The Internals of Spark SQL

None

Jacek Laskowski

1) © 2024 Jacek Laskowski

Table

of contents

Table of contents

1. The Internals of Spark SQL (Apache Spark 3.5.3)

2. Features

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

Features

Aggregate Queries

Adaptive Query Execution

Bloom Filter Join

Bucketing

Cache Serialization

Catalog Plugin API

Columnar Execution

Common Table Expressions
Configuration Properties
Connector Expressions
Cost-Based Optimization
Default Columns
Direct Queries on Files
Dynamic Partition Pruning
File-Based Data Scanning
Generated Columns
Hidden File Metadata
Hints (SQL)
Join Queries
Logging
Metadata Columns
Named Function Arguments
Parameterized Queries
Partition File Metadata Caching
Runtime Filtering
Spark Connect
Spark Thrift Server
Statistics
Storage-Partitioned Joins
Subexpression Elimination
Subqueries

Table-Valued Functions

-2/32-

Copyright © 2024 Jacek Laskowski

2.34 Time Travel
2.35 Transactional Writes
2.36 User-Defined Functions
2.37 Vectorized Decoding
2.38 ANSI Intervals
2.39 Catalog Plugin API and Multi-Catalog Support
2.40 Explaining Query Plans Improved
2.41 Observable Metrics
2.42 Hive Integration
2.43 Dynamic Partition Inserts
2.44 Vectorized Query Execution
2.45 Whole-Stage Code Generation
2.46 Catalyst DSL
2.47 Variable Substitution

3. Query Execution
3.1 Query Execution
3.2 Catalyst
3.3 Catalyst Expressions
3.4 Execution Planning Strategies
3.5 Logical Query Plan Analyzer
3.6 Logical Analysis Rules
3.7 Logical Operators
3.8 Logical Optimizations
3.9 Physical Operators

3.10 Physical Optimizations

3.11 QueryExecution — Structured Query Execution Pipeline

3.12 QueryPlanningTracker
3.13 SparkOptimizer — Logical Query Plan Optimizer
3.14 SparkPlanner — Spark Query Planner
4. Internals
4.1 Spark SQL
4.2 DataSource — Pluggable Data Provider Framework
4.3 Developer API
4.4 ExecutionListenerBus
4.5 ExecutionListenerManager
4.6 SharedState — State Shared Across SparkSessions
4.7 SQLConf

4.8 SQLConfHelper

-3/32-

Table of contents

Copyright © 2024 Jacek Laskowski

4.9 StaticSQLConf — Static Configuration Properties
4.10 SparkSession Registries

4.11 Encoder

4.12 SQLExecution

4.13 SQLMetric

4.14 Tungsten Execution Backend

4.15 RDDs

. SOL

5.1 SQL Parsing Framework

5.2 AbstractSqlParser

5.3 AstBuilder — ANTLR-based SQL Parser
5.4 CatalystSqlParser

5.5 ParserInterface

5.6 SparkSqlParser — Default SQL Parser
5.7 SparkSqlAstBuilder — ANTLR-based SQL Parser
5.8 VariableSubstitution

. Connectors

6.1 Connectors (Data Sources)

6.2 Avro

6.3 Files

6.4 Hive

6.5 JDBC

6.6 Kafka

6.7 Noop

6.8 Parquet

6.9 DataWritingSparkTask Utility

6.10 DataSourceV2Utils Utility

6.11 OutputWriter

. High-Level APIs

7.1 Column

7.2 ColumnarRule

7.3 Connector API

7.4 Data Types

7.5 DataFrame — Dataset of Rows with RowEncoder

7.6 [NOTE]

7.7 See https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/

package.scala#L45[org.apache.spark.package.scala].

7.8 DataFrameNaFunctions — Working With Missing Data

-4/32 -

Table of contents

Copyright © 2024 Jacek Laskowski

7.9 DataFrameReader
7.10 DataFrameStatFunctions
7.11 DataFrameWriter
7.12 DataFrameWriterV2
7.13 Dataset
7.14 Dataset API
7.15 DataSource V1 API
7.16 Encoders Utility
7.17 KeyValueGroupedDataset
7.18 Observation
7.19 QueryExecutionListener
7.20 RelationalGroupedDataset
7.21 SparkSession — The Entry Point to Spark SQL
7.22 SparkSession.Builder
7.23 SparkSessionExtensions
7.24 Standard Functions
7.25 TypedColumn
7.26 Window Functions
8. Web UI
8.1 SQL/DataFrame Ul
8.2 AllExecutionsPage
8.3 ExecutionPage
8.4 SQLAppStatusListener
8.5 SQLAppStatusStore
8.6 SQLTab
8.7 SparkListenerSQLExecutionEnd
9. Demo
9.1 Demos
9.2 Demo: Adaptive Query Execution
9.3 Demo: Connecting Spark SQL to Hive Metastore (with Remote Metastore Server)
9.4 The only required environment variable is JAVA_HOME. All others are
9.5 optional. When running a distributed configuration it is best to
9.6 setJAVA_HOME in this file, so that it is correctly defined on
9.7 remote nodes.
9.8 Demo: Mult-Dimensional Aggregations
9.9 Demo: Developing CatalogPlugin
9.10 Demo: Dynamic Partition Pruning

9.11 Demo: Hive Partitioned Parquet Table and Partition Pruning

-5/32 -

Table of contents

Copyright © 2024 Jacek Laskowski

Table of contents

9.12 Demo: ObjectHashAggregateExec and Sort-Based Fallback Tasks 0
9.13 Demo: Spilling 0
9.14 Demo: Using JDBC Data Source to Access PostgreSQL 0
10. Misc 0
10.1 AggregatingAccumulator 0
10.2 DistinctKeyVisitor 0
10.3 FilterEvaluatorFactory 0
10.4 JoinSelectionHelper 0
10.5 PushDownUtils 0
10.6 UnsafeExternalRowSorter 0
10.7 BindReferences 0
10.8 IntervalUtils 0
10.9 ExplainUtils 0
10.10 SerializerBuildHelper 0
10.11 Datasets, DataFrames and RDDs 0
10.12 Dataset API and SQL 0
10.13 DDLUtils 0
10.14 implicits Object -- Implicits Conversions 0
10.15 [TIP] 0
10.16 In Scala REPL-based environments, e.g. spark-shell, use :imports to know what imports are in scope. 0
10.17 Row 0
10.18 Data Source API 0
10.19 Column API -- Column Operators 0
10.20 Caching and Persistence 0
10.21 Checkpointing 0
10.22 [NOTE] 0
10.23 Dataset checkpointing in Spark SQL uses checkpointing to truncate the lineage of the underlying RDD of a Dataset being
checkpointed. 0
10.24 Refer to spark-logging.md[Logging]. 0
10.25 Performance Tuning and Debugging 0
10.26 CheckAnalysis — Analysis Validation 0
10.27 CatalystTypeConverters Helper Object 0
10.28 SubExprUtils Utility 0
10.29 PredicateHelper 0
10.30 ExtractEquiJoinKeys Scala Extractor 0
10.31 ExtractSingleColumnNullAwareAntiJoin Scala Extractor 0
10.32 ExtractjoinWithBuckets Scala Extractor 0
10.33 PhysicalOperation Scala Extractor 0

