XOREBER(T)
B4 2024/12/24 14:38:33

R 2R WETX
A ¥ 4 D:\Source\crewai-updated\task.py

£33 D:\Sour

ce\crewai\task.py

import threading

import uuid

from concurrent.futures import Future
from copy import copy

from hashlib import md5

from typing import Any, Dict, List, Optional, Set, Tuple, Type,
Union

import threading

import uuid

from concurrent.futures import Future

from copy import copy

from hashlib import md5

from typing import Any, Dict, List, Optional, Set, Tuple, Type,
Union

"""Interpolate inputs into the task description and
expected output."""
if self._original_description is None:
self._original_description = self.description
if self._original_expected_output is None:
self._original_expected_output =
self.expected_output

from pathlib import Path +-
from jinja2 import Environment, FileSystemlLoader +-
from opentelemetry.trace import Span = |from opentelemetry.trace import Span
from pydantic import (from pydantic import (
UUID4, UUID4,
BaseModel, BaseModel,
Field, Field,
PrivateAttr, PrivateAttr,
tools_errors: int = 0 = tools_errors: int = 0
delegations: int = @ delegations: int = 0
i18n: T18N = T18N() i18n: I18N = I18N()
name: Optional[str] = Field(default=None) name: Optional[str] = Field(default=None)
prompt_context: Optional[str] = None prompt_context: Optional[str] = None
description: str = Field(description="Description of the description: str = Field(description="Description of the
actual task.") actual task.")
task_prompt: Optional[str] = Field(+-
description="Prompt to be used for the task.",
default=""
)
expected_output: str = Field(= expected_output: str = Field(
description="Clear definition of expected output for description="Clear definition of expected output for
the task." the task."
))
config: Optional[Dict[str, Any]] = Field(config: Optional[Dict[str, Any]] = Field(
description="Configuration for the agent", description="Configuration for the agent",
default=None, default=None,
else pydantic_output.model_dump_json() if = else pydantic_output.model_dump_json() if
pydantic_output else result pydantic_output else result
self._save_file(content) self._save_file(content)
return task_output return task_output
def render_template(self, file_path, inputs): +-
directory_path = os.path.dirname(file_path)
file_loader = FileSystemlLoader(directory_path)
env = Environment(loader=file_loader)
template_filename = os.path.basename(file_path)
template = env.get template(template_filename)
output = template.render (inputs)
return output
def prompt(self) -> str: = def prompt(self) -> str:
"""Prompt the task. """Prompt the task.
Returns: Returns:
Prompt of the task. Prompt of the task.
tasks_slices = [self.description] <> tasks_slices = [self.description]
output = self.il8n.slice("expected_output").format(= output = self.il8n.slice("expected_output").format(
expected_output=self.expected_output expected_output=self.expected_output
tasks_slices = [self.description, self.task_prompt, <> tasks_slices = [self.description, output]
output]
return "\n".join(tasks_slices) = return "\n".join(tasks_slices)
def interpolate_inputs(self, inputs: Dict[str, Any]) -> def interpolate_inputs(self, inputs: Dict[str, Any]) ->
None: None:

"""Interpolate inputs into the task description and
expected output."""
if self._original_description is None:
self._original_description = self.description
if self._original_expected_output is None:
self._original_expected_output =
self.expected_output

if inputs:
self.description =
self._original_description.format(**inputs)
self.expected_output =
self._original_expected_output.format (**inputs)

if inputs:
self.description =
self._original_description.format(**inputs)
self.expected_output =
self._original_expected_output.format (¥*inputs)

if "prompt_path" in inputs:
prompt_path = inputs["prompt_path"]
if os.path.exists(prompt_path):
self.task_prompt =
self.render_template(prompt_path, inputs)

def increment_tools_errors(self) -> None:
"""Increment the tools errors counter.
self.tools_errors += 1

wun

def increment_delegations(self, agent_name: Optional[str])

-> None:

def increment_tools_errors(self) -> None:
"""Increment the tools errors counter.
self.tools_errors += 1

wun

def increment_delegations(self, agent_name: Optional[str])

-> None:

