO ©);
SIGNAL BCD_TO_SEGMENT_2_temp : STD_LOGIC_VECTOR(N - 2 DOWNTO ©);
STGNAL BCD_TO_SEGMENT_3_temp : STD_LOGIC_VECTOR(N - 2 DOWNTO 0);
SIGNAL DONE_LED_ADD_temp : STD_LOGIC
SIGNAL DONE_LED_SUB_temp : STO_LOGIC :
BEGIN
PROCESS (c1k)
BEGIN

IF rising_edge(clk) THEN

IF control = "66" THEN
BCD_TO_SEGMENT_1_tenp <= BCD_digit_1_A;
BCD_TO_SEGHENT_2_temp igi
BCD_TO_SEGHENT_3_temp
DONE_LED_ADD_temp <
DONE_LED_SUB_temp <=

ELSIF control = "01" THEN
BCD_TO_SEGMENT_1_tenp <= BCD_digit_1_B;
BCD_TO_SEGMENT_2_temp <= BCD_digit 2,
BCD_TO_SEGMENT_3_temp
DONE_LED_ADD_temp

IF operate = 11" THEN
DONE_LED_ADD_temp <= '1';
ELSIF operate = 10" THEN
DONE_LED_SUB_temp <= '1';
END IF;

IF operate = "68" THEN
BCD_TO_SEGMENT_1_temp <= BCD_digit_1_DIV;
BCD_TO_SEGMENT_2_temp <= BCD_digit_2 DIV;
BCD_TO_SEGMENT_3_temp <= BCD_digit_3_DIV;

ELSIF operate = THEN
BCD_TO_SEGMENT_1_temp <= BCD_digit_1 MUL;
BCD_TO_SEGMENT_2_temp <= BCD_digit_2_MUL;
BCD_TO_SEGMENT_3_temp <= BCD_digit_3_MUL;

ELSIF operate = "10" THEN
BCD_TO_SEGMENT_1_temp <= BCD_digit_1_SUB;
BCD_TO_SEGMENT_2_temp <= BCD_dig

temp <= BCD_digit_3_SUB;

BCD_TO_SEGMENT,
BCD_TO_SEGMENT_3_temp <= BCD_dig:
END IF;
END IF;
END IF;
END PROCESS;

BCD_TO_SEGMENT_1 <= BCD_TO_SEGMENT_1_temp;
BCD_TO_SEGMENT_2 <= BCD_TO_SEGMENT_2_temp;
BCD_TO_SEGMENT_3 <= BCD_TO_SEGMENT_3_temp;
DONE_LED_ADD <= DONE_LED_ADD_temp;
DONE_LED_SUB <= DONE_LED_SUB_temp;

100 END Behavioral;

MUX18to3_Remainder : LﬂuéauﬁmuqumﬂﬁanLLamﬁwu 7-Segment lagw1 control 425U1n1 state_out YUIA 2 bit
fis1an FSM
dle control = 00 uaz control = 01 zuaAIAN Preview A1y Select A and B state (Lawwéaué’fua‘u B) iU Select Operator
state uazazLandA1 Result lu Finished state iile control = 10 %wzuﬁ%ﬂuﬁaﬂmﬁﬁl

i. Operation = “11” wunsnsgyhiandunisuan A + B (eenundueiemune - - -)

ii. Operation = “10” dunsnsgvileandunisau A - B (eenunduadesvane - - -)

iii. Operation = “01” tun1snagvifandunisnm A x B (eenundueiossne - - -)

iv. Operation = “00” \Jumsnsgywandunsms A + B

wayA Output agoenu BCD wunm N-2 bit $9uru 3 wan ieavdlu@euneiu BCD to 7-Segment 31u3uU 3 #an @msu
WINFuUN15UIN AU wazAM Fwuanaan BCD eanunduan <1011 lnewdiaiildideunsaiu BCD to 7-Segment §1u3u 3 ndn 9z

wansoonudy '

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY MUX18to3_Remainder IS
GENERIC (N : INTEGER := 5);
PORT (
BCD_digit_4_A : IN STD_LOGIC_VECTOR(N - 2 DOWNTO 8);

IN STD_LOGIC_VECTOR(N - 2 DOWNTO @);

IN STD_LOGIC_VECTOR(N - 2 DOWNTO 8);

IN STD_LOGIC_VECTOR(N - 2 DOWNTO 8);

IN STD_LOGIC_VECTOR(N - 2 DOWNTO 8);
: IN STD_LOGIC_VECTOR(N - 2 DOWNTO @);

BCD_digit_4_ADD : IN STD_LOGIC_VECTOR(N - 2 DONNTO ©);
BCD_digit_5_ADD : IN STD_LOGIC_VECTOR(N - 2 DONNTO ©);
BCD_digit_6_ADD : IN STD_LOGIC_VECTOR(N - 2 DONNTO ©);

