
The Internals of Spark SQL

None

Jacek Laskowski

Copyright © 2024 Jacek Laskowski

Table of contents

81. The Internals of Spark SQL (Apache Spark 3.5.3)

92. Features

92.1 Features

102.2 Aggregate Queries

02.3 Adaptive Query Execution

02.4 Bloom Filter Join

02.5 Bucketing

02.6 Cache Serialization

02.7 Catalog Plugin API

02.8 Columnar Execution

02.9 Common Table Expressions

02.10 Configuration Properties

02.11 Connector Expressions

02.12 Cost-Based Optimization

02.13 Default Columns

02.14 Direct Queries on Files

02.15 Dynamic Partition Pruning

02.16 File-Based Data Scanning

02.17 Generated Columns

02.18 Hidden File Metadata

02.19 Hints (SQL)

02.20 Join Queries

02.21 Logging

02.22 Metadata Columns

02.23 Named Function Arguments

02.24 Parameterized Queries

02.25 Partition File Metadata Caching

02.26 Runtime Filtering

02.27 Spark Connect

02.28 Spark Thrift Server

02.29 Statistics

02.30 Storage-Partitioned Joins

02.31 Subexpression Elimination

02.32 Subqueries

02.33 Table-Valued Functions

Table of contents

- 2/32 - Copyright © 2024 Jacek Laskowski

02.34 Time Travel

02.35 Transactional Writes

02.36 User-Defined Functions

02.37 Vectorized Decoding

02.38 ANSI Intervals

02.39 Catalog Plugin API and Multi-Catalog Support

02.40 Explaining Query Plans Improved

02.41 Observable Metrics

02.42 Hive Integration

02.43 Dynamic Partition Inserts

02.44 Vectorized Query Execution

02.45 Whole-Stage Code Generation

02.46 Catalyst DSL

02.47 Variable Substitution

03. Query Execution

03.1 Query Execution

03.2 Catalyst

03.3 Catalyst Expressions

03.4 Execution Planning Strategies

03.5 Logical Query Plan Analyzer

03.6 Logical Analysis Rules

03.7 Logical Operators

03.8 Logical Optimizations

03.9 Physical Operators

03.10 Physical Optimizations

03.11 QueryExecution — Structured Query Execution Pipeline

03.12 QueryPlanningTracker

03.13 SparkOptimizer — Logical Query Plan Optimizer

03.14 SparkPlanner — Spark Query Planner

04. Internals

04.1 Spark SQL

04.2 DataSource — Pluggable Data Provider Framework

04.3 Developer API

04.4 ExecutionListenerBus

04.5 ExecutionListenerManager

04.6 SharedState — State Shared Across SparkSessions

04.7 SQLConf

04.8 SQLConfHelper

Table of contents

- 3/32 - Copyright © 2024 Jacek Laskowski

04.9 StaticSQLConf — Static Configuration Properties

04.10 SparkSession Registries

04.11 Encoder

04.12 SQLExecution

04.13 SQLMetric

04.14 Tungsten Execution Backend

04.15 RDDs

05. SQL

05.1 SQL Parsing Framework

05.2 AbstractSqlParser

05.3 AstBuilder — ANTLR-based SQL Parser

05.4 CatalystSqlParser

05.5 ParserInterface

05.6 SparkSqlParser — Default SQL Parser

05.7 SparkSqlAstBuilder — ANTLR-based SQL Parser

05.8 VariableSubstitution

06. Connectors

06.1 Connectors (Data Sources)

06.2 Avro

06.3 Files

06.4 Hive

06.5 JDBC

06.6 Kafka

06.7 Noop

06.8 Parquet

06.9 DataWritingSparkTask Utility

06.10 DataSourceV2Utils Utility

06.11 OutputWriter

07. High-Level APIs

07.1 Column

07.2 ColumnarRule

07.3 Connector API

07.4 Data Types

07.5 DataFrame — Dataset of Rows with RowEncoder

07.6 [NOTE]

0
7.7 See https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/
package.scala#L45[org.apache.spark.package.scala].

07.8 DataFrameNaFunctions — Working With Missing Data

Table of contents

- 4/32 - Copyright © 2024 Jacek Laskowski

07.9 DataFrameReader

07.10 DataFrameStatFunctions

07.11 DataFrameWriter

07.12 DataFrameWriterV2

07.13 Dataset

07.14 Dataset API

07.15 DataSource V1 API

07.16 Encoders Utility

07.17 KeyValueGroupedDataset

07.18 Observation

07.19 QueryExecutionListener

07.20 RelationalGroupedDataset

07.21 SparkSession — The Entry Point to Spark SQL

07.22 SparkSession.Builder

07.23 SparkSessionExtensions

07.24 Standard Functions

07.25 TypedColumn

07.26 Window Functions

08. Web UI

08.1 SQL / DataFrame UI

08.2 AllExecutionsPage

08.3 ExecutionPage

08.4 SQLAppStatusListener

08.5 SQLAppStatusStore

08.6 SQLTab

08.7 SparkListenerSQLExecutionEnd

09. Demo

09.1 Demos

09.2 Demo: Adaptive Query Execution

09.3 Demo: Connecting Spark SQL to Hive Metastore (with Remote Metastore Server)

09.4 The only required environment variable is JAVA_HOME. All others are

09.5 optional. When running a distributed configuration it is best to

09.6 set JAVA_HOME in this file, so that it is correctly defined on

09.7 remote nodes.

09.8 Demo: Mult-Dimensional Aggregations

09.9 Demo: Developing CatalogPlugin

09.10 Demo: Dynamic Partition Pruning

09.11 Demo: Hive Partitioned Parquet Table and Partition Pruning

Table of contents

- 5/32 - Copyright © 2024 Jacek Laskowski

09.12 Demo: ObjectHashAggregateExec and Sort-Based Fallback Tasks

09.13 Demo: Spilling

09.14 Demo: Using JDBC Data Source to Access PostgreSQL

010. Misc

010.1 AggregatingAccumulator

010.2 DistinctKeyVisitor

010.3 FilterEvaluatorFactory

010.4 JoinSelectionHelper

010.5 PushDownUtils

010.6 UnsafeExternalRowSorter

010.7 BindReferences

010.8 IntervalUtils

010.9 ExplainUtils

010.10 SerializerBuildHelper

010.11 Datasets, DataFrames and RDDs

010.12 Dataset API and SQL

010.13 DDLUtils

010.14 implicits Object -- Implicits Conversions

010.15 [TIP]

010.16 In Scala REPL-based environments, e.g. spark-shell, use :imports to know what imports are in scope.

010.17 Row

010.18 Data Source API

010.19 Column API -- Column Operators

010.20 Caching and Persistence

010.21 Checkpointing

010.22 [NOTE]

0
10.23 Dataset checkpointing in Spark SQL uses checkpointing to truncate the lineage of the underlying RDD of a Dataset being
checkpointed.

