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Chapter 1

1. Introduction
1.1 About These Lectures

1.1.1 About
This lecture series introduces quantitative economics using elementary mathematics and statistics
plus computer code written in Python.

The lectures emphasize simulation and visualization through code as a way to convey ideas, rather
than focusing on mathematical details.

Although the presentation is quite novel, the ideas are rather foundational.

We emphasize the deep and fundamental importance of economic theory, as well as the value of
analyzing data and understanding stylized facts.

The lectures can be used for university courses, self-study, reading groups or workshops.

Researchers and policy professionals might also find some parts of the series valuable for their work.

We hope the lectures will be of interest to students of economics who want to learn both economics
and computing, as well as students from fields such as computer science and engineering who are
curious about economics.

1.1.2 Level
The lecture series is aimed at undergraduate students.

The level of the lectures varies from truly introductory (suitable for first year undergraduates or
even high school students) to more intermediate.

The more intermediate lectures require comfort with linear algebra and some mathematical maturity
(e.g., calmly reading theorems and trying to understand their meaning).

In general, easier lectures occur earlier in the lecture series and harder lectures occur later.

We assume that readers have covered the easier parts of the QuantEcon lecture series on Python
programming.

In particular, readers should be familiar with basic Python syntax including Python functions.
Knowledge of classes and Matplotlib will be beneficial but not essential.

1.1.3 Credits
In building this lecture series, we had invaluable assistance from research assistants at QuantEcon,
as well as our QuantEcon colleagues. Without their help this series would not have been possible.

In particular, we sincerely thank and give credit to

• Aakash Gupta
• Shu Hu
• Jiacheng Li
• Jiarui Zhang
• Smit Lunagariya
• Maanasee Sharma
• Matthew McKay
• Margaret Beisenbek

https://www.python.org/
https://python-programming.quantecon.org/intro.html
https://python-programming.quantecon.org/intro.html
https://github.com/AakashGfude
https://github.com/shlff
https://github.com/Jiarui-ZH
https://github.com/Smit-create
https://github.com/maanasee
https://github.com/mmcky
https://github.com/mbek0605


• Phoebe Grosser
• Longye Tian
• Humphrey Yang
• Sylvia Zhao

We also thank Noritaka Kudoh for encouraging us to start this project and providing thoughtful
suggestions.

https://github.com/pgrosser1
https://github.com/longye-tian
https://github.com/HumphreyYang
https://github.com/SylviaZhaooo




Chapter 2

2. Economic Data
2.1 Long-Run Growth

2.1.1 Overview
In this lecture we use Python, pandas, and Matplotlib to download, organize, and visualize historical
data on economic growth.

In addition to learning how to deploy these tools more generally, we’ll use them to describe facts
about economic growth experiences across many countries over several centuries.

Such “growth facts” are interesting for a variety of reasons.

Explaining growth facts is a principal purpose of both “development economics” and “economic
history”.

And growth facts are important inputs into historians’ studies of geopolitical forces and dynamics.

Thus, Adam Tooze’s account of the geopolitical precedents and antecedents of World War I begins
by describing how the Gross Domestic Products (GDP) of European Great Powers had evolved
during the 70 years preceding 1914 (see chapter 1 of Tooze (2014)).

Using the very same data that Tooze used to construct his figure (with a slightly longer timeline),
here is our version of his chapter 1 figure.

https://python-programming.quantecon.org/pandas.html
https://python-programming.quantecon.org/matplotlib.html\#matplotlib


(This is just a copy of our figure Fig. 7. We describe how we constructed it later in this lecture.)

Chapter 1 of Tooze (2014) used his graph to show how US GDP started the 19th century way behind
the GDP of the British Empire.

By the end of the nineteenth century, US GDP had caught up with GDP of the British Empire, and
how during the first half of the 20th century, US GDP surpassed that of the British Empire.

For Adam Tooze, that fact was a key geopolitical underpinning for the “American century”.

Looking at this graph and how it set the geopolitical stage for “the American (20th) century”
naturally tempts one to want a counterpart to his graph for 2014 or later.

(An impatient reader seeking a hint at the answer might now want to jump ahead and look at figure
Fig. 8.)

As we’ll see, reasoning by analogy, this graph perhaps set the stage for an “XXX (21st) century”,
where you are free to fill in your guess for country XXX.

As we gather data to construct those two graphs, we’ll also study growth experiences for a number
of countries for time horizons extending as far back as possible.

These graphs will portray how the “Industrial Revolution” began in Britain in the late 18th century,
then migrated to one country after another.

In a nutshell, this lecture records growth trajectories of various countries over long time periods.

While some countries have experienced long-term rapid growth across that has lasted a hundred
years, others have not.

Since populations differ across countries and vary within a country over time, it will be interesting
to describe both total GDP and GDP per capita as it evolves within a country.

First let’s import the packages needed to explore what the data says about long-run growth

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
from collections import namedtuple

2.1.2 Setting up
A project initiated by Angus Maddison has collected many historical time series related to economic
growth, some dating back to the first century.

The data can be downloaded from the Maddison Historical Statistics by clicking on the “Latest
Maddison Project Release”.

We are going to read the data from a QuantEcon GitHub repository.

Our objective in this section is to produce a convenient DataFrame instance that contains per capita
GDP for different countries.

Here we read the Maddison data into a pandas DataFrame:

data_url = "https://github.com/QuantEcon/lecture-python-intro/raw/main/lectures/
datasets/mpd2020.xlsx"
data = pd.read_excel(data_url, 
                     sheet_name='Full data')
data.head()

https://en.wikipedia.org/wiki/Angus\_Maddison
https://www.rug.nl/ggdc/historicaldevelopment/maddison/


countrycode country year gdppc pop
0 AFG Afghanistan 1820 NaN 3280.0
1 AFG Afghanistan 1870 NaN 4207.0
2 AFG Afghanistan 1913 NaN 5730.0
3 AFG Afghanistan 1950 1156.0 8150.0
4 AFG Afghanistan 1951 1170.0 8284.0

We can see that this dataset contains GDP per capita (gdppc) and population (pop) for many
countries and years.

Let’s look at how many and which countries are available in this dataset

countries = data.country.unique()
len(countries)

169

We can now explore some of the 169 countries that are available.

Let’s loop over each country to understand which years are available for each country

country_years = []
for country in countries:
    cy_data = data[data.country == country]['year']
    ymin, ymax = cy_data.min(), cy_data.max()
    country_years.append((country, ymin, ymax))
country_years = pd.DataFrame(country_years,
                    columns=['country', 'min_year', 'max_year']).set_index('country')
country_years.head()

min_year max_year
country
Afghanistan 1820 2018
Angola 1950 2018
Albania 1 2018
United Arab Emirates 1950 2018
Argentina 1800 2018

Let’s now reshape the original data into some convenient variables to enable quicker access to
countries’ time series data.

We can build a useful mapping between country codes and country names in this dataset

code_to_name = data[
    ['countrycode',
'country']].drop_duplicates().reset_index(drop=True).set_index(['countrycode'])

Now we can focus on GDP per capita (gdppc) and generate a wide data format

gdp_pc = data.set_index(['countrycode', 'year'])['gdppc']
gdp_pc = gdp_pc.unstack('countrycode')

gdp_pc.tail()



countrycodeAFGAGOALBAREARGARMAUSAUTAZEBDI … URYUSAUZBVENVNMYEMYUGZAFZMBZWE
year
20142022.00008673.00009808.000072601.000019183.00009735.000047867.000041338.000017439.0000748.0000… 19160.000051664.00009085.000020317.00005455.00004054.000014627.000012242.00003478.00001594.0000
20151928.00008689.000010032.000074746.000019502.000010042.000048357.000041294.000017460.0000694.0000… 19244.000052591.00009720.000018802.00005763.00002844.000014971.000012246.00003478.00001560.0000
20161929.00008453.000010342.000075876.000018875.000010080.000048845.000041445.000016645.0000665.0000… 19468.000053015.000010381.000015219.00006062.00002506.000015416.000012139.00003479.00001534.0000
20172014.74538146.435410702.120176643.498419200.906110859.378349265.613542177.370616522.3072671.3169… 19918.136154007.769810743.866612879.13506422.08652321.923915960.843212189.35793497.58181582.3662
20181934.55507771.441811104.166576397.818118556.383111454.425149830.799342988.070916628.0553651.3589… 20185.836055334.739411220.370210709.95066814.14232284.889916558.312312165.79483534.03371611.4052

5 rows × 169 columns

We create a variable color_mapping to store a map between country codes and colors for
consistency

2.1.3 GDP per capita
In this section we examine GDP per capita over the long run for several different countries.

2.1.3.1 United Kingdom
First we examine UK GDP growth

fig, ax = plt.subplots(dpi=300)
country = 'GBR'
gdp_pc[country].plot(
        ax=ax,
        ylabel='international dollars',
        xlabel='year',
        color=color_mapping[country]
    );

Figure 2.  GDP per Capita (GBR)

Note



International dollars are a hypothetical unit of currency that has the same purchasing power
parity that the U.S. Dollar has in the United States at a given point in time. They are also known
as Geary–Khamis dollars (GK Dollars).

We can see that the data is non-continuous for longer periods in the early 250 years of this
millennium, so we could choose to interpolate to get a continuous line plot.

Here we use dashed lines to indicate interpolated trends

fig, ax = plt.subplots(dpi=300)
country = 'GBR'
ax.plot(gdp_pc[country].interpolate(),
        linestyle='--',
        lw=2,
        color=color_mapping[country])

ax.plot(gdp_pc[country],
        lw=2,
        color=color_mapping[country])
ax.set_ylabel('international dollars')
ax.set_xlabel('year')
plt.show()

Figure 3.  GDP per Capita (GBR)

2.1.3.2 Comparing the US, UK, and China
In this section we will compare GDP growth for the US, UK and China.

As a first step we create a function to generate plots for a list of countries

def draw_interp_plots(series,        # pandas series
                      country,       # list of country codes
                      ylabel,        # label for y-axis
                      xlabel,        # label for x-axis
                      color_mapping, # code-color mapping

https://en.wikipedia.org/wiki/international\_dollar


                      code_to_name,  # code-name mapping
                      lw,            # line width
                      logscale,      # log scale for y-axis
                      ax             # matplolib axis
                     ):

    for c in country:
        # Get the interpolated data
        df_interpolated = series[c].interpolate(limit_area='inside')
        interpolated_data = df_interpolated[series[c].isnull()]

        # Plot the interpolated data with dashed lines
        ax.plot(interpolated_data,
                linestyle='--',
                lw=lw,
                alpha=0.7,
                color=color_mapping[c])

        # Plot the non-interpolated data with solid lines
        ax.plot(series[c],
                lw=lw,
                color=color_mapping[c],
                alpha=0.8,
                label=code_to_name.loc[c]['country'])
        
        if logscale:
            ax.set_yscale('log')
    
    # Draw the legend outside the plot
    ax.legend(loc='upper left', frameon=False)
    ax.set_ylabel(ylabel)
    ax.set_xlabel(xlabel)

As you can see from this chart, economic growth started in earnest in the 18th century and
continued for the next two hundred years.

How does this compare with other countries’ growth trajectories?

Let’s look at the United States (USA), United Kingdom (GBR), and China (CHN)



Figure 4.  GDP per Capita, 1500- (China, UK, USA)

The preceding graph of per capita GDP strikingly reveals how the spread of the Industrial
Revolution has over time gradually lifted the living standards of substantial groups of people

• most of the growth happened in the past 150 years after the Industrial Revolution.
• per capita GDP in the US and UK rose and diverged from that of China from 1820 to 1940.
• the gap has closed rapidly after 1950 and especially after the late 1970s.
• these outcomes reflect complicated combinations of technological and economic-policy factors

that students of economic growth try to understand and quantify.

2.1.3.3 Focusing on China
It is fascinating to see China’s GDP per capita levels from 1500 through to the 1970s.

Notice the long period of declining GDP per capital levels from the 1700s until the early 20th
century.

Thus, the graph indicates

• a long economic downturn and stagnation after the Closed-door Policy by the Qing
government.

• China’s very different experience than the UK’s after the onset of the industrial revolution in
the UK.

• how the Self-Strengthening Movement seemed mostly to help China to grow.
• how stunning have been the growth achievements of modern Chinese economic policies by the

PRC that culminated with its late 1970s reform and liberalization.



Figure 5.  GDP per Capita, 1500-2000 (China)

2.1.3.4 Focusing on the US and UK
Now we look at the United States (USA) and United Kingdom (GBR) in more detail.

In the following graph, please watch for

• impact of trade policy (Navigation Act).
• productivity changes brought by the Industrial Revolution.
• how the US gradually approaches and then surpasses the UK, setting the stage for the

‘’American Century’‘.
• the often unanticipated consequences of wars.
• interruptions and scars left by business cycle recessions and depressions.

/business-cycle


Figure 6.  GDP per Capita, 1500-2000 (UK and US)

2.1.4 GDP growth
Now we’ll construct some graphs of interest to geopolitical historians like Adam Tooze.

We’ll focus on total Gross Domestic Product (GDP) (as a proxy for ‘’national geopolitical-military
power’‘) rather than focusing on GDP per capita (as a proxy for living standards).

data = pd.read_excel(data_url, sheet_name='Full data')
data.set_index(['countrycode', 'year'], inplace=True)
data['gdp'] = data['gdppc'] * data['pop']
gdp = data['gdp'].unstack('countrycode')

2.1.4.1 Early industrialization (1820 to 1940)
We first visualize the trend of China, the Former Soviet Union, Japan, the UK and the US.

The most notable trend is the rise of the US, surpassing the UK in the 1860s and China in the 1880s.

The growth continued until the large dip in the 1930s when the Great Depression hit.

Meanwhile, Russia experienced significant setbacks during World War I and recovered significantly
after the February Revolution.

fig, ax = plt.subplots(dpi=300)
country = ['CHN', 'SUN', 'JPN', 'GBR', 'USA']
start_year, end_year = (1820, 1945)
draw_interp_plots(gdp[country].loc[start_year:end_year], 
                  country,
                  'international dollars', 'year',
                  color_mapping, code_to_name, 2, False, ax)



Figure 7.  GDP in the early industrialization era

2.1.4.1.1 Constructing a plot similar to Tooze’s
In this section we describe how we have constructed a version of the striking figure from chapter 1
of Tooze (2014) that we discussed at the start of this lecture.

Let’s first define a collection of countries that consist of the British Empire (BEM) so we can
replicate that series in Tooze’s chart.

BEM = ['GBR', 'IND', 'AUS', 'NZL', 'CAN', 'ZAF']
# Interpolate incomplete time-series
gdp['BEM'] =
gdp[BEM].loc[start_year-1:end_year].interpolate(method='index').sum(axis=1)

Now let’s assemble our series and get ready to plot them.

# Define colour mapping and name for BEM
color_mapping['BEM'] = color_mapping['GBR']  # Set the color to be the same as Great
Britain
# Add British Empire to code_to_name
bem = pd.DataFrame(["British Empire"], index=["BEM"], columns=['country'])
bem.index.name = 'countrycode'
code_to_name = pd.concat([code_to_name, bem])

fig, ax = plt.subplots(dpi=300)
country = ['DEU', 'USA', 'SUN', 'BEM', 'FRA', 'JPN']
start_year, end_year = (1821, 1945)
draw_interp_plots(gdp[country].loc[start_year:end_year], 
                  country,
                  'international dollars', 'year',
                  color_mapping, code_to_name, 2, False, ax)

plt.savefig("./_static/lecture_specific/long_run_growth/tooze_ch1_graph.png",
dpi=300,



            bbox_inches='tight')
plt.show()

At the start of this lecture, we noted how US GDP came from “nowhere” at the start of the 19th
century to rival and then overtake the GDP of the British Empire by the end of the 19th century,
setting the geopolitical stage for the “American (twentieth) century”.

Let’s move forward in time and start roughly where Tooze’s graph stopped after World War II.

In the spirit of Tooze’s chapter 1 analysis, doing this will provide some information about
geopolitical realities today.

2.1.4.2 The modern era (1950 to 2020)
The following graph displays how quickly China has grown, especially since the late 1970s.

fig, ax = plt.subplots(dpi=300)
country = ['CHN', 'SUN', 'JPN', 'GBR', 'USA']
start_year, end_year = (1950, 2020)
draw_interp_plots(gdp[country].loc[start_year:end_year], 
                  country,
                  'international dollars', 'year',
                  color_mapping, code_to_name, 2, False, ax)



Figure 8.  GDP in the modern era

It is tempting to compare this graph with figure Fig. 7 that showed the US overtaking the UK near
the start of the “American Century”, a version of the graph featured in chapter 1 of Tooze (2014).

2.1.5 Regional analysis
We often want to study the historical experiences of countries outside the club of “World Powers”.

The Maddison Historical Statistics dataset also includes regional aggregations

data = pd.read_excel(data_url, 
                     sheet_name='Regional data', 
                     header=(0,1,2),
                     index_col=0)
data.columns = data.columns.droplevel(level=2)

We can save the raw data in a more convenient format to build a single table of regional GDP per
capita

regionalgdp_pc = data['gdppc_2011'].copy()
regionalgdp_pc.index = pd.to_datetime(regionalgdp_pc.index, format='%Y')

Let’s interpolate based on time to fill in any gaps in the dataset for the purpose of plotting

regionalgdp_pc.interpolate(method='time', inplace=True)

Looking more closely, let’s compare the time series for Western Offshoots and Sub-Saharan
Africa with a number of different regions around the world.

Again we see the divergence of the West from the rest of the world after the Industrial Revolution
and the convergence of the world after the 1950s

fig, ax = plt.subplots(dpi=300)
regionalgdp_pc.plot(ax=ax, xlabel='year',
                    lw=2,
                    ylabel='international dollars')

https://www.rug.nl/ggdc/historicaldevelopment/maddison/


ax.set_yscale('log')
plt.legend(loc='lower center',
           ncol=3, bbox_to_anchor=[0.5, -0.5])
plt.show()

Figure 9.  Regional GDP per capita



2.2 Business Cycles

2.2.1 Overview
In this lecture we review some empirical aspects of business cycles.

Business cycles are fluctuations in economic activity over time.