-6/32 - Copyright © 2024 Jacek Laskowski

Table of contents

10.34 [NOTE] 0
10.35 unapply is used when...FIXME 0
10.36 KnownSizeEstimation 0

-7/32 - Copyright © 2024 Jacek Laskowski

1. The Internals of Spark SQL (Apache Spark 3.5.3)

1. The Internals of Spark SQL (Apache Spark 3.5.3)

Welcome to The Internals of Spark SQL online book!
I'm Jacek Laskowski, a Freelance Data(bricks) Engineer specializing in Apache Spark (incl. Spark SQL and Spark Structured Streaming),
Delta Lake, Databricks, and Apache Kafka (incl. Kafka Streams) with brief forays into a wider data engineering space (e.g., Trino, Dask and

dbt, mostly during Warsaw Data Engineering meetups).

I'm very excited to have you here and hope you will enjoy exploring the internals of Spark SQL as much as I have.

I?lz'mnery O'Connor

I write to discover what I know.

&
'4he Internals Of" series

I'm also writing other online books in the "The Internals Of" series. Please visit "The Internals Of" Online Books home page.

Expect text and code snippets from a variety of public sources. Attribution follows.

Now, let's take a deep dive into Spark SQL @

Last update: 2024-11-30

-8/32 - Copyright © 2024 Jacek Laskowski

https://pl.linkedin.com/in/jaceklaskowski
https://books.japila.pl/apache-spark-internals/
https://books.japila.pl/spark-sql-internals/
https://books.japila.pl/spark-structured-streaming-internals/
https://books.japila.pl/delta-lake-internals/
https://www.databricks.com/
https://books.japila.pl/kafka-internals/
https://books.japila.pl/kafka-streams-internals/
https://trino.io/
https://www.dask.org/
https://www.getdbt.com/
https://www.meetup.com/Warsaw-Data-Engineering/
https://books.japila.pl

2. Features

2. Features

2.1 Features

The following are the features of Spark SQL that help place it in the top of the modern distributed SQL query processing engines:

* Adaptive Query Execution

* Bloom Filter Join

* Catalog Plugin API

¢ Columnar Execution

» Connector API

* Default Columns

* Direct Queries on Files

* Dynamic Partition Pruning

* File-Based Data Scanning

* Hints

* Metadata Columns

* Named Function Arguments

* Spark Connect

* Table-Valued Functions

* Time Travel

* Variable Substitution

* Vectorized Parquet Decoding (Reader)
* Whole-Stage Code Generation

¢ others (listed in the menu on the left)

-9/32-

Copyright © 2024 Jacek Laskowski

2.2 Aggregate Queries

2.2 Aggregate Queries

2.2.1 Aggregate Queries

Aggregate Queries (Aggregates) are structured queries with Aggregate logical operator.
Aggregate Queries calculate single value for a set of rows.
Aggregate Queries can be broken down to the following sections:

1. Grouping (using GROUP BY clause in SQL or Dataset.groupBy operator) that arranges rows into groups (possibly guarded by HAVING SQL
clause)

2. Aggregation (using Aggregate Functions) to apply to a set of rows and calculate single values per groups

Whole-Stage Code Generation

Whole-Stage Code Generation is supported by AggregateCodegenSupport physical operators only with supportCodegen flag enabled.

Adaptive Query Execution

Adaptive Query Execution uses ReplaceHashWithSortAgg physical optimization among the queryStagePreparationRules.

Configuration Properties
Aggregate Queries can be fine-tuned with the following configuration properties:

* spark.sql.execution.replaceHashWithSortAgg
* spark.sql.retainGroupColumns

e others

High-Level Operators

Aggregate is a logical representation of the high-level operators in SQL or Dataset AP

saL
Aggregate represents the following SQL clauses:

* GROUP BY (incl. GROUPING SETS, WITH CUBE, WITH ROLLUP)
* visitCommonSelectQueryClausePlan

DATASET
Aggregate represents the following high-level operators in Dataset API:

* KeyValueGroupedDataset.agg

* RelationalGroupedDataset.agg

* RelationalGroupedDataset.avg

* RelationalGroupedDataset.count
* RelationalGroupedDataset.max
* RelationalGroupedDataset.mean
* RelationalGroupedDataset.min

* RelationalGroupedDataset.sum

-10/32 - Copyright © 2024 Jacek Laskowski

2.2.1 Aggregate Queries

Group Types

GroupType indicates the kind of an aggregation.
CUBE
GROUPBY
PIVOT

ROLLUP

UnsupportedOperationChecker

UnsupportedOperationChecker is responsible for asserting correctness of aggregation queries (among others).

ﬁXME List unsupported features

Basic Aggregation

Basic Aggregation calculates aggregates over a group of rows using aggregate operators (possibly with aggregate functions).

Multi-Dimensional Aggregation

Multi-Dimensional Aggregate Operators are variants of groupBy operator to create queries for subtotals, grand totals and superset of
subtotals in one go.

It is assumed that using one of the operators is usually more efficient (than union and groupBy) as it gives more freedom for query
optimization.

Beside Dataset.cube and Dataset.rollup operators, Spark SQL supports GROUPING SETS clause in SQL mode only.

\J
$PARK-6356

Support for multi-dimensional aggregate operators was added in [SPARK-6356] Support the ROLLUP/CUBE/GROUPING SETS/grouping() in
SQLContext.

Aggregate Operators

AGG

Aggregates over (applies an aggregate function on) a subset of or the entire Dataset (i.e., considering the entire data set as one group)

Creates a RelationalGroupedDataset

3
Kote

Dataset.agg is simply a shortcut for Dataset.groupBy().agg .

CUBE

cube(

cols: Column*): RelationalGroupedDataset
cube(

coll: String,

cols: String*): RelationalGroupedDataset

GROUP BY expressions WITH CUBE
GROUP BY CUBE(expressions)

-11/32 - Copyright © 2024 Jacek Laskowski

https://issues.apache.org/jira/browse/SPARK-6356
https://issues.apache.org/jira/browse/SPARK-6356

2.2.1 Aggregate Queries

cube multi-dimensional aggregate operator returns a RelationalGroupedDataset to calculate subtotals and a grand total for every
permutation of the columns specified.

cube is an extension of groupBy operator that allows calculating subtotals and a grand total across all combinations of specified group of
n + 1 dimensions (with n being the number of columns as cols and coll and 1 for where values become null, i.e. undefined).

cube returns RelationalGroupedDataset that you can use to execute aggregate function or operator.