BCD_digit_4_SUB : IN STD_LOGIC_VECTOR(N - 2 DOWNTO @);
BCD_digit_5_SUB : IN STD_LOGIC_VECTOR(N - 2 DONNTO @);
BCD_digit_6_SUB : IN STD_LOGIC_VECTOR(N - 2 DONNTO @);

MUX9to3_Remainder:MUX_Remainder

: IN STD_LOGIC_VECTOR(N - 2 DOWNTO @);
: IN STD_LOGIC_VECTOR(N - 2 DOWNTO @);
: IN STD_LOGIC_VECTOR(N - 2 DOWNTO @);

: IN STD_LOGIC_VECTOR(N - 2 DOWNTO @);
: IN STD_LOGIC_VECTOR(N - 2 DOWNTO @);
BCD_digit_6_DIV : IN STD_LOGIC_VECTOR(N - 2 DOWNTO @);

BCD_TO_SEGMENT_4 : OUT STD_LOGIC_VECTOR(N - 2 DOWNTO ©);
BCD_TO_SEGMENT_S : OUT STD_LOGIC_VECTOR(N - 2 DOWNTO ©);
BCD_TO_SEGMENT_6 : OUT STD_LOGIC_VECTOR(N - 2 DOWNTO ©);

control : IN STD_LOGIC_VECTOR;
operate : IN STD_LOGIC_VECTOR;
clk : IN STD_LOGIC

END MUX18to3_Remainder;

ARCHITECTURE Behavioral OF MUX18to3_Remainder IS
SIGNAL BCD_TO_SEGMENT_4_temp : STD_LOGIC_VECTOR(N - 2 DOWNTO 8);
SIGNAL BCD_TO_SEGMENT_S_temp : STD_LOGIC_VECTOR(N - 2 DOWNTO 8);
SIGNAL BCD_TO_SEGMENT_6_temp : STD_LOGIC_VECTOR(N - 2 DOWNTO 8);
BEGIN
PROCESS (c1k)
BEGIN
IF rising_edge(clk) THEN
IF control = "0@" THEN
BCD_TO_SEGMENT_4_temp <= BCD_digit_4_A;
BCD_TO_SEGMENT_5_temp <= BCD_digit 5_A;
BCD_TO_SEGMENT_6_temp <= BCD_digit_6_A;
ELSIF control = "@1" THEN
BCD_TO_SEGMENT_4_temp <= BCD_digit 4 8;
BCD_TO_SEGMENT_5_temp <= BCD_digit_5_8;
BCD_TO_SEGMENT_6_temp <= BCD_digit_6_8;
ELSIF control = “10" THEN
IF operate = "0@" THEN
BCD_TO_SEGMENT_4_temp <= BCD_digit_4_DIV;
BCD_TO_SEGMENT_S5_temp <= BCD_digit_5_DIV;
BCD_TO_SEGMENT_6_temp <= BCD_digit_6_DIV;
ELSIF operate = "61" THEN
BCD_TO_SEGMENT_4_temp <= BCD_digit_4_MuL;
BCD_TO_SEGMENT_5_temp <= BCD_digit_5_MUL;
BCD_TO_SEGMENT_6_temp <= BCD_digit_6_MUL;
ELSIF operate = "16" THEN
BCD_TO_SEGMENT_4_temp <= BCD_digit_d_SUB;
BCD_TO_SEGMENT_5_temp <= BCD_digit_5_SUB;
BCD_TO_SEGMENT_6_temp <= BCD_digit_6_SUB;
ELSIF operate = "11" THEN
BCD_TO_SEGMENT_4_temp <= BCD_digit_d_ADD;
BCD_TO_SEGMENT_5_temp <= BCD_digit_5_ADD;
BCD_TO_SEGMENT_6_temp <= BCD_digit_6_ADD;
END IF;
END IF;
END IF;
END PROCESS;

BCD_TO_SEGHENT_4 <= BCD_TO_SEGMENT_4_temp;
BCD_TO_SEGHENT_S <= BCD_TO_SEGMENT_S_temp;
BCD_TO_SEGHENT_6 <= BCD_TO_SEGMENT_6_temp;

END Behavioral;

8. BCDto7Segment : iuaaufiutas BCD 1y 7-Segment ity STD LOGIC_VECTOR au1a 7 bit Ingazidonnsdinisuasy

&ryeynd 7 Segment 270 BCD i nwduamilus Aazuansmesnuiduautiy

BCDto7Segment:BCD_DIGIT _1

BCD i[3..0] seven seg[G..O]