010.24 Refer to spark-logging.md[Logging].

010.25 Performance Tuning and Debugging

010.26 CheckAnalysis — Analysis Validation

010.27 CatalystTypeConverters Helper Object

010.28 SubExprUtils Utility

010.29 PredicateHelper

010.30 ExtractEquiJoinKeys Scala Extractor

010.31 ExtractSingleColumnNullAwareAntiJoin Scala Extractor

010.32 ExtractJoinWithBuckets Scala Extractor

010.33 PhysicalOperation Scala Extractor

Table of contents

- 6/32 - Copyright © 2024 Jacek Laskowski

010.34 [NOTE]

010.35 unapply is used when...FIXME

010.36 KnownSizeEstimation

Table of contents

- 7/32 - Copyright © 2024 Jacek Laskowski

1. The Internals of Spark SQL (Apache Spark 3.5.3)

Welcome to The Internals of Spark SQL online book! 🤙

I'm Jacek Laskowski, a Freelance Data(bricks) Engineer specializing in Apache Spark (incl. Spark SQL and Spark Structured Streaming),
Delta Lake, Databricks, and Apache Kafka (incl. Kafka Streams) with brief forays into a wider data engineering space (e.g., Trino, Dask and
dbt, mostly during Warsaw Data Engineering meetups).

I'm very excited to have you here and hope you will enjoy exploring the internals of Spark SQL as much as I have.

I write to discover what I know.

I'm also writing other online books in the "The Internals Of" series. Please visit "The Internals Of" Online Books home page.

Expect text and code snippets from a variety of public sources. Attribution follows.

Now, let's take a deep dive into Spark SQL 🔥

Flannery O'Connor

"The Internals Of" series

Last update: 2024-11-30

1. The Internals of Spark SQL (Apache Spark 3.5.3)

- 8/32 - Copyright © 2024 Jacek Laskowski

https://pl.linkedin.com/in/jaceklaskowski
https://books.japila.pl/apache-spark-internals/
https://books.japila.pl/spark-sql-internals/
https://books.japila.pl/spark-structured-streaming-internals/
https://books.japila.pl/delta-lake-internals/
https://www.databricks.com/
https://books.japila.pl/kafka-internals/
https://books.japila.pl/kafka-streams-internals/
https://trino.io/
https://www.dask.org/
https://www.getdbt.com/
https://www.meetup.com/Warsaw-Data-Engineering/
https://books.japila.pl

2. Features

2.1 Features

The following are the features of Spark SQL that help place it in the top of the modern distributed SQL query processing engines:

Adaptive Query Execution

Bloom Filter Join

Catalog Plugin API

Columnar Execution

Connector API

Default Columns

Direct Queries on Files

Dynamic Partition Pruning

File-Based Data Scanning

Hints

Metadata Columns

Named Function Arguments

Spark Connect

Table-Valued Functions

Time Travel

Variable Substitution

Vectorized Parquet Decoding (Reader)

Whole-Stage Code Generation

others (listed in the menu on the left)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2. Features

- 9/32 - Copyright © 2024 Jacek Laskowski

2.2 Aggregate Queries

2.2.1 Aggregate Queries

Aggregate Queries (Aggregates) are structured queries with Aggregate logical operator.

Aggregate Queries calculate single value for a set of rows.

Aggregate Queries can be broken down to the following sections:

Grouping (using GROUP BY clause in SQL or Dataset.groupBy operator) that arranges rows into groups (possibly guarded by HAVING SQL
clause)

Aggregation (using Aggregate Functions) to apply to a set of rows and calculate single values per groups

Whole-Stage Code Generation

Whole-Stage Code Generation is supported by AggregateCodegenSupport physical operators only with supportCodegen flag enabled.

Adaptive Query Execution

Adaptive Query Execution uses ReplaceHashWithSortAgg physical optimization among the queryStagePreparationRules.

Configuration Properties

Aggregate Queries can be fine-tuned with the following configuration properties:

spark.sql.execution.replaceHashWithSortAgg

spark.sql.retainGroupColumns

others

High-Level Operators

Aggregate is a logical representation of the high-level operators in SQL or Dataset API.

SQL

Aggregate represents the following SQL clauses:

GROUP BY (incl. GROUPING SETS , WITH CUBE , WITH ROLLUP)

visitCommonSelectQueryClausePlan

DATASET

Aggregate represents the following high-level operators in Dataset API:

KeyValueGroupedDataset.agg

RelationalGroupedDataset.agg

RelationalGroupedDataset.avg

RelationalGroupedDataset.count

RelationalGroupedDataset.max

RelationalGroupedDataset.mean

RelationalGroupedDataset.min

RelationalGroupedDataset.sum

1.

2.

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2 Aggregate Queries

- 10/32 - Copyright © 2024 Jacek Laskowski

Group Types

GroupType indicates the kind of an aggregation.

CUBE

GROUPBY

PIVOT

ROLLUP

UnsupportedOperationChecker

UnsupportedOperationChecker is responsible for asserting correctness of aggregation queries (among others).

Basic Aggregation

Basic Aggregation calculates aggregates over a group of rows using aggregate operators (possibly with aggregate functions).

Multi-Dimensional Aggregation

Multi-Dimensional Aggregate Operators are variants of groupBy operator to create queries for subtotals, grand totals and superset of
subtotals in one go.

It is assumed that using one of the operators is usually more efficient (than union and groupBy) as it gives more freedom for query
optimization.

Beside Dataset.cube and Dataset.rollup operators, Spark SQL supports GROUPING SETS clause in SQL mode only.

Support for multi-dimensional aggregate operators was added in [SPARK-6356] Support the ROLLUP/CUBE/GROUPING SETS/grouping() in
SQLContext.

Aggregate Operators

AGG

Aggregates over (applies an aggregate function on) a subset of or the entire Dataset (i.e., considering the entire data set as one group)

Creates a RelationalGroupedDataset

Dataset.agg is simply a shortcut for Dataset.groupBy().agg .