\J
&he vs rollup

cube is more than rollup operator; i.e. cube does rollup with aggregation over all the missing combinations given the columns.

GROUPBY

Groups the rows in a Dataset by columns (as Column expressions or names).

Creates a RelationalGroupedDataset

Used for untyped aggregates using DataFrame s. Grouping is described using column expressions or column names.

GROUPBYKEY

Groups records (of type T) by the input func and creates a KeyValueGroupedDataset to apply aggregation to.
Used for typed aggregates using Dataset s with records grouped by a key-defining discriminator function

import org.apache.spark.sql.expressions.scalalang._
val q = dataset
.groupByKey(_.productId).
.agg(typed. sum[Token] (_.score))
.toDF("productId", "sum")
.orderBy('productId)

spark
.readStream
.format("rate")
. load
.as[(Timestamp, Long)]
.groupByKey { case (ts, v) =>v %2 }
-agg()
.writeStream
.format("console")
.trigger(Trigger.ProcessingTime(5.seconds))
.outputMode("complete")
.start

GROUPING SETS

GROUP BY (expressions) GROUPING SETS (expressions)
GROUP BY GROUPING SETS (expressions)

3
Kote

SQL's GROUPING SETS is the most general aggregate "operator” and can generate the same dataset as using a simple groupBy, cube and rollup
operators.

import java.time.LocalDate
import java.sql.Date
val expenses = Seq(
((2012, Month.DECEMBER, 12), 5),
((2016, Month.AUGUST, 13), 10),
((2017, Month.MAY, 27), 15))
.map { case ((yy, mm, dd), a) => (LocalDate.of(yy, mm, dd), a) }
.map { case (d, a) => (d.toString, a) }
.map { case (d, a) => (Date.value0f(d), a) }
.toDF("date", "amount")
scala> expenses.show
Sommmmnosos Ao +
| date|amount |
Feommmmme e R +
|2012-12-12| 5
|2016-08-13| 10|

-12/32 - Copyright © 2024 Jacek Laskowski

2.2.1 Aggregate Queries

|2017-05-27| 15|
R Fomm +

// rollup time!

val g = expenses
.rollup(year($"date") as "year", month($"date") as "month")
.agg(sum("amount") as "amount")
.sort($"year".asc_nulls_last, $"month".asc_nulls_last)

scala> q.show

R e e +
| year |month|amount
P — i — +
[2012| 12| 5
|2012| nult| 5]

|2016] 8] 10|
|2016] null| 10
|2027] 5] 15
|2017| nutl| 15|
|[nutll| null]| 30|
P — i — +

GROUPING SETS clause generates a dataset that is equivalent to union operator of multiple groupBy operators.

val sales = Seq(

("Warsaw", 2016, 100),

("Warsaw", 2017, 200),

("Boston", 2015, 50),

("Boston", 2016, 150),

("Toronto", 2017, 50)
).toDF("city", "year", "amount")
sales.createOrReplaceTempView("sales")

// equivalent to rollup("city", "year")
val g = sqL("""
SELECT city, year, sum(amount) as amount
FROM sales
GROUP BY city, year
GROUPING SETS ((city, year), (city), ())
ORDER BY city DESC NULLS LAST, year ASC NULLS LAST

oy
scala> q.show
Fommmmo - Feomm et +
city|year|amount|
oo S —— +

| Warsaw|2016| 100
Warsaw	2017	200
Warsaw	null	300
Toronto[2017	50	
Toronto	nulL	50
Boston	2015	50
Boston	2016	150
Boston	null	200
null	null	550 <-- grand total across all cities and years
Fommmmo - Feomm et +

// equivalent to cube("city", "year")
// note the additional (year) grouping set
val q = sqL("""
SELECT city, year, sum(amount) as amount
FROM sales
GROUP BY city, year
GROUPING SETS ((city, year), (city), (year), ())
ORDER BY city DESC NULLS LAST, year ASC NULLS LAST

oy
scala> q.show

Fommeme o Fomm et +
| city|year|amount|
fromoosoo S — +

| Warsaw|2016| 100
Warsaw	2017	200
Warsaw	null	300
Toronto[2017	50	
Toronto	nulL	50
Boston	2015	50
Boston	2016	150
Boston	null	200
nult]	2015	50
null]	2016] 250 <-- total across all cities in 2016	
null]	2017	250
null	null]	550]
fpommmmes L +

GROUPING SETS clause is parsed in withAggregation parsing handler (in AstBuilder) and becomes a GroupingSets logical operator internally.

ROLLUP

rollup(
cols: Column*): RelationalGroupedDataset
rollup(

-13/32 - Copyright © 2024 Jacek Laskowski

coll: String,
cols: String*): RelationalGroupedDataset

GROUP BY expressions WITH ROLLUP
GROUP BY ROLLUP(expressions)

2.2.1 Aggregate Queries

rollup gives a RelationalGroupedDataset to calculate subtotals and a grand total over (ordered) combination of groups.

rollup is an extension of groupBy operator that calculates subtotals and a grand total across specified group of n + 1 dimensions (with n

being the number of columns as cols and coll and 1 for where values become null, i.e. undefined).

Y
Kote

SETS, CUBE, and ROLLUP]

rollup operator is commonly used for analysis over hierarchical data; e.g. total salary by department, division, and company-wide total.

See PostgreSQL's https://www.postgresql.org/docs/current/static/queries-table-expressions.html#QUERIES-GROUPING-SETS[7.2.4. GROUPING

Y
Kote

when used with 3 columns: a, b, and c).

rollup operator is equivalent to GROUP BY \... WITH ROLLUP in SQL (which in turn is equivalent to GROUP BY \... GROUPING SETS \((a,b,c),(a,b),(a),())

From Using GROUP BY with ROLLUP, CUBE, and GROUPING SETS in Microsoft's TechNet:

The ROLLUP, CUBE, and GROUPING SETS operators are extensions of the GROUP BY clause. The ROLLUP, CUBE, or GROUPING SETS
operators can generate the same result set as when you use UNION ALL to combine single grouping queries; however, using one of the

GROUP BY operators is usually more efficient.

From PostgreSQL's 7.2.4. GROUPING SETS, CUBE, and ROLLUP:

References to the grouping columns or expressions are replaced by null values in result rows for grouping sets in which those columns do

not appear.

From Summarizing Data Using ROLLUP in Microsoft's TechNet:

The ROLLUP operator is useful in generating reports that contain subtotals and totals. (...) ROLLUP generates a result set that shows

aggregates for a hierarchy of values in the selected columns.

// Borrowed from Microsoft's "Summarizing Data Using ROLLUP" article
val inventory = Seq(

("table", "blue", 124),

("table", "red", 223),

("chair", "blue", 101),

("chair", "red", 210)).toDF("item", "color", "quantity")

scala> inventory.show
oo Fooooo o +

| item|color|quantity|

ERN— S frmmmmmes +
|chair| blue| 101]
chair	red	210
table	blue	124
table	red	223
E e r— +

// ordering and empty rows done manually for demo purposes
scala> inventory.rollup("item", "color").sum().show

E e S —— +
| item|color|sum(quantity)|
oo +ommm S +
|chair| blue| 101]
|chair| red| 210|
|chair| null] 311

[|
table	blue	124
table	red	223
table	null	347
[
null] null	658	
E e S —— +

-14/32 -

Copyright © 2024 Jacek Laskowski

https://www.postgresql.org/docs/current/static/queries-table-expressions.html#QUERIES-GROUPING-SETS[7.2.4
https://technet.microsoft.com/en-us/library/bb522495(v=sql.105).aspx
https://www.postgresql.org/docs/current/static/queries-table-expressions.html#QUERIES-GROUPING-SETS
https://technet.microsoft.com/en-us/library/ms189305(v=sql.90).aspx

From Hive's Cubes and Rollups:

2.2.1 Aggregate Queries

WITH ROLLUP is used with the GROUP BY only. ROLLUP clause is used with GROUP BY to compute the aggregate at the hierarchy levels of

a dimension.
GROUP BY a, b, ¢ with ROLLUP assumes that the hierarchy is "a" drilling down to "b" drilling down to "c".

GROUP BY a, b, ¢, WITH ROLLUP is equivalent to GROUP BY a, b, c GROUPING SETS ((a, b, ¢), (a, b), (a), ()).

)
Hote

Read up on ROLLUP in Hive's LanguageManual in Grouping Sets, Cubes, Rollups, and the GROUPING__ID Function.

// Borrowed from http://stackoverflow.com/a/27222655/1305344
val quarterlyScores = Seq(
("winter2014", "Agata", 99),
("winter2014", "Jacek", 97),
("summer2015", "Agata", 100),
("summer2015", "Jacek", 63),
("winter2015", "Agata", 97),
("winter2015", "Jacek", 55),
("summer2016", "Agata", 98),
("summer2016", "Jacek", 97)).toDF("period", "student", "score")

scala> quarterlyScores.show
e N sy +
| period|student|score|
Fommmmeeeem Fommm e teeme +
winter2014	Agata	99
winter2014	Jacek	97
summer2015	Agata	100
summer2015	Jacek	63
winter2015	Agata	97
winter2015	Jacek	55
summer2016	Agata	98
summer2016	Jacek	97
T — S S +

// ordering and empty rows done manually for demo purposes
scala> quarterlyScores.rollup("period", "student").sum("score").show

+ s + -+
| period|student|sum(score)|
+ Sromomoss + -+
|winter2014| Agata| 99|
|winter2014| Jacek| 97|
|winter2014| null| 196
| |
| summer2015| Agatal 100| |
| summer2015| Jacek| 63|
| summer2015| nulL| 163|
| |
|winter2015| Agata| 97|
|winter2015| Jacek| 55|
|winter2015| null| 152
| |
| summer2016| Agata 98| |
| summer2016| Jacek| 97|
| summer2016| nulL| 195|
| |
| null| null] 706|
+ fmommooo + -+

From PostgreSQL's 7.2.4. GROUPING SETS, CUBE, and ROLLUP:

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists of elements in parentheses. In the

latter case, the sublists are treated as single units for the purposes of generating the individual grouping sets.

// using struct function
scala> inventory.rollup(struct("item", "color") as "(item,color)").sum().show

T S — +
| (item,color) |sum(quantity)|
e fomcccooccocas +
| [table,red]| 223|
| [chair,blue] | 101]
null	658
[chair,red]	210
[table,blue]	124
T S — +

// using expr function
scala> inventory.rollup(expr("(item, color)") as "(item, color)").sum().show

-15/32 -

Copyright © 2024 Jacek Laskowski

https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation,+Cube,+Grouping+and+Rollup#EnhancedAggregation,Cube,GroupingandRollup-CubesandRollups
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+GroupBy#LanguageManualGroupBy-GroupingSets,Cubes,Rollups,andtheGROUPING__IDFunction
https://www.postgresql.org/docs/current/static/queries-table-expressions.html#QUERIES-GROUPING-SETS

2.2.1 Aggregate Queries

e S e +
| (item, color)|sum(quantity)|
Sroooococcoood Doocooooocoooo +
| [table,red]| 223|
| [chair,blue]| 101]
null	658
[chair,red]	210
[table,blue]	124
L S — S +

Internally, rollup converts the Dataset into a DataFrame and then creates a RelationalGroupedDataset (with RollupType group type).

b

Read up on rollup in Deeper into Postgres 9.5 - New Group By Options for Aggregation.

Catalyst DSL

Catalyst DSL defines groupBy operator to create aggregation queries.

Aggregate Query Execution

LOGICAL ANALYSIS
The following logical analysis rules handle Aggregate logical operator:

* CleanupAliases

¢ ExtractGenerator

* ExtractWindowExpressions

* GlobalAggregates

* ResolveAliases

* ResolveGroupingAnalytics

* ResolveOrdinallnOrderByAndGroupBy
* ResolvePivot

LOGICAL OPTIMIZATIONS
The following logical optimizations handle Aggregate logical operator:

* DecorrelateInnerQuery

* InjectRuntimeFilter

* MergeScalarSubqueries

* OptimizeMetadataOnlyQuery
* PullOutGroupingExpressions

* PullupCorrelatedPredicates

* ReplaceDistinctWithAggregate

* ReplaceDeduplicatelithAggregate
* RewriteAsOflJoin

* RewriteCorrelatedScalarSubquery
* RewriteDistinctAggregates

* RewriteExceptAll

* RewriteIntersectAll

» V2ScanRelationPushDown

-16/32 - Copyright © 2024 Jacek Laskowski

https://www.compose.com/articles/deeper-into-postgres-9-5-new-group-by-options-for-aggregation/

2.2.1 Aggregate Queries

Cost-Based Optimization

Aggregate operators are handled by BasicStatsPlanVisitor for visitDistinct and visitAggregate

PushDownPredicate

PushDownPredicate logical plan optimization applies so-called filter pushdown to a Pivot operator when under Filter operator and with
all expressions deterministic.

import org.apache.spark.sql.catalyst.optimizer.PushDownPredicate

val q = visits
.groupBy("city")
.pivot("year")
.count()
.where($"city" === "Boston")

val pivotPlanAnalyzed = q.queryExecution.analyzed

scala> println(pivotPlanAnalyzed.numberedTreeString)

00 Filter (city#8 = Boston)

01 +- Project [city#8, __pivot_count(1) AS “count” AS ‘count(l) AS '‘count’ ' #142[0] AS 2015#143L, __pivot_count(1) AS ‘count’ AS ‘count(1) AS '‘count’ ' '#142[1] AS 2016#144L
__pivot_count(1) AS ‘count® AS ‘count(1l) AS '‘count’''#142[2] AS 2017#145L

02 +- Aggregate [city#8], [city#8, pivotfirst(year#9, count(1) AS ‘count #134L, 2015, 2016, 2017, 0, 0) AS __pivot_count(1) AS ‘count™ AS ‘count(1l) AS '‘count ' #142]

03 +- Aggregate [city#8, year#9], [city#8, year#9, count(1) AS count(1l) AS "count #134L]
04 +- Project [_1#3 AS id#7, _2#4 AS city#8, _3#5 AS year#9]
05 +- LocalRelation [_1#3, _2#4, _3#5]

val afterPushDown = PushDownPredicate(pivotPlanAnalyzed)

scala> println(afterPushDown.numberedTreeString)

00 Project [city#8, __pivot_count(1) AS ‘count® AS ‘count(1l) AS '‘count’''#142[0] AS 2015#143L, __pivot_count(1) AS ‘count™ AS ‘count(l) AS '‘count’'#142[1] AS 2016#144L, _ pivot_count(1l)
AS ‘count® AS “count(1l) AS "‘count'''#142[2] AS 2017#145L]

01 +- Aggregate [city#8], [city#8, pivotfirst(year#9, count(1l) AS ‘count #134L, 2015, 2016, 2017, 0, 0) AS __pivot_count(1) AS ‘count™ AS ‘count(1l) AS *‘count ' #142]

02 +- Aggregate [city#8, year#9], [city#8, year#9, count(1) AS count(1l) AS “count #134L]

03 +- Project [_1#3 AS id#7, _2#4 AS city#8, _3#5 AS year#9]
04 +- Filter (_2#4 = Boston)
05 +- LocalRelation [_1#3, _2#4, _3#5]

PHYSICAL OPTIMIZATIONS

The following physical optimizations use Aggregate logical operator:

* PlanAdaptiveDynamicPruningFilters
* PlanDynamicPruningFilters
* RowLevelOperationRuntimeGroupFiltering

ReplaceHashWithSortAgg

ReplaceHashWithSortAgg physical optimization can replace HashAggregateExec and ObjectHashAggregateExec physical operators with
SortAggregateExec when executed with spark.sql.execution.replaceHashWithSortAgg configuration property and some sorting
requirements are met.

QUERY PLANNING

Aggregation execution planning strategy is used to plan Aggregate logical operators for execution as one of the available
BaseAggregateExec physical operators:

» HashAggregateExec
* ObjectHashAggregateExec

* SortAggregateExec

Demo

Demo: Mult-Dimensional Aggregations

-17/32 - Copyright © 2024 Jacek Laskowski

2.2.2 AggUtils Utility

2.2.2 AggUtils Utility

AggUtils is an utility for Aggregation execution planning strategy.

planAggregateWithoutDistinct

planAggregateWithoutDistinct(
groupingExpressions: Seq[NamedExpression],
aggregateExpressions: Seq[AggregateExpression],
resultExpressions: Seq[NamedExpression],
child: SparkPlan): Seq[SparkPlan]

planAggregatelithoutDistinct is a two-step physical operator generator.

planAggregatellithoutDistinct first creates an aggregate physical operator with aggregateExpressions in Partial mode (for partial aggregations).

3
Kote

requiredChildDistributionExpressions for the aggregate physical operator for partial aggregation "stage" is empty.

In the end, planAggregateWithoutDistinct creates another aggregate physical operator (of the same type as before), but aggregateExpressions are
now in Final mode (for final aggregations). The aggregate physical operator becomes the parent of the first aggregate operator.

-
Kote

requiredChildDistributionExpressions for the parent aggregate physical operator for final aggregation "stage" are the Attributes of the

groupingExpressions .

planAggregateWithOneDistinct

planAggregateWithOneDistinct(
groupingExpressions: Seq[NamedExpression],
functionsWithDistinct: Seq[AggregateExpression],
functionsWithoutDistinct: Seq[AggregateExpression],
resultExpressions: Seq[NamedExpression],
child: SparkPlan): Seq[SparkPlan]

planAggregateWithOneDistinct .. FIXME

Creating Physical Operator for Aggregation

createAggregate(
requiredChildDistributionExpressions: Option[Seq[Expression]] = None,
groupingExpressions: Seq[NamedExpression] = Nil,
aggregateExpressions: Seq[AggregateExpression] = Nil,
aggregateAttributes: Seq[Attribute] = Nil,
initialInputBufferOffset: Int = 0,
resultExpressions: Seq[NamedExpression] = Nil,
child: SparkPlan): SparkPlan

createAggregate creates one of the following physical operators based on the given AggregateExpressions (in the following order):

1. HashAggregateExec when all the aggBufferAttributes (of the AggregateFunctions of the given AggregateExpressions) are supported
2. ObjectHashAggregateExec when the following all hold:

« spark.sgl.execution.useObjectHashAggregateExec configuration property is enabled

» Aggregate expression supported

3. SortAggregateExec

-18/32 - Copyright © 2024 Jacek Laskowski

2.2.2 AggUtils Utility

createAggregate is used when:

* AggUtils is used to createStreamingAggregate, planAggregateWithoutDistinct, planAggregateWithOneDistinct

Planning Execution of Streaming Aggregation

planStreamingAggregation(
groupingExpressions: Seq[NamedExpression],
functionsWithoutDistinct: Seq[AggregateExpression],
resultExpressions: Seq[NamedExpression],
stateFormatVersion: Int,
child: SparkPlan): Seq[SparkPlan]

planStreamingAggregation ...FIXME

planStreamingAggregation is used when:

* StatefulAggregationStrategy (Spark Structured Streaming) execution planning strategy is requested to plan a logical plan of a streaming
aggregation (a streaming query with Aggregate operator)

Creating Streaming Aggregate Physical Operator

createStreamingAggregate(
requiredChildDistributionExpressions: Option[Seq[Expression]] = None,
groupingExpressions: Seq[NamedExpression] = Nil,
aggregateExpressions: Seq[AggregateExpression] = Nil,
aggregateAttributes: Seq[Attribute] = Nil,
initialInputBufferOffset: Int = 0,
resultExpressions: Seq[NamedExpression] = Nil,
child: SparkPlan): SparkPlan

createStreamingAggregate creates an aggregate physical operator (with isStreaming flag enabled).

)
Hote

createStreamingAggregate is exactly createAggregate with isStreaming flag enabled.

createStreamingAggregate is used when:

* AggUtils is requested to plan a regular and session-windowed streaming aggregation

-19/32 - Copyright © 2024 Jacek Laskowski

https://books.japila.pl/spark-structured-streaming-internals/StatefulAggregationStrategy

2.2.3 AggregationlIterator

2.2.3 Aggregationlterator

AggregationIterator is an abstraction of aggregation iterators (of UnsafeRows) that are used by aggregate physical operators to process rows
in a partition.

abstract class AggregationIterator(...)
extends Iterator[UnsafeRow]

From scala.collection.Iterator:

Iterators are data structures that allow to iterate over a sequence of elements. They have a hasNext method for checking if there is a next
element available, and a next method which returns the next element and discards it from the iterator.

Implementations

* ObjectAggregationlIterator
* SortBasedAggregationlterator

» TungstenAggregationlterator

Creating Instance
AggregationIterator takes the following to be created:

* Partition ID

* Grouping NamedExpressions
* Input Attributes

» AggregateExpressions

» Aggregate Attributes

« Initial input buffer offset

* Result NamedExpressions

* Function to create a new MutableProjection given expressions and attributes ((Seq[Expression], Seq[Attribute]) => MutableProjection)

&
ﬁ)stract Class

AggregationIterator is an abstract class and cannot be created directly. It is created indirectly for the concrete Aggregationlterators.

AggregateModes

When created, AggregationIterator makes sure that there are at most 2 distinct AggregateMode s of the AggregateExpressions.
The AggregateMode s have to be a subset of the following mode pairs:

* Partial and PartialMerge

* Final and Complete

Process Row Function
processRow: (InternalRow, InternalRow) => Unit

AggregationIterator generates a processRow function when created.

-20/32 - Copyright © 2024 Jacek Laskowski

https://www.scala-lang.org/api/2.13.8/scala/collection/Iterator.html

2.2.3 AggregationlIterator

\J
ﬂocesskow is a procedure

processRow is a procedure that takes two InternalRows and produces no output (returns Unit).

processRow is similar to the following definition:

def processRow(currentBuffer: InternalRow, row: InternalRow): Unit = {

}

AggregationIterator uses the aggregateExpressions, the aggregateFunctions and the inputAttributes to generate the processRow procedure.

processRow is used when:

* MergingSessionsIterator is requested to processCurrentSortedGroup

* ObjectAggregationIterator is requested to process input rows

* SortBasedAggregationIterator is requested to processCurrentSortedGroup
* TungstenAggregationIterator is requested to process input rows

AggregateFunctions

aggregateFunctions: Array[AggregateFunction
When created, AggregationIterator initializes AggregateFunctions in the aggregateExpressions (with initiallnputBufferOffset).

initializeAggregateFunctions

initializeAggregateFunctions(
expressions: Seq[AggregateExpression],
startingInputBufferOffset: Int): Array[AggregateFunction]

initializeAggregateFunctions ...FIXME
initializeAggregateFunctions is used when:

* AggregationIterator is requested for the aggregateFunctions
* ObjectAggregationIterator is requested for the mergeAggregationBuffers

* TungstenAggregationIterator is requested to switchToSortBasedAggregation

Generate Output Function
generateOutput: (UnsafeRow, InternalRow) => UnsafeRow

AggregationIterator creates a ResultProjection function when created.

-21/32 - Copyright © 2024 Jacek Laskowski

2.2.3 AggregationlIterator

generateQutput is used by the aggregate iterators when they are requested for the next element (aggregate result) and generate an output
for empty grouping with no input.

Aggregate Iterators Operations

ObjectAggregationIterator ¢ next element

 outputForEmptyGroupingKeyWithoutInput

SortBasedAggregationIterator e next element

* outputForEmptyGroupingKeyWithoutInput

TungstenAggregationIterator e next element

* outputForEmptyGroupingKeyWithoutInput
GENERATING RESULT PROJECTION

generateResultProjection(): (UnsafeRow, InternalRow) => UnsafeRow

\J
’ﬂmgstenAggregationIterator

TungstenAggregationlterator overrides generateResultProjection for partial aggregation (non- Final and non- Complete aggregate modes).

generateResultProjection branches off based on the aggregate modes of the aggregates:

1. Final and Complete
2. Partial and PartialMerge

3. No modes

g
Ifain Differences between Aggregate Modes

Final and Complete Partial and PartialMerge
Focus on DeclarativeAggregates to execute the Focus on TypedImperativeAggregates so they can
evaluateExpressions (while the alllmperativeAggregateFunctions serializeAggregateBufferInPlace

simply eval)

An UnsafeProjection binds the resultExpressions to the An UnsafeProjection binds the groupingAttributes and
following: bufferAttributes to the following (repeated twice rightly):
1. groupingAttributes 1. the groupingAttributes
2. the aggregateAttributes 2. the bufferAttributes
Uses an UnsafeProjection to generate an UnsafeRow for the Uses an UnsafeProjection to generate an UnsafeRow for the
following: following:
1. the current grouping key 1. the current grouping key
2. the aggregate results 2. the current buffer

-22/32 - Copyright © 2024 Jacek Laskowski

=

w

]

w oo

w N e

[y

2.2.3 AggregationlIterator

Final and Complete

For Final or Complete modes, generateResultProjection does the following:

. Collects expressions to evaluate the final values of the DeclarativeAggregates and NoOp s for the AggregateFunctions among the

aggregateFunctions. generateResultProjection preserves the order of the evaluate expressions and NoOp s (so the i th aggregate function uses
the i th evaluation expressions)

Executes the newMutableProjection with the evaluation expressions and the aggBufferAttributes of the aggregateFunctions to create a
MutableProjection

Requests the MutableProjection to store the aggregate results (of all the DeclarativeAggregates) in a SpecificInternalRow

. Creates an UnsafeProjection for the resultExpressions and the groupingAttributes with the aggregateAttributes (for the input schema)

. Initializes the UnsafeProjection with the partindex

In the end, generateResultProjection creates a result projection function that does the following:

. Generates results for all expression-based aggregate functions (using the MutableProjection with the given currentBuffer)

Generates results for all imperative aggregate functions
Uses the UnsafeProjection to generate an UnsafeRow with the aggregate results for the current grouping key and the aggregate results

Partial and PartialMerge

For Partial or PartialMerge modes, generateResultProjection does the following:

. Creates an UnsafeProjection for the groupingAttributes with the aggBufferAttributes of the aggregateFunctions

. Initializes the UnsafeProjection with the partindex

Collects the TypedImperativeAggregates from the aggregateFunctions (as they store a generic object in an aggregation buffer, and require
calling serialization before shuffling)

In the end, generateResultProjection creates a result projection function that does the following:

. Requests the TypedImperativeAggregates (from the aggregateFunctions) to serializeAggregateBufferInPlace with the given currentBuffer

. Uses the UnsafeProjection to generate an UnsafeRow with the current grouping key and buffer

No Modes

For no aggregate modes, generateResultProjection ...FIXME

Initializing Aggregation Buffer

initializeBuffer(
buffer: InternalRow): Unit

initializeBuffer requests the expressionAgglnitialProjection to store an execution result of an empty row in the given InternalRow (buffer).

initializeBuffer requests all the ImperativeAggregate functions to initialize with the buffer internal row.

initializeBuffer is used when:

* MergingSessionsIterator is requested to newBuffer, initialize, next, outputForEmptyGroupingKeyWithoutInput
* SortBasedAggregationIterator is requested to newBulffer, initialize, next and outputForEmptyGroupingKeyWithoutInput
Generating Process Row Function

generateProcessRow(
expressions: Seq[AggregateExpression],
functions: Seq[AggregateFunction],
inputAttributes: Seq[Attribute]): (InternalRow, InternalRow) => Unit

generateProcessRow creates a mutable JoinedRow (of two InternalRows).

