CS 240: Lambda Syntax Transcript

[00:00:00] INSTRUCTOR: Now that you know how lambdas work, you should understand

some of the details of the syntax. So, here’s what the syntax looks like.

[00:00:09] We have a parameter list, then we have an arrow symbol, and then we have a

body.

Start slide description. Following text is shown:
(Parameter List) -> Body

Parameter List

e Comma-separated list of formal parameters
e Data types are optional and can be inferred unless ambiguous in callee
e Parentheses are optional for a single parameter

e Empty parentheses are required for an empty parameter list

e Arrow token required between parameter list and body

e Asingle expression or a statement block
e Return is inferred for a single expression
e Statement blocks are enclosed in curly braces

e Return must be explicitly specified (unless void) for statement blocks
End slide description.
[00:00:15] So, let’s start with the parameter list.

[00:00:17] So, there are a few details that you should understand about that.



[00:00:20]

[00:00:23]

[00:00:28]

[00:00:35]

[00:00:43]

[00:00:47]

[00:00:55]

[00:01:02]

[00:01:04]

[00:01:12]

[00:01:22]

[00:01:24]

[00:01:32]

So, first of all, it’s a common separated list of formal parameters.

Formal parameters are just the parameters that we can declare and use in our

code.

So, we refer to them throughout our code. So, it’s a common separated list of

those. Data types are optional.

They’re usually not specified because they can usually be inferred, and the whole

point of using a lambda using lambda syntax is that it’s brief and simple.

So, we don’t want to complicate it with extra syntax that we don’t need.

So, we typically don’t specify data types in this parameter list, although we can if

it’'s ambiguous for some reason.

Sometimes we are calling a lambda expression that we’re creating a lambda

expression that only has one parameter.

And in that case, the parentheses are optional.

So, if we have just one parameter, we could leave off the parentheses and just

specify the variable before the arrow.

And then another thing you know about that is if I'm not passing any parameters

to my lambda function, then | have to specify empty parentheses.

If I just leave a blank, it’s a syntax error.

So, it’s empty parentheses that indicate that this lambda function doesn’t take

any parameters. So, that’s the parameter list.

And then we have the arrow token that indicates that this is a lambda

expression.



[00:01:37]

[00:01:44]

[00:01:53]

[00:01:56]

[00:02:02]

[00:02:05]

[00:02:20]

[00:02:28]

[00:02:33]

[00:02:41]

[00:02:46]

[00:02:50]

Now one thing that’s a little bit unfortunate is that this arrow token is different

than what’s used in a lot of other languages.

So, for example, in JavaScript and TypeScript, we have an arrow, but the arrow is

an equal sign followed by this greater length than simple.

So that might confuse you if you’re used to JavaScript or TypeScript.

We’'ll just have to get used to it that the equal sign here doesn’t work in Java.

Then, we have the body, and there are a few things to know about the body.

So, if we just have a single expression and that needs to be executed as our
lambda function, then it can be either way we can have a single expression, so
one expression, what would normally be one line of code followed by a

semicolon.

We can have that. Or we can have a block of code. So, if we have a block of code,

we just have curly braces there with all the code in it.

If it’s a single expression, we don’t put the return because that’s inferred.

If it’s a statement block, then a return is not inferred, and so we have to put a

return on the last statement if we need a return.

If the lambda function is returning void, then of course we wouldn’t have a

return.

So, those are the details of lambda syntax.

You'll get used to those as you work with lambdas, and it’ll become second

nature.



