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Electronic nose sensor drift compensation algorithm

based on adversarial learning*
TAO Yang, LI Chunyan, LIANG Zhifang, YANG Haocheng

(School of Communication and Information Engineering, Chongqing University of Posts and

Telecommunications , Chongqing 400065 , China )

Abstract: Electronic nose( E-nose)is a bionic olfactory system,which is mainly composed of gas sensor array and

pattern recognition, and has been applied to many fileds in our life. However, sensor drift is easy to occur in

realistic application scenario of E-nose,which makes a decrease in performance of E-nose. Aiming at this problem,

a method , namely estimate domain-invariant pototypes via adversarial learning( ALDIP) ,is put forward for sensor

drift compensation. The basic model for the algorithm includes a feature extractor and classifier composed of neural

networks , and uses the conditional entropy to calculate the similarity between the unlabeled target domain features

and the estimated prototypes ( representatives of each class). In order to make features of the target domain have

more discrimination, train the classifier to maximize entropy and minimizes it with respect to the feature extractor.

Finally, experiments show that the algorithm can effectively reduce drift of E-nose sensor.
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