-23/32 - Copyright © 2024 Jacek Laskowski

2.2.3 AggregationlIterator

generateProcessRow branches off based on the given AggregateExpressions, specified or not.

g
ﬁhere AggregateExpressions come from

Caller AggregateExpressions
Aggregationlterator aggregateExpressions
ObjectAggregationIterator aggregateExpressions
TungstenAggregationlterator aggregateExpressions

\J
(unct ions Argument

generateProcessRow works differently based on the type of the given AggregateFunctions:

* DeclarativeAggregate
» AggregateFunction

» ImperativeAggregate

generateProcessRow is used when:

* AggregationIterator is requested for the process row function

* ObjectAggregationIterator is requested for the mergeAggregationBuffers function

* TungstenAggregationIterator is requested to switch to sort-based aggregation
AGGREGATE EXPRESSIONS SPECIFIED

Merge Expressions

With AggregateExpressions specified, generateProcessRow determines so-called "merge expressions" (mergeExpressions) as follows:

* For DeclarativeAggregate functions, the merge expressions are choosen based on the AggregateMode of the corresponding

AggregateExpression
AggregateMode Merge Expressions
Partial or Complete Update Expressions of a DeclarativeAggregate
PartialMerge Or Final Merge Expressions of a DeclarativeAggregate

* For AggregateFunction functions, there are as many No0p merge expressions (that do nothing and do not change a value) as there are
aggBufferAttributes in a AggregateFunction

Initialize Predicates
generateProcessRow finds AggregateExpressions with filters specified.

When in Partial or Complete aggregate modes, generateProcessRow ...FIXME

Update Functions

generateProcessRow determines so-called "update functions" (updateFunctions) among ImperativeAggregate functions (in the given
AggregateFunctions) to be as follows:

* FIXME

-24/32 - Copyright © 2024 Jacek Laskowski

2.2.3 AggregationlIterator

Update Projection

generateProcessRow uses the newMutableProjection generator function to create a MutableProjection based on the mergeExpressions and the
aggBufferAttributes of the given AggregateFunctions with the given inputAttributes .

Process Row Function

In the end, generateProcessRow creates a procedure that accepts two InternalRows (currentBuffer and row) that does the following:

1. Processes all expression-based aggregate functions (using updateProjection). generateProcessRow requests the MutableProjection to store the
output in the currentBuffer . The output is created based on the currentBuffer and the row.

2. Processes all imperative aggregate functions. generateProcessRow requests every "update function” (in updateFunctions) to execute with the given
currentBuffer and the row.

NO AGGREGATE EXPRESSIONS

With no AggregateExpressions (expressions), generateProcessRow creates a function that does nothing ("swallows" the input).

-25/32 - Copyright © 2024 Jacek Laskowski

2.2.4 KVSorterlterator

2.2.4 KVSorterlterator

KVSorterIterator is...FIXME

-26/32 - Copyright © 2024 Jacek Laskowski

2.2.5 ObjectAggregationIterator

2.2.5 ObjectAggregationlterator

ObjectAggregationIterator is an Aggregationlterator for ObjectHashAggregateExec physical operator.

Creating Instance

ObjectAggregationIterator takes the following to be created:

* Partition ID

* Output Attributes (unused)

* Grouping NamedExpressions

» AggregateExpressions

» Aggregate Attributes

« Initial input buffer offset

* Result NamedExpressions

» Function to create a new MutableProjection given expressions and attributes ((Seq[Expression], Seq[Attribute]) => MutableProjection)
* Original Input Attributes

* Input InternalRows

* spark.sql.objectHashAggregate.sortBased.fallbackThreshold
* numOutputRows metric

* spillSize metric

* numTasksFallBacked metric
While being created, ObjectAggregationIterator starts processing inputrows.
ObjectAggregationIterator is created when:

* ObjectHashAggregateExec physical operator is requested to doExecute

outputForEmptyGroupingKeyWithoutinput
outputForEmptyGroupingKeyWithoutInput(): UnsafeRow

outputForEmptyGroupingKeyWithoutInput ... FIXME

outputForEmptyGroupingKeyWithoutInput is used when:

* ObjectHashAggregateExec physical operator is executed (with no input rows and no groupingExpressions)

Processing Input Rows
processInputs(): Unit

processInputs creates an ObjectAggregationMap.

For no groupingExpressions, processInputs uses the groupingProjection to generate a grouping key (for null row) and finds the aggregation
buffer that is used to process all input rows (of a partition).

Otherwise, processInputs uses the sortBased flag to determine whether to use the ObjectAggregationiap or switch to a SortBasedAggregator .

processInputs uses the groupingProjection to generate a grouping key for an input row and finds the aggregation buffer that is used to
process the row (of a partition). processInputs continues processing input rows until there are no more rows available or the size of the
ObjectAggregationtap reaches spark.sql.objectHashAggregate.sortBased.fallbackThreshold.

-27/32 - Copyright © 2024 Jacek Laskowski

2.2.5 ObjectAggregationIterator

When the size of the 0bjectAggregationMap reaches spark.sql.objectHashAggregate.sortBased.fallbackThreshold and there are still input rows
in the partition, processInputs prints out the following INFO message to the logs, turns the sortBased flag on and increments the
numTasksFallBacked metric.

Aggregation hash map size [size] reaches threshold capacity ([fallbackCountThreshold] entries),
spilling and falling back to sort based aggregation.
You may change the threshold by adjusting the option spark.sql.objectHashAggregate.sortBased.fallbackThreshold

For sort-based aggregation (the sortBased flag is enabled), processInputs requests the ObjectAggregationMap to dumpToExternalSorter and
create a KVSorterIterator. processInputs creates a SortBasedAggregator , uses the groupingProjection to generate a grouping key for every input
row and adds them to the SortBasedAggregator .

In the end, processInputs creates the aggBufferlterator (from the ObjectAggregationMap or SortBasedAggregator based on the sortBased flag).

processInputs is used when:

* ObjectAggregationIterator is created

Logging
Enable ALL logging level for org.apache.spark.sql.execution.aggregate.ObjectAggregationIterator logger to see what happens inside.
Add the following line to conf/log4j2.properties :

log4j . logger.org.apache.spark.sql.execution.aggregate.ObjectAggregationIterator=ALL

Refer to Logging.