CUBE

FIXME List unsupported features

SPARK-6356

Note

cube(
cols: Column*): RelationalGroupedDataset

cube(
col1: String,
cols: String*): RelationalGroupedDataset

GROUP BY expressions WITH CUBE
GROUP BY CUBE(expressions)

2.2.1 Aggregate Queries

- 11/32 - Copyright © 2024 Jacek Laskowski

https://issues.apache.org/jira/browse/SPARK-6356
https://issues.apache.org/jira/browse/SPARK-6356

cube multi-dimensional aggregate operator returns a RelationalGroupedDataset to calculate subtotals and a grand total for every
permutation of the columns specified.

cube is an extension of groupBy operator that allows calculating subtotals and a grand total across all combinations of specified group of
n + 1 dimensions (with n being the number of columns as cols and col1 and 1 for where values become null , i.e. undefined).

cube returns RelationalGroupedDataset that you can use to execute aggregate function or operator.

cube is more than rollup operator, i.e. cube does rollup with aggregation over all the missing combinations given the columns.

GROUPBY

Groups the rows in a Dataset by columns (as Column expressions or names).

Creates a RelationalGroupedDataset

Used for untyped aggregates using DataFrame s. Grouping is described using column expressions or column names.

GROUPBYKEY

Groups records (of type T) by the input func and creates a KeyValueGroupedDataset to apply aggregation to.

Used for typed aggregates using Dataset s with records grouped by a key-defining discriminator function

GROUPING SETS

SQL's GROUPING SETS is the most general aggregate "operator" and can generate the same dataset as using a simple groupBy, cube and rollup
operators.

cube vs rollup

import org.apache.spark.sql.expressions.scalalang._
val q = dataset
.groupByKey(_.productId).
.agg(typed.sum[Token](_.score))
.toDF("productId", "sum")
.orderBy('productId)

spark
.readStream
.format("rate")
.load
.as[(Timestamp, Long)]
.groupByKey { case (ts, v) => v % 2 }
.agg()
.writeStream
.format("console")
.trigger(Trigger.ProcessingTime(5.seconds))
.outputMode("complete")
.start

GROUP BY (expressions) GROUPING SETS (expressions)
GROUP BY GROUPING SETS (expressions)

Note

import java.time.LocalDate
import java.sql.Date
val expenses = Seq(
 ((2012, Month.DECEMBER, 12), 5),
 ((2016, Month.AUGUST, 13), 10),
 ((2017, Month.MAY, 27), 15))
 .map { case ((yy, mm, dd), a) => (LocalDate.of(yy, mm, dd), a) }
 .map { case (d, a) => (d.toString, a) }
 .map { case (d, a) => (Date.valueOf(d), a) }
 .toDF("date", "amount")
scala> expenses.show
+----------+------+
| date|amount|
+----------+------+
|2012-12-12| 5|
|2016-08-13| 10|

2.2.1 Aggregate Queries

- 12/32 - Copyright © 2024 Jacek Laskowski

GROUPING SETS clause generates a dataset that is equivalent to union operator of multiple groupBy operators.

GROUPING SETS clause is parsed in withAggregation parsing handler (in AstBuilder) and becomes a GroupingSets logical operator internally.

ROLLUP

|2017-05-27| 15|
+----------+------+

// rollup time!
val q = expenses
 .rollup(year($"date") as "year", month($"date") as "month")
 .agg(sum("amount") as "amount")
 .sort($"year".asc_nulls_last, $"month".asc_nulls_last)
scala> q.show
+----+-----+------+
|year|month|amount|
+----+-----+------+
2012	12	5
2012	null	5
2016	8	10
2016	null	10
2017	5	15
2017	null	15
null	null	30
+----+-----+------+

val sales = Seq(
 ("Warsaw", 2016, 100),
 ("Warsaw", 2017, 200),
 ("Boston", 2015, 50),
 ("Boston", 2016, 150),
 ("Toronto", 2017, 50)
).toDF("city", "year", "amount")
sales.createOrReplaceTempView("sales")

// equivalent to rollup("city", "year")
val q = sql("""
 SELECT city, year, sum(amount) as amount
 FROM sales
 GROUP BY city, year
 GROUPING SETS ((city, year), (city), ())
 ORDER BY city DESC NULLS LAST, year ASC NULLS LAST
 """)
scala> q.show
+-------+----+------+
| city|year|amount|
+-------+----+------+
Warsaw	2016	100
Warsaw	2017	200
Warsaw	null	300
Toronto	2017	50
Toronto	null	50
Boston	2015	50
Boston	2016	150
Boston	null	200
null	null	550
+-------+----+------+

// equivalent to cube("city", "year")
// note the additional (year) grouping set
val q = sql("""
 SELECT city, year, sum(amount) as amount
 FROM sales
 GROUP BY city, year
 GROUPING SETS ((city, year), (city), (year), ())
 ORDER BY city DESC NULLS LAST, year ASC NULLS LAST
 """)
scala> q.show
+-------+----+------+
| city|year|amount|
+-------+----+------+
Warsaw	2016	100
Warsaw	2017	200
Warsaw	null	300
Toronto	2017	50
Toronto	null	50
Boston	2015	50
Boston	2016	150
Boston	null	200
null	2015	50
null	2016	250
null	2017	250
null	null	550
+-------+----+------+

rollup(
cols: Column*): RelationalGroupedDataset

rollup(

2.2.1 Aggregate Queries

- 13/32 - Copyright © 2024 Jacek Laskowski

rollup gives a RelationalGroupedDataset to calculate subtotals and a grand total over (ordered) combination of groups.

rollup is an extension of groupBy operator that calculates subtotals and a grand total across specified group of n + 1 dimensions (with n
being the number of columns as cols and col1 and 1 for where values become null , i.e. undefined).

rollup operator is commonly used for analysis over hierarchical data; e.g. total salary by department, division, and company-wide total.

See PostgreSQL's https://www.postgresql.org/docs/current/static/queries-table-expressions.html#QUERIES-GROUPING-SETS[7.2.4. GROUPING
SETS, CUBE, and ROLLUP]

rollup operator is equivalent to GROUP BY \... WITH ROLLUP in SQL (which in turn is equivalent to GROUP BY \... GROUPING SETS \((a,b,c),(a,b),(a),())
when used with 3 columns: a , b , and c).

From Using GROUP BY with ROLLUP, CUBE, and GROUPING SETS in Microsoft's TechNet:

The ROLLUP, CUBE, and GROUPING SETS operators are extensions of the GROUP BY clause. The ROLLUP, CUBE, or GROUPING SETS
operators can generate the same result set as when you use UNION ALL to combine single grouping queries; however, using one of the
GROUP BY operators is usually more efficient.

From PostgreSQL's 7.2.4. GROUPING SETS, CUBE, and ROLLUP:

References to the grouping columns or expressions are replaced by null values in result rows for grouping sets in which those columns do
not appear.

