
CS 240: Function Lambda Variables Transcript 

[00:00:00] INSTRUCTOR: Most of the time when you’re using lambdas, you’re using a 

lambda expression as a parameter to some method call. 

[00:00:06] But you can also use lambda expressions as variables. 

[00:00:10] So, you could actually just create a variable that holds a lambda expression, and 

then you can pass that variable around, use it like you would use any other 

variable. 

[00:00:18] So, here is syntax for that. 

 Start slide description. Following content is shown: 

 public class LambdaVariable { 

Predicate<String> strLenPredicate = s -> s.length() > 10; 

} 

• Creates a predicate function (a function with a test method that returns a 

boolean) that in this case returns true if the String's length is > 10. 

• The data type of the lambda expression is inferred by context (by the type 

of the variable to which it's being assigned—in this case 

Predicate<String>). 

• Can be passed as a parameter to any method that takes a 

Predicate<String> parameter. 

• Can be invoked by calling its test(String) method. 

• Predicate is one of the 43 interfaces in the java.util.function package (you 

know what method to call by finding the abstract method in the API 

docs). 

End slide description. 



[00:00:20] So, if I have a class called lambda variable, it doesn’t matter what my class is 

called, I can have a variable with a lambda type. 

[00:00:30] So, the data type needs to be a functional interface. 

[00:00:34] So that’s any interface that fits the definition of a functional interface, which 

means it’s an interface that has exactly one abstract method. 

[00:00:41] So, predicate happens to be one of the 43 that was added when when lambdas 

were added to the Java language. 

[00:00:48] So, predicate is a function that takes one parameter and returns true or false. 

[00:00:56] And so, it’s generic. 

[00:00:58] Most of the function variables that were added to the functional interfaces that 

were added to Java are generic. 

[00:01:07] So, I can specify the data type of the parameter that I’m passing in. 

[00:01:11] So, here we’re saying that we’re creating a string predicate. 

[00:01:14] So, it takes a string as a parameter, and it returns a Boolean. 

[00:01:18] So, then I need to give like any variable, I need to give the variable a name so I 

can refer to it later, and then I set that equal to some lambda expression. 

[00:01:28] So, here, the lambda expression, the data type of this lambda expression is 

known by it can be inferred based on what it’s being assigned to you. 

[00:01:36] So, it’s being assigned to a predicate, so the JVM can tell this is a predicate 

lambda function. 

[00:01:42] So, since it only takes one parameter, the parentheses are optional. So, I’ve left 

those off. 



[00:01:48] So that’s saying, this is a function that if you give it a string S, it will determine if 

that string’s length is greater than 10. 

[00:01:57] If it’s greater than 10, it’ll return true. Otherwise, it’ll return false. 

[00:02:04] So, this can be this predicate, now that I’ve created it, now that I’ve created this 

predicate variable, it can be passed to any method that accepts a predicate. 

[00:02:14] So, it’s not the most common thing to do. 

[00:02:16] It’s more common that you just declare the the lambda as you call the method, 

but you could have a reason to create some variable that you’re gonna pass later. 

[00:02:24] And so, that’s what this does. Now, predicate happens to have one method called 

the methodist test. 

[00:02:32] And so that means that if I create this predicate, this string length predicate, I 

would be passing it to some function that’s expecting it, and that function would 

have a test method that it could call it we call a test method on this lambda 

function. 