These include expansions (also called booms) and contractions (also called recessions).

For our study, we will use economic indicators from the World Bank and FRED.

In addition to the packages already installed by Anaconda, this lecture requires

!pip install wbgapi
!pip install pandas-datareader

We use the following imports

import matplotlib.pyplot as plt
import pandas as pd
import datetime
import wbgapi as wb
import pandas_datareader.data as web

Here’s some minor code to help with colors in our plots.

2.2.2 Data acquisition
We will use the World Bank’s data API wbgapi and pandas_datareader to retrieve data.

We can use wb.series.info with the argument q to query available data from the World Bank.

For example, let’s retrieve the GDP growth data ID to query GDP growth data.

wb.series.info(q='GDP growth')

id value
NY.GDP.MKTP.KD.ZG GDP growth (annual %)

1 elements

Now we use this series ID to obtain the data.

gdp_growth = wb.data.DataFrame('NY.GDP.MKTP.KD.ZG',
            ['USA', 'ARG', 'GBR', 'GRC', 'JPN'], 
            labels=True)
gdp_growth

CountryYR1960YR1961YR1962YR1963YR1964YR1965YR1966YR1967YR1968… YR2014YR2015YR2016YR2017YR2018YR2019YR2020YR2021YR2022YR2023
economy
JPN JapanNaN12.0435368.9089738.47364211.6767085.81970810.63856211.08214212.882468… 0.2962061.5606270.7538271.6753320.643391−0.402169−4.1471192.5593200.9547371.679020
GRCGreeceNaN13.2038410.36481111.8448669.40967710.7680116.4945015.6694857.203719… 0.792225−0.228302−0.0317951.4731252.0646732.277181−9.1962318.6544985.7436492.332124
GBRUnited

Kingdom
NaN2.7013141.0986964.8595455.5948112.1303331.5674502.7757385.472693… 3.1946372.2228881.9217102.6565051.4051901.624475−10.2969198.5759514.8390850.339966

ARGArgentinaNaN5.427843−0.852022−5.30819710.13029810.569433−0.6597263.1919974.822501… −2.5126152.731160−2.0803282.818503−2.617396−2.000861−9.90048510.4418125.269880−1.611002
USAUnited

States
NaN2.3000006.1000004.4000005.8000006.4000006.5000002.5000004.800000… 2.5238202.9455501.8194512.4576222.9665052.583825−2.1630296.0550532.5123752.887556

5 rows × 65 columns

https://documents.worldbank.org/en/publication/documents-reports/api
https://fred.stlouisfed.org/
https://www.worldbank.org/en/home


We can look at the series’ metadata to learn more about the series (click to expand).

wb.series.metadata.get('NY.GDP.MKTP.KD.ZG')

2.2.3 GDP growth rate
First we look at GDP growth.

Let’s source our data from the World Bank and clean it.

# Use the series ID retrieved before
gdp_growth = wb.data.DataFrame('NY.GDP.MKTP.KD.ZG',
            ['USA', 'ARG', 'GBR', 'GRC', 'JPN'], 
            labels=True)
gdp_growth = gdp_growth.set_index('Country')
gdp_growth.columns = gdp_growth.columns.str.replace('YR', '').astype(int)

Here’s a first look at the data

gdp_growth

1960196119621963196419651966196719681969… 2014201520162017201820192020202120222023
Country
JapanNaN12.0435368.9089738.47364211.6767085.81970810.63856211.08214212.88246812.477895… 0.2962061.5606270.7538271.6753320.643391−0.402169−4.1471192.5593200.9547371.679020
GreeceNaN13.2038410.36481111.8448669.40967710.7680116.4945015.6694857.20371911.563668… 0.792225−0.228302−0.0317951.4731252.0646732.277181−9.1962318.6544985.7436492.332124
United
Kingdom

NaN2.7013141.0986964.8595455.5948112.1303331.5674502.7757385.4726931.939138… 3.1946372.2228881.9217102.6565051.4051901.624475−10.2969198.5759514.8390850.339966

ArgentinaNaN5.427843−0.852022−5.30819710.13029810.569433−0.6597263.1919974.8225019.679526… −2.5126152.731160−2.0803282.818503−2.617396−2.000861−9.90048510.4418125.269880−1.611002
United
States

NaN2.3000006.1000004.4000005.8000006.4000006.5000002.5000004.8000003.100000… 2.5238202.9455501.8194512.4576222.9665052.583825−2.1630296.0550532.5123752.887556

5 rows × 64 columns

We write a function to generate plots for individual countries taking into account the recessions.

Let’s start with the United States.

fig, ax = plt.subplots()

country = 'United States'
ylabel = 'GDP growth rate (%)'
plot_series(gdp_growth, country, 
            ylabel, 0.1, ax, 
            g_params, b_params, t_params)
plt.show()



Figure 10.  United States (GDP growth rate %)

GDP growth is positive on average and trending slightly downward over time.

We also see fluctuations over GDP growth over time, some of which are quite large.

Let’s look at a few more countries to get a basis for comparison.

The United Kingdom (UK) has a similar pattern to the US, with a slow decline in the growth rate and
significant fluctuations.

Notice the very large dip during the Covid-19 pandemic.

fig, ax = plt.subplots()

country = 'United Kingdom'
plot_series(gdp_growth, country, 
            ylabel, 0.1, ax, 
            g_params, b_params, t_params)
plt.show()



Figure 11.  United Kingdom (GDP growth rate %)

Now let’s consider Japan, which experienced rapid growth in the 1960s and 1970s, followed by
slowed expansion in the past two decades.

Major dips in the growth rate coincided with the Oil Crisis of the 1970s, the Global Financial Crisis
(GFC) and the Covid-19 pandemic.

fig, ax = plt.subplots()

country = 'Japan'
plot_series(gdp_growth, country, 
            ylabel, 0.1, ax, 
            g_params, b_params, t_params)
plt.show()



Figure 12.  Japan (GDP growth rate %)

Now let’s study Greece.

fig, ax = plt.subplots()

country = 'Greece'
plot_series(gdp_growth, country, 
            ylabel, 0.1, ax, 
            g_params, b_params, t_params)
plt.show()



Figure 13.  Greece (GDP growth rate %)

Greece experienced a very large drop in GDP growth around 2010-2011, during the peak of the
Greek debt crisis.

Next let’s consider Argentina.

fig, ax = plt.subplots()

country = 'Argentina'
plot_series(gdp_growth, country, 
            ylabel, 0.1, ax, 
            g_params, b_params, t_params)
plt.show()



Figure 14.  Argentina (GDP growth rate %)

Notice that Argentina has experienced far more volatile cycles than the economies examined above.

At the same time, Argentina’s growth rate did not fall during the two developed economy recessions
in the 1970s and 1990s.

2.2.4 Unemployment
Another important measure of business cycles is the unemployment rate.

We study unemployment using rate data from FRED spanning from 1929-1942 to 1948-2022,
combined unemployment rate data over 1942-1948 estimated by the Census Bureau.

Let’s plot the unemployment rate in the US from 1929 to 2022 with recessions defined by the NBER.

https://fred.stlouisfed.org/series/M0892AUSM156SNBR
https://fred.stlouisfed.org/series/UNRATE
https://www.census.gov/library/publications/1975/compendia/hist\_stats\_colonial-1970.html


Figure 15.  Long-run unemployment rate, US (%)

The plot shows that

• expansions and contractions of the labor market have been highly correlated with recessions.
• cycles are, in general, asymmetric: sharp rises in unemployment are followed by slow

recoveries.

It also shows us how unique labor market conditions were in the US during the post-pandemic
recovery.

The labor market recovered at an unprecedented rate after the shock in 2020-2021.

2.2.5 Synchronization
In our previous discussion, we found that developed economies have had relatively synchronized
periods of recession.

At the same time, this synchronization did not appear in Argentina until the 2000s.

Let’s examine this trend further.

With slight modifications, we can use our previous function to draw a plot that includes multiple
countries.

Here we compare the GDP growth rate of developed economies and developing economies.

We use the United Kingdom, United States, Germany, and Japan as examples of developed
economies.



Figure 16.  Developed economies (GDP growth rate %)

We choose Brazil, China, Argentina, and Mexico as representative developing economies.

Figure 17.  Developing economies (GDP growth rate %)

The comparison of GDP growth rates above suggests that business cycles are becoming more
synchronized in 21st-century recessions.



However, emerging and less developed economies often experience more volatile changes
throughout the economic cycles.

Despite the synchronization in GDP growth, the experience of individual countries during the
recession often differs.

We use the unemployment rate and the recovery of labor market conditions as another example.

Here we compare the unemployment rate of the United States, the United Kingdom, Japan, and
France.

Figure 18.  Developed economies (unemployment rate %)

We see that France, with its strong labor unions, typically experiences relatively slow labor market
recoveries after negative shocks.

We also notice that Japan has a history of very low and stable unemployment rates.

2.2.6 Leading indicators and correlated factors
Examining leading indicators and correlated factors helps policymakers to understand the causes
and results of business cycles.

We will discuss potential leading indicators and correlated factors from three perspectives:
consumption, production, and credit level.

2.2.6.1 Consumption
Consumption depends on consumers’ confidence towards their income and the overall performance
of the economy in the future.

One widely cited indicator for consumer confidence is the consumer sentiment index published by
the University of Michigan.

https://fred.stlouisfed.org/series/UMCSENT


Here we plot the University of Michigan Consumer Sentiment Index and year-on-year core
consumer price index (CPI) change from 1978-2022 in the US.

Figure 19.  Consumer sentiment index and YoY CPI change, US

We see that

• consumer sentiment often remains high during expansions and drops before recessions.
• there is a clear negative correlation between consumer sentiment and the CPI.

When the price of consumer commodities rises, consumer confidence diminishes.

This trend is more significant during stagflation.

2.2.6.2 Production
Real industrial output is highly correlated with recessions in the economy.

However, it is not a leading indicator, as the peak of contraction in production is delayed relative to
consumer confidence and inflation.

We plot the real industrial output change from the previous year from 1919 to 2022 in the US to
show this trend.

https://fred.stlouisfed.org/series/CPILFESL
https://fred.stlouisfed.org/series/CPILFESL
https://en.wikipedia.org/wiki/Stagflation


Figure 20.  YoY real output change, US (%)

We observe the delayed contraction in the plot across recessions.

2.2.6.3 Credit level
Credit contractions often occur during recessions, as lenders become more cautious and borrowers
become more hesitant to take on additional debt.

This is due to factors such as a decrease in overall economic activity and gloomy expectations for
the future.

One example is domestic credit to the private sector by banks in the UK.

The following graph shows the domestic credit to the private sector as a percentage of GDP by
banks from 1970 to 2022 in the UK.



Figure 21.  Domestic credit to private sector by banks (% of GDP)

Note that the credit rises during economic expansions and stagnates or even contracts after
recessions.



2.3 Price Level Histories
This lecture offers some historical evidence about fluctuations in levels of aggregate price indexes.

Let’s start by installing the necessary Python packages.

The xlrd package is used by pandas to perform operations on Excel files.

!pip install xlrd

We can then import the Python modules we will use.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

The rate of growth of the price level is called inflation in the popular press and in discussions
among central bankers and treasury officials.

The price level is measured in units of domestic currency per units of a representative bundle of
consumption goods.

Thus, in the US, the price level at 𝑡 is measured in dollars (month 𝑡 or year 𝑡) per unit of the
consumption bundle.

Until the early 20th century, in many western economies, price levels fluctuated from year to year
but didn’t have much of a trend.

Often the price levels ended a century near where they started.

Things were different in the 20th century, as we shall see in this lecture.

A widely believed explanation of this big difference is that countries’ abandoning gold and silver
standards in the early twentieth century.

Tip

This lecture sets the stage for some subsequent lectures about a theory that macro economists
use to think about determinants of the price level, namely, A Monetarist Theory of Price Levels
and Monetarist Theory of Price Levels with Adaptive Expectations

2.3.1 Four centuries of price levels
We begin by displaying data that originally appeared on page 35 of Sargent & Velde (2002) that show
price levels for four “hard currency” countries from 1600 to 1914.

• France
• Spain (Castile)
• United Kingdom
• United States

In the present context, the phrase “hard currency” means that the countries were on a commodity-
money standard: money consisted of gold and silver coins that circulated at values largely
determined by the weights of their gold and silver contents.

Note

/cagan-ree
/cagan-adaptive


Under a gold or silver standard, some money also consisted of “warehouse certificates” that
represented paper claims on gold or silver coins. Bank notes issued by the government or private
banks can be viewed as examples of such “warehouse certificates”.

Let us bring the data into pandas from a spreadsheet that is hosted on github.

# Import data and clean up the index
data_url = "https://github.com/QuantEcon/lecture-python-intro/raw/main/lectures/
datasets/longprices.xls"
df_fig5 = pd.read_excel(data_url, 
                        sheet_name='all', 
                        header=2, 
                        index_col=0).iloc[1:]
df_fig5.index = df_fig5.index.astype(int)

We first plot price levels over the period 1600-1914.

During most years in this time interval, the countries were on a gold or silver standard.

df_fig5_befe1914 = df_fig5[df_fig5.index <= 1914]

# Create plot
cols = ['UK', 'US', 'France', 'Castile']

fig, ax = plt.subplots(figsize=(10,6))

for col in cols:
    ax.plot(df_fig5_befe1914.index, 
            df_fig5_befe1914[col], label=col, lw=2)

ax.legend()
ax.set_ylabel('Index  1913 = 100')
ax.set_xlabel('Year')
ax.set_xlim(xmin=1600)
plt.tight_layout()
plt.show()

Figure 22.  Long run time series of the price level

https://github.com/QuantEcon/lecture-python-intro/tree/main/lectures/datasets


We say “most years” because there were temporary lapses from the gold or silver standard.

By staring at Fig. 1 carefully, you might be able to guess when these temporary lapses occurred,
because they were also times during which price levels temporarily rose markedly:

• 1791-1797 in France (French Revolution)
• 1776-1790 in the US (War for Independence from Great Britain)
• 1861-1865 in the US (Civil War)

During these episodes, the gold/silver standard was temporarily abandoned when a government
printed paper money to pay for war expenditures.

Note

This quantecon lecture Inflation During French Revolution describes circumstances leading up to
and during the big inflation that occurred during the French Revolution.

Despite these temporary lapses, a striking thing about the figure is that price levels were roughly
constant over three centuries.

In the early century, two other features of this data attracted the attention of Irving Fisher of Yale
University and John Maynard Keynes of Cambridge University.

• Despite being anchored to the same average level over long time spans, there were considerable
year-to-year variations in price levels

• While using valuable gold and silver as coins succeeded in anchoring the price level by limiting
the supply of money, it cost real resources.

• a country paid a high “opportunity cost” for using gold and silver coins as money – that gold
and silver could instead have been made into valuable jewelry and other durable goods.

Keynes and Fisher proposed what they claimed would be a more efficient way to achieve a price
level that

• would be at least as firmly anchored as achieved under a gold or silver standard, and
• would also exhibit less year-to-year short-term fluctuations.

They said that central bank could achieve price level stability by

• issuing limited supplies of paper currency
• refusing to print money to finance government expenditures

This logic prompted John Maynard Keynes to call a commodity standard a “barbarous relic.”

A paper currency or “fiat money” system disposes of all reserves behind a currency.

But adhering to a gold or silver standard had provided an automatic mechanism for limiting the
supply of money, thereby anchoring the price level.

To anchor the price level, a pure paper or fiat money system replaces that automatic mechanism
with a central bank with the authority and determination to limit the supply of money (and to deter
counterfeiters!)

Now let’s see what happened to the price level in the four countries after 1914, when one after
another of them left the gold/silver standard by showing the complete graph that originally
appeared on page 35 of Sargent & Velde (2002).

Fig. 2 shows the logarithm of price levels over four “hard currency” countries from 1600 to 2000.

/french-rev
https://en.wikipedia.org/wiki/Irving\_Fisher
https://en.wikipedia.org/wiki/John\_Maynard\_Keynes


Note

Although we didn’t have to use logarithms in our earlier graphs that had stopped in 1914, we
now choose to use logarithms because we want to fit observations after 1914 in the same graph
as the earlier observations.

After the outbreak of the Great War in 1914, the four countries left the gold standard and in so doing
acquired the ability to print money to finance government expenditures.

fig, ax = plt.subplots(dpi=200)

for col in cols:
    ax.plot(df_fig5.index, df_fig5[col], lw=2)
    ax.text(x=df_fig5.index[-1]+2, 
            y=df_fig5[col].iloc[-1], s=col)

ax.set_yscale('log')
ax.set_ylabel('Logs of price levels (Index  1913 = 100)')
ax.set_ylim([10, 1e6])
ax.set_xlabel('year')
ax.set_xlim(xmin=1600)
plt.tight_layout()
plt.show()

Figure 23.  Long run time series of the price level (log)

Fig. 2 shows that paper-money-printing central banks didn’t do as well as the gold and standard
silver standard in anchoring price levels.

That would probably have surprised or disappointed Irving Fisher and John Maynard Keynes.

Actually, earlier economists and statesmen knew about the possibility of fiat money systems long
before Keynes and Fisher advocated them in the early 20th century.



Proponents of a commodity money system did not trust governments and central banks properly to
manage a fiat money system.

They were willing to pay the resource costs associated with setting up and maintaining a
commodity money system.

In light of the high and persistent inflation that many countries experienced after they abandoned
commodity monies in the twentieth century, we hesitate to criticize advocates of a gold or silver
standard for their preference to stay on the pre-1914 gold/silver standard.

The breadth and lengths of the inflationary experiences of the twentieth century under paper money
fiat standards are historically unprecedented.

2.3.2 Four big inflations
In the wake of World War I, which ended in November 1918, monetary and fiscal authorities
struggled to achieve price level stability without being on a gold or silver standard.

We present four graphs from “The Ends of Four Big Inflations” from chapter 3 of Sargent (2013).

The graphs depict logarithms of price levels during the early post World War I years for four
countries:

• Figure 3.1, Retail prices Austria, 1921-1924 (page 42)
• Figure 3.2, Wholesale prices Hungary, 1921-1924 (page 43)
• Figure 3.3, Wholesale prices, Poland, 1921-1924 (page 44)
• Figure 3.4, Wholesale prices, Germany, 1919-1924 (page 45)

We have added logarithms of the exchange rates vis-à-vis the US dollar to each of the four graphs
from chapter 3 of Sargent (2013).

Data underlying our graphs appear in tables in an appendix to chapter 3 of Sargent (2013). We have
transcribed all of these data into a spreadsheet chapter_3.xlsx that we read into pandas.

In the code cell below we clean the data and build a pandas.dataframe.

Now we write plotting functions pe_plot and pr_plot that will build figures that show the price
level, exchange rates, and inflation rates, for each country of interest.

We prepare the data for each country

# Import data
data_url = "https://github.com/QuantEcon/lecture-python-intro/raw/main/lectures/
datasets/chapter_3.xlsx"
xls = pd.ExcelFile(data_url)

# Select relevant sheets
sheet_index = [(2, 3, 4), 
               (9, 10), 
               (14, 15, 16), 
               (21, 18, 19)]

# Remove redundant rows
remove_row = [(-2, -2, -2), 
              (-7, -10), 
              (-6, -4, -3), 
              (-19, -3, -6)]

# Unpack and combine series for each country

https://github.com/QuantEcon/lecture-python-intro/raw/main/lectures/datasets/chapter\_3.xlsx


df_list = []

for i in range(4):
    
    indices, rows = sheet_index[i], remove_row[i]
    
    # Apply process_entry on the selected sheet
    sheet_list = [
        pd.read_excel(xls, 'Table3.' + str(ind), 
            header=1).iloc[:row].map(process_entry)
        for ind, row in zip(indices, rows)]
    
    sheet_list = [process_df(df) for df in sheet_list]
    df_list.append(pd.concat(sheet_list, axis=1))

df_aus, df_hun, df_pol, df_deu = df_list

Now let’s construct graphs for our four countries.

For each country, we’ll plot two graphs.

The first graph plots logarithms of

• price levels
• exchange rates vis-à-vis US dollars

For each country, the scale on the right side of a graph will pertain to the price level while the scale
on the left side of a graph will pertain to the exchange rate.

For each country, the second graph plots a centered three-month moving average of the inflation
rate defined as 𝑝𝑡−1+𝑝𝑡+𝑝𝑡+1

3 .

2.3.2.1 Austria
The sources of our data are:

• Table 3.3, retail price level exp 𝑝
• Table 3.4, exchange rate with US

p_seq = df_aus['Retail price index, 52 commodities']
e_seq = df_aus['Exchange Rate']

lab = ['Retail price index', 
       'Austrian Krones (Crowns) per US cent']

# Create plot
fig, ax = plt.subplots(dpi=200)
_ = pe_plot(p_seq, e_seq, df_aus.index, lab, ax)

plt.show()



Figure 24.  Price index and exchange rate (Austria)

# Plot moving average
fig, ax = plt.subplots(dpi=200)
_ = pr_plot(p_seq, df_aus.index, ax)

plt.show()

Figure 25.  Monthly inflation rate (Austria)



Staring at Fig. 3 and Fig. 4 conveys the following impressions to the authors of this lecture at
QuantEcon.

• an episode of “hyperinflation” with rapidly rising log price level and very high monthly
inflation rates

• a sudden stop of the hyperinflation as indicated by the abrupt flattening of the log price level
and a marked permanent drop in the three-month average of inflation

• a US dollar exchange rate that shadows the price level.

We’ll see similar patterns in the next three episodes that we’ll study now.

2.3.2.2 Hungary
The source of our data for Hungary is:

• Table 3.10, price level exp 𝑝 and exchange rate

p_seq = df_hun['Hungarian index of prices']
e_seq = 1 / df_hun['Cents per crown in New York']

lab = ['Hungarian index of prices', 
       'Hungarian Koronas (Crowns) per US cent']

# Create plot
fig, ax = plt.subplots(dpi=200)
_ = pe_plot(p_seq, e_seq, df_hun.index, lab, ax)

plt.show()

Figure 26.  Price index and exchange rate (Hungary)

# Plot moving average
fig, ax = plt.subplots(dpi=200)
_ = pr_plot(p_seq, df_hun.index, ax)

plt.show()



Figure 27.  Monthly inflation rate (Hungary)

2.3.2.3 Poland
The sources of our data for Poland are:

• Table 3.15, price level exp 𝑝
• Table 3.15, exchange rate

Note

To construct the price level series from the data in the spreadsheet, we instructed Pandas to
follow the same procedures implemented in chapter 3 of Sargent (2013). We spliced together
three series - Wholesale price index, Wholesale Price Index: On paper currency basis, and
Wholesale Price Index: On zloty basis. We adjusted the sequence based on the price level ratio at
the last period of the available previous series and glued them to construct a single series. We
dropped the exchange rate after June 1924, when the zloty was adopted. We did this because we
don’t have the price measured in zloty. We used the old currency in June to compute the
exchange rate adjustment.

lab = ['Wholesale price index', 
       'Polish marks per US cent']

# Create plot
fig, ax = plt.subplots(dpi=200)
ax1 = pe_plot(p_seq, e_seq, df_pol.index, lab, ax)

plt.show()



# Splice three price series in different units
p_seq1 = df_pol['Wholesale price index'].copy()
p_seq2 = df_pol['Wholesale Price Index: '
                'On paper currency basis'].copy()
p_seq3 = df_pol['Wholesale Price Index: ' 
                'On zloty basis'].copy()

# Non-nan part
mask_1 = p_seq1[~p_seq1.isna()].index[-1]
mask_2 = p_seq2[~p_seq2.isna()].index[-2]

adj_ratio12 = (p_seq1[mask_1] / p_seq2[mask_1])
adj_ratio23 = (p_seq2[mask_2] / p_seq3[mask_2])

# Glue three series
p_seq = pd.concat([p_seq1[:mask_1], 
                   adj_ratio12 * p_seq2[mask_1:mask_2], 
                   adj_ratio23 * p_seq3[mask_2:]])
p_seq = p_seq[~p_seq.index.duplicated(keep='first')]

# Exchange rate
e_seq = 1/df_pol['Cents per Polish mark (zloty after May 1924)']
e_seq[e_seq.index > '05-01-1924'] = np.nan
Figure 2.28.  Price index and exchange rate (Poland)

# Plot moving average
fig, ax = plt.subplots(dpi=200)
_ = pr_plot(p_seq, df_pol.index, ax)

plt.show()



Figure 29.  Monthly inflation rate (Poland)

2.3.2.4 Germany
The sources of our data for Germany are the following tables from chapter 3 of Sargent (2013):

• Table 3.18, wholesale price level exp 𝑝
• Table 3.19, exchange rate

p_seq = df_deu['Price index (on basis of marks before July 1924,'
                '  reichsmarks after)'].copy()
e_seq = 1/df_deu['Cents per mark']

lab = ['Price index', 
       'Marks per US cent']

# Create plot
fig, ax = plt.subplots(dpi=200)
ax1 = pe_plot(p_seq, e_seq, df_deu.index, lab, ax)

plt.show()



Figure 30.  Price index and exchange rate (Germany)

p_seq = df_deu['Price index (on basis of marks before July 1924,'
                '  reichsmarks after)'].copy()
e_seq = 1/df_deu['Cents per mark'].copy()

# Adjust the price level/exchange rate after the currency reform
p_seq[p_seq.index > '06-01-1924'] = p_seq[p_seq.index 
                                          > '06-01-1924'] * 1e12
e_seq[e_seq.index > '12-01-1923'] = e_seq[e_seq.index 
                                          > '12-01-1923'] * 1e12

lab = ['Price index (marks or converted to marks)', 
       'Marks per US cent(or reichsmark converted to mark)']

# Create plot
fig, ax = plt.subplots(dpi=200)
ax1 = pe_plot(p_seq, e_seq, df_deu.index, lab, ax)

plt.show()



Figure 31.  Price index (adjusted) and exchange rate (Germany)

# Plot moving average
fig, ax = plt.subplots(dpi=200)
_ = pr_plot(p_seq, df_deu.index, ax)

plt.show()

Figure 32.  Monthly inflation rate (Germany)



2.3.3 Starting and stopping big inflations
It is striking how quickly (log) price levels in Austria, Hungary, Poland, and Germany leveled off
after rising so quickly.

These “sudden stops” are also revealed by the permanent drops in three-month moving averages of
inflation for the four countries plotted above.

In addition, the US dollar exchange rates for each of the four countries shadowed their price levels.

Note

This pattern is an instance of a force featured in the purchasing power parity theory of exchange
rates.

Each of these big inflations seemed to have “stopped on a dime”.

Chapter 3 of Sargent & Velde (2002) offers an explanation for this remarkable pattern.

In a nutshell, here is the explanation offered there.

After World War I, the United States was on a gold standard.

The US government stood ready to convert a dollar into a specified amount of gold on demand.

Immediately after World War I, Hungary, Austria, Poland, and Germany were not on the gold
standard.

Their currencies were “fiat” or “unbacked”, meaning that they were not backed by credible
government promises to convert them into gold or silver coins on demand.

The governments printed new paper notes to pay for goods and services.

Note

Technically the notes were “backed” mainly by treasury bills. But people could not expect that
those treasury bills would be paid off by levying taxes, but instead by printing more notes or
treasury bills.

This was done on such a scale that it led to a depreciation of the currencies of spectacular
proportions.

In the end, the German mark stabilized at 1 trillion (10¹²) paper marks to the prewar gold mark, the
Polish mark at 1.8 million paper marks to the gold zloty, the Austrian crown at 14,400 paper crowns
to the prewar Austro-Hungarian crown, and the Hungarian krone at 14,500 paper crowns to the
prewar Austro-Hungarian crown.

Chapter 3 of Sargent & Velde (2002) described deliberate changes in policy that Hungary, Austria,
Poland, and Germany made to end their hyperinflations.

Each government stopped printing money to pay for goods and services once again and made its
currency convertible to the US dollar or the UK pound.

The story told in Sargent & Velde (2002) is grounded in a monetarist theory of the price level
described in A Monetarist Theory of Price Levels and Monetarist Theory of Price Levels with
Adaptive Expectations.

Those lectures discuss theories about what owners of those rapidly depreciating currencies were
thinking and how their beliefs shaped responses of inflation to government monetary and fiscal
policies.

https://en.wikipedia.org/wiki/Purchasing\_power\_parity
/cagan-ree
/cagan-adaptive
/cagan-adaptive


2.4 Inflation During French Revolution

2.4.1 Overview
This lecture describes some of the monetary and fiscal features of the French Revolution (1789-1799)
described by Sargent & Velde (1995).

To finance public expenditures and service its debts, the French government embarked on policy
experiments.

The authors of these experiments had in mind theories about how government monetary and fiscal
policies affected economic outcomes.

Some of those theories about monetary and fiscal policies still interest us today.

• a tax-smoothing model like Robert Barro’s Barro (1979)

‣ this normative (i.e., prescriptive model) advises a government to finance temporary war-
time surges in expenditures mostly by issuing government debt, raising taxes by just
enough to service the additional debt issued during the wary; then, after the war, to roll
over whatever debt the government had accumulated during the war; and to increase
taxes after the war permanently by just enough to finance interest payments on that post-
war government debt

• unpleasant monetarist arithmetic like that described in this quanteon lecture Some
Unpleasant Monetarist Arithmetic

‣ mathematics involving compound interest governed French government debt dynamics in
the decades preceding 1789; according to leading historians, that arithmetic set the stage
for the French Revolution

• a real bills theory of the effects of government open market operations in which the
government backs new issues of paper money with government holdings of valuable real
property or financial assets that holders of money can purchase from the government in
exchange for their money.

‣ The Revolutionaries learned about this theory from Adam Smith’s 1776 book The Wealth
of Nations Smith (2010) and other contemporary sources

‣ It shaped how the Revolutionaries issued a paper money called assignats from 1789 to
1791

• a classical gold or silver standard

‣ Napoleon Bonaparte became head of the French government in 1799. He used this theory
to guide his monetary and fiscal policies

• a classical inflation-tax theory of inflation in which Philip Cagan’s (Cagan (1956)) demand for
money studied in this lecture A Monetarist Theory of Price Levels is a key component

‣ This theory helps explain French price level and money supply data from 1794 to 1797
• a legal restrictions or financial repression theory of the demand for real balances

‣ The Twelve Members comprising the Committee of Public Safety who adminstered the
Terror from June 1793 to July 1794 used this theory to shape their monetary policy

We use matplotlib to replicate several of the graphs with which Sargent & Velde (1995) portrayed
outcomes of these experiments

2.4.2 Data Sources
This lecture uses data from three spreadsheets assembled by Sargent & Velde (1995):

/unpleasant
/unpleasant
/cagan-ree


• datasets/fig_3.xlsx
• datasets/dette.xlsx
• datasets/assignat.xlsx

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 12})

base_url = 'https://github.com/QuantEcon/lecture-python-intro/raw/'\
           + 'main/lectures/datasets/'

fig_3_url = f'{base_url}fig_3.xlsx'
dette_url = f'{base_url}dette.xlsx'
assignat_url = f'{base_url}assignat.xlsx'

2.4.3 Government Expenditures and Taxes Collected
We’ll start by using matplotlib to construct several graphs that will provide important historical
context.

These graphs are versions of ones that appear in Sargent & Velde (1995).

These graphs show that during the 18th century

• government expenditures in France and Great Britain both surged during four big wars, and by
comparable amounts

• In Britain, tax revenues were approximately equal to government expenditures during peace
times, but were substantially less than government expenditures during wars

• In France, even in peace time, tax revenues were substantially less than government
expenditures

# Read the data from Excel file
data2 = pd.read_excel(dette_url, 
        sheet_name='Militspe', usecols='M:X', 
        skiprows=7, nrows=102, header=None)

# French military spending, 1685-1789, in 1726 livres
data4 = pd.read_excel(dette_url, 
        sheet_name='Militspe', usecols='D', 
        skiprows=3, nrows=105, header=None).squeeze()
        
years = range(1685, 1790)

plt.figure()
plt.plot(years, data4, '*-', linewidth=0.8)

plt.plot(range(1689, 1791), data2.iloc[:, 4], linewidth=0.8)

plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().tick_params(labelsize=12)
plt.xlim([1689, 1790])
plt.xlabel('*: France')
plt.ylabel('Millions of livres')
plt.ylim([0, 475])

https://github.com/QuantEcon/lecture-python-intro/blob/main/lectures/datasets/fig\_3.xlsx
https://github.com/QuantEcon/lecture-python-intro/blob/main/lectures/datasets/dette.xlsx
https://github.com/QuantEcon/lecture-python-intro/blob/main/lectures/datasets/assignat.xlsx


plt.tight_layout()
plt.show()

Figure 33.  Military Spending in Britain and France

During the 18th century, Britain and France fought four large wars.

Britain won the first three wars and lost the fourth.

Each of those wars produced surges in both countries’ government expenditures that each country
somehow had to finance.

Figure Fig. 1 shows surges in military expenditures in France (in blue) and Great Britain. during
those four wars.

A remarkable aspect of figure Fig. 1 is that despite having a population less than half of France’s,
Britain was able to finance military expenses of about the same amounts as France’s.

This testifies to Britain’s having created state institutions that could sustain high tax collections,
government spending , and government borrowing. See North & Weingast (1989).

# Read the data from Excel file
data2 = pd.read_excel(dette_url, sheet_name='Militspe', usecols='M:X', 
                      skiprows=7, nrows=102, header=None)

# Plot the data
plt.figure()
plt.plot(range(1689, 1791), data2.iloc[:, 5], linewidth=0.8)
plt.plot(range(1689, 1791), data2.iloc[:, 11], linewidth=0.8, color='red')
plt.plot(range(1689, 1791), data2.iloc[:, 9], linewidth=0.8, color='orange')
plt.plot(range(1689, 1791), data2.iloc[:, 8], 'o-', 
         markerfacecolor='none', linewidth=0.8, color='purple')

# Customize the plot
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)



plt.gca().tick_params(labelsize=12)
plt.xlim([1689, 1790])
plt.ylabel('millions of pounds', fontsize=12)

# Add text annotations
plt.text(1765, 1.5, 'civil', fontsize=10)
plt.text(1760, 4.2, 'civil plus debt service', fontsize=10)
plt.text(1708, 15.5, 'total govt spending', fontsize=10)
plt.text(1759, 7.3, 'revenues', fontsize=10)

plt.tight_layout()
plt.show()

Figure 34.  Government Expenditures and Tax Revenues in Britain

Figures Fig. 2 and Fig. 4 summarize British and French government fiscal policies during the century
before the start of the French Revolution in 1789.

Before 1789, progressive forces in France admired how Britain had financed its government
expenditures and wanted to redesign French fiscal arrangements to make them more like Britain’s.

Figure Fig. 2 shows government expenditures and how it was distributed among expenditures for

• civil (non-military) activities
• debt service, i.e., interest payments
• military expenditures (the yellow line minus the red line)

Figure Fig. 2 also plots total government revenues from tax collections (the purple circled line)

Notice the surges in total government expenditures associated with surges in military expenditures
in these four wars

• Wars against France’s King Louis XIV early in the 18th century
• The War of the Austrian Succession in the 1740s
• The French and Indian War in the 1750′s and 1760s
• The American War for Independence from 1775 to 1783



Figure Fig. 2 indicates that

• during times of peace, government expenditures approximately equal taxes and debt service
payments neither grow nor decline over time

• during times of wars, government expenditures exceed tax revenues
‣ the government finances the deficit of revenues relative to expenditures by issuing debt

• after a war is over, the government’s tax revenues exceed its non-interest expenditures by just
enough to service the debt that the government issued to finance earlier deficits

‣ thus, after a war, the government does not raise taxes by enough to pay off its debt
‣ instead, it just rolls over whatever debt it inherits, raising taxes by just enough to service

the interest payments on that debt

Eighteenth-century British fiscal policy portrayed Figure Fig. 2 thus looks very much like a text-
book example of a tax-smoothing model like Robert Barro’s Barro (1979).

A striking feature of the graph is what we’ll label a law of gravity between tax collections and
government expenditures.