From Summarizing Data Using ROLLUP in Microsoft's TechNet:

The ROLLUP operator is useful in generating reports that contain subtotals and totals. (...) ROLLUP generates a result set that shows
aggregates for a hierarchy of values in the selected columns.

col1: String,
cols: String*): RelationalGroupedDataset

GROUP BY expressions WITH ROLLUP
GROUP BY ROLLUP(expressions)

Note

Note

// Borrowed from Microsoft's "Summarizing Data Using ROLLUP" article
val inventory = Seq(
 ("table", "blue", 124),
 ("table", "red", 223),
 ("chair", "blue", 101),
 ("chair", "red", 210)).toDF("item", "color", "quantity")

scala> inventory.show
+-----+-----+--------+
| item|color|quantity|
+-----+-----+--------+
chair	blue	101
chair	red	210
table	blue	124
table	red	223
+-----+-----+--------+

// ordering and empty rows done manually for demo purposes
scala> inventory.rollup("item", "color").sum().show
+-----+-----+-------------+
| item|color|sum(quantity)|
+-----+-----+-------------+
chair	blue	101
chair	red	210
chair	null	311
table	blue	124
table	red	223
table	null	347
null	null	658
+-----+-----+-------------+

2.2.1 Aggregate Queries

- 14/32 - Copyright © 2024 Jacek Laskowski

https://www.postgresql.org/docs/current/static/queries-table-expressions.html#QUERIES-GROUPING-SETS[7.2.4
https://technet.microsoft.com/en-us/library/bb522495(v=sql.105).aspx
https://www.postgresql.org/docs/current/static/queries-table-expressions.html#QUERIES-GROUPING-SETS
https://technet.microsoft.com/en-us/library/ms189305(v=sql.90).aspx

From Hive's Cubes and Rollups:

WITH ROLLUP is used with the GROUP BY only. ROLLUP clause is used with GROUP BY to compute the aggregate at the hierarchy levels of
a dimension.

GROUP BY a, b, c with ROLLUP assumes that the hierarchy is "a" drilling down to "b" drilling down to "c".

GROUP BY a, b, c, WITH ROLLUP is equivalent to GROUP BY a, b, c GROUPING SETS ((a, b, c), (a, b), (a), ()).

Read up on ROLLUP in Hive's LanguageManual in Grouping Sets, Cubes, Rollups, and the GROUPING__ID Function.

From PostgreSQL's 7.2.4. GROUPING SETS, CUBE, and ROLLUP:

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists of elements in parentheses. In the
latter case, the sublists are treated as single units for the purposes of generating the individual grouping sets.

Note

// Borrowed from http://stackoverflow.com/a/27222655/1305344
val quarterlyScores = Seq(
 ("winter2014", "Agata", 99),
 ("winter2014", "Jacek", 97),
 ("summer2015", "Agata", 100),
 ("summer2015", "Jacek", 63),
 ("winter2015", "Agata", 97),
 ("winter2015", "Jacek", 55),
 ("summer2016", "Agata", 98),
 ("summer2016", "Jacek", 97)).toDF("period", "student", "score")

scala> quarterlyScores.show
+----------+-------+-----+
| period|student|score|
+----------+-------+-----+
winter2014	Agata	99
winter2014	Jacek	97
summer2015	Agata	100
summer2015	Jacek	63
winter2015	Agata	97
winter2015	Jacek	55
summer2016	Agata	98
summer2016	Jacek	97
+----------+-------+-----+

// ordering and empty rows done manually for demo purposes
scala> quarterlyScores.rollup("period", "student").sum("score").show
+----------+-------+----------+
| period|student|sum(score)|
+----------+-------+----------+
winter2014	Agata	99
winter2014	Jacek	97
winter2014	null	196
summer2015	Agata	100
summer2015	Jacek	63
summer2015	null	163
winter2015	Agata	97
winter2015	Jacek	55
winter2015	null	152
summer2016	Agata	98
summer2016	Jacek	97
summer2016	null	195
null	null	706
+----------+-------+----------+

// using struct function
scala> inventory.rollup(struct("item", "color") as "(item,color)").sum().show
+------------+-------------+
|(item,color)|sum(quantity)|
+------------+-------------+
[table,red]	223
[chair,blue]	101
null	658
[chair,red]	210
[table,blue]	124
+------------+-------------+

// using expr function
scala> inventory.rollup(expr("(item, color)") as "(item, color)").sum().show

2.2.1 Aggregate Queries

- 15/32 - Copyright © 2024 Jacek Laskowski

https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation,+Cube,+Grouping+and+Rollup#EnhancedAggregation,Cube,GroupingandRollup-CubesandRollups
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+GroupBy#LanguageManualGroupBy-GroupingSets,Cubes,Rollups,andtheGROUPING__IDFunction
https://www.postgresql.org/docs/current/static/queries-table-expressions.html#QUERIES-GROUPING-SETS

Internally, rollup converts the Dataset into a DataFrame and then creates a RelationalGroupedDataset (with RollupType group type).

Read up on rollup in Deeper into Postgres 9.5 - New Group By Options for Aggregation.

Catalyst DSL

Catalyst DSL defines groupBy operator to create aggregation queries.

Aggregate Query Execution

LOGICAL ANALYSIS

The following logical analysis rules handle Aggregate logical operator:

CleanupAliases

ExtractGenerator

ExtractWindowExpressions

GlobalAggregates

ResolveAliases

ResolveGroupingAnalytics

ResolveOrdinalInOrderByAndGroupBy

ResolvePivot

LOGICAL OPTIMIZATIONS

The following logical optimizations handle Aggregate logical operator:

DecorrelateInnerQuery

InjectRuntimeFilter

MergeScalarSubqueries

OptimizeMetadataOnlyQuery

PullOutGroupingExpressions

PullupCorrelatedPredicates

ReplaceDistinctWithAggregate

ReplaceDeduplicateWithAggregate

RewriteAsOfJoin

RewriteCorrelatedScalarSubquery

RewriteDistinctAggregates

RewriteExceptAll

RewriteIntersectAll

V2ScanRelationPushDown

+-------------+-------------+
|(item, color)|sum(quantity)|
+-------------+-------------+
[table,red]	223
[chair,blue]	101
null	658
[chair,red]	210
[table,blue]	124
+-------------+-------------+

Tip

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2.1 Aggregate Queries

- 16/32 - Copyright © 2024 Jacek Laskowski

https://www.compose.com/articles/deeper-into-postgres-9-5-new-group-by-options-for-aggregation/

Cost-Based Optimization

Aggregate operators are handled by BasicStatsPlanVisitor for visitDistinct and visitAggregate

PushDownPredicate

PushDownPredicate logical plan optimization applies so-called filter pushdown to a Pivot operator when under Filter operator and with
all expressions deterministic.