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY BCDto7Segment IS
GENERIC (N : INTEGER := 5); -- N is the number of bits of the input
PORT (
BCD_i : IN STD_LOGIC_VECTOR (N - 2 DOWNTO ©);
clk_i : IN STD_LOGIC;
seven_seg : OUT STD_LOGIC_VECTOR (6 DOWNTO ©)); -- gfedcba
END BCDto7Segment;

WO NGOV AE WNR

=R e
N R

ARCHITECTURE data_process OF BCDto7Segment IS -- data_process is the name of the architectur
BEGIN
PROCESS (clk_i) -- sensitivity list
BEGIN
IF clk_i'event AND clk_i = "1 THEN
CASE BCD_i IS --gfedcba (This 7-segment is active low, common anode)
WHEN "0000" => seven_seg <= "1000000"; --7-segment display number
WHEN "@001" seven_seg "1111001"; --7-segment display number
WHEN "0010" => seven_seg "0100100"; --7-segment display number
WHEN "0011" => seven_seg "0110000"; --7-segment display number
WHEN "0100" => seven_seg "0011001"; --7-segment display number
WHEN "0101" => seven_seg "0010010"; --7-segment display number
WHEN "0110" => seven_seg "0000010"; --7-segment display number
WHEN "0111" => seven_seg "1111000"; --7-segment display number
WHEN "1000" => seven_seg "0000000"; --7-segment display number
WHEN "1001" => seven_seg "0010000"; --7-segment display number

NRNNNRNNNNNNRRRRRRB B
WONOUVBEWNR®OONOGOUV B W
W EONOUVAWNERO

WHEN "1011" seven_seg "9111111"; --7-segment display minus

w w
)

WHEN "1100" seven_seg "0000110"; --7-segment display
WHEN "1101" => seven_seg "0101111"; --7-segment display

w w w
s wN

WHEN OTHERS seven_seg "1111111"; --7-segment display
END CASE;
END IF;
END PROCESS;
END data_process;

wow
a wn

BinaryAdder uaz BinarySubtractor : tduaiufisumn Input wudu Clock, Enable uaz A fu B vu1a N-bit 910 A out uaz B
out MAUAI91NI995 FSM Taeazasnteenidu STD LOGIC VECTOR wua sum wu N-bit filaaannisiuaniuag STD LOGIC
wJuan v Gaduan overflow tngazasailludi BinaryToBCDConverter wiiaUszananisuaninansly wuiivessasilaenisuin

WIDAUTIUIU 2 T1UIUAE995 Binary adder and subtractor Taemndunisuan fuuaen m 1y 0 wazynnidunisau Avue

1 m w1

BinaryAdderAndSubtractor:Adder BinaryAdderAndSubtractor:Subtractor

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.STD_LOGIC_ARITH.ALL;
USE ieee.STD_LOGIC_UNSIGNED.ALL;

ENTITY BinaryAdderAndSubtractor IS
GENERIC (N : INTEGER := 5);
PORT (
a, b : IN STD_LOGIC_VECTOR(N - 1 DOWNTO ©);
m, clock, enable : IN STD_LOGIC;
s : OUT STD_LOGIC_VECTOR(N - 1 DOWNTO @);
C : OUT STD_LOGIC_VECTOR(N DOWNTO 1);
v 1 OUT STD_LOGIC
H
END BinaryAdderAndSubtractor;

ARCHITECTURE Structural OF BinaryAdderAndSubtractor IS
COMPONENT FullAdder IS
PORT (
X, ¥, z, clk, enable_fulladder : IN STD_LOGIC;
s, ¢ : OUT STD_LOGIC

H
END COMPONENT;
SIGNAL c_internal : STD_LOGIC_VECTOR(1 TO N);
BEGIN
FA@ : FullAdder
PORT MAP (
x => a(e),
y => m XOR b(8),
z=>m,
clk => clock,
enable_fulladder => enable,
s => s(0),
¢ => c_internal(l)

)s

FA_gen : FOR i IN 1 TO N - 1 GENERATE
FAi : FullAdder
PORT MAP(
x => a(i),
y => m XOR b(i),
z => c_internal(i),
clk => clock,
enable_fulladder => enable,
s => s(i),
¢ => c_internal(i + 1)
)
END GENERATE;

v <= c_internal(N) XOR c_internal(N - 1); -- Calculate overflow

END Structural;

10. BinaryMultiplier : Wuauisua Input ¥L0u Clock, Enable, Reset wag A f'u B ¥u1a N-bit 1A A out Lag B out fAumn
9117995 FSM Tagazasateanidu STD LOGIC VECTOR wuan result vu1a 2*N-bit i laainnisaiwan Tnsagaani ludi

BinaryToBCDConverter LieUszaian1suaninansly nunfresasiiisn1saaudiuig 2 91u3u winal A vise B filamnailann
#ilall MSB = 1 2gvi1 2 compliment NauNawlAIgNTEUIUNTAM

