JWT Session Management for Secure Authentication
Objective

Our goal is to efficiently manage user sessions using JWT tokens:

1. Login Request Handling:
o Generate Access Token (AT) and Refresh Token (RT).
o Store session details using a structured schema.

2. Token Renewal:

o Issue a new AT using RT only if RT is valid and session exists.
3. Session Limit Handling:

o If session limit is reached, remove the least recently used (LRU) session.
Schema for Session Management
A new entity SessionManagement is created to manage user sessions.

Step 1: Create SessionManagement Entity

@Entity
@Table(hame="sessions")
@Getter

@Setter
@AIllArgsConstructor

@NoArgsConstructor
@Builder
public class SessionManagement {

@ld
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

private String refreshToken;

@CreationTimestamp
private LocalDateTime lastUsedAt;

@ManyToOne
private UserEntity user;

}
Step 2: Implement Session Management Services

Create a service to manage session storage and validation.

@Service
@AIllArgsConstructor
public class SessionManagementServices {

private final SessionManagementRepository sessionRepository;

private final int SESSION_LIMIT = 2;

public void generateSession(UserEntity user, String refreshToken){
List<SessionManagement> userSessions =

sessionRepository.findByUser(user);

if (userSessions.size() == SESSION_LIMIT) {

userSessions.sort(Comparator.comparing(SessionManagement:getLastUsed
At));

SessionManagement leastRecentlyUsedSession = userSessions.get(0);

sessionRepository.delete(leastRecentlyUsedSession);

}

SessionManagement newSession = SessionManagement.builder()
.user(user)
refreshToken(refreshToken)
lastUsedAt(LocalDateTime.now())
Jbuild();

sessionRepository.save(newSession);

}

public void validateSession(String refreshToken){
SessionManagement session =
sessionRepository.findByRefreshToken(refreshToken)
.orElseThrow(() ->
new SessionAuthenticationException(
"Session not found with refreshToken: " + refreshToken));

session.setLastUsedAt(LocalDateTime.now());

sessionRepository.save(session);

kg
kg

Step 3: Integrate Session Management in Authentication Services

Handle Login and Session Creation

public LoginResponseDTO login(LoginDTO loginDTO) {
Authentication authentication = authenticationManager.authenticate(
new UsernamePasswordAuthenticationToken(loginDTO.getEmail(),
loginDTO.getPassword()

);

UserEntity userEntity = (UserEntity) authentication.getPrincipal();
String accessToken = jwtServices.generateAccessToken(userEntity);
String refreshToken = jwtServices.generateRefreshToken(userkntity);

sessionManagementServices.generateSession(userkEntity, refreshToken);

return new LoginResponseDTO(userEntity.getUserid(), accessToken,
refreshToken);

¥
Refresh Token Handling and Session Validation

public LoginResponseDTO refreshToken(String refreshToken) {
Long userld = jwtServices.getUserldFromToken(refreshToken);

sessionManagementServices.validateSession(refreshToken);

UserEntity userEntity = userService.findByld(userld);
String accessToken = jwtServices.generateAccessToken(userEntity);

A B 5 . B e Y AU R S N N e I A Y S R

return New LogiNnKesponseu | UlUsSerctntity.getuseriay, accessioken,
refreshToken);

¥
Final Summary

1. Login: Client sends login request, and server generates AT & RT.

2. Session Storage: Session details are stored in SessionManagement table.

3. Token Renewal: New AT is issued only if RT is valid and session exists.

4. Session Limit Handling: Least recently used session is removed when session limit is reached.
5. Security: AT is short-lived, while RT ensures secure and efficient session management.

This structured approach enhances security and prevents unauthorized access, ensuring a seamless user
experience.