• levels of government expenditures at taxes attract each other
• while they can temporarily differ – as they do during wars – they come back together when

peace returns

Next we’ll plot data on debt service costs as fractions of government revenues in Great Britain and
France during the 18th century.

# Read the data from the Excel file
data1 = pd.read_excel(dette_url, sheet_name='Debt', 
            usecols='R:S', skiprows=5, nrows=99, header=None)
data1a = pd.read_excel(dette_url, sheet_name='Debt', 
            usecols='P', skiprows=89, nrows=15, header=None)

# Plot the data
plt.figure()
plt.plot(range(1690, 1789), 100 * data1.iloc[:, 1], linewidth=0.8)

date = np.arange(1690, 1789)
index = (date < 1774) & (data1.iloc[:, 0] > 0)
plt.plot(date[index], 100 * data1[index].iloc[:, 0], 
         '*:', color='r', linewidth=0.8)

# Plot the additional data
plt.plot(range(1774, 1789), 100 * data1a, '*:', color='orange')

# Note about the data
# The French data before 1720 don't match up with the published version
# Set the plot properties
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().set_facecolor('white')
plt.gca().set_xlim([1688, 1788])
plt.ylabel('% of Taxes')

plt.tight_layout()
plt.show()



Figure 35.  Ratio of debt service to taxes, Britain and France

Figure Fig. 3 shows that interest payments on government debt (i.e., so-called ‘’debt service’‘) were
high fractions of government tax revenues in both Great Britain and France.

Fig. 2 showed us that in peace times Britain managed to balance its budget despite those large
interest costs.

But as we’ll see in our next graph, on the eve of the French Revolution in 1788, the fiscal law of
gravity that worked so well in Britain did not working very well in France.

# Read the data from the Excel file
data1 = pd.read_excel(fig_3_url, sheet_name='Sheet1', 
          usecols='C:F', skiprows=5, nrows=30, header=None)

data1.replace(0, np.nan, inplace=True)

# Plot the data
plt.figure()

plt.plot(range(1759, 1789, 1), data1.iloc[:, 0], '-x', linewidth=0.8)
plt.plot(range(1759, 1789, 1), data1.iloc[:, 1], '--*', linewidth=0.8)
plt.plot(range(1759, 1789, 1), data1.iloc[:, 2], 
         '-o', linewidth=0.8, markerfacecolor='none')
plt.plot(range(1759, 1789, 1), data1.iloc[:, 3], '-*', linewidth=0.8)

plt.text(1775, 610, 'total spending', fontsize=10)
plt.text(1773, 325, 'military', fontsize=10)
plt.text(1773, 220, 'civil plus debt service', fontsize=10)
plt.text(1773, 80, 'debt service', fontsize=10)
plt.text(1785, 500, 'revenues', fontsize=10)

plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.ylim([0, 700])



plt.ylabel('millions of livres')

plt.tight_layout()
plt.show()

Figure 36.  Government Spending and Tax Revenues in France

Fig. 4 shows that on the eve of the French Revolution in 1788, government expenditures exceeded
tax revenues.

Especially during and after France’s expenditures to help the Americans in their War of
Independence from Great Britain, growing government debt service (i.e., interest payments)
contributed to this situation.

This was partly a consequence of the unfolding of the debt dynamics that underlies the Unpleasant
Arithmetic discussed in this quantecon lecture Some Unpleasant Monetarist Arithmetic.

Sargent & Velde (1995) describe how the Ancient Regime that until 1788 had governed France had
stable institutional features that made it difficult for the government to balance its budget.

Powerful contending interests had prevented from the government from closing the gap between its
total expenditures and its tax revenues by either

• raising taxes, or
• lowering government’s non-debt service (i.e., non-interest) expenditures, or
• lowering debt service (i.e., interest) costs by rescheduling, i.e., defaulting on some debts

Precedents and prevailing French arrangements had empowered three constituencies to block
adjustments to components of the government budget constraint that they cared especially about

• tax payers
• beneficiaries of government expenditures
• government creditors (i.e., owners of government bonds)

When the French government had confronted a similar situation around 1720 after King Louis XIV’s
Wars had left it with a debt crisis, it had sacrificed the interests of

/unpleasant


government creditors, i.e., by defaulting enough of its debt to bring reduce interest payments down
enough to balance the budget.

Somehow, in 1789, creditors of the French government were more powerful than they had been in
1720.

Therefore, King Louis XVI convened the Estates General together to ask them to redesign the French
constitution in a way that would lower government expenditures or increase taxes, thereby allowing
him to balance the budget while also honoring his promises to creditors of the French government.

The King called the Estates General together in an effort to promote the reforms that would would
bring sustained budget balance.

Sargent & Velde (1995) describe how the French Revolutionaries set out to accomplish that.

2.4.4 Nationalization, Privatization, Debt Reduction
In 1789, the Revolutionaries quickly reorganized the Estates General into a National Assembly.

A first piece of business was to address the fiscal crisis, the situation that had motivated the King to
convene the Estates General.

The Revolutionaries were not socialists or communists.

To the contrary, they respected private property and knew state-of-the-art economics.

They knew that to honor government debts, they would have to raise new revenues or reduce
expenditures.

A coincidence was that the Catholic Church owned vast income-producing properties.

Indeed, the capitalized value of those income streams put estimates of the value of church lands at
about the same amount as the entire French government debt.

This coincidence fostered a three step plan for servicing the French government debt

• nationalize the church lands – i.e., sequester or confiscate it without paying for it
• sell the church lands
• use the proceeds from those sales to service or even retire French government debt

The monetary theory underlying this plan had been set out by Adam Smith in his analysis of what
he called real bills in his 1776 book The Wealth of Nations Smith (2010), which many of the
revolutionaries had read.

Adam Smith defined a real bill as a paper money note that is backed by a claims on a real asset like
productive capital or inventories.

The National Assembly put together an ingenious institutional arrangement to implement this plan.

In response to a motion by Catholic Bishop Talleyrand (an atheist), the National Assembly
confiscated and nationalized Church lands.

The National Assembly intended to use earnings from Church lands to service its national debt.

To do this, it began to implement a ‘’privatization plan’‘ that would let it service its debt while not
raising taxes.

Their plan involved issuing paper notes called ‘’assignats’‘ that entitled bearers to use them to
purchase state lands.

These paper notes would be ‘’as good as silver coins’‘ in the sense that both were acceptable means
of payment in exchange for those (formerly) church lands.



Finance Minister Necker and the Constituents of the National Assembly thus planned to solve the
privatization problem and the debt problem simultaneously by creating a new currency.

They devised a scheme to raise revenues by auctioning the confiscated lands, thereby withdrawing
paper notes issued on the security of the lands sold by the government.

This ‘’tax-backed money’‘ scheme propelled the National Assembly into the domains of then
modern monetary theories.

Records of debates show how members of the Assembly marshaled theory and evidence to assess
the likely effects of their innovation.

• Members of the National Assembly quoted David Hume and Adam Smith
• They cited John Law’s System of 1720 and the American experiences with paper money fifteen

years earlier as examples of how paper money schemes can go awry
• Knowing pitfalls, they set out to avoid them

They succeeded for two or three years.

But after that, France entered a big War that disrupted the plan in ways that completely altered the
character of France’s paper money. Sargent & Velde (1995) describe what happened.

2.4.5 Remaking the tax code and tax administration
In 1789 the French Revolutionaries formed a National Assembly and set out to remake French fiscal
policy.

They wanted to honor government debts – interests of French government creditors were well
represented in the National Assembly.

But they set out to remake the French tax code and the administrative machinery for collecting
taxes.

• they abolished many taxes
• they abolished the Ancient Regimes scheme for tax farming

‣ tax farming meant that the government had privatized tax collection by hiring private
citizens – so-called tax farmers to collect taxes, while retaining a fraction of them as
payment for their services

‣ the great chemist Lavoisier was also a tax farmer, one of the reasons that the Committee
for Public Safety sent him to the guillotine in 1794

As a consequence of these tax reforms, government tax revenues declined

The next figure shows this

# Read data from Excel file
data5 = pd.read_excel(dette_url, sheet_name='Debt', usecols='K', 
                    skiprows=41, nrows=120, header=None)

# Plot the data
plt.figure()
plt.plot(range(1726, 1846), data5.iloc[:, 0], linewidth=0.8)

plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().set_facecolor('white')
plt.gca().tick_params(labelsize=12)
plt.xlim([1726, 1845])
plt.ylabel('1726 = 1', fontsize=12)



plt.tight_layout()
plt.show()

Figure 37.  Index of real per capital revenues, France

According to Fig. 5, tax revenues per capita did not rise to their pre 1789 levels until after 1815, when
Napoleon Bonaparte was exiled to St Helena and King Louis XVIII was restored to the French
Crown.

• from 1799 to 1814, Napoleon Bonaparte had other sources of revenues – booty and reparations
from provinces and nations that he defeated in war

• from 1789 to 1799, the French Revolutionaries turned to another source to raise resources to
pay for government purchases of goods and services and to service French government debt.

And as the next figure shows, government expenditures exceeded tax revenues by substantial
amounts during the period form 1789 to 1799.

# Read data from Excel file
data11 = pd.read_excel(assignat_url, sheet_name='Budgets',
        usecols='J:K', skiprows=22, nrows=52, header=None)

# Prepare the x-axis data
x_data = np.concatenate([
    np.arange(1791, 1794 + 8/12, 1/12),
    np.arange(1794 + 9/12, 1795 + 3/12, 1/12)
])

# Remove NaN values from the data
data11_clean = data11.dropna()

# Plot the data
plt.figure()
h = plt.plot(x_data, data11_clean.values[:, 0], linewidth=0.8)
h = plt.plot(x_data, data11_clean.values[:, 1], '--', linewidth=0.8)



# Set plot properties
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().set_facecolor('white')
plt.gca().tick_params(axis='both', which='major', labelsize=12)
plt.xlim([1791, 1795 + 3/12])
plt.xticks(np.arange(1791, 1796))
plt.yticks(np.arange(0, 201, 20))

# Set the y-axis label
plt.ylabel('millions of livres', fontsize=12)

plt.tight_layout()
plt.show()

Figure 38.  Spending (blue) and Revenues (orange), (real values)

To cover the discrepancies between government expenditures and tax revenues revealed in Fig. 6,
the French revolutionaries printed paper money and spent it.

The next figure shows that by printing money, they were able to finance substantial purchases of
goods and services, including military goods and soldiers’ pay.

# Read data from Excel file
data12 = pd.read_excel(assignat_url, sheet_name='seignor', 
         usecols='F', skiprows=6, nrows=75, header=None).squeeze()

# Create a figure and plot the data
plt.figure()
plt.plot(pd.date_range(start='1790', periods=len(data12), freq='M'),
         data12, linewidth=0.8)

plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)



plt.axhline(y=472.42/12, color='r', linestyle=':')
plt.xticks(ticks=pd.date_range(start='1790', 
           end='1796', freq='AS'), labels=range(1790, 1797))
plt.xlim(pd.Timestamp('1791'),
         pd.Timestamp('1796-02') + pd.DateOffset(months=2))
plt.ylabel('millions of livres', fontsize=12)
plt.text(pd.Timestamp('1793-11'), 39.5, 'revenues in 1788', 
         verticalalignment='top', fontsize=12)

plt.tight_layout()
plt.show()

Figure 39.  Revenues raised by printing paper money notes

Fig. 7 compares the revenues raised by printing money from 1789 to 1796 with tax revenues that the
Ancient Regime had raised in 1788.

Measured in goods, revenues raised at time 𝑡 by printing new money equal

𝑀𝑡+1 − 𝑀𝑡
𝑝𝑡

(2.1)

where

• 𝑀𝑡 is the stock of paper money at time 𝑡 measured in livres
• 𝑝𝑡 is the price level at time 𝑡 measured in units of goods per livre at time 𝑡
• 𝑀𝑡+1 − 𝑀𝑡 is the amount of new money printed at time 𝑡

Notice the 1793-1794 surge in revenues raised by printing money.

• This reflects extraordinary measures that the Committee for Public Safety adopted to force
citizens to accept paper money, or else.

Also note the abrupt fall off in revenues raised by 1797 and the absence of further observations after
1797.



• This reflects the end of using the printing press to raise revenues.

What French paper money entitled its holders to changed over time in interesting ways.

These led to outcomes that vary over time and that illustrate the playing out in practice of theories
that guided the Revolutionaries’ monetary policy decisions.

The next figure shows the price level in France during the time that the Revolutionaries used paper
money to finance parts of their expenditures.

Note that we use a log scale because the price level rose so much.

# Read the data from Excel file
data7 = pd.read_excel(assignat_url, sheet_name='Data', 
          usecols='P:Q', skiprows=4, nrows=80, header=None)
data7a = pd.read_excel(assignat_url, sheet_name='Data', 
          usecols='L', skiprows=4, nrows=80, header=None)
# Create the figure and plot
plt.figure()
x = np.arange(1789 + 10/12, 1796 + 5/12, 1/12)
h, = plt.plot(x, 1. / data7.iloc[:, 0], linestyle='--')
h, = plt.plot(x, 1. / data7.iloc[:, 1], color='r')

# Set properties of the plot
plt.gca().tick_params(labelsize=12)
plt.yscale('log')
plt.xlim([1789 + 10/12, 1796 + 5/12])
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)

# Add vertical lines
plt.axvline(x=1793 + 6.5/12, linestyle='-', linewidth=0.8, color='orange')
plt.axvline(x=1794 + 6.5/12, linestyle='-', linewidth=0.8, color='purple')

# Add text
plt.text(1793.75, 120, 'Terror', fontsize=12)
plt.text(1795, 2.8, 'price level', fontsize=12)
plt.text(1794.9, 40, 'gold', fontsize=12)

plt.tight_layout()
plt.show()



Figure 40.  Price Level and Price of Gold (log scale)

We have partioned Fig. 8 that shows the log of the price level and Fig. 9 below that plots real
balances 𝑀𝑡

𝑝𝑡
 into three periods that correspond to different monetary experiments or regimes.

The first period ends in the late summer of 1793, and is characterized by growing real balances and
moderate inflation.

The second period begins and ends with the Terror. It is marked by high real balances, around 2,500
million, and roughly stable prices. The fall of Robespierre in late July 1794 begins the third of our
episodes, in which real balances decline and prices rise rapidly.

We interpret these three episodes in terms of distinct theories

• a backing or real bills theory (the classic text for this theory is Adam Smith Smith (2010))
• a legal restrictions theory (Keynes (1940), Bryant & Wallace (1984))
• a classical hyperinflation theory (Cagan (1956))

Note

According to the empirical definition of hyperinflation adopted by Cagan (1956), beginning in
the month that inflation exceeds 50 percent per month and ending in the month before inflation
drops below 50 percent per month for at least a year, the assignat experienced a hyperinflation
from May to December 1795.

We view these theories not as competitors but as alternative collections of ‘’if-then’‘ statements
about government note issues, each of which finds its conditions more nearly met in one of these
episodes than in the other two.

# Read the data from Excel file
data7 = pd.read_excel(assignat_url, sheet_name='Data', 
        usecols='P:Q', skiprows=4, nrows=80, header=None)
data7a = pd.read_excel(assignat_url, sheet_name='Data', 
        usecols='L', skiprows=4, nrows=80, header=None)



# Create the figure and plot
plt.figure()
h = plt.plot(pd.date_range(start='1789-11-01', periods=len(data7), freq='M'), 
            (data7a.values * [1, 1]) * data7.values, linewidth=1.)
plt.setp(h[1], linestyle='--', color='red')

plt.vlines([pd.Timestamp('1793-07-15'), pd.Timestamp('1793-07-15')], 
           0, 3000, linewidth=0.8, color='orange')
plt.vlines([pd.Timestamp('1794-07-15'), pd.Timestamp('1794-07-15')], 
           0, 3000, linewidth=0.8, color='purple')

plt.ylim([0, 3000])

# Set properties of the plot
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)
plt.gca().set_facecolor('white')
plt.gca().tick_params(labelsize=12)
plt.xlim(pd.Timestamp('1789-11-01'), pd.Timestamp('1796-06-01'))
plt.ylabel('millions of livres', fontsize=12)

# Add text annotations
plt.text(pd.Timestamp('1793-09-01'), 200, 'Terror', fontsize=12)
plt.text(pd.Timestamp('1791-05-01'), 750, 'gold value', fontsize=12)
plt.text(pd.Timestamp('1794-10-01'), 2500, 'real value', fontsize=12)

plt.tight_layout()
plt.show()

Figure 41.  Real balances of assignats (in gold and goods)

The three clouds of points in Figure Fig. 10 depict different real balance-inflation relationships.



Only the cloud for the third period has the inverse relationship familiar to us now from twentieth-
century hyperinflations.

• subperiod 1: (“real bills period): January 1791 to July 1793
• subperiod 2: (“terror”): August 1793 - July 1794
• subperiod 3: (“classic Cagan hyperinflation”): August 1794 - March 1796

def fit(x, y):

    b = np.cov(x, y)[0, 1] / np.var(x)
    a = y.mean() - b * x.mean()

    return a, b

# Load data
caron = np.load('datasets/caron.npy')
nom_balances = np.load('datasets/nom_balances.npy')

infl = np.concatenate(([np.nan], 
      -np.log(caron[1:63, 1] / caron[0:62, 1])))
bal = nom_balances[14:77, 1] * caron[:, 1] / 1000

# Regress y on x for three periods
a1, b1 = fit(bal[1:31], infl[1:31])
a2, b2 = fit(bal[31:44], infl[31:44])
a3, b3 = fit(bal[44:63], infl[44:63])

# Regress x on y for three periods
a1_rev, b1_rev = fit(infl[1:31], bal[1:31])
a2_rev, b2_rev = fit(infl[31:44], bal[31:44])
a3_rev, b3_rev = fit(infl[44:63], bal[44:63])

plt.figure()
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)

# First subsample
plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', 
         color='blue', label='real bills period')

# Second subsample
plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror')

# Third subsample
plt.plot(bal[44:63], infl[44:63], '*', 
        color='orange', label='classic Cagan hyperinflation')

plt.xlabel('real balances')
plt.ylabel('inflation')
plt.legend()

plt.tight_layout()
plt.show()



Figure 42.  Inflation and Real Balances

The three clouds of points in Fig. 10 evidently depict different real balance-inflation relationships.

Only the cloud for the third period has the inverse relationship familiar to us now from twentieth-
century hyperinflations.

To bring this out, we’ll use linear regressions to draw straight lines that compress the inflation-real
balance relationship for our three sub-periods.

Before we do that, we’ll drop some of the early observations during the terror period to obtain the
following graph.

# Regress y on x for three periods
a1, b1 = fit(bal[1:31], infl[1:31])
a2, b2 = fit(bal[31:44], infl[31:44])
a3, b3 = fit(bal[44:63], infl[44:63])

# Regress x on y for three periods
a1_rev, b1_rev = fit(infl[1:31], bal[1:31])
a2_rev, b2_rev = fit(infl[31:44], bal[31:44])
a3_rev, b3_rev = fit(infl[44:63], bal[44:63])

plt.figure()
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)

# First subsample
plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', color='blue',
label='real bills period')

# Second subsample
plt.plot(bal[34:44], infl[34:44], '+', color='red', label='terror')

# Third subsample
plt.plot(bal[44:63], infl[44:63], '*', color='orange', label='classic Cagan



hyperinflation')

plt.xlabel('real balances')
plt.ylabel('inflation')
plt.legend()

plt.tight_layout()
plt.show()

Figure 43.  Inflation and Real Balances

Now let’s regress inflation on real balances during the real bills period and plot the regression line.

plt.figure()
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)

# First subsample
plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', 
        color='blue', label='real bills period')
plt.plot(bal[1:31], a1 + bal[1:31] * b1, color='blue')

# Second subsample
plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror')

# Third subsample
plt.plot(bal[44:63], infl[44:63], '*', 
        color='orange', label='classic Cagan hyperinflation')

plt.xlabel('real balances')
plt.ylabel('inflation')
plt.legend()

plt.tight_layout()
plt.show()



Figure 44.  Inflation and Real Balances

The regression line in Fig. 12 shows that large increases in real balances of assignats (paper money)
were accompanied by only modest rises in the price level, an outcome in line with the real bills
theory.

During this period, assignats were claims on church lands.

But towards the end of this period, the price level started to rise and real balances to fall as the
government continued to print money but stopped selling church land.

To get people to hold that paper money, the government forced people to hold it by using legal
restrictions.

Now let’s regress real balances on inflation during the terror and plot the regression line.

plt.figure()
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)

# First subsample
plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', 
        color='blue', label='real bills period')

# Second subsample
plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror')
plt.plot(a2_rev + b2_rev * infl[31:44], infl[31:44], color='red')

# Third subsample
plt.plot(bal[44:63], infl[44:63], '*', 
        color='orange', label='classic Cagan hyperinflation')

plt.xlabel('real balances')
plt.ylabel('inflation')
plt.legend()



plt.tight_layout()
plt.show()

Figure 45.  Inflation and Real Balances

The regression line in Fig. 13 shows that large increases in real balances of assignats (paper money)
were accompanied by little upward price level pressure, even some declines in prices.

This reflects how well legal restrictions – financial repression – was working during the period of
the Terror.

But the Terror ended in July 1794. That unleashed a big inflation as people tried to find other ways
to transact and store values.

The following two graphs are for the classical hyperinflation period.

One regresses inflation on real balances, the other regresses real balances on inflation.

Both show a prounced inverse relationship that is the hallmark of the hyperinflations studied by
Cagan Cagan (1956).

plt.figure()
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)

# First subsample
plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', 
        color='blue', label='real bills period')

# Second subsample
plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror')

# Third subsample
plt.plot(bal[44:63], infl[44:63], '*', 
    color='orange', label='classic Cagan hyperinflation')



plt.plot(bal[44:63], a3 + bal[44:63] * b3, color='orange')

plt.xlabel('real balances')
plt.ylabel('inflation')
plt.legend()

plt.tight_layout()
plt.show()

Figure 46.  Inflation and Real Balances

Fig. 14 shows the results of regressing inflation on real balances during the period of the
hyperinflation.

plt.figure()
plt.gca().spines['top'].set_visible(False)
plt.gca().spines['right'].set_visible(False)

# First subsample
plt.plot(bal[1:31], infl[1:31], 'o', 
    markerfacecolor='none', color='blue', label='real bills period')

# Second subsample
plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror')

# Third subsample
plt.plot(bal[44:63], infl[44:63], '*', 
        color='orange', label='classic Cagan hyperinflation')
plt.plot(a3_rev + b3_rev * infl[44:63], infl[44:63], color='orange')

plt.xlabel('real balances')
plt.ylabel('inflation')
plt.legend()



plt.tight_layout()
plt.show()

Figure 47.  Inflation and Real Balances

Fig. 14 shows the results of regressing real money balances on inflation during the period of the
hyperinflation.

2.4.6 Hyperinflation Ends
Sargent & Velde (1995) tell how in 1797 the Revolutionary government abruptly ended the inflation
by

• repudiating 2/3 of the national debt, and thereby
• eliminating the net-of-interest government defict
• no longer printing money, but instead
• using gold and silver coins as money

In 1799, Napoleon Bonaparte became first consul and for the next 15 years used resources
confiscated from conquered territories to help pay for French government expenditures.

2.4.7 Underlying Theories
This lecture sets the stage for studying theories of inflation and the government monetary and fiscal
policies that bring it about.

A monetarist theory of the price level is described in this quantecon lecture A Monetarist Theory of
Price Levels.

That lecture sets the stage for these quantecon lectures Money Financed Government Deficits and
Price Levels and Some Unpleasant Monetarist Arithmetic.

/cagan-ree
/cagan-ree
/money-inflation
/money-inflation
/unpleasant


Example 2.1.

For example, imagine two societies, each with one million people, where

• in the first society, the yearly income of one man is $100,000,000 and the income of the
others are zero

• in the second society, the yearly income of everyone is $100

These countries have the same income per capita (average income is $100) but the lives of the
people will be very different (e.g., almost everyone in the first society is starving, even though
one person is fabulously rich).

2.5 Income and Wealth Inequality

2.5.1 Overview
In the lecture Long-Run Growth we studied how GDP per capita has changed for certain countries
and regions.

Per capita GDP is important because it gives us an idea of average income for households in a given
country.

However, when we study income and wealth, averages are only part of the story.

The example above suggests that we should go beyond simple averages when we study income and
wealth.

This leads us to the topic of economic inequality, which examines how income and wealth (and
other quantities) are distributed across a population.

In this lecture we study inequality, beginning with measures of inequality and then applying them to
wealth and income data from the US and other countries.

2.5.1.1 Some history
Many historians argue that inequality played a role in the fall of the Roman Republic (see, e.g., Levitt
(2019)).

Following the defeat of Carthage and the invasion of Spain, money flowed into Rome from across
the empire, greatly enriched those in power.

Meanwhile, ordinary citizens were taken from their farms to fight for long periods, diminishing their
wealth.

The resulting growth in inequality was a driving factor behind political turmoil that shook the
foundations of the republic.

Eventually, the Roman Republic gave way to a series of dictatorships, starting with Octavian
(Augustus) in 27 BCE.

This history tells us that inequality matters, in the sense that it can drive major world events.

There are other reasons that inequality might matter, such as how it affects human welfare.

With this motivation, let us start to think about what inequality is and how we can quantify and
analyze it.

/long-run-growth
https://en.wikipedia.org/wiki/Augustus


2.5.1.2 Measurement
In politics and popular media, the word “inequality” is often used quite loosely, without any firm
definition.

To bring a scientific perspective to the topic of inequality we must start with careful definitions.

Hence we begin by discussing ways that inequality can be measured in economic research.

We will need to install the following packages

!pip install wbgapi plotly

We will also use the following imports.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random as rd
import wbgapi as wb
import plotly.express as px

2.5.2 The Lorenz curve
One popular measure of inequality is the Lorenz curve.

In this section we define the Lorenz curve and examine its properties.

2.5.2.1 Definition
The Lorenz curve takes a sample 𝑤1, …, 𝑤𝑛 and produces a curve 𝐿.

We suppose that the sample has been sorted from smallest to largest.

To aid our interpretation, suppose that we are measuring wealth

• 𝑤1 is the wealth of the poorest member of the population, and
• 𝑤𝑛 is the wealth of the richest member of the population.

The curve 𝐿 is just a function 𝑦 = 𝐿(𝑥) that we can plot and interpret.

To create it we first generate data points (𝑥𝑖, 𝑦𝑖) according to

Now the Lorenz curve 𝐿 is formed from these data points using interpolation.

If we use a line plot in matplotlib, the interpolation will be done for us.

The meaning of the statement 𝑦 = 𝐿(𝑥) is that the lowest (100 × 𝑥)% of people have (100 × 𝑦)% of
all wealth.

• if 𝑥 = 0.5 and 𝑦 = 0.1, then the bottom 50% of the population owns 10% of the wealth.

In the discussion above we focused on wealth but the same ideas apply to income, consumption, etc.

2.5.2.2 Lorenz curves of simulated data
Let’s look at some examples and try to build understanding.

First let us construct a lorenz_curve function that we can use in our simulations below.

Definition 2.1.

𝑥𝑖 = 𝑖
𝑛

, 𝑦𝑖 =
∑𝑗≤𝑖 𝑤𝑗

∑𝑗≤𝑛 𝑤𝑗
, 𝑖 = 1, …, 𝑛 (2.2)



It is useful to construct a function that translates an array of income or wealth data into the
cumulative share of individuals (or households) and the cumulative share of income (or wealth).

def lorenz_curve(y):
    """
    Calculates the Lorenz Curve, a graphical representation of
    the distribution of income or wealth.

    It returns the cumulative share of people (x-axis) and
    the cumulative share of income earned.

    Parameters
    ----------
    y : array_like(float or int, ndim=1)
        Array of income/wealth for each individual.
        Unordered or ordered is fine.

    Returns
    -------
    cum_people : array_like(float, ndim=1)
        Cumulative share of people for each person index (i/n)
    cum_income : array_like(float, ndim=1)
        Cumulative share of income for each person index

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Lorenz_curve

    Examples
    --------
    >>> a_val, n = 3, 10_000
    >>> y = np.random.pareto(a_val, size=n)
    >>> f_vals, l_vals = lorenz(y)

    """

    n = len(y)
    y = np.sort(y)
    s = np.zeros(n + 1)
    s[1:] = np.cumsum(y)
    cum_people = np.zeros(n + 1)
    cum_income = np.zeros(n + 1)
    for i in range(1, n + 1):
        cum_people[i] = i / n
        cum_income[i] = s[i] / s[n]
    return cum_people, cum_income

In the next figure, we generate 𝑛 = 2000 draws from a lognormal distribution and treat these draws
as our population.

The straight 45-degree line (𝑥 = 𝐿(𝑥) for all 𝑥) corresponds to perfect equality.

The log-normal draws produce a less equal distribution.



For example, if we imagine these draws as being observations of wealth across a sample of
households, then the dashed lines show that the bottom 80% of households own just over 40% of
total wealth.

n = 2000
sample = np.exp(np.random.randn(n))

fig, ax = plt.subplots()

f_vals, l_vals = lorenz_curve(sample)
ax.plot(f_vals, l_vals, label=f'lognormal sample', lw=2)
ax.plot(f_vals, f_vals, label='equality', lw=2)

ax.vlines([0.8], [0.0], [0.43], alpha=0.5, colors='k', ls='--')
ax.hlines([0.43], [0], [0.8], alpha=0.5, colors='k', ls='--')
ax.set_xlim((0, 1))
ax.set_xlabel("share of households")
ax.set_ylim((0, 1))
ax.set_ylabel("share of wealth")
ax.legend()
plt.show()

Figure 48.  Lorenz curve of simulated wealth data

2.5.2.3 Lorenz curves for US data
Next let’s look at US data for both income and wealth.

The following code block imports a subset of the dataset SCF_plus for 2016, which is derived from
the Survey of Consumer Finances (SCF).

url = 'https://github.com/QuantEcon/high_dim_data/raw/main/SCF_plus/SCF_plus_mini.
csv'
df = pd.read_csv(url)
df_income_wealth = df.dropna()

https://en.wikipedia.org/wiki/Survey\_of\_Consumer\_Finances


df_income_wealth.head(n=5)

year n_wealth t_income l_income weights nw_groups ti_groups
0 1950 266933.75 55483.027 0.0 0.998732 50-90% 50-90%
1 1950 87434.46 55483.027 0.0 0.998732 50-90% 50-90%
2 1950 795034.94 55483.027 0.0 0.998732 Top 10% 50-90%
3 1950 94531.78 55483.027 0.0 0.998732 50-90% 50-90%
4 1950 166081.03 55483.027 0.0 0.998732 50-90% 50-90%

The next code block uses data stored in dataframe df_income_wealth to generate the Lorenz curves.

(The code is somewhat complex because we need to adjust the data according to population weights
supplied by the SCF.)

Now we plot Lorenz curves for net wealth, total income and labor income in the US in 2016.

Total income is the sum of households’ all income sources, including labor income but excluding
capital gains.

(All income measures are pre-tax.)

fig, ax = plt.subplots()
ax.plot(f_vals_nw[-1], l_vals_nw[-1], label=f'net wealth')
ax.plot(f_vals_ti[-1], l_vals_ti[-1], label=f'total income')
ax.plot(f_vals_li[-1], l_vals_li[-1], label=f'labor income')
ax.plot(f_vals_nw[-1], f_vals_nw[-1], label=f'equality')
ax.set_xlabel("share of households")
ax.set_ylabel("share of income/wealth")
ax.legend()
plt.show()

Figure 49.  2016 US Lorenz curves

One key finding from this figure is that wealth inequality is more extreme than income inequality.



Definition 2.2.

𝐺 :=
∑𝑛

𝑖=1 ∑𝑛
𝑗=1| 𝑤𝑗 − 𝑤𝑖 |

2𝑛 ∑𝑛
𝑖=1 𝑤𝑖

. (2.3)

2.5.3 The Gini coefficient
The Lorenz curve provides a visual representation of inequality in a distribution.

Another way to study income and wealth inequality is via the Gini coefficient.

In this section we discuss the Gini coefficient and its relationship to the Lorenz curve.

2.5.3.1 Definition
As before, suppose that the sample 𝑤1, …, 𝑤𝑛 has been sorted from smallest to largest.

The Gini coefficient is defined for the sample above as

The Gini coefficient is closely related to the Lorenz curve.

In fact, it can be shown that its value is twice the area between the line of equality and the Lorenz
curve (e.g., the shaded area in Fig. 3).

The idea is that 𝐺 = 0 indicates complete equality, while 𝐺 = 1 indicates complete inequality.

fig, ax = plt.subplots()
f_vals, l_vals = lorenz_curve(sample)
ax.plot(f_vals, l_vals, label=f'lognormal sample', lw=2)
ax.plot(f_vals, f_vals, label='equality', lw=2)
ax.fill_between(f_vals, l_vals, f_vals, alpha=0.06)
ax.set_ylim((0, 1))
ax.set_xlim((0, 1))
ax.text(0.04, 0.5, r'$G = 2 \times$ shaded area')
ax.set_xlabel("share of households (%)")
ax.set_ylabel("share of wealth (%)")
ax.legend()
plt.show()



Figure 50.  Gini coefficient (simulated wealth data)

In fact the Gini coefficient can also be expressed as

𝐺 = 𝐴
𝐴 + 𝐵

(2.4)

where 𝐴 is the area between the 45-degree line of perfect equality and the Lorenz curve, while 𝐵 is
the area below the Lorenze curve – see Fig. 4.

fig, ax = plt.subplots()
f_vals, l_vals = lorenz_curve(sample)
ax.plot(f_vals, l_vals, label='lognormal sample', lw=2)
ax.plot(f_vals, f_vals, label='equality', lw=2)
ax.fill_between(f_vals, l_vals, f_vals, alpha=0.06)
ax.fill_between(f_vals, l_vals, np.zeros_like(f_vals), alpha=0.06)
ax.set_ylim((0, 1))
ax.set_xlim((0, 1))
ax.text(0.55, 0.4, 'A')
ax.text(0.75, 0.15, 'B')
ax.set_xlabel("share of households")
ax.set_ylabel("share of wealth")
ax.legend()
plt.show()



Figure 51.  Lorenz curve and Gini coefficient

See Also

The World in Data project has a graphical exploration of the Lorenz curve and the Gini
coefficient

2.5.3.2 Gini coefficient of simulated data
Let’s examine the Gini coefficient in some simulations.

The code below computes the Gini coefficient from a sample.

def gini_coefficient(y):
    r"""
    Implements the Gini inequality index

    Parameters
    ----------
    y : array_like(float)
        Array of income/wealth for each individual.
        Ordered or unordered is fine

    Returns
    -------
    Gini index: float
        The gini index describing the inequality of the array of income/wealth

    References
    ----------

    https://en.wikipedia.org/wiki/Gini_coefficient
    """
    n = len(y)
    i_sum = np.zeros(n)

https://ourworldindata.org/what-is-the-gini-coefficient
https://ourworldindata.org/what-is-the-gini-coefficient


    for i in range(n):
        for j in range(n):
            i_sum[i] += abs(y[i] - y[j])
    return np.sum(i_sum) / (2 * n * np.sum(y))

Now we can compute the Gini coefficients for five different populations.

Each of these populations is generated by drawing from a lognormal distribution with parameters 𝜇
(mean) and 𝜎 (standard deviation).

To create the five populations, we vary 𝜎 over a grid of length 5 between 0.2 and 4.

In each case we set 𝜇 = −𝜎2/2.

This implies that the mean of the distribution does not change with 𝜎.

You can check this by looking up the expression for the mean of a lognormal distribution.