LIBRARY IEEE;

USE TEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;

USE IEEE.std_logic_unsigned.ALL;

ENTITY BinaryMultiplier IS
GENERIC (N : INTEGER := 5);
PORT (
clk : IN STD_LOGIC;
enable : TN STD_LOGIC;
reset : IN STD_LOGIC;
A, Bt IN STO_LOGIC_VECTOR (N - 1 DOWNTO B) := (OTHERS => '0');
R : OUT STD_LOGIC_VECTOR (2 * N - 1 DOWNTO 8) := (OTHERS => '@');
DONE : OUT STD_LOGIC := '8');
END BinaryMultiplier;

ARCHITECTURE Behavioral OF BinaryMultiplier IS
TYPE state_type IS (s@, s1, s2);
SIGNAL state : state_type :
SIGNAL s_start : STD_LOGIC
SIGNAL normalised_data_A

: STD_LOGIC_VECTOR (N - 1 DOWNTO 8) :

STGNAL normalised_data B : STD_LOGIC_VECTOR (N - 1 DONNTO @)

SIGNAL data_A : STD_LOGIC_VECTOR (2 * N - 1 DOWNTO) := (OTHERS => '@');

SIGNAL data_B : STD_LOGIC_VECTOR (N - 1 DOWNTO @) := (OTHERS => '@');

STGNAL data R : STD_LOGIC_VECTOR (2 * N - 1 DOWNTO) := (OTHERS => '8°);

STGNAL counter : INTEGER := 0;

BEGIN
PROCESS (clk, reset, enable)
BEGTN

IF reset = "1° THEN
toggle reset
state <= s0;

= (OTHERS = '@°);
= (OTHERS => 0°);

BinaryMultiplier:Muttiplier

counter <= @;

R <= (OTHERS => '@");
data_A <= (OTHERS => '0');
data_B <= (OTHERS => '@');
data_R <= (OTHERS => '0');

ELSIF rising_edge(clk) THEN

-- detect a sign bit. If it's 1, do 2 compliment.

TF AN - 1) = “1° THEN

normalised_data_A <= NOT A + 1;

€D 1F;

TF B(N - 1) = "1 THEN

normalised_data B <= NOT B + 1;

END IF;

IF AN - 1) < 'R’ THEN
normalised_data A <=

END TF;

IF B(N - 1) = "0 THEN
normalised_data B <= B;

END TF;

FSM for BinaryMultiplier
CASE state IS
WHEN 58 =>
IF enable = "1' AND s_start = '1° THEN
data_A (N - 1 DOWNTO 6) <= normalised_data_a;--normalised_data_a;
data_8 <= normalised_data_B;--normalised_data_8;
state <= s1;

ELSE
state <= s0;
END IF;

VHEN 51 =>
IF (counter <= N) THEN
state <= s1;
TF data_B(counter) = '1° THEN
data_R <= data_R + data_4;

data_A <= STD_LOGIC_VECTOR(shift_left(unsigned(data_a), 1));
R <= data_R;

counter <= counter + 1;

ELSE

data_n <= STD_LOGIC_VECTOR(shift_left(unsigned(data_n), 1));
R <= data_R;
counter <= counter + 1;
END 1F;
ELSE

state <= s2;
END IF;
WHEN OTHERS
DONE <=
--state
END CASE;

END IF;

END PROCESS;

END Behavioral;

11. BinaryDivider : iuaiufifuan Input w1y Clock, Enable, Reset uag A fiu B w11a N-bit 310 A out uag B out #iifiua1a N
2935 FSM Tagazasateanidu STD LOGIC VECTOR tffuan Quotient 411a N-bit, STD_LOGIC VECTOR ffua1 Remainder
IR 2*N-bit, STD_LOGIC uan MINUS QUOTIENT wag STD LOGIC vuan MINUS REMAINDER laannsiuan Tnenis
wananEan1 s mualmuuinuierduaufaguananafuniuat MINUS QUOTIENT wag MINUS_REMAINDER @gn
fwunlae Sign bit ¥84 Input (wnnuanidu 0 unuauidy 1) wu

a. wn Ay + uaz B 1y + Infvune MINUS_QUOTIENT wu 0 waz MINUS_REMAINDER 4w 0
b. win Ay - uag B 1u + ndsumAr MINUS_QUOTIENT 1 1 wag MINUS_REMAINDER vy 0
c. wn Ay + ez By - Infvunen MINUS QUOTIENT wu 1 waz MINUS_REMAINDER u 1
d. wn Ay - uaz Bidu - Infvunen MINUS QUOTIENT wu 0 waz MINUS_REMAINDER u 1