PHYSICAL OPTIMIZATIONS

The following physical optimizations use Aggregate logical operator:

PlanAdaptiveDynamicPruningFilters

PlanDynamicPruningFilters

RowLevelOperationRuntimeGroupFiltering

ReplaceHashWithSortAgg

ReplaceHashWithSortAgg physical optimization can replace HashAggregateExec and ObjectHashAggregateExec physical operators with
SortAggregateExec when executed with spark.sql.execution.replaceHashWithSortAgg configuration property and some sorting
requirements are met.

QUERY PLANNING

Aggregation execution planning strategy is used to plan Aggregate logical operators for execution as one of the available
BaseAggregateExec physical operators:

HashAggregateExec

ObjectHashAggregateExec

SortAggregateExec

Demo

Demo: Mult-Dimensional Aggregations

import org.apache.spark.sql.catalyst.optimizer.PushDownPredicate

val q = visits
 .groupBy("city")
 .pivot("year")
 .count()
 .where($"city" === "Boston")

val pivotPlanAnalyzed = q.queryExecution.analyzed
scala> println(pivotPlanAnalyzed.numberedTreeString)
00 Filter (city#8 = Boston)
01 +- Project [city#8, __pivot_count(1) AS `count` AS `count(1) AS ``count```#142[0] AS 2015#143L, __pivot_count(1) AS `count` AS `count(1) AS ``count```#142[1] AS 2016#144L,
__pivot_count(1) AS `count` AS `count(1) AS ``count```#142[2] AS 2017#145L]
02 +- Aggregate [city#8], [city#8, pivotfirst(year#9, count(1) AS `count`#134L, 2015, 2016, 2017, 0, 0) AS __pivot_count(1) AS `count` AS `count(1) AS ``count```#142]
03 +- Aggregate [city#8, year#9], [city#8, year#9, count(1) AS count(1) AS `count`#134L]
04 +- Project [_1#3 AS id#7, _2#4 AS city#8, _3#5 AS year#9]
05 +- LocalRelation [_1#3, _2#4, _3#5]

val afterPushDown = PushDownPredicate(pivotPlanAnalyzed)
scala> println(afterPushDown.numberedTreeString)
00 Project [city#8, __pivot_count(1) AS `count` AS `count(1) AS ``count```#142[0] AS 2015#143L, __pivot_count(1) AS `count` AS `count(1) AS ``count```#142[1] AS 2016#144L, __pivot_count(1)
AS `count` AS `count(1) AS ``count```#142[2] AS 2017#145L]
01 +- Aggregate [city#8], [city#8, pivotfirst(year#9, count(1) AS `count`#134L, 2015, 2016, 2017, 0, 0) AS __pivot_count(1) AS `count` AS `count(1) AS ``count```#142]
02 +- Aggregate [city#8, year#9], [city#8, year#9, count(1) AS count(1) AS `count`#134L]
03 +- Project [_1#3 AS id#7, _2#4 AS city#8, _3#5 AS year#9]
04 +- Filter (_2#4 = Boston)
05 +- LocalRelation [_1#3, _2#4, _3#5]

•

•

•

•

•

•

2.2.1 Aggregate Queries

- 17/32 - Copyright © 2024 Jacek Laskowski

2.2.2 AggUtils Utility

AggUtils is an utility for Aggregation execution planning strategy.

planAggregateWithoutDistinct

planAggregateWithoutDistinct is a two-step physical operator generator.

planAggregateWithoutDistinct first creates an aggregate physical operator with aggregateExpressions in Partial mode (for partial aggregations).

requiredChildDistributionExpressions for the aggregate physical operator for partial aggregation "stage" is empty.

In the end, planAggregateWithoutDistinct creates another aggregate physical operator (of the same type as before), but aggregateExpressions are
now in Final mode (for final aggregations). The aggregate physical operator becomes the parent of the first aggregate operator.

requiredChildDistributionExpressions for the parent aggregate physical operator for final aggregation "stage" are the Attributes of the
groupingExpressions .

planAggregateWithOneDistinct

planAggregateWithOneDistinct ...FIXME

Creating Physical Operator for Aggregation

createAggregate creates one of the following physical operators based on the given AggregateExpressions (in the following order):

HashAggregateExec when all the aggBufferAttributes (of the AggregateFunctions of the given AggregateExpressions) are supported

ObjectHashAggregateExec when the following all hold:

spark.sql.execution.useObjectHashAggregateExec configuration property is enabled

Aggregate expression supported

SortAggregateExec

planAggregateWithoutDistinct(
groupingExpressions: Seq[NamedExpression],
aggregateExpressions: Seq[AggregateExpression],
resultExpressions: Seq[NamedExpression],
child: SparkPlan): Seq[SparkPlan]

Note

Note

planAggregateWithOneDistinct(
groupingExpressions: Seq[NamedExpression],
functionsWithDistinct: Seq[AggregateExpression],
functionsWithoutDistinct: Seq[AggregateExpression],
resultExpressions: Seq[NamedExpression],
child: SparkPlan): Seq[SparkPlan]

createAggregate(
requiredChildDistributionExpressions: Option[Seq[Expression]] = None,
groupingExpressions: Seq[NamedExpression] = Nil,
aggregateExpressions: Seq[AggregateExpression] = Nil,
aggregateAttributes: Seq[Attribute] = Nil,
initialInputBufferOffset: Int = 0,
resultExpressions: Seq[NamedExpression] = Nil,
child: SparkPlan): SparkPlan

1.

2.

•

•

3.

2.2.2 AggUtils Utility

- 18/32 - Copyright © 2024 Jacek Laskowski

createAggregate is used when:

AggUtils is used to createStreamingAggregate, planAggregateWithoutDistinct, planAggregateWithOneDistinct

Planning Execution of Streaming Aggregation

planStreamingAggregation ...FIXME

planStreamingAggregation is used when:

StatefulAggregationStrategy (Spark Structured Streaming) execution planning strategy is requested to plan a logical plan of a streaming
aggregation (a streaming query with Aggregate operator)

Creating Streaming Aggregate Physical Operator

createStreamingAggregate creates an aggregate physical operator (with isStreaming flag enabled).

createStreamingAggregate is exactly createAggregate with isStreaming flag enabled.

createStreamingAggregate is used when:

AggUtils is requested to plan a regular and session-windowed streaming aggregation

•

planStreamingAggregation(
groupingExpressions: Seq[NamedExpression],
functionsWithoutDistinct: Seq[AggregateExpression],
resultExpressions: Seq[NamedExpression],
stateFormatVersion: Int,
child: SparkPlan): Seq[SparkPlan]

•

createStreamingAggregate(
requiredChildDistributionExpressions: Option[Seq[Expression]] = None,
groupingExpressions: Seq[NamedExpression] = Nil,
aggregateExpressions: Seq[AggregateExpression] = Nil,
aggregateAttributes: Seq[Attribute] = Nil,
initialInputBufferOffset: Int = 0,
resultExpressions: Seq[NamedExpression] = Nil,
child: SparkPlan): SparkPlan

Note

•

2.2.2 AggUtils Utility

- 19/32 - Copyright © 2024 Jacek Laskowski

https://books.japila.pl/spark-structured-streaming-internals/StatefulAggregationStrategy

2.2.3 AggregationIterator

AggregationIterator is an abstraction of aggregation iterators (of UnsafeRows) that are used by aggregate physical operators to process rows
in a partition.

