
1.

2.

3.

Session Management in Spring Security
JWT Session Management for Secure Authentication

Objective

Our goal is to efficiently manage user sessions using JWT tokens:

Login Request Handling:
Generate Access Token (AT) and Refresh Token (RT).
Store session details using a structured schema.

Token Renewal:
Issue a new AT using RT only if RT is valid and session exists.

Session Limit Handling:
If session limit is reached, remove the least recently used (LRU) session.

Schema for Session Management

A new entity SessionManagement is created to manage user sessions.

Step 1: Create SessionManagement Entity
@Entity
@Table(name="sessions")
@Getter
@Setter
@AllArgsConstructor
@NoArgsConstructor
@Builder
public class SessionManagement {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 private String refreshToken;

 @CreationTimestamp
 private LocalDateTime lastUsedAt;

 @ManyToOne
 private UserEntity user;

}

Step 2: Implement Session Management Services

Create a service to manage session storage and validation.

@Service
@AllArgsConstructor
public class SessionManagementServices {

 private final SessionManagementRepository sessionRepository;

 private final int SESSION_LIMIT = 2;

 public void generateSession(UserEntity user, String refreshToken){
 List<SessionManagement> userSessions =
sessionRepository.findByUser(user);

 if (userSessions.size() == SESSION_LIMIT) {

 userSessions.sort(Comparator.comparing(SessionManagement::getLastUsed
At));
 SessionManagement leastRecentlyUsedSession = userSessions.get(0);
 sessionRepository.delete(leastRecentlyUsedSession);
 }

 SessionManagement newSession = SessionManagement.builder()
 .user(user)
 .refreshToken(refreshToken)
 .lastUsedAt(LocalDateTime.now())
 .build();

 sessionRepository.save(newSession);
 }

 public void validateSession(String refreshToken){
 SessionManagement session =
sessionRepository.findByRefreshToken(refreshToken)
 .orElseThrow(() ->
 new SessionAuthenticationException(
 "Session not found with refreshToken: " + refreshToken));

 session.setLastUsedAt(LocalDateTime.now());

 sessionRepository.save(session);

 }
}

Step 3: Integrate Session Management in Authentication Services

Handle Login and Session Creation

public LoginResponseDTO login(LoginDTO loginDTO) {
 Authentication authentication = authenticationManager.authenticate(
 new UsernamePasswordAuthenticationToken(loginDTO.getEmail(),
loginDTO.getPassword())
);

 UserEntity userEntity = (UserEntity) authentication.getPrincipal();
 String accessToken = jwtServices.generateAccessToken(userEntity);
 String refreshToken = jwtServices.generateRefreshToken(userEntity);

 sessionManagementServices.generateSession(userEntity, refreshToken);

 return new LoginResponseDTO(userEntity.getUserid(), accessToken,
refreshToken);

}

Refresh Token Handling and Session Validation

public LoginResponseDTO refreshToken(String refreshToken) {
 Long userId = jwtServices.getUserIdFromToken(refreshToken);

 sessionManagementServices.validateSession(refreshToken);

 UserEntity userEntity = userService.findById(userId);
 String accessToken = jwtServices.generateAccessToken(userEntity);
 return new LoginResponseDTO(userEntity getUserid() accessToken

1.
2.
3.
4.
5.

 return new LoginResponseDTO(userEntity.getUserid(), accessToken,
 refreshToken);
}

Final Summary

Login: Client sends login request, and server generates AT & RT.
Session Storage: Session details are stored in SessionManagement table.
Token Renewal: New AT is issued only if RT is valid and session exists.
Session Limit Handling: Least recently used session is removed when session limit is reached.
Security: AT is short-lived, while RT ensures secure and efficient session management.

This structured approach enhances security and prevents unauthorized access, ensuring a seamless user
experience.

By Aron