BinaryDivider:Divider

Divident[4..0] ERR

Divisor[4..0] MINUS_QUOTIENT
Quotient[4..0]
Remainder[9..0]

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;

USE TEEE.std_logic_unsigned.ALL;

ENTITY BinaryDivider IS
GENERIC (N : INTEGER := 5);
PORT (
clk : IN STD_LOGIC;
enable : IN STD_LOGIC;
reset : IN STD_LOGIC;
Divident, Divisor : IN STD_LOGIC_VECTOR (N - 1 DOWNTO @) := (OTHERS => '@');
Quotient : OUT STD_LOGIC_VECTOR (N - 1 DOWNTO @) := (OTHERS => '0°);
Remainder : OUT STD_LOGIC_VECTOR (2 * N - 1 DONNTO 8) := (OTHERS => '0');
MINUS_QUOTIENT : OUT STD_LOGIC;
MINUS_REMAINDER : OUT STD_LOGIC;
ERR : OUT STD_LOGIC;
DONE : OUT STD_LOGIC := '@');
END BinaryDivider;

ARCHITECTURE Behavioral OF BinaryDivider IS
TYPE state_type IS (s@, sl, s2);
SIGNAL state : state_type := s@;
SIGNAL s_start : STD_LOGIC := '1°;
SIGNAL normalised_data_Dividend : STD_LOGIC_VECTOR (N - 1 DOWNTO @) := (OTHERS => '8');
SIGNAL normalised_data_Divisor : STD_LOGIC_VECTOR (N - 1 DOWNTO @) := (OTHERS => '@');
SIGNAL data Divisor : STD_LOGIC_VECTOR (2 * N - 1 DOWNTO @) := (OTHERS => '0');
SIGNAL data_Quotient : STD_LOGIC_VECTOR (N - 1 DOWNTO @) := (OTHERS => '0);
SIGNAL data_Remainder : STD_LOGIC_VECTOR (2 * N - 1 DOWNTO @) := (OTHERS => '0');
SIGNAL counter : INTEGER := 8;
N

PROCESS (clk, reset, enable)
BEGIN

IF Divisor = "08000" THEN
R .

IF reset = '1° THEN
-- toggle reset

DONE <= '0";

Quotient <= (OTHERS => '@");

Remainder <= (OTHERS => '0');

data_Divisor <= (OTHERS => '0');

data_Quotient <= (OTHERS => '0');

data_Remainder <= (OTHERS => '@');
ELSIF rising_edge(clk) THEN

-- detect a sign bit. if it's 1, do 2 compliment.

IF Divident(N - 1) = "1' THEN
normalised_data_Dividend <= NOT Divident + 1;

END IF;

IF Divisor(N - 1) = "1' THEN
normalised_data_Divisor <= NOT Divisor + 1;

END IF;

IF Divident(N - 1) = '@’ THEN
normalised_data_Dividend <= Divident;

END IF;

IF Divisor(N - 1) = '@’ THEN
nornalised_data_Divisor <= Divisor;

END IF;

-- FSM for BinaryDivider
CASE state IS
WHEN 5@ =>
IF enable = '1' AND s_start = '1' THEN
data_Divisor <= STD_LOGIC_VECTOR(normalised_data_Divisor) & STD_LOGIC_VECTOR(to_unsigned(e, N));
data_Remainder <= STD_LOGIC_VECTOR(to_unsigned(8, N)) & STD_LOGIC_VECTOR(normalised_data_Dividend);
state <= s1;
ELSE
state <= s@;
DONE <= '0';
END IF;

WHEN 51 =>
IF (counter <= N) THEN
state <= s1;
IF data_Remainder < data_Divisor THEN
data_Divisor <= STD_LOGIC_VECTOR(shift_right(unsigned(data_Divisor), 1));
data_Quotient <= STD_LOGIC_VECTOR(shift_left(unsigned(data_Quotient), 1));
counter <= counter + 1;
ELSIF data_Remainder >= data_Divisor THEN
data_Remainder <= STD_LOGIC_VECTOR(unsigned(data_Remainder) - unsigned(data_Divisor));
data_Divisor <= STD_LOGIC_VECTOR(shift_right(unsigned(data_Divisor), 1));
data_Quotient <= STD_LOGIC_VECTOR(data_Quotient(N - 2 DOWNTO @)) & "1";
counter <= counter + 1;
END IF;
ELSE
IF Divident(N - 1) = '@' AND Divisor(N - 1) = '@" THEN
Quotient <= data_Quotient;
Remainder <= data_Remainder;
MINUS_QUOTIENT <= '@';
MINUS_REMAINDER <= H
ELSIF Divident(N - 1) = '1' AND Divisor(N - 1) = '8’ THEN
Quotient <= data_Quotient;
Remainder <= data_Remainder;
MINUS_QUOTIENT <= '1';
MINUS_REMAINDER <= '@';
ELSIF Divident(N - 1) = '@' AND Divisor(N - 1) = "1' THEN
Quotient <= data_Quotient;
Remainder <= data_Remainder;
MINUS_QUOTIENT <
MINUS_REMAINDER <= '@";
ELSIF Divident(N - 1) = '1' AND Divisor(N - 1) = '1' THEN
Quotient <= data_Quotient;
Remainder <= data_Remainder;
MINUS_QUOTIENT <= '@°;
MINUS_REMAINDER <=
END IF;
state <= s2;
END IF;
WHEN OTHERS =>
DONE <= '1';
END CASE;
END IF;
END IF;
END PROCESS;
END Behavioral;

