
CS 240: Use of Lambdas in Existing Java Classes Transcript 

[00:00:00] INSTRUCTOR: Yeah, one of the things I’ve showed you in the earlier videos is 

how to create methods that take lambdas as parameters, but most of the time 

when you use lambda functions, you won’t be doing that. 

[00:00:12] Most of the time you’ll just be calling methods that already exist in the Java 

classes that you get when you install Java or in some library that somebody else 

created. 

[00:00:23] So, most of the time, you’re just passing lambdas to some method that already 

was created to accept them. 

[00:00:32] When lambdas were added to the Java language, lots of methods were added to 

existing classes, especially in the collections API that take lambdas as parameters, 

and that just made it easier to do a lot of things we need to do with different 

existing classes. 

[00:00:47] So, here’s an example of that. 

 Start slide description. Following content is shown: 

 Use of Lambdas in Existing Java Classes 

Use of Lambda functions has been integrated throughout the Java API, especially 

in the collections API. 

Example: 

List<Integer> intList = new ArrayList<>(); 

intList.addAll(Arrays.asList(23, 5, 10, 71, 100, 1203, 4, 7, 748)); 

intList.removeIf(x -> x >= 100); 



for (Integer value : intList) { 

 System.out.print(value + " "); 

} 

Prints: 

23 5 10 71 4 7 

End slide description. 

[00:00:49] So, we have, in this example, actually I think I’ll show you this example from my 

code editor, instead of the slide. 

[00:00:59] So here, we are creating an array of integers. 

[00:01:05] So, the first thing we’re doing is we’re creating an array list, and then we’re 

adding a bunch of numbers to it. 

 Start visual description. The instructor creates a lambda array on the code editor. 

End visual description. 

[00:01:14] Now, when you first look at this code, this is a little bit of a tangent. 

[00:01:17] But when you first look at this code, you might think, why don’t I just say list 

integer in list equals, and then move this code up to here and not create a new 

array list and then add stuff to it. That seems to make sense, but it won’t quite 

work because this arrays dot as list is a method that makes it really easy to create 

a list of something, but the list is not, the list is immutable. 

[00:01:40] It can’t be changed. 

[00:01:42] And so, the whole point of this example is going to be to remove some things 

from the list which can’t be done with a list just created this way. 



[00:01:49] So, what I need to do instead is I need to create my own list that is mutable, that 

can be changed, and then I’ll just add the elements to it using this syntax. 

[00:01:59] So, I now have a list of integers. 

[00:02:02] And the list class is one of many classes that had methods added to it when 

lambda functions were added to the language. 

[00:02:10] So, in this case, what we wanna do is we want to remove all of the elements 

from this list that are greater than 100, that their number is greater than or equal 

to 100. 

[00:02:24] So, I could do that with a for loop or something, but I don’t need to because I 

have a remove-if method now. 

[00:02:30] So, I can just call remove-if and pass some lambda function. 

[00:02:34] This is a predicate function. 

[00:02:36] And in any case where it’s true, this remove-if method will iterate through the 

elements of the list and check the predicate on each element. 

[00:02:44] And in any case where that predicate is true, it’ll remove the element. 

[00:02:48] So, what I’ll end up with is just the elements here that are less than 100. 

[00:02:54] So, let’s run this example to see that that is what we get. 

[00:03:00] OK. 

[00:03:01] So, I have created my list. 

[00:03:03] I’ve called remove-if. 

[00:03:05] And now, I have this for loop that will just print the values that are not removed. 



[00:03:10] And notice that’s all the values that are less than 100. 

[00:03:13] So that’s just one of many, many examples of how to use lambdas with existing 

classes that have already been written. 


