CS 240: Function Lambda Variables Transcript

[00:00:00] INSTRUCTOR: Most of the time when you’re using lambdas, you’re using a

lambda expression as a parameter to some method call.
[00:00:06] But you can also use lambda expressions as variables.

[00:00:10] So, you could actually just create a variable that holds a lambda expression, and
then you can pass that variable around, use it like you would use any other

variable.

[00:00:18] So, here is syntax for that.
Start slide description. Following content is shown:
public class LambdaVariable {

Predicate<String> strLenPredicate = s -> s.length() > 10;

e Creates a predicate function (a function with a test method that returns a
boolean) that in this case returns true if the String's length is > 10.

e The data type of the lambda expression is inferred by context (by the type
of the variable to which it's being assigned—in this case
Predicate<String>).

e Can be passed as a parameter to any method that takes a
Predicate<String> parameter.

e Can be invoked by calling its test(String) method.

e Predicate is one of the 43 interfaces in the java.util.function package (you
know what method to call by finding the abstract method in the API

docs).

End slide description.

[00:00:20]

[00:00:30]

[00:00:34]

[00:00:41]

[00:00:48]

[00:00:56]

[00:00:58]

[00:01:07]

[00:01:11]

[00:01:14]

[00:01:18]

[00:01:28]

[00:01:36]

[00:01:42]

So, if I have a class called lambda variable, it doesn’t matter what my class is

called, | can have a variable with a lambda type.

So, the data type needs to be a functional interface.

So that’s any interface that fits the definition of a functional interface, which

means it’s an interface that has exactly one abstract method.

So, predicate happens to be one of the 43 that was added when when lambdas

were added to the Java language.

So, predicate is a function that takes one parameter and returns true or false.

And so, it’s generic.

Most of the function variables that were added to the functional interfaces that

were added to Java are generic.

So, | can specify the data type of the parameter that I’'m passing in.

So, here we’re saying that we’re creating a string predicate.

So, it takes a string as a parameter, and it returns a Boolean.

So, then | need to give like any variable, | need to give the variable a name so |

can refer to it later, and then | set that equal to some lambda expression.

So, here, the lambda expression, the data type of this lambda expression is

known by it can be inferred based on what it’s being assigned to you.

So, it’s being assigned to a predicate, so the JVM can tell this is a predicate

lambda function.

So, since it only takes one parameter, the parentheses are optional. So, I've left

those off.

[00:01:48]

[00:01:57]

[00:02:04]

[00:02:14]

[00:02:16]

[00:02:24]

[00:02:32]

So that’s saying, this is a function that if you give it a string S, it will determine if

that string’s length is greater than 10.

If it’s greater than 10, it’ll return true. Otherwise, it’ll return false.

So, this can be this predicate, now that I've created it, now that I've created this

predicate variable, it can be passed to any method that accepts a predicate.

So, it’s not the most common thing to do.

It’s more common that you just declare the the lambda as you call the method,

but you could have a reason to create some variable that you’re gonna pass later.

And so, that’s what this does. Now, predicate happens to have one method called

the methodist test.

And so that means that if | create this predicate, this string length predicate, |
would be passing it to some function that’s expecting it, and that function would
have a test method that it could call it we call a test method on this lambda

function.

