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基于对抗学习的电子鼻传感器漂移补偿算法

陶　 洋，黎春燕，梁志芳，杨皓诚
（重庆邮电大学 通信与信息工程学院，重庆 ４０００６５）

摘　 要：电子鼻是一种生物嗅觉系统，主要由气体传感器阵列和模式识别组成，并已应用在生活的许多领
域。但是在电子鼻实际应用中传感器易发生漂移，致使电子鼻性能下降。本文提出一种基于对抗学习估

计域不变原型方法用于补偿传感器漂移。该算法包含一个由神经网络构成的特征提取器和分类器，并利

用条件熵度量无标记目标域特征和估计原型（每一类的表示）的相似度。为使目标域特征更具有区分性，

训练分类器最大化熵，训练特征提取器最小化熵。最后，实验结果表明：该算法能够有效减少电子鼻传感

器漂移。
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０　 引　 言

电子鼻是一种检测复杂性气味的仪器，又称为机器嗅

觉系统，主要由气体传感器阵列和相应的模式识别算法组

成。它在食品安全［１］、空气质量检测［２］、医学［３］等领域有

着广泛的应用。但电子鼻传感器的灵敏度会随着环境、自

身老化和“中毒”等原因发生变化，故传感器的输出响应也

随之改变，即传感器产生漂移。传感器漂移使电子鼻性能

下降，寿命降低，极大限制了电子鼻在实际生活中的应用。

因此，解决传感器漂移能够延长电子鼻使用寿命，同时也是

近年来针对电子鼻的研究热点。

目前，已有许多学者针对电子鼻传感器漂移提出了一

系列方法，主要包括信号预处理［４］、成分校正法［５，６］、分类

器集成法［７］、域自适应法［８，９］。信号预处理独立校正每只

传感器响应信号，故该方法易于实现、时效性高，但无法处

理数只传感器之间复杂的漂移。成分校正法试图利用实验

环境下参考气体的漂移方向移除测试样本的漂移成分，但

漂移方向的准确性依然值得研究。分类器集成法需利用大

量标记样本。域自适应是近年来在电子鼻漂移补偿中应用

较为广泛的方法，本文也将从域自适应角度继续研究漂移

补偿算法。Ｚｈａｎｇ Ｌ等人提出域自适应极限学习机（ｄｏｍａｉｎ
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ａｄａｐｔｉｖｅ ｅｘｔｒｅｍｅ ｌｅａｒｎｉｎｇ ｍａｃｈｉｎｅ，ＤＡＥＬＭ）方法用于补偿

传感器漂移［８］。Ｌｉａｎｇ Ｚ 等人［９］提出一种方法从特征和分

类器决策层解决电子鼻传感器漂移。综上所述，这些漂移

补偿方法均属于半监督域自适应方法，并抑制了传感器的

漂移，但这些方法利用较多的目标域标记样本。

本文受对抗学习和半监督域自适应的启发，提出一种

基于对抗学习估计域不变原型（ｅｓｔｉｍａｔｅ ｄｏｍａｉｎｉｎｖａｒｉａｎｔ

ｐｒｏｔｏｔｙｐｅｓ ｖｉａ ａｄｖｅｒｓａｒｉａｌ ｌｅａｒｎｉｎｇ，ＡＬＤＩＰ）的漂移补偿方法。

将对抗学习加入半监督域自适应学习过程中，同时利用更

少的目标域标记样本研究传感器漂移补偿算法。该方法的

主要目的是最小化估计原型与目标域未标记样本之间的距

离，从而提取目标域可区分性特征。实验表明，本文所提出

的方法能够有效地对传感器漂移进行补偿。

１　 基于对抗学习估计域不变原型

１． １　 问题定义
传感器漂移使漂移前后收集数据的统计分布发生改

变，致使模式识别精度降低。在半监督域自适应中，源域样

本为 Ｄｓ ＝｛（ｘｉ，ｙｉ）｝ｍ ｓｉ ＝１，少量目标域标记样本为 Ｄ
ｔｌ ＝｛（ｘｉ，

ｙｉ）｝ｍ ｔｌｉ ＝１，以及目标域无标记样本 Ｄ
ｔｕ ＝｛（ｘｉ）｝ｍ ｔｕｉ ＝１。最后，利

用 Ｄｓ，Ｄｔｌ，Ｄｔｕ训练模型，并在 Ｄｔｕ上进行验证。

１． ２　 模型总体结构框架
受文献［１０］的启发，本文提出的方法主要利用神经网

络构建一个特征提取器和余弦相似度分类器。整个网络结

构如图 １ 所示。

有标签数据数反向传播
目标域无标记数据的反向传播

梯度反转

目标域无标记数据

交叉熵损失

SoftMax分类器 C

余弦距离

有标签数据

特征提取器 F -H(p)

