CS 240: Method References Transcript

[00:00:00] INSTRUCTOR: The last thing | want to talk about with lambda expressions is

method references.

[00:00:05] So, lambda expressions as hopefully you’ve learned are a shortened syntax or a

simplified way to do something we could have done before.

[00:00:14] Method references are an even shorter syntax that we can use for certain lambda

expressions.
[00:00:20] So, if we look at this example.
Start slide description. Following content is shown:
Method References
Simplified syntax for lambda expressions that simply call an existing method.

Consider a lambda expression that uses the Java forEach(Consumer<? super T>)

method (defined in Iterable) to print the contents of a list:
List<Integer> intList = Arrays.asList(23, 5, 10, 71);
intList.forEach(x -> System.out.printin(x));

The lambda expression simply calls an existing method, passing its parameter list

to the method, so it can be replaced with a method reference:
List<Integer> intList = Arrays.asList(23, 5, 10, 71);
intList.forEach(System.out::printin);

End slide description.



[00:00:23]

[00:00:29]

[00:00:37]

[00:00:40]

[00:00:47]

[00:00:54]

[00:00:58]

[00:01:04]

[00:01:07]

[00:01:14]

[00:01:18]

[00:01:22]

[00:01:27]

[00:01:36]

So, one of the methods that is now built into Java into the list class is a for each

method.

It’s pretty common to want to do something to iterate through the elements of

some list and do something to all of the elements.

So, in this example, we want to print them all out.

So, we can create our list, and we can call four each and use a lambda expression

to print everything out.

So, that’s simple, but we can make it even more simple because this is a special

lambda expression that’s just calling one method.

And it’s calling that method on the parameter that’s passed in.

And so, if that’s the case, then that’s an example where you can use a method

reference to shorten the syntax.

So, here is an example with the method reference.

So, instead of declaring the variable with the array syntax, | can just say System

dot out.

And then instead of dot print line, it’s colon colon print line.

That indicates that I’'m not trying to call this method right here.

I’'m trying to specify a method reference or, in other words, a lambda function.

So that gets translated; the JVM can recognize that and translate that into a

lambda that looks like this.

OK.



[00:01:37] So, | already said this, but the double colon indicates a method reference instead

of a method call.

Start slide description. Following content is shown:

Method References (cont.)

e The double colon indicates a method reference, instead of a method call.
e A parameter list is not needed or allowed for a method reference and
there is no -> operator.
e Method references can be used for static method, instance method, and
constructor invocations:
o Static method: ClassName::methodName
o Instance method: objectReference::methodName (equivalent to x
-> objectReference.methodName(x))
o Instance Method (with instance defined as the first parameter in
the expression):
o ClassName::methodName (equivalent to (x, y) ->
x.methodName(y))

o Constructor invocation: ClassName::new

End slide description.

[00:01:43] And if you’re using a method reference, you don’t specify a parameter list.

[00:01:48] In fact, you can’t specify a parameter list.

[00:01:50] By definition, method references don’t have a parameter list.

[00:01:53] So, we don’t have that, and there are a few different ways we can use these or a

few different circumstances where we can use them.



[00:02:00]

[00:02:10]

[00:02:22]

[00:02:28]

[00:02:35]

[00:02:41]

[00:02:55]

[00:02:56]

[00:03:08]

[00:03:11]

[00:03:18]

[00:03:23]

[00:03:35]

If we're just calling a static method, then we can do that by calling class name

colon colon method name and we can shorten the syntax in that way.

If we're calling some instance method where we are doing something to some

object that would get passed in a parameter list, that can be shortened.

That’s the example that | showed you before, where we just specify object

reference, colon colon method name.

That’s equivalent to having some variable and passing that in and passing it as

the parameter to the method name.

So, if | just shorten it this way, then it’s the same thing.

It’s also possible sometimes we have two parameters, and what we’re doing in
our lambda is we’re calling some method on the first parameter and passing the

second parameter as a parameter.

And so that’s what this looks like.

If I have my lambda expression is X,Y and the code is X and then call some
method, so call some method on X and pass Y, | can shorten that to a method

reference.

So, | can just say class name colon colon method again.

And the JVM will infer or determine that this is what I’'m trying to do.

And finally, | can shorten constructor calls.

So, if my lambda expression is just creating some object, | can just do class name
colon colon a new, and that is a shortened syntax again for a lambda expression

that would create a new instance.

So, these are a little bit trickier to recognize when you can use them.



[00:03:38]

[00:03:40]

[00:03:47]

[00:03:59]

[00:04:01]

[00:04:08]

[00:04:11]

| don’t always recognize them.

Sometimes I'll write out the regular lambda and then my code editor will tell me,

hey, that could be shortened to a method reference.

So, when you’re kind of new to lambda functions or lambda expressions, you
probably write these out and then when you see that it can be shortened to a

method reference, just tell your editor to do that for you.

And that’ll help you get used to writing method references.

You don’t actually have to write them as method references, but the whole point

of lambdas is short and simple syntax.

So, we might as well make it as short and simple as we can.

So, it’s a good idea to use method references when you can.