From scala.collection.Iterator:

Iterators are data structures that allow to iterate over a sequence of elements. They have a hasNext method for checking if there is a next
element available, and a next method which returns the next element and discards it from the iterator.

Implementations

ObjectAggregationIterator

SortBasedAggregationIterator

TungstenAggregationIterator

Creating Instance

AggregationIterator takes the following to be created:

Partition ID

Grouping NamedExpressions

Input Attributes

AggregateExpressions

Aggregate Attributes

Initial input buffer offset

Result NamedExpressions

Function to create a new MutableProjection given expressions and attributes ((Seq[Expression], Seq[Attribute]) => MutableProjection)

AggregationIterator is an abstract class and cannot be created directly. It is created indirectly for the concrete AggregationIterators.

AggregateModes

When created, AggregationIterator makes sure that there are at most 2 distinct AggregateMode s of the AggregateExpressions.

The AggregateMode s have to be a subset of the following mode pairs:

Partial and PartialMerge

Final and Complete

Process Row Function

AggregationIterator generates a processRow function when created.

abstract class AggregationIterator(...)
extends Iterator[UnsafeRow]

•

•

•

•

•

•

•

•

•

•

•

Abstract Class

•

•

processRow: (InternalRow, InternalRow) => Unit

2.2.3 AggregationIterator

- 20/32 - Copyright © 2024 Jacek Laskowski

https://www.scala-lang.org/api/2.13.8/scala/collection/Iterator.html

processRow is a procedure that takes two InternalRows and produces no output (returns Unit).

processRow is similar to the following definition:

AggregationIterator uses the aggregateExpressions, the aggregateFunctions and the inputAttributes to generate the processRow procedure.

processRow is used when:

MergingSessionsIterator is requested to processCurrentSortedGroup

ObjectAggregationIterator is requested to process input rows

SortBasedAggregationIterator is requested to processCurrentSortedGroup

TungstenAggregationIterator is requested to process input rows

AggregateFunctions

When created, AggregationIterator initializes AggregateFunctions in the aggregateExpressions (with initialInputBufferOffset).

initializeAggregateFunctions

initializeAggregateFunctions ...FIXME

initializeAggregateFunctions is used when:

AggregationIterator is requested for the aggregateFunctions

ObjectAggregationIterator is requested for the mergeAggregationBuffers

TungstenAggregationIterator is requested to switchToSortBasedAggregation

Generate Output Function

AggregationIterator creates a ResultProjection function when created.

processRow is a procedure

def processRow(currentBuffer: InternalRow, row: InternalRow): Unit = {
...

}

•

•

•

•

aggregateFunctions: Array[AggregateFunction]

initializeAggregateFunctions(
expressions: Seq[AggregateExpression],
startingInputBufferOffset: Int): Array[AggregateFunction]

•

•

•

generateOutput: (UnsafeRow, InternalRow) => UnsafeRow

2.2.3 AggregationIterator

- 21/32 - Copyright © 2024 Jacek Laskowski

generateOutput is used by the aggregate iterators when they are requested for the next element (aggregate result) and generate an output
for empty grouping with no input.

GENERATING RESULT PROJECTION

TungstenAggregationIterator overrides generateResultProjection for partial aggregation (non- Final and non- Complete aggregate modes).

generateResultProjection branches off based on the aggregate modes of the aggregates:

Final and Complete

Partial and PartialMerge

No modes

Aggregate Iterators Operations

ObjectAggregationIterator next element

outputForEmptyGroupingKeyWithoutInput

SortBasedAggregationIterator next element

outputForEmptyGroupingKeyWithoutInput

TungstenAggregationIterator next element

outputForEmptyGroupingKeyWithoutInput

•

•

•

•

•

•

generateResultProjection(): (UnsafeRow, InternalRow) => UnsafeRow

TungstenAggregationIterator

1.

2.

3.

Main Differences between Aggregate Modes

Final and Complete Partial and PartialMerge

Focus on DeclarativeAggregates to execute the
evaluateExpressions (while the allImperativeAggregateFunctions
simply eval)

Focus on TypedImperativeAggregates so they can
serializeAggregateBufferInPlace

An UnsafeProjection binds the resultExpressions to the
following:

groupingAttributes

the aggregateAttributes

An UnsafeProjection binds the groupingAttributes and
bufferAttributes to the following (repeated twice rightly):

the groupingAttributes

the bufferAttributes

Uses an UnsafeProjection to generate an UnsafeRow for the
following:

the current grouping key

the aggregate results

Uses an UnsafeProjection to generate an UnsafeRow for the
following:

the current grouping key

the current buffer

1.

2.

1.

2.

1.

2.

1.

2.

2.2.3 AggregationIterator

- 22/32 - Copyright © 2024 Jacek Laskowski

Final and Complete

For Final or Complete modes, generateResultProjection does the following:

Collects expressions to evaluate the final values of the DeclarativeAggregates and NoOp s for the AggregateFunctions among the
aggregateFunctions. generateResultProjection preserves the order of the evaluate expressions and NoOp s (so the i th aggregate function uses
the i th evaluation expressions)

Executes the newMutableProjection with the evaluation expressions and the aggBufferAttributes of the aggregateFunctions to create a
MutableProjection

Requests the MutableProjection to store the aggregate results (of all the DeclarativeAggregates) in a SpecificInternalRow

Creates an UnsafeProjection for the resultExpressions and the groupingAttributes with the aggregateAttributes (for the input schema)

Initializes the UnsafeProjection with the partIndex

In the end, generateResultProjection creates a result projection function that does the following:

Generates results for all expression-based aggregate functions (using the MutableProjection with the given currentBuffer)

Generates results for all imperative aggregate functions

Uses the UnsafeProjection to generate an UnsafeRow with the aggregate results for the current grouping key and the aggregate results

Partial and PartialMerge

For Partial or PartialMerge modes, generateResultProjection does the following:

Creates an UnsafeProjection for the groupingAttributes with the aggBufferAttributes of the aggregateFunctions

Initializes the UnsafeProjection with the partIndex

Collects the TypedImperativeAggregates from the aggregateFunctions (as they store a generic object in an aggregation buffer, and require
calling serialization before shuffling)

In the end, generateResultProjection creates a result projection function that does the following:

Requests the TypedImperativeAggregates (from the aggregateFunctions) to serializeAggregateBufferInPlace with the given currentBuffer

Uses the UnsafeProjection to generate an UnsafeRow with the current grouping key and buffer

No Modes

For no aggregate modes, generateResultProjection ...FIXME

Initializing Aggregation Buffer

initializeBuffer requests the expressionAggInitialProjection to store an execution result of an empty row in the given InternalRow (buffer).

initializeBuffer requests all the ImperativeAggregate functions to initialize with the buffer internal row.

initializeBuffer is used when:

MergingSessionsIterator is requested to newBuffer , initialize , next , outputForEmptyGroupingKeyWithoutInput

SortBasedAggregationIterator is requested to newBuffer, initialize, next and outputForEmptyGroupingKeyWithoutInput

Generating Process Row Function

generateProcessRow creates a mutable JoinedRow (of two InternalRows).

1.

2.

3.

4.

5.

1.

2.

3.

1.

2.

3.

1.

2.

initializeBuffer(
buffer: InternalRow): Unit

•

•

generateProcessRow(
expressions: Seq[AggregateExpression],
functions: Seq[AggregateFunction],
inputAttributes: Seq[Attribute]): (InternalRow, InternalRow) => Unit

2.2.3 AggregationIterator

- 23/32 - Copyright © 2024 Jacek Laskowski

generateProcessRow branches off based on the given AggregateExpressions, specified or not.

generateProcessRow works differently based on the type of the given AggregateFunctions:

DeclarativeAggregate

AggregateFunction

ImperativeAggregate

generateProcessRow is used when:

AggregationIterator is requested for the process row function

ObjectAggregationIterator is requested for the mergeAggregationBuffers function

TungstenAggregationIterator is requested to switch to sort-based aggregation

AGGREGATE EXPRESSIONS SPECIFIED

Merge Expressions

With AggregateExpressions specified, generateProcessRow determines so-called "merge expressions" (mergeExpressions) as follows:

For DeclarativeAggregate functions, the merge expressions are choosen based on the AggregateMode of the corresponding
AggregateExpression

For AggregateFunction functions, there are as many NoOp merge expressions (that do nothing and do not change a value) as there are
aggBufferAttributes in a AggregateFunction

Initialize Predicates

generateProcessRow finds AggregateExpressions with filters specified.

When in Partial or Complete aggregate modes, generateProcessRow ...FIXME

Update Functions

generateProcessRow determines so-called "update functions" (updateFunctions) among ImperativeAggregate functions (in the given
AggregateFunctions) to be as follows:

FIXME

Where AggregateExpressions come from

Caller AggregateExpressions

AggregationIterator aggregateExpressions

ObjectAggregationIterator aggregateExpressions

TungstenAggregationIterator aggregateExpressions

functions Argument

•

•

•

•

•

•

•

AggregateMode Merge Expressions

Partial or Complete Update Expressions of a DeclarativeAggregate

PartialMerge or Final Merge Expressions of a DeclarativeAggregate

•

•

2.2.3 AggregationIterator

- 24/32 - Copyright © 2024 Jacek Laskowski

Update Projection

generateProcessRow uses the newMutableProjection generator function to create a MutableProjection based on the mergeExpressions and the
aggBufferAttributes of the given AggregateFunctions with the given inputAttributes .

Process Row Function

In the end, generateProcessRow creates a procedure that accepts two InternalRows (currentBuffer and row) that does the following:

Processes all expression-based aggregate functions (using updateProjection). generateProcessRow requests the MutableProjection to store the
output in the currentBuffer . The output is created based on the currentBuffer and the row .

Processes all imperative aggregate functions. generateProcessRow requests every "update function" (in updateFunctions) to execute with the given
currentBuffer and the row .

NO AGGREGATE EXPRESSIONS

With no AggregateExpressions (expressions), generateProcessRow creates a function that does nothing ("swallows" the input).

1.

2.

2.2.3 AggregationIterator

- 25/32 - Copyright © 2024 Jacek Laskowski

2.2.4 KVSorterIterator

KVSorterIterator is...FIXME

2.2.4 KVSorterIterator

- 26/32 - Copyright © 2024 Jacek Laskowski

2.2.5 ObjectAggregationIterator

ObjectAggregationIterator is an AggregationIterator for ObjectHashAggregateExec physical operator.

Creating Instance

ObjectAggregationIterator takes the following to be created:

Partition ID

Output Attributes (unused)

Grouping NamedExpressions

AggregateExpressions

Aggregate Attributes

Initial input buffer offset

Result NamedExpressions

Function to create a new MutableProjection given expressions and attributes ((Seq[Expression], Seq[Attribute]) => MutableProjection)

Original Input Attributes

Input InternalRows

spark.sql.objectHashAggregate.sortBased.fallbackThreshold

numOutputRows metric

spillSize metric

numTasksFallBacked metric

While being created, ObjectAggregationIterator starts processing input rows.

ObjectAggregationIterator is created when:

ObjectHashAggregateExec physical operator is requested to doExecute

outputForEmptyGroupingKeyWithoutInput

outputForEmptyGroupingKeyWithoutInput ...FIXME

outputForEmptyGroupingKeyWithoutInput is used when:

ObjectHashAggregateExec physical operator is executed (with no input rows and no groupingExpressions)

Processing Input Rows

processInputs creates an ObjectAggregationMap.

For no groupingExpressions, processInputs uses the groupingProjection to generate a grouping key (for null row) and finds the aggregation
buffer that is used to process all input rows (of a partition).

Otherwise, processInputs uses the sortBased flag to determine whether to use the ObjectAggregationMap or switch to a SortBasedAggregator .

processInputs uses the groupingProjection to generate a grouping key for an input row and finds the aggregation buffer that is used to
process the row (of a partition). processInputs continues processing input rows until there are no more rows available or the size of the
ObjectAggregationMap reaches spark.sql.objectHashAggregate.sortBased.fallbackThreshold.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

outputForEmptyGroupingKeyWithoutInput(): UnsafeRow

•

processInputs(): Unit

2.2.5 ObjectAggregationIterator

- 27/32 - Copyright © 2024 Jacek Laskowski

When the size of the ObjectAggregationMap reaches spark.sql.objectHashAggregate.sortBased.fallbackThreshold and there are still input rows
in the partition, processInputs prints out the following INFO message to the logs, turns the sortBased flag on and increments the
numTasksFallBacked metric.