图 １　 基于对抗学习域不变原型的网络框架

　 　 余弦相似度分类器相当于对特征提取器 Ｆ 提取的特

征 ｚ和分类器 Ｃ的权重向量Ｗ ＝［ｗ１，ｗ２，…，ｗｋ］分别进行

Ｌ２ 范数归一化，即样本的类别分数为 ｓ ＝ ｃｏｓ（ｚＴ，Ｗ）＝

ｚＴＷ，其中 ｚ ＝ｚ ／‖ｚ‖，Ｗ ＝Ｗ／‖Ｗ‖，是 ｚ 和 Ｗ 经过 Ｌ２

范数归一化的结果。再将类别分数经过 ＳｏｆｔＭａｘ 函数，则

样本的预测概率为 ｐ（ｘ）＝σ（ｚＴＷ），其中 σ（·）表示 Ｓｏｆｔ

Ｍａｘ函数。为增加目标域分类准确性，利用源域和目标域

标记样本训练分类器，同时将分类器权重向量视为类别估

计原型［１０］，并利用熵度量估计原型与目标域未标记样本的

距离。首先，将权重向量移向目标域且最大化目标域未标

记样本的熵；其次，更新特征提取器最小化目标域未标记样

本的熵，从而使目标域样本更好地聚集在原型周围。上述

过程可视为权重向量与特征提取器的极大极小化过程（对

抗学习过程），该过程可利用梯度反转实现。

１． ３　 训练过程
在整个训练过程中，首先利用特征提取器 Ｆ 和余弦相

似度分类器 Ｃ训练源域和目标域标记样本，并选用交叉熵

作为损失函数。特征提取器表示为利用网络参数 θＦ 学习

一个函数 ｆｇ，分类器表示为利用网络参数 θＣ 学习一个函数

ｆｃ，其中，θＣ 为分类器权重向量 Ｗ ＝［ｗ１，ｗ２，…，ｗｋ］的集

合。最后，利用标记样本获得的分类器经验损失为 

（ｘ，ｙ）∈Ｄｓ，Ｄｔｌ ＝ ∑
ｍｓ＋ｍｔｌ

ｉ ＝ １
Ｌ（ｐ（ｘｉ），ｙｉ） （１）

式中　 Ｌ（ｐ（ｘｉ））＝ －∑
Ｋ

ｋ ＝ １
１（ｙｉ ＝ ｋ）ｌｏｇ ｐ（ｙ ＝ ｋ ｜ ｘｉ）为交叉

熵损失函数，Ｋ为类别数量，ｐ（ｘ）＝ ｆｃ（ｆｇ（ｘ））为预测的类

别概率，ｐ（ｙ ＝ｋ ｜ ｘｉ）为第 ｋ 维预测概率。随着分类器损失

逐渐减小，特征提取器可学到源域和少量目标域标记样本

的可区分性特征，但无法学到整个目标域的可区分性特征，

故提出利用最大最小化熵对目标域未标记样本进行训练。

假设对于每种类别都存在一个域不变估计原型，并视

该原型为两个域之间的代表点，但估计原型更适于源域分

布，因为在分类器训练过程中源域标签信息更多。为使估

计原型具有域不变特性，将原型 ｗｉ 向目标域特征移动以估

计原型的位置，故利用熵度量 Ｗ与无标记目标域特征之间

的相似度，熵的计算公式如下

Ｈ ＝ －Ｅ（ｘ，ｙ）∈Ｄｔｕ∑
Ｋ

ｋ ＝ １
ｐ（ｙ ＝ｋ ｜ ｘ）ｌｏｇ ｐ（ｙ ＝ｋ ｜ ｘ）

＝ －Ｅ（ｘ，ｙ）∈Ｄｔｕ∑
Ｋ

ｋ ＝ １
ｆｃ（ｆｇ（ｘ））ｋ ｌｏｇ ｆｃ（ｆｇ（ｘ））ｋ （２）

式中　 Ｋ为类别数量，ｐ（ｙ ＝ｋ ｜ ｘ）为样本 ｘ预测为类别 ｋ的

概率。熵越大则表明估计原型 ｗｉ 与所有目标域特征越相

似，故最大化熵以估计域不变原型。为获得目标域样本可

区分性特征，将目标域未标记样本围绕估计原型聚类，故最

小化特征提取器 Ｆ以减小目标域未标记样本的熵，即每个

目标域样本应分配给唯一的估计原型。因此，重复进行熵

最大化和最小化过程能够学到更具有区分性的特征。整个

熵的最大最小化过程如图 ２ 所示。

估计原型目标域标记的目标域源域

类别 2
类别 1

熵
最
小
化

熵
最
大
化

图 ２　 熵最大最小化过程

　 　 总的来说，该方法可形式化为 Ｃ 和 Ｆ 之间的对抗学

习，训练分类器 Ｃ 最大化熵，训练特征提取器 Ｆ 以最小化
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熵。整个对抗学习的目标函数为

