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I. SYMMETRY RELATIONS

Let all lengths be normalized to the major radius of the magnetic axis, Ry, and let all
magnetic field-strengths be normalized to the toroidal magnetic field-strength at the axis,
By. Consider an axisymmetric toroidal plasma equilibrium. Let R, ¢, Z be a conventional
cylindrical coordinate system that is co-axial with the toroidal symmetry axis of the plasma.

The equilibrium magnetic field is written

B =V¢ x Vi) +g(v) Vi), (1)

where 1 is the poloidal magnetic flux. We can also define

_¥
Vo’

where 1), is the poloidal flux at the plasma boundary. Thus, ¥ = 0 at the magnetic axis,

Wy (2)

and ¥ = 1 on the plasma boundary. In the following, it is assumed that ¥y is the ‘radial’

coordinate in STRIDE.

Let
L7(@y) = I(y) (J(st) [%‘m +n W) , ()
o) = [ gy, (W
Ioy) = § V0|2 57, )
pli) = T2, 6)
s(Ty) = ng‘Nq, (7)
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where m is a poloidal mode number, n is a toroidal mode number, ¢(¥y) is the safety-factor,

and @ is a ‘straight’ poloidal angle defined such that

R2
(Vo x Vo Vo) = L2, (8)
g
Note that we are working in PEST coordinates.
Let m; be the poloidal mode number of the jth rational surface, which is located at

Un =Wy ;. Let Dy, be the ideal Mercier index at the jth rational surface, and let

1
Vszi_\/_Dlja (9>
1
Z/Sj:§+\/_D1j‘ (10)
Let
[ Vg — VL 1/2 |
Jri=|p"™ (%) sm; (11)
L i oy
[ Vgi — VL 1/2 ]
fsj=|p"s (%) 5 M, (12)
mj
L dwy;
Finally, let
Aij = fgjl Aij frjr, (13)
Bij = fs} Bij fuyr, (14)
fij = fS_jl Ly frj, (15)
Aij = fgjl Aij frj (16)

where A

i Bij7

I;j, and A;; are the elements of the outer matching matrices calculated by

STRIDE, whereas the hatted quantities are the corresponding matching matrices calculated

by TJ. Equations (77) and (100) of Ref. 1 imply that

A;fi = Ay, (17)
A;z = Ay, (18)

These symmetries are ultimately due to the self-adjoint nature of the ideal-MHD force oper-

ator. However, as explained in Ref. 2, the symmetries can also be related to the conservation



of toroidal electromagnetic angular momentum. The symmetries have to be respected by a
toroidal tearing mode code, otherwise the code would predict that an isolated plasma could
exert a net toroidal electromagnetic torque on itself. Note that, in the cylindrical limit, Ajj
is equivalent to r, A’: i.e., the tearing stability index normalized to the minor radius of the

rational surface.

II. TJ CIRCULAR EQUILIBRIUM

The TJ circular equilibrium is characterized by a pressure profile

r r 27 Pr
)= 1= (2) ] (20)
and a parallel current profile, o = J - B/B?,
M r 927 Po
O'(?") = 0p 1— (a) . (21)

These profiles differ from the existing 1ar module in STRIDE because of the (r/a)?, rather
than (r/a), factors in the profiles.

III. BENCHMARK TESTS
A. Single Rational Surface

We use a zero-pressure, circular cross-section, plasma equilibrium that, in the cylindrical
limit, has a Wesson-like current profile® characterized by the safety-factor on the magnetic
axis, qo, and the safety-factor at the plasma boundary, ¢,. In fact, in the cylindrical limit,
Jo(r) = (2/q0) (1 — r?)%/9  We consider the stability of n = 1 tearing modes, and consider

equilibria that only contain a single n = 1 rational surface: namely, the 2/1 surface.

1. Test 1

The first test has ¢y = 1.1, ¢, = 2.6, and varies the inverse aspect-ratio of the plasma, ¢,.
Figure 1 compares the Ay (i.e., the tearing stability index of the 2/1 tearing mode) values
calculated by the TJ code,* the TEAR code (which is a cylindrical tearing mode code),
and the STRIDE code. It can be seen that the tearing stability index calculated by the TJ



code asymptotes to that calculated by the TEAR code in the cylindrical limit, ¢, — 0. On
the other hand, the stability index calculated by STRIDE exhibits wild oscillations in the
cylindrical limit, and only becomes believable when €, > 0.2. In the latter case, the STRIDE
and TJ codes exhibit good agreement. Note that TJ has a dud data point at ¢, = 0.12,

which is under further investigation.

2. Test 2

The second test has go = 1.1 and ¢, = 0.05, and varies ¢,. Figure 2 compares the
All values calculated by the TJ code, the TEAR code and the STRIDE code. It can be
seen that the tearing stability indices calculated by the TJ and TEAR codes agree with
one another, as should be the case in a large aspect-ratio plasma. On the other hand, the
tearing stability index calculated by the STRIDE code exhibits significant oscillations about

the (presumably) correct answer.

3. Test 3

The third test is the same as the second, except that we have increased €, to 0.2, because
Fig. 1 suggests that STRIDE is more likely to give reliable results at this aspect-ratio.
Figure 3 compares the Ay values calculated by the TJ code, the TEAR code and the
STRIDE code. It can be seen that the tearing stability indices calculated by T\J and STRIDE
are in reasonably good agreement with one another. Note that the plasma approaches an
ideal stability limit as g, — 3. Nevertheless, the STRIDE results still exhibit oscillations
about the TJ results.

4. Test 4

The fourth test shows the elements of the 2 x 2 tearing stability index when ¢, lies between
2 and 3. It can be seen that TJ and STRIDE are in reasonably good agreement. However,
STRIDE is not respecting the symmetry constraints as well as TJ.
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FIG. 1. Test 1: g9 = 1.1, ¢, = 2.6. Variation of 2/1 tearing stability index with inverse-aspect

ratio.



13-
~£3- TEAR
-f3- STRIDE
12-
11-
107
R
9.
8.
7.
2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

Ja

FIG. 2. Test 2: gy = 1.1, ¢, = 0.05. Variation of 2/1 tearing stability index with edge safety-factor.
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FIG. 3. Test 3: qo = 1.1, ¢, = 0.2. Variation of 2/1 tearing stability index with edge safety-factor.
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FIG. 4. Test 4: gy = 1.1, ¢, = 0.3. Variation of elements of tearing stability matrix with edge

safety-factor.