-28/32 - Copyright © 2024 Jacek Laskowski

2.2.6 ObjectAggregationMap

2.2.6 ObjectAggregationMap

ObjectAggregationMap is an in-memory map to store aggregation buffer for hash-based aggregation (using ObjectAggregationlterator).

-29/32 - Copyright © 2024 Jacek Laskowski

2.2.7 PhysicalAggregation Scala Extractor

2.2.7 PhysicalAggregation Scala Extractor

PhysicalAggregation is a Scala extractor to destructure an Aggregate logical operator into a four-element tuple (ReturnType) with the following
elements:

1. NamedExpressions of the grouping keys
2. AggregateExpressions
3. NamedExpressions of the result

4. Child logical operator

ReturnType

(Seq[NamedExpression], Seq[AggregateExpression], Seq[NamedExpression], LogicalPlan)

\J
ﬁala Extractor Object

Learn more in the Scala extractor objects.

Destructuring Aggregate Logical Operator

type ReturnType =

(Seq[NamedExpression], // Grouping Keys
Seq[AggregateExpression], // Aggregate Functions
Seq[NamedExpression], // Result
LogicalPlan) // Child

unapply(

a: Any): Option[ReturnType]

unapply destructures an Aggregate logical operator into a four-element ReturnType tuple.

unapply creates a EquivalentExpressions (to eliminate duplicate aggregate expressions and avoid evaluating them multiple times).

unapply collects AggregateExpressions in the resultExpressions of the given Aggregate logical operator.

]
f)me Other Magic

unapply does some other magic but it does not look interesting, but the main idea should already be explained =

unapply is used when:

* StatefulAggregationStrategy (Spark Structured Streaming) execution planning strategy is executed

* Aggregation execution planning strategy is executed

-30/32 - Copyright © 2024 Jacek Laskowski

http://docs.scala-lang.org/tutorials/tour/extractor-objects.html
https://books.japila.pl/spark-structured-streaming-internals/execution-planning-strategies/StatefulAggregationStrategy

2.2.8 SortBasedAggregationlterator

2.2.8 SortBasedAggregationlterator

SortBasedAggregationIterator is an AggregationlIterator that is used by SortAggregateExec physical operator to process rows in a partition.

Creating Instance

SortBasedAggregationIterator takes the following to be created:

* Partition ID

* Grouping NamedExpressions

* Value Attributes

* Input Iterator (InternalRows)

» AggregateExpressions

» Aggregate Attributes

* Initial input buffer offset

* Result NamedExpressions

» Function to create a new MutableProjection given expressions and attributes ((Seq[Expression], Seq[Attribute]) => MutableProjection)

* number of output rows metric
SortBasedAggregationIterator initializes immediately.
SortBasedAggregationIterator is created when:

* SortAggregateExec physical operator is requested to doExecute

INITIALIZATION

initialize(): Unit

Frocedure

initialize is a procedure (returns Unit) so what happens inside stays inside (paraphrasing the former advertising slogan of Las Vegas, Nevada).

initialize ...FIXME

Performance Metrics
SortBasedAggregationIterator is given the performance metrics of the owning SortAggregateExec aggregate physical operator when created.

The metrics are displayed as part of SortAggregateExec aggregate physical operator (e.g. in web Ul in Details for Query).

-31/32 - Copyright © 2024 Jacek Laskowski

https://idioms.thefreedictionary.com/what+happens+in+Vegas+stays+in+Vegas

2.2.8 SortBasedAggregationlterator

Sort

sort time total (min, med, max)

3ms (1ms,1Tms,Tms)

peak memory total (min, med, max)

3.2 MiB (1088.0 KiB, 1088.0 KiB, 1088.0 KiB)
spill size total (min, med, max)
0.0B(0.0B,0.0B,0.0B)

v
SortAggregate

w

number of output rows:

Exchange

shuffle records written: 3

shuffle write time total (min, med, max)
22ms (7ms,7ms,7ms)

records read: 3

local bytes read total (min, med, max)
288.0 B (96.0 B, 96.0 B, 96.0B)

fetch wait time total (min, med, max)
Oms (0O ms, Oms, O ms)

remote bytes read: 0.0 B

local blocks read: 3

remote blocks read: 0

data size total (min, med, max)

240.0 B (80.0B, 80.0B,80.0B)
remote bytes read to disk: 0.0 B

shuffle bytes written total (min, med, max)
288.0 B (96.0 B, 96.0 B, 96.0B)

-32/82 - Wholestagecodegeﬁ)p(filt © 2024 Jacek Laskowski

duration: total (min, med, max)

	The Internals of Spark SQL
	1. The Internals of Spark SQL (Apache Spark 3.5.3)
	2. Features
	2.1 Features
	2.2 Aggregate Queries
	2.2.1 Aggregate Queries
	Whole-Stage Code Generation
	Adaptive Query Execution
	Configuration Properties
	High-Level Operators
	SQL
	Dataset

	Group Types
	CUBE
	GROUPBY
	PIVOT
	ROLLUP

	UnsupportedOperationChecker
	Basic Aggregation
	Multi-Dimensional Aggregation
	Aggregate Operators
	agg
	cube
	groupBy
	groupByKey
	GROUPING SETS
	rollup

	Catalyst DSL
	Aggregate Query Execution
	Logical Analysis
	Logical Optimizations
	Cost-Based Optimization
	PushDownPredicate

	Physical Optimizations
	ReplaceHashWithSortAgg

	Query Planning

	Demo

	2.2.2 AggUtils Utility
	planAggregateWithoutDistinct
	planAggregateWithOneDistinct
	Creating Physical Operator for Aggregation
	Planning Execution of Streaming Aggregation
	Creating Streaming Aggregate Physical Operator

	2.2.3 AggregationIterator
	Implementations
	Creating Instance
	AggregateModes
	Process Row Function
	AggregateFunctions
	initializeAggregateFunctions
	Generate Output Function
	Generating Result Projection
	Final and Complete
	Partial and PartialMerge
	No Modes

	Initializing Aggregation Buffer
	Generating Process Row Function
	Aggregate Expressions Specified
	Merge Expressions
	Initialize Predicates
	Update Functions
	Update Projection
	Process Row Function

	No Aggregate Expressions

	2.2.4 KVSorterIterator
	2.2.5 ObjectAggregationIterator
	Creating Instance
	outputForEmptyGroupingKeyWithoutInput
	Processing Input Rows
	Logging

	2.2.6 ObjectAggregationMap
	2.2.7 PhysicalAggregation Scala Extractor
	Destructuring Aggregate Logical Operator

	2.2.8 SortBasedAggregationIterator
	Creating Instance
	Initialization

	Performance Metrics

