
文本比较(T)
已产生: 2024/12/24 14:38:33

模式: 差异, 带上下文
左边文件: D:\Source\crewai-updated\task.py 右边文件: D:\Source\crewai\task.py
import threading = import threading
import uuid import uuid
from concurrent.futures import Future from concurrent.futures import Future
from copy import copy from copy import copy
from hashlib import md5 from hashlib import md5
from typing import Any, Dict, List, Optional, Set, Tuple, Type,
Union

 from typing import Any, Dict, List, Optional, Set, Tuple, Type,
Union

from pathlib import Path +-
 =
from jinja2 import Environment, FileSystemLoader +-
from opentelemetry.trace import Span = from opentelemetry.trace import Span
from pydantic import (from pydantic import (
 UUID4, UUID4,
 BaseModel, BaseModel,
 Field, Field,
 PrivateAttr, PrivateAttr,

 tools_errors: int = 0 = tools_errors: int = 0
 delegations: int = 0 delegations: int = 0
 i18n: I18N = I18N() i18n: I18N = I18N()
 name: Optional[str] = Field(default=None) name: Optional[str] = Field(default=None)
 prompt_context: Optional[str] = None prompt_context: Optional[str] = None
 description: str = Field(description="Description of the
actual task.")

 description: str = Field(description="Description of the
actual task.")

 task_prompt: Optional[str] = Field(+-
 description="Prompt to be used for the task.",
default=""

)
 expected_output: str = Field(= expected_output: str = Field(
 description="Clear definition of expected output for
the task."

 description="Clear definition of expected output for
the task."

))
 config: Optional[Dict[str, Any]] = Field(config: Optional[Dict[str, Any]] = Field(
 description="Configuration for the agent", description="Configuration for the agent",
 default=None, default=None,

 else pydantic_output.model_dump_json() if
pydantic_output else result

= else pydantic_output.model_dump_json() if
pydantic_output else result

))
 self._save_file(content) self._save_file(content)

 return task_output return task_output

 def render_template(self, file_path, inputs): +-
 directory_path = os.path.dirname(file_path)
 file_loader = FileSystemLoader(directory_path)
 env = Environment(loader=file_loader)
 template_filename = os.path.basename(file_path)
 template = env.get_template(template_filename)

 output = template.render(inputs)

 return output

 def prompt(self) -> str: = def prompt(self) -> str:
 """Prompt the task. """Prompt the task.

 Returns: Returns:
 Prompt of the task. Prompt of the task.
 """ """
 # tasks_slices = [self.description] <> tasks_slices = [self.description]

 output = self.i18n.slice("expected_output").format(= output = self.i18n.slice("expected_output").format(
 expected_output=self.expected_output expected_output=self.expected_output
))
 tasks_slices = [self.description, self.task_prompt,
output]

<> tasks_slices = [self.description, output]

 return "\n".join(tasks_slices) = return "\n".join(tasks_slices)

 def interpolate_inputs(self, inputs: Dict[str, Any]) ->
None:

 def interpolate_inputs(self, inputs: Dict[str, Any]) ->
None:

 """Interpolate inputs into the task description and
expected output."""

 """Interpolate inputs into the task description and
expected output."""

 if self._original_description is None: if self._original_description is None:
 self._original_description = self.description self._original_description = self.description
 if self._original_expected_output is None: if self._original_expected_output is None:
 self._original_expected_output =
self.expected_output

 self._original_expected_output =
self.expected_output

 if inputs: if inputs:
 self.description =
self._original_description.format(**inputs)

 self.description =
self._original_description.format(**inputs)

 self.expected_output =
self._original_expected_output.format(**inputs)

 self.expected_output =
self._original_expected_output.format(**inputs)

 if "prompt_path" in inputs: +-
 prompt_path = inputs["prompt_path"]
 if os.path.exists(prompt_path):
 self.task_prompt =
self.render_template(prompt_path, inputs)

 =
 def increment_tools_errors(self) -> None: def increment_tools_errors(self) -> None:
 """Increment the tools errors counter.""" """Increment the tools errors counter."""
 self.tools_errors += 1 self.tools_errors += 1

 def increment_delegations(self, agent_name: Optional[str])
-> None:

 def increment_delegations(self, agent_name: Optional[str])
-> None:

