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I. SYMMETRY RELATIONS

Let all lengths be normalized to the major radius of the magnetic axis, R0, and let all

magnetic field-strengths be normalized to the toroidal magnetic field-strength at the axis,

B0. Consider an axisymmetric toroidal plasma equilibrium. Let R, ϕ, Z be a conventional

cylindrical coordinate system that is co-axial with the toroidal symmetry axis of the plasma.

The equilibrium magnetic field is written

B = ∇ϕ×∇ψ + g(ψ)∇ψ, (1)

where ψ is the poloidal magnetic flux. We can also define

ΨN =
ψ

ψa

, (2)

where ψa is the poloidal flux at the plasma boundary. Thus, ΨN = 0 at the magnetic axis,

and ΨN = 1 on the plasma boundary. In the following, it is assumed that ΨN is the ‘radial’

coordinate in STRIDE.

Let

Lm
m(ΨN) = I(ΨN)

(
J(ΨN)

[
mg(ΨN)

q(ΨN)

]2
+ [nψa]

2

)
, (3)

I(ΨN) =

∫ ΨN

0

2 q (Ψ ′
N)

g(Ψ ′
N)

dΨ ′
N , (4)

J(ΨN) =

∮
|∇ΨN |−2 dθ

2π
, (5)

ρ(ΨN) =
J(ΨN) g(ΨN)

q(ΨN)
, (6)

s(ΨN) =
d ln q

dΨN

, (7)

a rfitzp@utexas.edu



2

where m is a poloidal mode number, n is a toroidal mode number, q(ΨN) is the safety-factor,

and θ is a ‘straight’ poloidal angle defined such that

(∇ϕ×∇θ · ∇ϕ)−1 =
q R2

g
, (8)

Note that we are working in PEST coordinates.

Let mj be the poloidal mode number of the jth rational surface, which is located at

ΨN = ΨN j. Let DI j be the ideal Mercier index at the jth rational surface, and let

νL j =
1

2
−
√

−DI j, (9)

νS j =
1

2
+
√

−DI j. (10)

Let

fL j =

[
ρ νL j

(
νS j − νL j

L
mj
mj

)1/2

smj

]
ΨN j

, (11)

fS j =

[
ρ νS j

(
νS j − νL j

L
mj
mj

)1/2

smj

]
ΨN j

. (12)

Finally, let

Âij = f −1
S j Aij fL j′ , (13)

B̂ij = f −1
S j Bij fL j′ , (14)

Γ̂ij = f −1
S j Γij fL j′ , (15)

∆̂ij = f −1
S j ∆ij fL j′ , (16)

where Aij, Bij, Γij, and ∆ij are the elements of the outer matching matrices calculated by

STRIDE, whereas the hatted quantities are the corresponding matching matrices calculated

by TJ. Equations (77) and (100) of Ref. 1 imply that

Â∗
ji = Âij, (17)

∆̂∗
ji = ∆̂ij, (18)

B̂∗
ji = Γ̂ij. (19)

These symmetries are ultimately due to the self-adjoint nature of the ideal-MHD force oper-

ator. However, as explained in Ref. 2, the symmetries can also be related to the conservation
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of toroidal electromagnetic angular momentum. The symmetries have to be respected by a

toroidal tearing mode code, otherwise the code would predict that an isolated plasma could

exert a net toroidal electromagnetic torque on itself. Note that, in the cylindrical limit, ∆̂jj

is equivalent to rs∆
′: i.e., the tearing stability index normalized to the minor radius of the

rational surface.

II. TJ CIRCULAR EQUILIBRIUM

The TJ circular equilibrium is characterized by a pressure profile

p(r) = β0

[
1−

(r
a

)2]pp
, (20)

and a parallel current profile, σ = J ·B/B2,

σ(r) = σ0

[
1−

(r
a

)2]pσ
. (21)

These profiles differ from the existing lar module in STRIDE because of the (r/a)2, rather

than (r/a), factors in the profiles.

III. BENCHMARK TESTS

A. Single Rational Surface

We use a zero-pressure, circular cross-section, plasma equilibrium that, in the cylindrical

limit, has a Wesson-like current profile 3 characterized by the safety-factor on the magnetic

axis, q0, and the safety-factor at the plasma boundary, qa. In fact, in the cylindrical limit,

jϕ(r) = (2/q0) (1− r2)qa/q0 . We consider the stability of n = 1 tearing modes, and consider

equilibria that only contain a single n = 1 rational surface: namely, the 2/1 surface.

1. Test 1

The first test has q0 = 1.1, qa = 2.6, and varies the inverse aspect-ratio of the plasma, ϵa.

Figure 1 compares the ∆̂11 (i.e., the tearing stability index of the 2/1 tearing mode) values

calculated by the TJ code,4 the TEAR code (which is a cylindrical tearing mode code),

and the STRIDE code. It can be seen that the tearing stability index calculated by the TJ
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code asymptotes to that calculated by the TEAR code in the cylindrical limit, ϵa → 0. On

the other hand, the stability index calculated by STRIDE exhibits wild oscillations in the

cylindrical limit, and only becomes believable when ϵa > 0.2. In the latter case, the STRIDE

and TJ codes exhibit good agreement. Note that TJ has a dud data point at ϵa = 0.12,

which is under further investigation.

2. Test 2

The second test has q0 = 1.1 and ϵa = 0.05, and varies qa. Figure 2 compares the

∆̂11 values calculated by the TJ code, the TEAR code and the STRIDE code. It can be

seen that the tearing stability indices calculated by the TJ and TEAR codes agree with

one another, as should be the case in a large aspect-ratio plasma. On the other hand, the

tearing stability index calculated by the STRIDE code exhibits significant oscillations about

the (presumably) correct answer.

3. Test 3

The third test is the same as the second, except that we have increased ϵa to 0.2, because

Fig. 1 suggests that STRIDE is more likely to give reliable results at this aspect-ratio.

Figure 3 compares the ∆̂11 values calculated by the TJ code, the TEAR code and the

STRIDE code. It can be seen that the tearing stability indices calculated by TJ and STRIDE

are in reasonably good agreement with one another. Note that the plasma approaches an

ideal stability limit as qa → 3. Nevertheless, the STRIDE results still exhibit oscillations

about the TJ results.

4. Test 4

The fourth test shows the elements of the 2×2 tearing stability index when qa lies between

2 and 3. It can be seen that TJ and STRIDE are in reasonably good agreement. However,

STRIDE is not respecting the symmetry constraints as well as TJ.
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FIG. 1. Test 1: q0 = 1.1, qa = 2.6. Variation of 2/1 tearing stability index with inverse-aspect

ratio.
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FIG. 2. Test 2: q0 = 1.1, ϵa = 0.05. Variation of 2/1 tearing stability index with edge safety-factor.
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FIG. 3. Test 3: q0 = 1.1, ϵa = 0.2. Variation of 2/1 tearing stability index with edge safety-factor.
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FIG. 4. Test 4: q0 = 1.1, ϵa = 0.3. Variation of elements of tearing stability matrix with edge

safety-factor.


