CS 240: Using Generic Interfaces Example Revisited Transcript

[00:00:00] INSTRUCTOR: Now that you know how lambda expressions work, | want to go
back and show you again the example that | used when | introduced generics and

show you how you can use lambdas to improve that example.
[00:00:10] So, this is the interface example that | use with generics.

[00:00:15] Remember we created an interface; we’ve created a function interface; we

created some subclasses on the slide.
Start slide description. Following content is shown:
public interface Function<T, R> {

R apply(T param);

public class Capitalizer implements Function<String, String> {
@Override
public String apply(String param) {

return param == null ? null : param.toUpperCase();

public class StringManipulator {
public String manipulateString(

String str,

[00:00:21]

[00:00:26]

[00:00:29]

[00:00:34]

[00:00:37]

[00:00:42]

[00:00:44]

[00:00:46]

[00:00:52]

[00:00:55]

Function<String, String> manipulationFunction) {

return manipulationFunction.apply(str);

End slide description.

| only have one, but in my code, | showed you that | created a capitalizer and a

space remover.

So, | created not subclasses, but implementing classes of this function.

And then, | had my string manipulator class that needs to receive the function.

Now that you know about lambdas, you know that most of this is redundant.

So, | don’t need the function interface because that’s one of the 43 that already

exists.

So, there’s no reason to create it.

There’s already a function interface.

And | don’t need to create a separate class that implements the interface

because | can do that with a lambda.

So, this is what that example becomes.

So here, the example on the right is still the same.

Start slide description.

manipulateString("my string",

[00:00:59]

[00:01:03]

[00:01:06]

[00:01:11]

[00:01:19]

[00:01:21]

[00:01:26]

str -> str == null ? null : str.toUpperCase())

manipulateString("my string with spaces that will be removed",

str -> str == null ? null : str.replaceAll(" ", ""))

public class StringManipulator {

public String manipulateString(

String str,

Function<String, String> manipulationFunction) {

return manipulationFunction.apply(str);

End slide description.

It still receives a function, but now it’s the function that has already declared.

It’s already part of Java.

And it will still call the apply method of whatever function it gets.

But now, | can just call that method and pass two parameters without creating an

interface, without creating any subclasses of some interface.

| just create the lambdas.

So, here, | have my pass string.

And my second parameter is this lambda expression.

[00:01:31]

[00:01:34]

[00:01:36]

[00:01:36]

[00:01:38]

[00:01:48]

[00:01:53]

[00:02:00]

[00:02:05]

[00:02:09]

So, it’s the parameter list is on the left.

I’'m only passing one parameter.

So, | only need...

| don’t need parentheses.

So, it’s passing STR as the parameter, and the code just checks to see if the string

is null, and if not, it uppercases it.

And then for the string, the space remover, same thing, | don’t need a space

remover subclass.

| just call this method, and | pass the lambda as the second parameter.

And then remember in the background, the JVM is doing all the work that we did

in the generic example.

It’s creating a subclass of the interface, creating an instance of it, and passing it

in.

But you don’t have to worry about any of that because all that is done for you.