θ^Ｆ ＝ａｒｇ ｍｉｎ
θＦ
 ＋γＨ

θ^Ｃ ＝ａｒｇ ｍｉｎ
θＣ
 －γＨ （３）

式中　 γ为超参数，用于控制最大最小化熵训练和分类损

失之间的平衡。在一个包含有源域和目标域小批量数据

中，该目标函数可形式化为最大最小化迭代训练。小批量

是指将两个域的所有样本划分成几个批次，并以每个批次

更新神经网络的参数，从而降低计算复杂度。为简化训练

过程，利用梯度反转层［１１］使 Ｃ 和 Ｆ 之间的梯度相对于 Ｈ

反转，其中，梯度反转层可利用一次前向和后向传播实现最

大最小化训练。

２　 实验与结果分析

２． １　 传感器基准数据集
本文利用一组公开数据集完成实验，它被许多学者用

于电子鼻漂移补偿算法研究。该数据是长达 ３ 年的电子鼻

传感器基准数据集，由来自加州大学（Ｕｎｉｖｅｒｓｉｔｙ ｏｆ Ｃａｌｉｆｏｒ

ｎｉａ，Ｓａｎ Ｄｉｅｇｏ，ＵＣＳＤ）的 Ｖｅｒｇａｒａ等人［７］采集所得。电子鼻

是由 １６ 只 ＭＯＳ传感器组成的传感器阵列，其中每只传感

器提取样本的 ８ 个特征，故每个样本共有 １２８（１６ ×８）维特

征。最后，利用电子鼻对不同浓度的 ６ 种气体（丙酮，乙醛，

乙醇，乙烯，氨和甲苯）进行测量，在整个 ３６ 个月中共收集

了 １３ ９１０ 个样本，并按时间顺序将其分为 １０ 批数据。其

中，第 １０ 批数据是电子鼻关闭电源 ５ 个月后所采集的数

据，而在电子鼻关闭电源的 ５ 个月中，传感器将遭受到严重

的污染，且这些污染不可避免，因此当电子鼻再次工作时，

电子鼻传感器阵列无法恢复到正常的工作温度，故采集的

数据将发生比平常更严重的漂移。表 １ 为所有批次收集的

时间以及每个批次每种气体的数量。另外，更多关于论文

采用的传感器基准数据集信息可见文献［７］。

表 １　 基准传感器漂移数据集

批次号 月数 丙酮 乙醛 乙醇 乙烯 氨 甲苯 总计

１ １，２ ９０ ９８ ８３ ３０ ７０ ７４ ４４５

２ ３，４，８，９，１０ １６４ ３３４ １００ １０９ ５３２ ５ １ ２４４

３ １１ ～１３ ３６５ ４９０ ２１６ ２４０ ２７５ ０ １ ５８６

４ １４，１５ ６４ ４３ １２ ３０ １２ ０ １６１

５ １６ ２８ ４０ ２０ ４６ ６３ ０ １９７

６ １７ ～２０ ５１４ ５７４ １１０ ２９ ６０６ ４６７ ２ ３００

７ ２１ ６４９ ６６２ ３６０ ７４４ ６３０ ５６８ ３ ６１３

８ ２２，２３ ３０ ３０ ４０ ３３ １４３ １８ ２９４

９ ２４，３０ ６１ ５５ １００ ７５ ７８ １０１ ４７０

１０ ３６ ６００ ６００ ６００ ６００ ６００ ６００ ３ ６００

　 　 为更直观地观察所有批次数据分布差异，图 ３ 为原始

数据的二维主成分散点图。从图 ３ 中可观察到传感器漂移

使各批次的 ２ 维主成分子空间数据分布不一致。因此，若

将批次 １ 视为源域用于建立模型，在目标域批次

ｂ（ｂ ＝２，３，…，１０）上测试，模式识别准确性会产生较大的偏

差。因为在机器学习中，通常假设训练集和测试集应保持

相同或相似的概率分布，而传感器漂移使测试集和训练集

的分布不再满足机器学习的假设，故可考虑减小域间分布

差异提高模式识别的准确率。
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图 ３　 １０ 批数据二维特征（ＰＣ１，ＰＣ２）散点图

