

Eclipse PKI Networking Option

The option to utilize PKI for all eclipse network connections can make eclipse users more safe on their systems and ensure that their networks are not penetrated by nefarious networking pirates. How does this work? The software relies on a configuration to be installed before it provides any features. There are two options to provide the configuration.

- Create a “dot” pki file in your \$HOME/.eclipse directory. If the pki software has been installed, it will create the directory and add a template file for you to edit and copy to the .pki file.
- The other option is to provide all of the required properties in your eclipse.ini file.

Once the properties get discovered by the PKI software, there are a number of checks that occur to ensure you entered the properties correctly. Upon successful creation of the required properties, the pki software will create a Key Store Manger and a Trust Store Manger using standard Java Security packages. The KeyStore and TrustStore are used to create a Java SSLContext. When the Context is successfully created the PKI software will load a default SSLContext for subsequent usage. This configuration will allow for a completely headless solution. However, for the purposes of extra measure of security, leaving out the password property will cause a password/pin input dialog to be popped up when eclipse is started. If a correct password/pin is entered, a password publisher lets all the eclipse package subscribers know that PKI has been successfully configured. The PKI software will work with PKCS12 and PKCS11 Keystores. The truststore expects a (JKS) Java Based Keystore, for example you cacerts file found within your JDK installation.

A variety of eclipse bundles/packages utilize a myriad of different networking constructs. Weather its an https network connection or a socket connection most, if not, all of the networking mechanisms will utilize an SSLContext. That is assuming the java software was written properly to handle it.

The following write up was taken from an eclipse project called CycloneDDS; <https://cyclonedds.io/> SO I don't have to re-create the same explanation and besides, theirs is better written that what I would come up with.

Public-key infrastructure

The comprehensive system required to provide public-key encryption and digital signature services is known as a Public-Key Infrastructure (PKI). The purpose of a PKI is to manage keys and certificates. By managing keys and certificates through a PKI, an organization establishes and maintains a trustworthy networking environment.

Public key cryptography

Each user has a key pair, generated during the initial certificate deployment process. It consists of:

- A public key, which is shared.
- A private key, which is not shared.

Data is encrypted with the user's public key and decrypted with their private key.

Digital signatures are also generated using public key cryptography (used for non-repudiation, authentication and data integrity).

Identity certificate

This is an electronic document that proves the ownership of a public key. The certificate includes:

- Information about the key.
- Information about the identity of its owner (called the subject).
- The digital signature of an entity that has verified the certificate's contents (called the issuer).