%%time
k = 5
σ_vals = np.linspace(0.2, 4, k)
n = 2_000

ginis = []

for σ in σ_vals:
    μ = -σ**2 / 2
    y = np.exp(μ + σ * np.random.randn(n))
    ginis.append(gini_coefficient(y))

CPU times: user 5.02 s, sys: 44.1 ms, total: 5.06 s
Wall time: 5.12 s

Let’s build a function that returns a figure (so that we can use it later in the lecture).

def plot_inequality_measures(x, y, legend, xlabel, ylabel):
    fig, ax = plt.subplots()
    ax.plot(x, y, marker='o', label=legend)
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.legend()
    return fig, ax

fix, ax = plot_inequality_measures(σ_vals,
                                  ginis,
                                  'simulated',
                                  r'$\sigma$',
                                  'Gini coefficients')
plt.show()



Figure 52.  Gini coefficients of simulated data

The plots show that inequality rises with 𝜎, according to the Gini coefficient.

2.5.3.3 Gini coefficient for income (US data)
Let’s look at the Gini coefficient for the distribution of income in the US.

We will get pre-computed Gini coefficients (based on income) from the World Bank using the
wbgapi.

Let’s use the wbgapi package we imported earlier to search the World Bank data for Gini to find the
Series ID.

wb.search("gini")

2.5.3.4 Series

ID Name Field Value
SI.POV.GINI Developmentrelevance …growth of the bottom 40 per cent

of the welfare distribution in every
country. Gini coefficients are
important background information
for shared prosperity….

SI.POV.GINI IndicatorName Gini index
SI.POV.GINI Limitationsandexceptions …Gini coefficients are not unique.

It is possible for two different
Lorenz curves to…

SI.POV.GINI Longdefinition …Gini index measures the extent to
which the distribution of income
(or, in some…

https://blogs.worldbank.org/opendata/introducing-wbgapi-new-python-package-accessing-world-bank-data


ID Name Field Value
SI.POV.GINI Shortdefinition …The Gini index measures the

extent to which the distribution of
income or consumption…

SI.POV.GINI Statisticalconceptandmethodology …The Gini index measures the area
between the Lorenz curve and a
hypothetical line of…

SI.POV.GINI.FS IndicatorName GINI index (World Bank estimate),
first comparable values

SI.POV.GINI.SG IndicatorName GINI index (World Bank estimate),
second comparable values

SI.POV.GINI.TH IndicatorName GINI index (World Bank estimate),
third comparable values

We now know the series ID is SI.POV.GINI.

(Another way to find the series ID is to use the World Bank data portal and then use wbgapi to fetch
the data.)

To get a quick overview, let’s histogram Gini coefficients across all countries and all years in the
World Bank dataset.

# Fetch gini data for all countries
gini_all = wb.data.DataFrame("SI.POV.GINI")
# remove 'YR' in index and convert to integer
gini_all.columns = gini_all.columns.map(lambda x: int(x.replace('YR','')))

# Create a long series with a multi-index of the data to get global min and max
values
gini_all = gini_all.unstack(level='economy').dropna()

# Build a histogram
ax = gini_all.plot(kind="hist", bins=20)
ax.set_xlabel("Gini coefficient")
ax.set_ylabel("frequency")
plt.show()

https://data.worldbank.org


Figure 53.  Histogram of Gini coefficients across countries

We can see in Fig. 6 that across 50 years of data and all countries the measure varies between 20 and
65.

Let us fetch the data DataFrame for the USA.

data = wb.data.DataFrame("SI.POV.GINI", "USA")
data.head(n=5)
# remove 'YR' in index and convert to integer
data.columns = data.columns.map(lambda x: int(x.replace('YR','')))

(This package often returns data with year information contained in the columns. This is not always
convenient for simple plotting with pandas so it can be useful to transpose the results before
plotting.)

data = data.T           # Obtain years as rows
data_usa = data['USA']  # pd.Series of US data

Let us take a look at the data for the US.

fig, ax = plt.subplots()
ax = data_usa.plot(ax=ax)
ax.set_ylim(data_usa.min()-1, data_usa.max()+1)
ax.set_ylabel("Gini coefficient (income)")
ax.set_xlabel("year")
plt.show()



Figure 54.  Gini coefficients for income distribution (USA)

As can be seen in Fig. 7, the income Gini trended upward from 1980 to 2020 and then dropped
following at the start of the COVID pandemic.

2.5.3.5 Gini coefficient for wealth
In the previous section we looked at the Gini coefficient for income, focusing on using US data.

Now let’s look at the Gini coefficient for the distribution of wealth.

We will use US data from the Survey of Consumer Finances

df_income_wealth.year.describe()

count    509455.000000
mean       1982.122062
std          22.607350
min        1950.000000
25%        1959.000000
50%        1983.000000
75%        2004.000000
max        2016.000000
Name: year, dtype: float64

This notebook can be used to compute this information over the full dataset.

data_url = 'https://github.com/QuantEcon/lecture-python-intro/raw/main/lectures/_
static/lecture_specific/inequality/usa-gini-nwealth-tincome-lincome.csv'
ginis = pd.read_csv(data_url, index_col='year')
ginis.head(n=5)

n_wealth t_income l_income
year
1950 0.825733 0.442487 0.534295

https://github.com/QuantEcon/lecture-python-intro/tree/main/lectures/\_static/lecture\_specific/inequality/data.ipynb


n_wealth t_income l_income
year
1953 0.805949 0.426454 0.515898
1956 0.812179 0.444269 0.534929
1959 0.795207 0.437493 0.521399
1962 0.808695 0.443584 0.534513

Let’s plot the Gini coefficients for net wealth.

fig, ax = plt.subplots()
ax.plot(years, ginis["n_wealth"], marker='o')
ax.set_xlabel("year")
ax.set_ylabel("Gini coefficient")
plt.show()

Figure 55.  Gini coefficients of US net wealth

The time series for the wealth Gini exhibits a U-shape, falling until the early 1980s and then
increasing rapidly.

One possibility is that this change is mainly driven by technology.

However, we will see below that not all advanced economies experienced similar growth of
inequality.

2.5.3.6 Cross-country comparisons of income inequality
Earlier in this lecture we used wbgapi to get Gini data across many countries and saved it in a
variable called gini_all

In this section we will use this data to compare several advanced economies, and to look at the
evolution in their respective income Ginis.



data = gini_all.unstack()
data.columns

Index(['USA', 'GBR', 'FRA', 'CAN', 'SWE', 'IND', 'ITA', 'ISR', 'NOR', 'PAN',
       ...
       'ARE', 'SYC', 'RUS', 'LCA', 'MMR', 'QAT', 'TUR', 'GRD', 'MHL', 'SUR'],
      dtype='object', name='economy', length=169)

There are 167 countries represented in this dataset.

Let us compare three advanced economies: the US, the UK, and Norway

ax = data[['USA','GBR', 'NOR']].plot()
ax.set_xlabel('year')
ax.set_ylabel('Gini coefficient')
ax.legend(title="")
plt.show()

Figure 56.  Gini coefficients for income (USA, United Kingdom, and Norway)

We see that Norway has a shorter time series.

Let us take a closer look at the underlying data and see if we can rectify this.

data[['NOR']].dropna().head(n=5)

economy NOR
1979 26.9
1986 24.6
1991 25.2
1995 26.0
2000 27.4

The data for Norway in this dataset goes back to 1979 but there are gaps in the time series and
matplotlib is not showing those data points.



We can use the .ffill() method to copy and bring forward the last known value in a series to fill in
these gaps

data['NOR'] = data['NOR'].ffill()
ax = data[['USA','GBR', 'NOR']].plot()
ax.set_xlabel('year')
ax.set_ylabel('Gini coefficient')
ax.legend(title="")
plt.show()

Figure 57.  Gini coefficients for income (USA, United Kingdom, and Norway)

From this plot we can observe that the US has a higher Gini coefficient (i.e. higher income
inequality) when compared to the UK and Norway.

Norway has the lowest Gini coefficient over the three economies and, moreover, the Gini coefficient
shows no upward trend.

2.5.3.7 Gini Coefficient and GDP per capita (over time)
We can also look at how the Gini coefficient compares with GDP per capita (over time).

Let’s take another look at the US, Norway, and the UK.

countries = ['USA', 'NOR', 'GBR']
gdppc = wb.data.DataFrame("NY.GDP.PCAP.KD", countries)
# remove 'YR' in index and convert to integer
gdppc.columns = gdppc.columns.map(lambda x: int(x.replace('YR','')))
gdppc = gdppc.T

We can rearrange the data so that we can plot GDP per capita and the Gini coefficient across years

plot_data = pd.DataFrame(data[countries].unstack())
plot_data.index.names = ['country', 'year']
plot_data.columns = ['gini']

Now we can get the GDP per capita data into a shape that can be merged with plot_data



pgdppc = pd.DataFrame(gdppc.unstack())
pgdppc.index.names = ['country', 'year']
pgdppc.columns = ['gdppc']
plot_data = plot_data.merge(pgdppc, left_index=True, right_index=True)
plot_data.reset_index(inplace=True)

Now we use Plotly to build a plot with GDP per capita on the y-axis and the Gini coefficient on the
x-axis.

min_year = plot_data.year.min()
max_year = plot_data.year.max()

The time series for all three countries start and stop in different years.

We will add a year mask to the data to improve clarity in the chart including the different end years
associated with each country’s time series.

labels = [1979, 1986, 1991, 1995, 2000, 2020, 2021, 2022] + \
         list(range(min_year,max_year,5))
plot_data.year = plot_data.year.map(lambda x: x if x in labels else None)

fig = px.line(plot_data,
              x = "gini",
              y = "gdppc",
              color = "country",
              text = "year",
              height = 800,
              labels = {"gini" : "Gini coefficient", "gdppc" : "GDP per capita"}
             )
fig.update_traces(textposition="bottom right")
fig.show()

This plot shows that all three Western economies’ GDP per capita has grown over time with some
fluctuations in the Gini coefficient.

From the early 80′s the United Kingdom and the US economies both saw increases in income
inequality.

Interestingly, since the year 2000, the United Kingdom saw a decline in income inequality while the
US exhibits persistent but stable levels around a Gini coefficient of 40.

2.5.4 Top shares
Another popular measure of inequality is the top shares.

In this section we show how to compute top shares.

2.5.4.1 Definition
As before, suppose that the sample 𝑤1, …, 𝑤𝑛 has been sorted from smallest to largest.

Given the Lorenz curve 𝑦 = 𝐿(𝑥) defined above, the top 100 × 𝑝% share is defined as

Here ⌊⋅⌋ is the floor function, which rounds any number down to the integer less than or equal to
that number.

Definition 2.3.

𝑇 (𝑝) = 1 − 𝐿(1 − 𝑝) ≈
∑𝑗≥𝑖 𝑤𝑗

∑𝑗≤𝑛 𝑤𝑗
, 𝑖 = ⌊𝑛(1 − 𝑝)⌋ (2.5)



The following code uses the data from dataframe df_income_wealth to generate another dataframe
df_topshares.

df_topshares stores the top 10 percent shares for the total income, the labor income and net wealth
from 1950 to 2016 in US.

Then let’s plot the top shares.

fig, ax = plt.subplots()
ax.plot(years, df_topshares["topshare_l_income"],
        marker='o', label="labor income")
ax.plot(years, df_topshares["topshare_n_wealth"],
        marker='o', label="net wealth")
ax.plot(years, df_topshares["topshare_t_income"],
        marker='o', label="total income")
ax.set_xlabel("year")
ax.set_ylabel(r"top $10\%$ share")
ax.legend()
plt.show()

Figure 58.  US top shares



Exercise 2.1.

Using simulation, compute the top 10 percent shares for the collection of lognormal distributions
associated with the random variables 𝑤𝜎 = exp(𝜇 + 𝜎𝑍), where 𝑍 ∼ 𝑁(0, 1) and 𝜎 varies over
a finite grid between 0.2 and 4.

As 𝜎 increases, so does the variance of 𝑤𝜎.

To focus on volatility, adjust 𝜇 at each step to maintain the equality 𝜇 = −𝜎2/2.

For each 𝜎, generate 2,000 independent draws of 𝑤𝜎 and calculate the Lorenz curve and Gini
coefficient.

Confirm that higher variance generates more dispersion in the sample, and hence greater
inequality.

2.5.5 Exercises



Solution 2.1. Solution to Exercise 1

Here is one solution:

def calculate_top_share(s, p=0.1):

    s = np.sort(s)
    n = len(s)
    index = int(n * (1 - p))
    return s[index:].sum() / s.sum()

k = 5
σ_vals = np.linspace(0.2, 4, k)
n = 2_000

topshares = []
ginis = []
f_vals = []
l_vals = []

for σ in σ_vals:
    μ = -σ ** 2 / 2
    y = np.exp(μ + σ * np.random.randn(n))
    f_val, l_val = lorenz_curve(y)
    f_vals.append(f_val)
    l_vals.append(l_val)
    ginis.append(gini_coefficient(y))
    topshares.append(calculate_top_share(y))

fig, ax = plot_inequality_measures(σ_vals,
                                  topshares,
                                  "simulated data",
                                  "$\sigma$",
                                  "top $10\%$ share")
plt.show()

Figure 59.  Top shares of simulated data

fig, ax = plot_inequality_measures(σ_vals,
                                  ginis,
                                  "simulated data",
                                  "$\sigma$",
                                  "gini coefficient")
plt.show()

Figure 60.  Gini coefficients of simulated data

fig, ax = plt.subplots()
ax.plot([0,1],[0,1], label=f"equality")
for i in range(len(f_vals)):
    ax.plot(f_vals[i], l_vals[i], label=f"$\sigma$ = {σ_vals[i]}")
plt.legend()
plt.show()

Figure 61.  Lorenz curves for simulated data



Exercise 2.2.

According to the definition of the top shares (4) we can also calculate the top percentile shares
using the Lorenz curve.

Compute the top shares of US net wealth using the corresponding Lorenz curves data:
f_vals_nw, l_vals_nw and linear interpolation.

Plot the top shares generated from Lorenz curve and the top shares approximated from data
together.

Solution 2.2. Solution to Exercise 2

Here is one solution:

def lorenz2top(f_val, l_val, p=0.1):
    t = lambda x: np.interp(x, f_val, l_val)
    return 1- t(1 - p)

top_shares_nw = []
for f_val, l_val in zip(f_vals_nw, l_vals_nw):
    top_shares_nw.append(lorenz2top(f_val, l_val))

fig, ax = plt.subplots()

ax.plot(years, df_topshares["topshare_n_wealth"], marker='o',\
   label="net wealth-approx")
ax.plot(years, top_shares_nw, marker='o', label="net wealth-lorenz")

ax.set_xlabel("year")
ax.set_ylabel("top $10\%$ share")
ax.legend()
plt.show()

Figure 62.  US top shares: approximation vs Lorenz



Exercise 2.3.

The code to compute the Gini coefficient is listed in the lecture above.

This code uses loops to calculate the coefficient based on income or wealth data.

This function can be re-written using vectorization which will greatly improve the
computational efficiency when using python.

Re-write the function gini_coefficient using numpy and vectorized code.

You can compare the output of this new function with the one above, and note the speed
differences.



Solution 2.3. Solution to Exercise 3

Let’s take a look at some raw data for the US that is stored in df_income_wealth

df_income_wealth.describe()

year n_wealth t_income l_income weights
count 509455.000000 5.094550e+05 5.094550e+05 5.094550e+05 509455.000000
mean 1982.122062 4.512145e+06 3.255242e+05 9.525005e+04 3.294007
std 22.607350 3.477071e+07 3.160138e+06 8.316296e+05 2.671516
min 1950.000000 −2.340803e+08 −8.001954e+07 0.000000e+00 0.000000
25% 1959.000000 1.357817e+04 2.614322e+04 0.000000e+00 1.207430
50% 1983.000000 8.484058e+04 4.812237e+04 3.247179e+04 2.380133
75% 2004.000000 3.622574e+05 9.077778e+04 6.582137e+04 5.017505
max 2016.000000 2.928346e+09 3.056805e+08 1.115575e+08 31.052229

df_income_wealth.head(n=4)

year n_wealth t_income l_income weights nw_groups ti_groups
0 1950 266933.75 55483.027 0.0 0.998732 50-90% 50-90%
1 1950 87434.46 55483.027 0.0 0.998732 50-90% 50-90%
2 1950 795034.94 55483.027 0.0 0.998732 Top 10% 50-90%
3 1950 94531.78 55483.027 0.0 0.998732 50-90% 50-90%

We will focus on wealth variable n_wealth to compute a Gini coefficient for the year 2016.

data = df_income_wealth[df_income_wealth.year == 2016].sample(3000,
random_state=1)

data.head(n=2)

year n_wealth t_income l_income weights nw_groups ti_groups
479748 2016 0.0 9214.991 0.0 4.546196 0-50% 0-50%
495754 2016 6007000.0 36454.914 0.0 2.925190 Top 10% 0-50%

We can first compute the Gini coefficient using the function defined in the lecture above.

gini_coefficient(data.n_wealth.values)

0.9300769449032591

Now we can write a vectorized version using numpy

def gini(y):
    n = len(y)
    y_1 = np.reshape(y, (n, 1))
    y_2 = np.reshape(y, (1, n))
    g_sum = np.sum(np.abs(y_1 - y_2))
    return g_sum / (2 * n * np.sum(y))

gini(data.n_wealth.values)

0.9300769449032564

Let’s simulate five populations by drawing from a lognormal distribution as before

k = 5
σ_vals = np.linspace(0.2, 4, k)
n = 2_000
σ_vals = σ_vals.reshape((k,1))
μ_vals = -σ_vals**2/2
y_vals = np.exp(μ_vals + σ_vals*np.random.randn(n))

We can compute the Gini coefficient for these five populations using the vectorized function, the
computation time is shown below:

%%time
gini_coefficients =[]
for i in range(k):
     gini_coefficients.append(gini(y_vals[i]))

CPU times: user 20 ms, sys: 10.9 ms, total: 30.9 ms
Wall time: 30.2 ms
This shows the vectorized function is much faster. This gives us the Gini coefficients for these
five households.

gini_coefficients

[0.11056658361238743,
 0.5810596731574433,
 0.8625364921898456,
 0.9655289346389,
 0.9912163577644273]





Chapter 3

3. Foundations
3.1 Introduction to Supply and Demand

3.1.1 Overview
This lecture is about some models of equilibrium prices and quantities, one of the core topics of
elementary microeconomics.

Throughout the lecture, we focus on models with one good and one price.

See Also

In a subsequent lecture we will investigate settings with many goods.

3.1.1.1 Why does this model matter?
In the 15th, 16th, 17th and 18th centuries, mercantilist ideas held sway among most rulers of
European countries.

Exports were regarded as good because they brought in bullion (gold flowed into the country).

Imports were regarded as bad because bullion was required to pay for them (gold flowed out).

This zero-sum view of economics was eventually overturned by the work of the classical economists
such as Adam Smith and David Ricardo, who showed how freeing domestic and international trade
can enhance welfare.

There are many different expressions of this idea in economics.

This lecture discusses one of the simplest: how free adjustment of prices can maximize a measure of
social welfare in the market for a single good.

3.1.1.2 Topics and infrastructure
Key infrastructure concepts that we will encounter in this lecture are:

• inverse demand curves
• inverse supply curves
• consumer surplus
• producer surplus
• integration
• social welfare as the sum of consumer and producer surpluses
• the relationship between equilibrium quantity and social welfare optimum

In our exposition we will use the following Python imports.

import numpy as np
import matplotlib.pyplot as plt
from collections import namedtuple

3.1.2 Consumer surplus
Before we look at the model of supply and demand, it will be helpful to have some background on
(a) consumer and producer surpluses and (b) integration.

(If you are comfortable with both topics you can jump to the next section.)

/supply-demand-multiple-goods
https://en.wikipedia.org/wiki/Zero-sum\_game
https://en.wikipedia.org/wiki/Adam\_Smith
https://en.wikipedia.org/wiki/David\_Ricardo


Example 3.2.

Regarding consumer surplus, suppose that we have a single good and 10 consumers.

These 10 consumers have different preferences; in particular, the amount they would be willing
to pay for one unit of the good differs.

Suppose that the willingness to pay for each of the 10 consumers is as follows:

consumer 1 2 3 4 5 6 7 8 9 10
willing to pay 98 72 41 38 29 21 17 12 11 10

(We have ordered consumers by willingness to pay, in descending order.)

3.1.2.1 A discrete example
If 𝑝 is the price of the good and 𝑤𝑖 is the amount that consumer 𝑖 is willing to pay, then 𝑖 buys when
𝑤𝑖 ≥ 𝑝.

Note

If 𝑝 = 𝑤𝑖 the consumer is indifferent between buying and not buying; we arbitrarily assume that
they buy.

The consumer surplus of the 𝑖-th consumer is max{𝑤𝑖 − 𝑝, 0}

• if 𝑤𝑖 ≥ 𝑝, then the consumer buys and gets surplus 𝑤𝑖 − 𝑝
• if 𝑤𝑖 < 𝑝, then the consumer does not buy and gets surplus 0

For example, if the price is 𝑝 = 40, then consumer 1 gets surplus 98 − 40 = 58.

The bar graph below shows the surplus of each consumer when 𝑝 = 25.

The total height of each bar 𝑖 is willingness to pay by consumer 𝑖.

The orange portion of some of the bars shows consumer surplus.

fig, ax = plt.subplots()
consumers = range(1, 11) # consumers 1,..., 10
# willingness to pay for each consumer
wtp = (98, 72, 41, 38, 29, 21, 17, 12, 11, 10)
price = 25
ax.bar(consumers, wtp, label="consumer surplus", color="darkorange", alpha=0.8)
ax.plot((0, 12), (price, price), lw=2, label="price $p$")
ax.bar(consumers, [min(w, price) for w in wtp], color="black", alpha=0.6)
ax.set_xlim(0, 12)
ax.set_xticks(consumers)
ax.set_ylabel("willingness to pay, price")
ax.set_xlabel("consumer, quantity")
ax.legend()
plt.show()



Figure 63.  Willingness to pay (discrete)

The total consumer surplus in this market is

∑
10

𝑖=1
max{𝑤𝑖 − 𝑝, 0} = ∑

𝑤𝑖≥𝑝
(𝑤𝑖 − 𝑝) (3.1)

Since consumer surplus max{𝑤𝑖 − 𝑝, 0} of consumer 𝑖 is a measure of her gains from trade (i.e.,
extent to which the good is valued over and above the amount the consumer had to pay), it is
reasonable to consider total consumer surplus as a measurement of consumer welfare.

Later we will pursue this idea further, considering how different prices lead to different welfare
outcomes for consumers and producers.

3.1.2.2 A comment on quantity.
Notice that in the figure, the horizontal axis is labeled “consumer, quantity”.

We have added “quantity” here because we can read the number of units sold from this axis,
assuming for now that there are sellers who are willing to sell as many units as the consumers
demand, given the current market price 𝑝.

In this example, consumers 1 to 5 buy, and the quantity sold is 5.

Below we drop the assumption that sellers will provide any amount at a given price and study how
this changes outcomes.

3.1.2.3 A continuous approximation
It is often convenient to assume that there is a “very large number” of consumers, so that willingness
to pay becomes a continuous curve.

As before, the vertical axis measures willingness to pay, while the horizontal axis measures quantity.

This kind of curve is called an inverse demand curve

An example is provided below, showing both an inverse demand curve and a set price.



The inverse demand curve is given by

𝑝 = 100𝑒−𝑞 (3.2)

def inverse_demand(q):
    return 100 * np.exp(- q)

# build a grid to evaluate the function at different values of q
q_min, q_max = 0, 5
q_grid = np.linspace(q_min, q_max, 1000)

# plot the inverse demand curve
fig, ax = plt.subplots()
ax.plot((q_min, q_max), (price, price), lw=2, label="price")
ax.plot(q_grid, inverse_demand(q_grid), 
        color="orange", label="inverse demand curve")
ax.set_ylabel("willingness to pay, price")
ax.set_xlabel("quantity")
ax.set_xlim(q_min, q_max)
ax.set_ylim(0, 110)
ax.legend()
plt.show()

Figure 64.  Willingness to pay (continuous)

Reasoning by analogy with the discrete case, the area under the demand curve and above the price is
called the consumer surplus, and is a measure of total gains from trade on the part of consumers.

The consumer surplus is shaded in the figure below.

# solve for the value of q where demand meets price
q_star = np.log(100) - np.log(price)

fig, ax = plt.subplots()
ax.plot((q_min, q_max), (price, price), lw=2, label="price")
ax.plot(q_grid, inverse_demand(q_grid), 



        color="orange", label="inverse demand curve")
small_grid = np.linspace(0, q_star, 500)
ax.fill_between(small_grid, np.full(len(small_grid), price),
                inverse_demand(small_grid), color="orange",
                alpha=0.5, label="consumer surplus")
ax.vlines(q_star, 0, price, ls="--")
ax.set_ylabel("willingness to pay, price")
ax.set_xlabel("quantity")
ax.set_xlim(q_min, q_max)
ax.set_ylim(0, 110)
ax.text(q_star, -10, "$q^*$")
ax.legend()
plt.show()

Figure 65.  Willingness to pay (continuous) with consumer surplus

The value 𝑞∗ is where the inverse demand curve meets price.

3.1.3 Producer surplus
Having discussed demand, let’s now switch over to the supply side of the market.

3.1.3.1 The discrete case
The figure below shows the price at which a collection of producers, also numbered 1 to 10, are
willing to sell one unit of the good in question

fig, ax = plt.subplots()
producers = range(1, 11) # producers 1,..., 10
# willingness to sell for each producer
wts = (5, 8, 17, 22, 35, 39, 46, 57, 88, 91)
price = 25
ax.bar(producers, wts, label="willingness to sell", color="green", alpha=0.5)
ax.set_xlim(0, 12)
ax.set_xticks(producers)
ax.set_ylabel("willingness to sell")
ax.set_xlabel("producer")



ax.legend()
plt.show()

Figure 66.  Willingness to sell (discrete)

Let 𝑣𝑖 be the price at which producer 𝑖 is willing to sell the good.

When the price is 𝑝, producer surplus for producer 𝑖 is max{𝑝 − 𝑣𝑖, 0}.

def inverse_supply(q):
    return 2 * q**2

# solve for the value of q where supply meets price
q_star = (price / 2)**(1/2)

# plot the inverse supply curve

Example 3.3.

For example, a producer willing to sell at $10 and selling at price $20 makes a surplus of $10.

Total producer surplus is given by

∑
10

𝑖=1
max{𝑝 − 𝑣𝑖, 0} = ∑

𝑝≥𝑣𝑖

(𝑝 − 𝑣𝑖) (3.3)

As for the consumer case, it can be helpful for analysis if we approximate producer willingness
to sell into a continuous curve.

This curve is called the inverse supply curve

We show an example below where the inverse supply curve is

𝑝 = 2𝑞2 (3.4)

The shaded area is the total producer surplus in this continuous model.



fig, ax = plt.subplots()
ax.plot((q_min, q_max), (price, price), lw=2, label="price")
ax.plot(q_grid, inverse_supply(q_grid), 
        color="green", label="inverse supply curve")
small_grid = np.linspace(0, q_star, 500)
ax.fill_between(small_grid, inverse_supply(small_grid), 
                np.full(len(small_grid), price), 
                color="green",
                alpha=0.5, label="producer surplus")
ax.vlines(q_star, 0, price, ls="--")
ax.set_ylabel("willingness to sell, price")
ax.set_xlabel("quantity")
ax.set_xlim(q_min, q_max)
ax.set_ylim(0, 60)
ax.text(q_star, -10, "$q^*$")
ax.legend()
plt.show()

Figure 67.  Willingness to sell (continuous) with producer surplus

3.1.4 Integration
How can we calculate the consumer and producer surplus in the continuous case?

The short answer is: by using integration.

Some readers will already be familiar with the basics of integration.

For those who are not, here is a quick introduction.

In general, for a function 𝑓 , the integral of 𝑓  over the interval [𝑎, 𝑏] is the area under the curve 𝑓
between 𝑎 and 𝑏.

This value is written as ∫𝑏
𝑎

𝑓(𝑥)d𝑥 and illustrated in the figure below when 𝑓(𝑥) = cos(𝑥/2) + 1.

https://en.wikipedia.org/wiki/Integral


def f(x):
    return np.cos(x/2) + 1

xmin, xmax = 0, 5
a, b = 1, 3
x_grid = np.linspace(xmin, xmax, 1000)
ab_grid = np.linspace(a, b, 400)

fig, ax = plt.subplots()
ax.plot(x_grid, f(x_grid), label="$f$", color="k")
ax.fill_between(ab_grid, [0] * len(ab_grid), f(ab_grid), 
                label=r"$\int_a^b f(x) dx$")
ax.legend()
plt.show()

Figure 68.  Area under the curve

There are many rules for calculating integrals, with different rules applying to different choices of 𝑓 .

Many of these rules relate to one of the most beautiful and powerful results in all of mathematics:
the fundamental theorem of calculus.

We will not try to cover these ideas here, partly because the subject is too big, and partly because
you only need to know one rule for this lecture, stated below.

If 𝑓(𝑥) = 𝑐 + 𝑑𝑥, then

∫
𝑏

𝑎
𝑓(𝑥)d𝑥 = 𝑐(𝑏 − 𝑎) + 𝑑

2
(𝑏2 − 𝑎2) (3.5)

In fact this rule is so simple that it can be calculated from elementary geometry – you might like to
try by graphing 𝑓  and calculating the area under the curve between 𝑎 and 𝑏.

We use this rule repeatedly in what follows.

https://en.wikipedia.org/wiki/Fundamental\_theorem\_of\_calculus


3.1.5 Supply and demand
Let’s now put supply and demand together.

This leads us to the all important notion of market equilibrium, and from there onto a discussion of
equilibria and welfare.

For most of this discussion, we’ll assume that inverse demand and supply curves are affine
functions of quantity.

Note

“Affine” means “linear plus a constant” and here is a nice discussion about it.

We’ll also assume affine inverse supply and demand functions when we study models with multiple
consumption goods in our subsequent lecture.

We do this in order to simplify the exposition and enable us to use just a few tools from linear
algebra, namely, matrix multiplication and matrix inversion.

We study a market for a single good in which buyers and sellers exchange a quantity 𝑞 for a price 𝑝.

Quantity 𝑞 and price 𝑝 are both scalars.

We assume that inverse demand and supply curves for the good are:

𝑝 = 𝑑0 − 𝑑1𝑞, 𝑑0, 𝑑1 > 0 (3.6)

𝑝 = 𝑠0 + 𝑠1𝑞, 𝑠0, 𝑠1 > 0 (3.7)

We call them inverse demand and supply curves because price is on the left side of the equation
rather than on the right side as it would be in a direct demand or supply function.

We can use a namedtuple to store the parameters for our single good market.

Market = namedtuple('Market', ['d_0', # demand intercept
                               'd_1', # demand slope
                               's_0', # supply intercept
                               's_1'] # supply slope
                   )

The function below creates an instance of a Market namedtuple with default values.

def create_market(d_0=1.0, d_1=0.6, s_0=0.1, s_1=0.4):
    return Market(d_0=d_0, d_1=d_1, s_0=s_0, s_1=s_1)

This market can then be used by our inverse_demand and inverse_supply functions.

def inverse_demand(q, model):
    return model.d_0 - model.d_1 * q

def inverse_supply(q, model):
    return model.s_0 + model.s_1 * q

Here is a plot of these two functions using market.

market = create_market()

grid_min, grid_max, grid_size = 0, 1.5, 200
q_grid = np.linspace(grid_min, grid_max, grid_size)
supply_curve = inverse_supply(q_grid, market)
demand_curve = inverse_demand(q_grid, market)

https://math.stackexchange.com/questions/275310/what-is-the-difference-between-linear-and-affine-function
/supply-demand-multiple-goods
https://docs.python.org/3/library/collections.html\#collections.namedtuple


fig, ax = plt.subplots()
ax.plot(q_grid, supply_curve, label='supply', color='green')
ax.plot(q_grid, demand_curve, label='demand', color='orange')
ax.legend(loc='upper center', frameon=False)
ax.set_ylim(0, 1.2)
ax.set_xticks((0, 1))
ax.set_yticks((0, 1))
ax.set_xlabel('quantity')
ax.set_ylabel('price')
plt.show()

Figure 69.  Supply and demand

In the above graph, an equilibrium price-quantity pair occurs at the intersection of the supply and
demand curves.

3.1.5.1 Consumer surplus
Let a quantity 𝑞 be given and let 𝑝 := 𝑑0 − 𝑑1𝑞 be the corresponding price on the inverse demand
curve.

We define consumer surplus 𝑆𝑐(𝑞) as the area under an inverse demand curve minus 𝑝𝑞:

𝑆𝑐(𝑞) := ∫
𝑞

0
(𝑑0 − 𝑑1𝑥)d𝑥 − 𝑝𝑞 (3.8)

The next figure illustrates



Figure 70.  Supply and demand (consumer surplus)

Consumer surplus provides a measure of total consumer welfare at quantity 𝑞.

The idea is that the inverse demand curve 𝑑0 − 𝑑1𝑞 shows a consumer’s willingness to pay for an
additional increment of the good at a given quantity 𝑞.

The difference between willingness to pay and the actual price is consumer surplus.

The value 𝑆𝑐(𝑞) is the “sum” (i.e., integral) of these surpluses when the total quantity purchased is 𝑞
and the purchase price is 𝑝.

Evaluating the integral in the definition of consumer surplus (8) gives

𝑆𝑐(𝑞) = 𝑑0𝑞 − 1
2
𝑑1𝑞2 − 𝑝𝑞 (3.9)

3.1.5.2 Producer surplus
Let a quantity 𝑞 be given and let 𝑝 := 𝑠0 + 𝑠1𝑞 be the corresponding price on the inverse supply
curve.

We define producer surplus as 𝑝𝑞 minus the area under an inverse supply curve

𝑆𝑝(𝑞) := 𝑝𝑞 − ∫
𝑞

0
(𝑠0 + 𝑠1𝑥)d𝑥 (3.10)

The next figure illustrates



Figure 71.  Supply and demand (producer surplus)

Producer surplus measures total producer welfare at quantity 𝑞

The idea is similar to that of consumer surplus.

The inverse supply curve 𝑠0 + 𝑠1𝑞 shows the price at which producers are prepared to sell, given
quantity 𝑞.

The difference between willingness to sell and the actual price is producer surplus.

The value 𝑆𝑝(𝑞) is the integral of these surpluses.

Evaluating the integral in the definition of producer surplus (10) gives

𝑆𝑝(𝑞) = 𝑝𝑞 − 𝑠0𝑞 − 1
2
𝑠1𝑞2 (3.11)

3.1.5.3 Social welfare
Sometimes economists measure social welfare by a welfare criterion that equals consumer surplus
plus producer surplus, assuming that consumers and producers pay the same price:

𝑊(𝑞) = ∫
𝑞

0
(𝑑0 − 𝑑1𝑥)𝑑𝑥 − ∫

𝑞

0
(𝑠0 + 𝑠1𝑥)d𝑥 (3.12)

Evaluating the integrals gives

𝑊(𝑞) = (𝑑0 − 𝑠0)𝑞 − 1
2
(𝑑1 + 𝑠1)𝑞2 (3.13)

Here is a Python function that evaluates this social welfare at a given quantity 𝑞 and a fixed set of
parameters.

def W(q, market):
    # Compute and return welfare
    return (market.d_0 - market.s_0) * q - 0.5 * (market.d_1 + market.s_1) * q**2



The next figure plots welfare as a function of 𝑞.

Figure 72.  Welfare

Let’s now give a social planner the task of maximizing social welfare.

To compute a quantity that maximizes the welfare criterion, we differentiate 𝑊  with respect to 𝑞
and then set the derivative to zero.

d𝑊(𝑞)
d𝑞

= 𝑑0 − 𝑠0 − (𝑑1 + 𝑠1)𝑞 = 0 (3.14)

Solving for 𝑞 yields

𝑞 = 𝑑0 − 𝑠0
𝑠1 + 𝑑1

(3.15)

Let’s remember the quantity 𝑞 given by equation (15) that a social planner would choose to
maximize consumer surplus plus producer surplus.

We’ll compare it to the quantity that emerges in a competitive equilibrium that equates supply to
demand.