２． ２　 结果与讨论

对电子鼻传感器基准数据集进行两种实验设置，并将

两种实验设置下的结果与一些漂移补偿方法进行对比，包

括常用的特征提取方法，主成分分析（ｐｒｉｎｃｉｐａｌ ｃｏｍｐｏｎｅｎｔ

ａｎａｌｙｓｉｓ，ＰＣＡ）法［５］和线性判别分析（ｌｉｎｅａｒ ｄｉｓｃｒｉｍｉｎａｎｔ

ａｎａｌｙｓｉｓ，ＬＤＡ）法［１２］，集成分类器法 ＳＶＭＣＯＭＧＦＫ和 ＳＶＭ

ＲＢＦ，以及近年的半监督域自适应方法，域自适应极限学习

机（ＤＡＥＬＭＳ）［８］。由于神经网络初始权重的不确定性，故

本次实验实现 ＡＬＤＩＰ共 １０ 次，并取实验 １０ 次最优结果的

平均值作为本实验的结果。在实验过程中，等式（３）中的

平衡参数 γ为 ０． １，并利用常见的 ＫＳ算法选取目标域标记

样本。

设置 １：将批次 １ 作为源域用于模型训练，其余批次 ｂ

（ｂ ＝２，３，…，１０）作为目标域用于模型测试。

设置 ２：将批次 ｂ（ｂ ＝１，２，…，９）作为源域用于模型训

练，批次 ｂ ＋１ 作为目标域用于模型测试。

在实验设置 １ 下，表 ２ 给出了 ＡＬＤＩＰ 在最佳实验结果

下的小批量设置，表 ３ 给出了 ＡＬＤＩＰ 与其他漂移补偿算法

的识别精度。从表 ３ 可知 ＡＬＤＩＰ 平均精度结果最佳，虽然

平均精度只比 ＤＡＥＬＭＳ 高出 ０． ９１ ％，但从表格的第一列

可知 ＡＬＤＩＰ 比 ＤＡＥＬＭＳ 少利用 １０ 个目标域标记样本。

从总的 １０ 批数据来看，２，４，５，６，１０ 批次数据的识别精度

均比 ＤＡＥＬＭＳ高，尤其第 １０ 批数据，ＡＬＤＩＰ的识别精度比

１１１
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ＤＡＥＬＭＳ高出 １５． １７％，由 ２． １ 节可知，第 １０ 批数据漂移