12. SignDetectorAdder a2 SignDetectorSubtractor : Wuauiisuaunaina s ves BinaryAdder AU BinarySubtractor R
ABLU UYL s_detector S?Qﬂ’afjl,ﬂu STD_LOGIC VECTOR w19 N-bit uagtdan Output $113 Sign bit
a. wu MSB ifu 0 v Output o WuAnANTISULIAN s _detect

b. wu MSB 1u 1 Tnn Output o wuanves s detect finrunisv 2’s complement

9
SignDetector:SignDetect Adder SignDetector:SignDetect_Subtractor
clk minus clk minus
s detect[4..0] 0[4..0 s detect[4..0] 0[4..0]

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_signed.ALL;

ENTITY SignDetector IS
GENERIC (N : INTEGER := 5);
PORT (
s_detect : IN STD_LOGIC_VECTOR(N - 1 DOWNTO 0);
clk : IN STD_LOGIC;
minus : OUT STD_LOGIC;
0 : OUT STD_LOGIC_VECTOR(N - 1 DOWNTO ©));
END SignDetector;

W0 NOUV A WN R

R
APWNRO

ARCHITECTURE Structural OF SignDetector IS
SIGNAL complemented : STD_LOGIC_VECTOR(N - 1 DOWNTO ©0);
SIGNAL plusone : STD_LOGIC_VECTOR(N - 1 DOWNTO ©) := (© => '1', OTHERS => '0');

B R R R
©0 N o wn

BEGIN
-- Add 1 to the input
adder : ENTITY work.BinaryAdderAndSubtractor(Structural) -- Add 1 to the input
PORT MAP(

a => NOT s_detect,
b => plusone,
m=>"'0",
clock => clk,
enable => '1',
s => complemented -- complemented is the output of the adders

NNNNNNNNNERE
0O NV A WNRE OV

)

w N
® ©

minus <= s_detect(N - 1);

wow
N e

WITH s_detect(N - 1) SELECT -- Detect MSB
0 <= s_detect WHEN '@', -- If MSB is @, output is s_detect
complemented WHEN OTHERS; -- If MSB is 1, output is complemented

wWowww
[NV R VY]

END Structural;

'
LY

13. BinaryToBCDConverterAdder waz BinaryToBCDConverterSubtractor : wuauiisua Input wdu Clock, minus_con i

'
@

$UANINAIN minus wae data AITUANIAN © VB SignDetector Adder uay SignDetector Subtractor waziivn Input V it
@ m3usuAn Overflow 970 Sign Detector w93 Adder uay Subtractor Inglursasiazidunisudas data Ay
STD_LOGIC_VECTOR N-bit 1fusuau Integer luunazndn @slu Component fazuuaiu

a. BCD digit 1, BCD digit 2 fiiffunisuuas Integer 1 STD LOGIC_VECTOR wua N-1 bit

b. e minus_con = '1' 9%l BCD_digit 3 = "1011" FafoinIoamneay (Segment g)

c. ilo minus_con = '0' 9x¥iln BCD_digit 3 = "1010" JsAensluuansuala 9 uu 7-Segment wdnii 3

BinaryToBCDConverterADD:BinaryToBCDConverter_Adder BinaryToBCDConverterSUB:BinaryToBCDConverter_Subtractor

clk BCD_digit_1(3.0]
data[4..0] BCD_digit_2[3.0]
BCD_digit_3[3.0]

minus_con

\4

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.STD_LOGIC_ARITH.ALL;

ENTITY BinaryToBCDConverterADD IS
GENERIC (
N : INTEGER := 5

VW NOWV A WN R

clk : IN STD_LOGIC;
v : IN STD_LOGIC;
minus_con : IN STD_LOGIC;
data : IN STD_LOGIC_VECTOR(N - 1 DOWNTO ©);
BCD_digit_1 : OUT STD_LOGIC_VECTOR(N - 2 DOWNTO ©);
BCD_digit_2 : OUT STD_LOGIC_VECTOR(N - 2 DOWNTO ©);
BCD_digit_3 : OUT STD_LOGIC_VECTOR(N - 2 DOWNTO @)

