
Concurrent start and
completion of persistent

requests (#858)
Joachim Jenke

Joseph Schuchart

MPI_Request req[2];
int buf0 = 0, value = 42;
MPI_Recv_init(&buf0, …, 42, MPI_COMM_SELF, &reqs[0]);
MPI_Irecv(…, 1, MPI_COMM_SELF, &reqs[1]);

Thread 0:

MPI_Waitall(2, reqs, MPI_STATUSES_IGNORE);

/* after return from waitall */
MPI_Test(&reqs[0], &flag, MPI_STATUSES_IGNORE);
assert(flag); // succeeds
assert(buf0 == 0); // succeeds
MPI_Send(&value, …, 42, MPI_COMM_SELF);
assert(buf0 == 42); // succeeds

Thread 2:

/* ensure Thread 0 enters waitall */
usleep(100000);
MPI_Start(&reqs[0]); // start recv
MPI_Send(…, 1, MPI_COMM_SELF); // complete irecv

Modifies the buffer of a completed request!

r0  Recv_init

r1  Irecv

Waitall(r0, r1)

work

Start(r0)

Send

Test(r0)

Thread 0 Thread 1r0 is inactive

r0 becomes
active

Signals completions
(because incomplete)

• Operations should be executed in some order
• Open MPI and MPICH mark request as inactive but mutate buffer once

the send with tag 42 is posted

MPI_SendCompletes because request
is active internally

Updates buffer associated with a request
the application believes completed

Discussion

• What is the expected behavior?
• Is it valid to start a request another thread is waiting on?

• “When a thread is executing one of these routines, if another concurrently
running thread also makes an MPI call, the outcome will be as if the calls
executed in some order.” [MPI 4.1, 11.6]

• “A program in which two threads block, waiting on the same request, is
erroneous. Similarly, the same request cannot appear in the array of
requests of two concurrent MPI_{WAIT|TEST}{ANY|SOME|ALL} calls. In
MPI, a request can only be completed once. Any combination of wait or
test that violates this rule is erroneous.” [MPI 4.1, 11.6.2]

• https://github.com/mpi-forum/mpi-issues/issues/846

https://github.com/mpi-forum/mpi-issues/issues/846

	Slide 1: Concurrent start and completion of persistent requests (#858)
	Slide 2
	Slide 3
	Slide 4: Discussion

