
CS 240: Method References Transcript 

[00:00:00] INSTRUCTOR: The last thing I want to talk about with lambda expressions is 

method references. 

[00:00:05] So, lambda expressions as hopefully you’ve learned are a shortened syntax or a 

simplified way to do something we could have done before. 

[00:00:14] Method references are an even shorter syntax that we can use for certain lambda 

expressions. 

[00:00:20] So, if we look at this example. 

 Start slide description. Following content is shown: 

 Method References 

Simplified syntax for lambda expressions that simply call an existing method. 

Consider a lambda expression that uses the Java forEach(Consumer<? super T>) 

method (defined in Iterable) to print the contents of a list: 

List<Integer> intList = Arrays.asList(23, 5, 10, 71); 

intList.forEach(x -> System.out.println(x)); 

The lambda expression simply calls an existing method, passing its parameter list 

to the method, so it can be replaced with a method reference: 

List<Integer> intList = Arrays.asList(23, 5, 10, 71); 

intList.forEach(System.out::println); 

End slide description. 



[00:00:23] So, one of the methods that is now built into Java into the list class is a for each 

method. 

[00:00:29] It’s pretty common to want to do something to iterate through the elements of 

some list and do something to all of the elements. 

[00:00:37] So, in this example, we want to print them all out. 

[00:00:40] So, we can create our list, and we can call four each and use a lambda expression 

to print everything out. 

[00:00:47] So, that’s simple, but we can make it even more simple because this is a special 

lambda expression that’s just calling one method. 

[00:00:54] And it’s calling that method on the parameter that’s passed in. 

[00:00:58] And so, if that’s the case, then that’s an example where you can use a method 

reference to shorten the syntax. 

[00:01:04] So, here is an example with the method reference. 

[00:01:07] So, instead of declaring the variable with the array syntax, I can just say System 

dot out. 

[00:01:14] And then instead of dot print line, it’s colon colon print line. 

[00:01:18] That indicates that I’m not trying to call this method right here. 

[00:01:22] I’m trying to specify a method reference or, in other words, a lambda function. 

[00:01:27] So that gets translated; the JVM can recognize that and translate that into a 

lambda that looks like this. 

[00:01:36] OK. 



[00:01:37] So, I already said this, but the double colon indicates a method reference instead 

of a method call. 

 Start slide description. Following content is shown: 

 Method References (cont.) 

• The double colon indicates a method reference, instead of a method call. 

• A parameter list is not needed or allowed for a method reference and 

there is no -> operator. 

• Method references can be used for static method, instance method, and 

constructor invocations: 

o Static method: ClassName::methodName 

o Instance method: objectReference::methodName (equivalent to x 

-> objectReference.methodName(x)) 

o Instance Method (with instance defined as the first parameter in 

the expression): 

o ClassName::methodName (equivalent to (x, y) -> 

x.methodName(y)) 

o Constructor invocation: ClassName::new 

End slide description. 

[00:01:43] And if you’re using a method reference, you don’t specify a parameter list. 

[00:01:48] In fact, you can’t specify a parameter list. 

[00:01:50] By definition, method references don’t have a parameter list. 

[00:01:53] So, we don’t have that, and there are a few different ways we can use these or a 

few different circumstances where we can use them. 



[00:02:00] If we’re just calling a static method, then we can do that by calling class name 

colon colon method name and we can shorten the syntax in that way. 

[00:02:10] If we’re calling some instance method where we are doing something to some 

object that would get passed in a parameter list, that can be shortened. 

[00:02:22] That’s the example that I showed you before, where we just specify object 

reference, colon colon method name. 

[00:02:28] That’s equivalent to having some variable and passing that in and passing it as 

the parameter to the method name. 

[00:02:35] So, if I just shorten it this way, then it’s the same thing. 

[00:02:41] It’s also possible sometimes we have two parameters, and what we’re doing in 

our lambda is we’re calling some method on the first parameter and passing the 

second parameter as a parameter. 

[00:02:55] And so that’s what this looks like. 

[00:02:56] If I have my lambda expression is X,Y and the code is X and then call some 

method, so call some method on X and pass Y, I can shorten that to a method 

reference. 

[00:03:08] So, I can just say class name colon colon method again. 

[00:03:11] And the JVM will infer or determine that this is what I’m trying to do. 

[00:03:18] And finally, I can shorten constructor calls. 

[00:03:23] So, if my lambda expression is just creating some object, I can just do class name 

colon colon a new, and that is a shortened syntax again for a lambda expression 

that would create a new instance. 

[00:03:35] So, these are a little bit trickier to recognize when you can use them. 



[00:03:38] I don’t always recognize them. 

[00:03:40] Sometimes I’ll write out the regular lambda and then my code editor will tell me, 

hey, that could be shortened to a method reference. 

[00:03:47] So, when you’re kind of new to lambda functions or lambda expressions, you 

probably write these out and then when you see that it can be shortened to a 

method reference, just tell your editor to do that for you. 

[00:03:59] And that’ll help you get used to writing method references. 

[00:04:01] You don’t actually have to write them as method references, but the whole point 

of lambdas is short and simple syntax. 

[00:04:08] So, we might as well make it as short and simple as we can. 

[00:04:11] So, it’s a good idea to use method references when you can. 