)3
END BinaryToBCDConverterADD;

ARCHITECTURE Structural OF BinaryToBCDConverterADD IS
SIGNAL signal_integerl : INTEGER := 0;
SIGNAL signal_integer2 : INTEGER := 0;

BEGIN
PROCESS (clk)

BEGIN
IF rising_edge(clk) THEN

IF v = '1" THEN
BCD_digit_1 <= "1101";
BCD_digit_2 <= "1101";
BCD_digit_3 <= "1100";

ELSE
signal_integerl <= conv_integer(unsigned(data)) MOD 10;
signal_integer2 <= (conv_integer(unsigned(data)) / 10) MOD 10;

BCD_digit_1 <= conv_std_logic_vector(signal_integerl, N - 1);
BCD_digit_2 <= conv_std_logic_vector(signal_integer2, N - 1);

IF (minus_con = '1') THEN -- if MSB is 1
BCD_digit_3 <= "1011"; -- minus
ELSE
BCD_digit_3 <= "1018"; -- none
END IF;
END IF;
END IF;
END PROCESS;
END Structural;

' '
o o

14. BinaryToBCDConverterMultiplier : wJuanudisuan Input 1ty Clock, minus_con #i¥uA1191n minus way data YA
911 0 Y84 SignDetector Multiplier #slursasiaziiunisutas data 7ivdu STD_LOGIC_VECTOR N-bit tlus1uau Integer Tuu
avwdn 35lu Component Havuvadu

a. BCD digit 1, BCD digit 2 fiifunisuuas Integer 1 STD LOGIC_VECTOR wua N-1 bit

b. e minus_con = '1' vl BCD digit 3 = "1011" FafoinIoamneay (Segment g¢)

c. ile minus_con = '0' 9x¥iln BCD_digit 3 = "1010" JsAensluuansuala 9 uu 7-Segment wdnii 3

BinaryToBCDConverterMUL:BinaryToBCDConverter_Multiplier

minus_con

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.STD_LOGIC_ARITH.ALL;

ENTITY BinaryToBCDConverterMUL IS
GENERIC (
N : INTEGER := 5

0NV A WN R

: IN STD_LOGIC;
minus_con : IN STD_LOGIC;
data : IN STD_LOGIC_VECTOR(2 * N - 1 DOWNTO 0);
rst : IN STD_LOGIC;
BCD_digit_1 : OUT STD_LOGIC_VECTOR(N - 2 DOWNTO @);
BCD_digit_2 : OUT STD_LOGIC_VECTOR(N - 2 DOWNTO ©);
BCD_digit_3 : OUT STD_LOGIC_VECTOR(N - 2 DOWNTO @)

)5
END BinaryToBCDConvertermuL;

ARCHITECTURE Structural OF BinaryToBCDConverterMUL IS
SIGNAL signal_integerl : INTEGER := @;
SIGNAL signal_integer2 : INTEGER := 0;
BEGIN
PROCESS (clk)
BEGIN
IF rising_edge(clk) THEN
IF (unsigned(data) > 99) THEN
BCD_digit_1 <= "1101";
BCD_digit_2 <= "1101";
BCD_digit_3 <= "1100";
ELSE
signal_integerl <= conv_integer(unsigned(data)) MOD 10;
signal_integer2 <= (conv_integer(unsigned(data)) / 18) MOD 10;

BCD_digit_1 <= conv_std_logic_vector(signal_integerl, N - 1);
BCD_digit_2 <= conv_std_logic_vector(signal_integer2, N - 1);

IF (minus_con = '1') THEN -- if MSB is 1
BCD_digit_3 <= "1011"; -- minus
ELSE
BCD_digit_3 <= "1010"; -- none
END IF;
END IF;
END IF;
END PROCESS;
END Structural;

15. BinaryToBCDConverterDivider : uaufisuan Input udu Clock, data_err, data_g, data_r, minus_gq wag minus_r lng

data_err $UANMN9INY output ERR w9 BinaryDivider, data_q $UA13137n Output Quotient U813 BinaryDivider, data_r $u

AN Output Remainder ¥84 BinaryDivider, minus_q $uAnaN Output MINUS_QUOTIENT %84 BinaryDivider Wag

minus_r $UAN137N Output MINUS_REMAINDER %84 BinaryDivider @sluasastiazifunisuuas data fiidu

STD_LOGIC_VECTOR N-bit tfuduau Integer luumagwidn @slu Component daguuaidu

a.

b.