最严重，故这也证明了该方法对漂移的补偿作用。最后还

给出了实验设置 １ 下 ＡＬＤＩＰ 方法在包含 ０，５，１０，１５，２０，

２５ 个目标域标记样本下每批次的识别精度图，并与

ＤＡＥＬＭＳ在该环境下的识别精度进行对比，如图 ４ 所示。

从图 ４ 中可看出随着目标域标记样本的增加，ＡＬＤＩＰ 方法

的识别精度逐渐增加，且在相同的目标域样本下，大多数批

次的识别效果优于 ＤＡＥＬＭＳ。因此，该模型能够有效补偿

传感器漂移。另外 ＡＬＤＩＰ比次之的 ＤＡＥＬＭＳ 效果更佳的

一个原因是 ＡＬＤＩＰ 利用了对抗学习使提取的源域和目标

域特征具有域不变特性，并且利用余弦相似度分类器可使

类内更紧密，而 ＤＡＥＬＭＳ利用极限学习机只考虑了分类决

策层的自适应。

表 ２　 实验设置 １ 下获得最高精度时小批量参数设置

批次（ｂ） ２ ３ ４ ５ ６ ７ ８ ９ １０

小批量大小 １２ １２ １６ ３２ ３２ １２ １２ ３２ １４

表 ３　 实验设置 １ 下 ＡＬＤＩＰ以及对比算法的识别精度

方法
批次（ｂ）

２ ３ ４ ５ ６ ７ ８ ９ １０
平均值

ＰＣＡＳＶＭ ８２． ４０ ８４． ８０ ８０． １２ ７５． １３ ７３． ５７ ５６． １６ ４８． ６４ ６７． ４５ ４９． １４ ６８． ６０

ＬＤＡＳＶＭ ４７． ２７ ５７． ７６ ５０． ９３ ６２． ４４ ４１． ４８ ３７． ４２ ６８． ３７ ５２． ３４ ３１． １７ ４９． ９１

ＳＶＭＲＢＦ ７４． ３６ ６１． ０３ ５０． ９３ １８． ２７ ２８． ２６ ２８． ８１ ２０． ０７ ３４． ２６ ３４． ４７ ３８． ９４

ＳＶＭＣＯＭＧＦＫ ７４． ４７ ７０． １５ ５９． ７８ ７５． ０９ ７３． ９９ ５４． ５９ ５５． ８８ ７０． ２３ ４１． ８５ ６４． ００

ＤＡＥＬＭＳ（３０）８７． ９８ ９５． ７４ ８５． １６ ９５． ９９ ９４． １４ ８３． ２１ ８６． ９０ １００ ５３． ６２ ８７． ００

ＡＬＤＩＰ（２０） ８９． ６２ ９１． ６９ ８７． ９４ １００ ９５． ４５ ７６． ０５ ８２． ８１ ９８． ８４ ６８． ７９ ８７． ９１

注：表格内加粗字体表示每批次所有方法中的最高识别精度
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图 ４　 不同数量目标域标记样本下每个批次的识别精度
　 　 在实验设置 ２ 下，批次 ｂ 视为源域，批次 ｂ ＋１ 视为目

标域，若将批次 ｂ→ｂ ＋１ 视为一个任务，则共有 ９ 个任务。

表 ４ 给出了在实验设置 ２ 下每个任务获得最佳实验结果的

小批量大小参数设置。表 ５ 给出 ＡＬＤＩＰ 方法与所有比较

的漂移补偿方法对 ９ 个任务的识别精度结果。从表 ５ 中可

看出 ＡＬＤＩＰ方法的识别精度依然是最高的。虽然仅比与

它次之的 ＤＡＥＬＭＳ 方法高出 ０． ４５ ％，但该方法依然利用

了更少的目标域标记样本。对于现实场景来讲，从目标域

获取更多的标记样本将耗费大量人力且不易获取，故这证

明了该方法的有效性。总的来说，无论从实验设置 １ 还是

实验设置 ２，都能够说明 ＡＬＤＩＰ 方法对传感器漂移的补偿

作用。

表 ４　 实验设置 ２ 下获得最高精度时小批量参数设置

批次（ｂ→ｂ ＋１） １→２ ２→３ ３→４ ４→５ ５→６ ６→７ ７→８ ８→９ ９→１０

小批量大小 １２ ３２ １６ ３２ １４ ６４ １４ ６４ ６４

表 ５　 实验设置 ２ 下 ＡＬＤＩＰ以及对比算法的识别精度表

方法
批次（ｂ→ｂ ＋１）

１→２ ２→３ ３→４ ４→５ ５→６ ６→７ ７→８ ８→９ ９→１０
平均值

ＰＣＡＳＶＭ ８２． ４０ ９８． ８７ ８３． ２３ ７２． ５９ ３６． ７０ ７４． ９８ ５８． １６ ８４． ０４ ３０． ６１ ６９． ０６

ＬＤＡＳＶＭ ４７． ２７ ４６． ７２ ７０． ８１ ８５． ２８ ４８． ８７ ７５． １５ ７７． ２１ ６２． ７７ ３０． ２５ ６０． ４８

ＳＶＭＲＢＦ ７４． ３６ ８７． ８３ ９０． ０６ ５６． ３５ ４２． ５２ ８３． ５３ ９１． ８４ ６２． ９８ ２２． ６４ ６８． ０１

ＳＶＭＣＯＭＧＦＫ ７４． ４７ ７３． ７５ ７８． ５１ ６４． ２６ ６９． ９７ ７７． ６９ ８２． ６９ ８５． ５３ １７． ７６ ６９． ４０

ＤＡＥＬＭＳ（３０）８７． ９８ ９６． ５８ ８９． ７５ ９９． ０４ ８４． ４３ ９１． ７５ ８９． ８３ １００ ５８． ４４ ８８． ６４

ＡＬＤＩＰ（２０） ８９． ６２ ９４． ８３ １００ ９９． ４４ ８０． １３ ８１． ５５ ９５． ６２ １００ ６０． ６ ８９． ０９

注：表格内加粗字体表示对于每个任务所有方法中的最高识别精度

３　 结　 论

为了补偿传感器的漂移，本文提出一种基于对抗学习

估计域不变原型的算法。该方法的特点为：１）利用熵的最

大最小化过程达到源域与目标域之间的自适应；２）在网络

结构中，为了达到对抗的目的，在特征提取器和分类器之间

加入梯度反转层；３）该模型不仅能够学习到域不变特征，

而且能够学习到域不变原型。最后，为了验证提出方法的

有效性，在加州大学的电子鼻基准数据集上进行实验，并证

明了该方法比其他漂移补偿方法识别率更高。
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