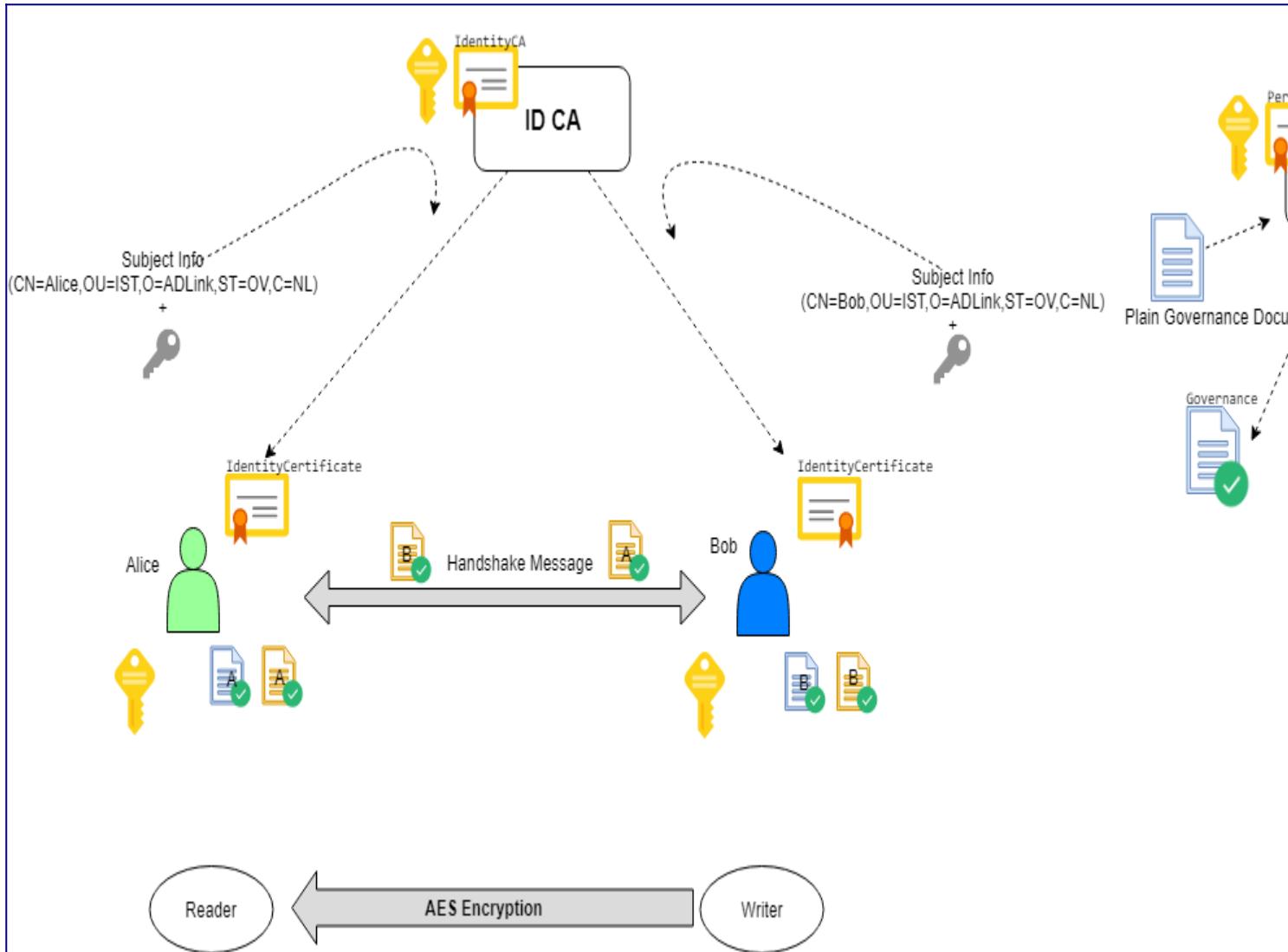
If the signature is valid, and the software examining the certificate trusts the issuer, then it can use that key to communicate securely with the certificate's subject.

Certificate Authority (CA)

This issues user-certificates and acts as the chief agent of trust. When issuing a certificate to a user, the CA signs the certificate with its private key in order to validate it. During electronic transactions the CA also confirms that certificates are still valid. Certificates may be revoked for various reasons. For example, a user may leave the organization or they may forget their secret passphrase, the certificate may expire or become corrupt. This process is usually through the use of a Certificate Revocation List (CRL) which is a list of the certificates that have been revoked. Only the certificates that have been revoked appear on this list.

Subject of identity certificate

This is the identity to be secured. It contains information such as common name (CN), organization (OU), state (ST) and country (C).


Subject name

This is also known as the distinguished name. It is the string representation of the certificate subject. For example:

emailAddress=alice@zettascale.ist,CN=Alice,OU=IST,O=ADLink,ST=OV,C=NL

Example PKI usage in DDS security

Alice and Bob are the DDS participants who have their private and public keys. Identity Certificate Authority (ID CA) has its own self-signed certificate (*IdentityCA* in the diagram). **ID CA** gets Alice's subject information and public key and generates an *IdentityCertificate* for her. Alice's certificate includes her public key and certificate of **ID CA**; so that her certificate can be verified if it is really issued by ID CA.

Access Control is configured with governance and permissions documents:

- A governance document defines the security behavior of domains and topics.
- A permissions document contains the permissions of the domain participant (topics, readers and writers), and binds them to an identity certificate by subject name (distinguished name).

Governance documents and Permissions documents are signed by **Permission CA**. Signed documents also contain Permissions CA certificate so that they can be verified that they are really issued by Permissions CA.

Authenticated participants perform a handshake with each other and generate a shared key by Diffie-Hellman key exchange. This shared key is used for encrypting/decrypting data with AES.

During the handshake:

- Alice checks Bob's certificate and Bob's Permissions document to see whether they are really issued by the ID CA certificate and Permissions CA Certificate that **she** has.
- Bob checks Alice's certificate and Alice's Permissions document to see whether they are really issued by the ID CA certificate and Permissions CA that **he** has.

Permissions documents can contain permissions for several identities. To establish a binding between an identity and its permissions, the subject name of an identity certificate can appear multiple times in a permissions document.

There are several ways to set up the certificates and signed configuration files to be used with Cyclone DDS Security, see [Example DDS security configuration](#).