BCD digit 1, BCD digit 2 Adunisudasanain data g lag data r viu STD_LOGIC_VECTOR U1 N-1 bit
BCD digit 4, BCD digit 5 Adunisudasanain minus_q kag minus_r vu STD_LOGIC_VECTOR U1 N-1 bit
\dle minus_con = '1' agsilu BCD digit 3 = "1011" FefeiTawmaneau (Segment g)

e minus_con = '0' 9gvhlv BCD_digit 3 = "1010" @fenisluuaninala 9 v 7-Segment wdndi 3

e minus_con = '1' 9gsilv BCD digit 6 = "1011" FefeinTawmaneau (Segment g)

e minus_con = '0' 9gvilv BCD_digit 6 = "1010" eftensluuaninaln o vl 7-Segment widndi 6

BinaryToBCDConverterDIV:BinaryToBCDConverter_Divider

clk BCD_digit_1[3..0]

data_err

data 94..0]

data_r]9..0]

minus_q

minus_r

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.STD_LOGIC_ARITH.ALL;

ENTITY BinaryToBCDConverterDIV IS
GENERIC (
N : INTEGER := 5
)s
PORT (
clk : IN STD_LOGIC;
minus_q : IN STD_LOGIC;
minus_r : IN STD_LOGIC;
data_err : IN STD_LOGIC;
data_q : IN STD_LOGIC_VECTOR(N - 1 DOWNTO ©);
data_r : IN STD_LOGIC_VECTOR(2 * N - 1 DOWNTO ©);
BCD_digit_1 : OUT STD_LOGIC_VECTOR(N DOWNTO 9);
BCD_digit_2 : OUT STD_LOGIC_VECTOR(N DOWNTO 9);
BCD_digit_3 : OUT STD_LOGIC_VECTOR(N DOWNTO 9);
BCD_digit_4 : OUT STD_LOGIC_VECTOR(N DOWNTO 9);
BCD_digit_5 : OUT STD_LOGIC_VECTOR(N DOWNTO 9);
BCD_digit_6 : OUT STD_LOGIC_VECTOR(N DOWNTO @)
)5
END BinaryToBCDConverterDIV;

ARCHITECTURE Structural OF BinaryToBCDConverterDIV IS
-- signal integer quotient
SIGNAL signal_integerl : INTEGER := 0;
SIGNAL signal_integer2 : INTEGER := ©;
-- signal integer remainder
SIGNAL signal_integer3 : INTEGER := 0;
SIGNAL signal_integer4 : INTEGER := ©;
BEGIN
PROCESS (clk)
BEGIN
IF rising_edge(clk) THEN
--IF (unsigned(data_qg) > 11111) THEN -- ERR overflow
-- BCD_digit_1 <= "1101"; --
-- BCD_digit_2 "1101"; --
BCD_digit_3 "1100"; --
BCD_digit_4 <= "1101"; --
BCD_digit_5 <= "1101"; --
BCD_digit_6 <= "1160"; -- E
-- ELSIF (unsigned(data_r) > ©0001100011) THEN -- ERR overflow
-- BCD_digit_1 <= "1101"; -- R
BCD_digit_2 "1101"; -- R
BCD_digit_3 "1100"; -- E
BCD_digit_4 "1101"; -- R
BCD_digit_5 "1101"; -- R
-- BCD_digit_6 E
IF (data_err = '1') THEN -- ERR div by zero
BCD_digit_1 "1101"; -- R
BCD_digit_2 <= "1101"; R
BCD_digit_3 <= "1100";
BCD_digit_4 <= "0000"; -
BCD_digit_5 <= "@eee"; -
BCD_digit_6 <= "0000"; 2}
ELSE -- normal mod and div operations
signal_integerl <= conv_integer(unsigned(data_q)) MOD 10;
signal_integer2 <= (conv_integer(unsigned(data_q)) / 10) MOD 10;
signal_integer3 <= conv_integer(unsigned(data_r)) MOD 10;
signal_integer4 <= (conv_integer(unsigned(data_r)) / 10) MOD 10;

BCD_digit_1 <= conv_std_logic_vector(signal_integerl, N - 1);
BCD_digit_2 <= conv_std_logic_vector(signal_integer2, N - 1);
BCD_digit_4 <= conv_std_logic_vector(signal_integer3, N - 1);
N - 1);

BCD_digit_5 <= conv_std_logic_vector(signal_integer4,

IF (minus_q = "1') and (minus_r = '@') THEN
BCD_digit_3 <= "1011";
BCD_digit_6 <= "1111";
ELSIF (minus_q = '@') and (minus_r '1') THEN
BCD_digit_3 <= "1111";
BCD_digit_6 <= "1011";
ELSIF (minus_g = '1') and (minus_r '1"') THEN
BCD_digit_3 <= "1011";
BCD_digit_6 <= "1011";
ELSE
BCD_digit_3 <= "1111";
BCD_digit_6 <= "1111";
END IF;
END IF;
END IF;
END PROCESS;
END Structural;