For sort-based aggregation (the sortBased flag is enabled), processInputs requests the ObjectAggregationMap to dumpToExternalSorter and
create a KVSorterIterator . processInputs creates a SortBasedAggregator , uses the groupingProjection to generate a grouping key for every input
row and adds them to the SortBasedAggregator .

In the end, processInputs creates the aggBufferIterator (from the ObjectAggregationMap or SortBasedAggregator based on the sortBased flag).

processInputs is used when:

ObjectAggregationIterator is created

Logging

Enable ALL logging level for org.apache.spark.sql.execution.aggregate.ObjectAggregationIterator logger to see what happens inside.

Add the following line to conf/log4j2.properties :

Refer to Logging.

Aggregation hash map size [size] reaches threshold capacity ([fallbackCountThreshold] entries),
spilling and falling back to sort based aggregation.
You may change the threshold by adjusting the option spark.sql.objectHashAggregate.sortBased.fallbackThreshold

•

log4j.logger.org.apache.spark.sql.execution.aggregate.ObjectAggregationIterator=ALL

2.2.5 ObjectAggregationIterator

- 28/32 - Copyright © 2024 Jacek Laskowski

2.2.6 ObjectAggregationMap

ObjectAggregationMap is an in-memory map to store aggregation buffer for hash-based aggregation (using ObjectAggregationIterator).

2.2.6 ObjectAggregationMap

- 29/32 - Copyright © 2024 Jacek Laskowski

2.2.7 PhysicalAggregation Scala Extractor

PhysicalAggregation is a Scala extractor to destructure an Aggregate logical operator into a four-element tuple (ReturnType) with the following
elements:

NamedExpressions of the grouping keys

AggregateExpressions

NamedExpressions of the result

Child logical operator

Learn more in the Scala extractor objects.

Destructuring Aggregate Logical Operator

unapply destructures an Aggregate logical operator into a four-element ReturnType tuple.

unapply creates a EquivalentExpressions (to eliminate duplicate aggregate expressions and avoid evaluating them multiple times).

unapply collects AggregateExpressions in the resultExpressions of the given Aggregate logical operator.

unapply does some other magic but it does not look interesting, but the main idea should already be explained 😉

unapply is used when:

StatefulAggregationStrategy (Spark Structured Streaming) execution planning strategy is executed

Aggregation execution planning strategy is executed

1.

2.

3.

4.

ReturnType

(Seq[NamedExpression], Seq[AggregateExpression], Seq[NamedExpression], LogicalPlan)

Scala Extractor Object

type ReturnType =
(Seq[NamedExpression], // Grouping Keys
Seq[AggregateExpression], // Aggregate Functions
Seq[NamedExpression], // Result
LogicalPlan) // Child

unapply(
a: Any): Option[ReturnType]

Some Other Magic

•

•

2.2.7 PhysicalAggregation Scala Extractor

- 30/32 - Copyright © 2024 Jacek Laskowski

http://docs.scala-lang.org/tutorials/tour/extractor-objects.html
https://books.japila.pl/spark-structured-streaming-internals/execution-planning-strategies/StatefulAggregationStrategy

2.2.8 SortBasedAggregationIterator

SortBasedAggregationIterator is an AggregationIterator that is used by SortAggregateExec physical operator to process rows in a partition.

Creating Instance

SortBasedAggregationIterator takes the following to be created:

Partition ID

Grouping NamedExpressions

Value Attributes

Input Iterator (InternalRows)

AggregateExpressions

Aggregate Attributes

Initial input buffer offset

Result NamedExpressions

Function to create a new MutableProjection given expressions and attributes ((Seq[Expression], Seq[Attribute]) => MutableProjection)

number of output rows metric

SortBasedAggregationIterator initializes immediately.

SortBasedAggregationIterator is created when:

SortAggregateExec physical operator is requested to doExecute

INITIALIZATION

initialize is a procedure (returns Unit) so what happens inside stays inside (paraphrasing the former advertising slogan of Las Vegas, Nevada).

initialize ...FIXME

Performance Metrics

SortBasedAggregationIterator is given the performance metrics of the owning SortAggregateExec aggregate physical operator when created.

The metrics are displayed as part of SortAggregateExec aggregate physical operator (e.g. in web UI in Details for Query).

•

•

•

•

•

•

•

•

•

•

•

initialize(): Unit

Procedure

2.2.8 SortBasedAggregationIterator

- 31/32 - Copyright © 2024 Jacek Laskowski

https://idioms.thefreedictionary.com/what+happens+in+Vegas+stays+in+Vegas

2.2.8 SortBasedAggregationIterator

- 32/32 - Copyright © 2024 Jacek Laskowski

	The Internals of Spark SQL
	1. The Internals of Spark SQL (Apache Spark 3.5.3)
	2. Features
	2.1 Features
	2.2 Aggregate Queries
	2.2.1 Aggregate Queries
	Whole-Stage Code Generation
	Adaptive Query Execution
	Configuration Properties
	High-Level Operators
	SQL
	Dataset

	Group Types
	CUBE
	GROUPBY
	PIVOT
	ROLLUP

	UnsupportedOperationChecker
	Basic Aggregation
	Multi-Dimensional Aggregation
	Aggregate Operators
	agg
	cube
	groupBy
	groupByKey
	GROUPING SETS
	rollup

	Catalyst DSL
	Aggregate Query Execution
	Logical Analysis
	Logical Optimizations
	Cost-Based Optimization
	PushDownPredicate

	Physical Optimizations
	ReplaceHashWithSortAgg

	Query Planning

	Demo

	2.2.2 AggUtils Utility
	planAggregateWithoutDistinct
	planAggregateWithOneDistinct
	Creating Physical Operator for Aggregation
	Planning Execution of Streaming Aggregation
	Creating Streaming Aggregate Physical Operator

	2.2.3 AggregationIterator
	Implementations
	Creating Instance
	AggregateModes
	Process Row Function
	AggregateFunctions
	initializeAggregateFunctions
	Generate Output Function
	Generating Result Projection
	Final and Complete
	Partial and PartialMerge
	No Modes

	Initializing Aggregation Buffer
	Generating Process Row Function
	Aggregate Expressions Specified
	Merge Expressions
	Initialize Predicates
	Update Functions
	Update Projection
	Process Row Function

	No Aggregate Expressions

	2.2.4 KVSorterIterator
	2.2.5 ObjectAggregationIterator
	Creating Instance
	outputForEmptyGroupingKeyWithoutInput
	Processing Input Rows
	Logging

	2.2.6 ObjectAggregationMap
	2.2.7 PhysicalAggregation Scala Extractor
	Destructuring Aggregate Logical Operator

	2.2.8 SortBasedAggregationIterator
	Creating Instance
	Initialization

	Performance Metrics