3.1.5.4 Competitive equilibrium
Instead of equating quantities supplied and demanded, we can accomplish the same thing by
equating demand price to supply price:

𝑝 = 𝑑0 − 𝑑1𝑞 = 𝑠0 + 𝑠1𝑞 (3.16)

If we solve the equation defined by the second equality in the above line for 𝑞, we obtain

𝑞 = 𝑑0 − 𝑠0
𝑠1 + 𝑑1

(3.17)

This is the competitive equilibrium quantity.



Observe that the equilibrium quantity equals the same 𝑞 given by equation (15).

The outcome that the quantity determined by equation (15) equates supply to demand brings us a
key finding:

• a competitive equilibrium quantity maximizes our welfare criterion

This is a version of the first fundamental welfare theorem,

It also brings a useful competitive equilibrium computation strategy:

• after solving the welfare problem for an optimal quantity, we can read a competitive
equilibrium price from either supply price or demand price at the competitive equilibrium
quantity

3.1.6 Generalizations
In a later lecture, we’ll derive generalizations of the above demand and supply curves from other
objects.

Our generalizations will extend the preceding analysis of a market for a single good to the analysis
of 𝑛 simultaneous markets in 𝑛 goods.

In addition

• we’ll derive demand curves from a consumer problem that maximizes a utility function subject
to a budget constraint.

• we’ll derive supply curves from the problem of a producer who is price taker and maximizes his
profits minus total costs that are described by a cost function.

3.1.7 Exercises
Suppose now that the inverse demand and supply curves are modified to take the form

𝑝 = 𝑖𝑑(𝑞) := 𝑑0 − 𝑑1𝑞0.6 (3.18)

𝑝 = 𝑖𝑠(𝑞) := 𝑠0 + 𝑠1𝑞1.8 (3.19)

All parameters are positive, as before.

Exercise 3.4.

Use the same Market namedtuple that holds the parameter values as before but make new
inverse_demand and inverse_supply functions to match these new definitions.

Then plot the inverse demand and supply curves 𝑖𝑑 and 𝑖𝑠.

https://en.wikipedia.org/wiki/Fundamental\_theorems\_of\_welfare\_economics
/supply-demand-multiple-goods


Solution 3.4. Solution to Exercise 1

Let’s update the inverse_demand and inverse_supply functions, as defined above.

def inverse_demand(q, model):
    return model.d_0 - model.d_1 * q**0.6

def inverse_supply(q, model):
    return model.s_0 + model.s_1 * q**1.8

Here is a plot of inverse supply and demand.

grid_min, grid_max, grid_size = 0, 1.5, 200
q_grid = np.linspace(grid_min, grid_max, grid_size)
market = create_market()
supply_curve = inverse_supply(q_grid, market)
demand_curve = inverse_demand(q_grid, market)

fig, ax = plt.subplots()
ax.plot(q_grid, supply_curve, label='supply', color='green')
ax.plot(q_grid, demand_curve, label='demand', color='orange')
ax.legend(loc='upper center', frameon=False)
ax.set_ylim(0, 1.2)
ax.set_xticks((0, 1))
ax.set_yticks((0, 1))
ax.set_xlabel('quantity')
ax.set_ylabel('price')
plt.show()



Exercise 3.5.

As before, consumer surplus at 𝑞 is the area under the demand curve minus price times quantity:

𝑆𝑐(𝑞) = ∫
𝑞

0
𝑖𝑑(𝑥)𝑑𝑥 − 𝑝𝑞 (3.20)

Here 𝑝 is set to 𝑖𝑑(𝑞)

Producer surplus is price times quantity minus the area under the inverse supply curve:

𝑆𝑝(𝑞) = 𝑝𝑞 − ∫
𝑞

0
𝑖𝑠(𝑥)d𝑥 (3.21)

Here 𝑝 is set to 𝑖𝑠(𝑞).

Social welfare is the sum of consumer and producer surplus under the assumption that the price
is the same for buyers and sellers:

𝑊(𝑞) = ∫
𝑞

0
𝑖𝑑(𝑥)𝑑𝑥 − ∫

𝑞

0
𝑖𝑠(𝑥)d𝑥 (3.22)

Solve the integrals and write a function to compute this quantity numerically at given 𝑞.

Plot welfare as a function of 𝑞.



Solution 3.5. Solution to Exercise 2

Solving the integrals gives

𝑊(𝑞) = 𝑑0𝑞 − 𝑑1𝑞1.6

1.6
− (𝑠0𝑞 + 𝑠1𝑞2.8

2.8
) (3.23)

Here’s a Python function that computes this value:

def W(q, market):
    # Compute and return welfare
    S_c = market.d_0 * q - market.d_1 * q**1.6 / 1.6
    S_p = market.s_0 * q + market.s_1 * q**2.8 / 2.8
    return S_c - S_p

The next figure plots welfare as a function of 𝑞.

fig, ax = plt.subplots()
ax.plot(q_vals, W(q_vals, market), label='welfare', color='brown')
ax.legend(frameon=False)
ax.set_xlabel('quantity')
plt.show()



Exercise 3.6. See Also

Due to non-linearities, the new welfare function is not easy to maximize with pencil and paper.

Maximize it using scipy.optimize.minimize_scalar instead.

See Also

Our SciPy lecture has a section on Optimization is a useful resource to find out more.

Solution 3.6. Solution to Exercise 3

from scipy.optimize import minimize_scalar

def objective(q):
    return -W(q, market)

result = minimize_scalar(objective, bounds=(0, 10))
print(result.message)

Solution found.

maximizing_q = result.x
print(f"{maximizing_q: .5f}")

 0.90564

Exercise 3.7. See Also

Now compute the equilibrium quantity by finding the price that equates supply and demand.

You can do this numerically by finding the root of the excess demand function

𝑒𝑑(𝑞) := 𝑖𝑑(𝑞) − 𝑖𝑠(𝑞) (3.24)

You can use scipy.optimize.newton to compute the root.

See Also

Our SciPy lecture has a section on Roots and Fixed Points is a useful resource to find out
more.

Initialize newton with a starting guess somewhere close to 1.0.

(Similar initial conditions will give the same result.)

You should find that the equilibrium price agrees with the welfare maximizing price, in line with
the first fundamental welfare theorem.

https://python-programming.quantecon.org/scipy.html
https://python-programming.quantecon.org/scipy.html\#optimization
https://python-programming.quantecon.org/scipy.html
https://python-programming.quantecon.org/scipy.html\#roots-and-fixed-points


Solution 3.7. Solution to Exercise 4

from scipy.optimize import newton

def excess_demand(q):
    return inverse_demand(q, market) - inverse_supply(q, market)

equilibrium_q = newton(excess_demand, 0.99)
print(f"{equilibrium_q: .5f}")

 0.90564



3.2 Linear Equations and Matrix Algebra

3.2.1 Overview
Many problems in economics and finance require solving linear equations.

In this lecture we discuss linear equations and their applications.

To illustrate the importance of linear equations, we begin with a two good model of supply and
demand.

The two good case is so simple that solutions can be calculated by hand.

But often we need to consider markets containing many goods.

In the multiple goods case we face large systems of linear equations, with many equations and
unknowns.

To handle such systems we need two things:

• matrix algebra (and the knowledge of how to use it) plus
• computer code to apply matrix algebra to the problems of interest.

This lecture covers these steps.

We will use the following packages:

import numpy as np
import matplotlib.pyplot as plt

3.2.2 A two good example
In this section we discuss a simple two good example and solve it by

1. pencil and paper
2. matrix algebra

The second method is more general, as we will see.

3.2.2.1 Pencil and paper methods
Suppose that we have two related goods, such as

• propane and ethanol, and
• rice and wheat, etc.

To keep things simple, we label them as good 0 and good 1.

The demand for each good depends on the price of both goods:

𝑞𝑑
0 = 100 − 10𝑝0 − 5𝑝1

𝑞𝑑
1 = 50 − 𝑝0 − 10𝑝1

(3.25)

(We are assuming demand decreases when the price of either good goes up, but other cases are also
possible.)

Let’s suppose that supply is given by

𝑞𝑠
0 = 10𝑝0 + 5𝑝1

𝑞𝑠
1 = 5𝑝0 + 10𝑝1

(3.26)

Equilibrium holds when supply equals demand (𝑞𝑠
0 = 𝑞𝑑

0  and 𝑞𝑠
1 = 𝑞𝑑

1 ).

This yields the linear system



100 − 10𝑝0 − 5𝑝1 = 10𝑝0 + 5𝑝1

50 − 𝑝0 − 10𝑝1 = 5𝑝0 + 10𝑝1
(3.27)

We can solve this with pencil and paper to get

𝑝0 = 4.41 and 𝑝1 = 1.18. (3.28)

Inserting these results into either (1) or (2) yields the equilibrium quantities

𝑞0 = 50 and 𝑞1 = 33.82. (3.29)

3.2.2.2 Looking forward
Pencil and paper methods are easy in the two good case.

But what if there are many goods?

For such problems we need matrix algebra.

Before solving problems with matrix algebra, let’s first recall the basics of vectors and matrices, in
both theory and computation.

3.2.3 Vectors
A vector of length 𝑛 is just a sequence (or array, or tuple) of 𝑛 numbers, which we write as 𝑥 =
(𝑥1, …, 𝑥𝑛) or 𝑥 = [𝑥1,…,𝑥𝑛].

We can write these sequences either horizontally or vertically.

But when we use matrix operations, our default assumption is that vectors are column vectors.

The set of all 𝑛-vectors is denoted by ℝ𝑛.

Often vectors are represented visually as arrows from the origin to the point.

Here’s a visualization.

Example 3.4.

• ℝ2 is the plane — the set of pairs (𝑥1, 𝑥2).
• ℝ3 is 3 dimensional space — the set of vectors (𝑥1, 𝑥2, 𝑥3).



3.2.3.1 Vector operations
Sometimes we want to modify vectors.

The two most common operators on vectors are addition and scalar multiplication, which we now
describe.

When we add two vectors, we add them element-by-element.

In general,

𝑥 + 𝑦 =

[
[
[
[
[𝑥1

𝑥2
⋮

𝑥𝑛]
]
]
]
]

+

[
[
[
[
[𝑦1

𝑦2
⋮

𝑦𝑛]
]
]
]
]

:=

[
[
[
[
[𝑥1 + 𝑦1

𝑥2 + 𝑦2
⋮

𝑥𝑛 + 𝑦𝑛]
]
]
]
]

. (3.31)

We can visualise vector addition in ℝ2 as follows.

Example 3.5.

[ 4
−2] + [3

3] = [ 4
−2

+
+

3
3] = [7

1]. (3.30)



Scalar multiplication is an operation that multiplies a vector 𝑥 with a scalar elementwise.

More generally, it takes a number 𝛾 and a vector 𝑥 and produces

𝛾𝑥 :=

[
[
[
[
[𝛾𝑥1

𝛾𝑥2
⋮

𝛾𝑥𝑛]
]
]
]
]

. (3.33)

Scalar multiplication is illustrated in the next figure.

Example 3.6.

−2[ 3
−7] = [−2

−2
×
×

3
−7] = [−6

14]. (3.32)



In Python, a vector can be represented as a list or tuple, such as x = [2, 4, 6] or x = (2, 4, 6).

However, it is more common to represent vectors with NumPy arrays.

One advantage of NumPy arrays is that scalar multiplication and addition have very natural syntax.

x = np.ones(3)            # Vector of three ones
y = np.array((2, 4, 6))   # Converts tuple (2, 4, 6) into a NumPy array
x + y                     # Add (element-by-element)

array([3., 5., 7.])

4 * x                     # Scalar multiply

array([4., 4., 4.])

3.2.3.2 Inner product and norm
The inner product of vectors 𝑥, 𝑦 ∈ ℝ𝑛 is defined as

𝑥⊤𝑦 = [𝑥1 𝑥2 ⋯ 𝑥𝑛]

[
[
[
[
[𝑦1

𝑦2
⋮

𝑦𝑛]
]
]
]
]

= 𝑥1𝑦1 + 𝑥2𝑦2 + ⋯ + 𝑥𝑛𝑦𝑛 := ∑
𝑛

𝑖=1
𝑥𝑖𝑦𝑖. (3.34)

The norm of a vector 𝑥 represents its “length” (i.e., its distance from the zero vector) and is defined
as

| 𝑥 | :=
√

𝑥⊤𝑥 := (∑
𝑛

𝑖=1
𝑥2

𝑖 )
1/2

. (3.35)

The expression | 𝑥 − 𝑦 | can be thought of as the “distance” between 𝑥 and 𝑦.

The inner product and norm can be computed as follows

https://python-programming.quantecon.org/numpy.html\#numpy-arrays


Example 3.7.

3[2
0

−13
5 ] = [6

0
−39
15 ]. (3.36)

np.sum(x*y)      # Inner product of x and y

12.0

x @ y            # Another way to compute the inner product

12.0

np.sqrt(np.sum(x**2))  # Norm of x, method one

1.7320508075688772

np.linalg.norm(x)      # Norm of x, method two

1.7320508075688772

3.2.4 Matrix operations
When we discussed linear price systems, we mentioned using matrix algebra.

Matrix algebra is similar to algebra for numbers.

Let’s review some details.

3.2.4.1 Addition and scalar multiplication
Just as was the case for vectors, we can add, subtract and scalar multiply matrices.

Scalar multiplication and addition are generalizations of the vector case:

In general for a number 𝛾 and any matrix 𝐴,

𝛾𝐴 = 𝛾
[
[
[𝑎11

⋮
𝑎𝑛1

⋯
⋮
⋯

𝑎1𝑘
⋮

𝑎𝑛𝑘]
]
] :=

[
[
[𝛾𝑎11

⋮
𝛾𝑎𝑛1

⋯
⋮
⋯

𝛾𝑎1𝑘
⋮

𝛾𝑎𝑛𝑘]
]
]. (3.37)

In general,

𝐴 + 𝐵 =
[
[
[𝑎11

⋮
𝑎𝑛1

⋯
⋮
⋯

𝑎1𝑘
⋮

𝑎𝑛𝑘]
]
] +

[
[
[𝑏11

⋮
𝑏𝑛1

⋯
⋮
⋯

𝑏1𝑘
⋮

𝑏𝑛𝑘]
]
] :=

[
[
[ 𝑎11 + 𝑏11

⋮
𝑎𝑛1 + 𝑏𝑛1

⋯
⋮
⋯

𝑎1𝑘 + 𝑏1𝑘
⋮

𝑎𝑛𝑘 + 𝑏𝑛𝑘]
]
]. (3.39)

In the latter case, the matrices must have the same shape in order for the definition to make sense.

3.2.4.2 Matrix multiplication
We also have a convention for multiplying two matrices.

The rule for matrix multiplication generalizes the idea of inner products discussed above.

If 𝐴 and 𝐵 are two matrices, then their product 𝐴𝐵 is formed by taking as its 𝑖, 𝑗-th element the
inner product of the 𝑖-th row of 𝐴 and the 𝑗-th column of 𝐵.

Example 3.8.

Consider this example of matrix addition,

[1
7

5
3] + [12

0
−1
9 ] = [13

7
4
12]. (3.38)



Example 3.9.

Here’s an example of a 2 × 2 matrix multiplied by a 2 × 1 vector.

𝐴𝑥 = [𝑎11
𝑎21

𝑎12
𝑎22

][𝑥1
𝑥2

] = [𝑎11𝑥1 + 𝑎12𝑥2
𝑎21𝑥1 + 𝑎22𝑥2

] (3.40)

If 𝐴 is 𝑛 × 𝑘 and 𝐵 is 𝑗 × 𝑚, then to multiply 𝐴 and 𝐵 we require 𝑘 = 𝑗, and the resulting matrix
𝐴𝐵 is 𝑛 × 𝑚.

As an important special case, consider multiplying 𝑛 × 𝑘 matrix 𝐴 and 𝑘 × 1 column vector 𝑥.

According to the preceding rule, this gives us an 𝑛 × 1 column vector.

𝐴𝑥 =

[
[
[
[
[
[𝑎11

⋮
𝑎𝑖1
⋮

𝑎𝑛1

𝑎12
⋮

𝑎𝑖2
⋮

𝑎𝑛2

⋯

⋯

⋯

𝑎1𝑘
⋮

𝑎𝑖𝑘
⋮

𝑎𝑛𝑘]
]
]
]
]
]

𝑛×𝑘[
[
[
[
[
[𝑥1

𝑥2
⋮
⋮

𝑥𝑘]
]
]
]
]
]

𝑘×1

:=

[
[
[
[
[
[ 𝑎11𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎1𝑘𝑥𝑘

⋮
𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + ⋯ + 𝑎𝑖𝑘𝑥𝑘

⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑘𝑥𝑘]

]
]
]
]
]

𝑛×1

(3.41)

Here is a simple illustration of multiplication of two matrices.

𝐴𝐵 = [𝑎11
𝑎21

𝑎12
𝑎22

][𝑏11
𝑏21

𝑏12
𝑏22

] := [𝑎11𝑏11 + 𝑎12𝑏21
𝑎21𝑏11 + 𝑎22𝑏21

𝑎11𝑏12 + 𝑎12𝑏22
𝑎21𝑏12 + 𝑎22𝑏22

] (3.42)

There are many tutorials to help you further visualize this operation, such as

• this one, or
• the discussion on the Wikipedia page.

Note

Unlike number products, 𝐴𝐵 and 𝐵𝐴 are not generally the same thing.

One important special case is the identity matrix, which has ones on the principal diagonal and zero
elsewhere:

𝐼 =
[
[
[1

⋮
0

⋯
⋱
⋯

0
⋮
1]
]
] (3.43)

It is a useful exercise to check the following:

• if 𝐴 is 𝑛 × 𝑘 and 𝐼  is the 𝑘 × 𝑘 identity matrix, then 𝐴𝐼 = 𝐴, and
• if 𝐼  is the 𝑛 × 𝑛 identity matrix, then 𝐼𝐴 = 𝐴.

3.2.4.3 Matrices in NumPy
NumPy arrays are also used as matrices, and have fast, efficient functions and methods for all the
standard matrix operations.

You can create them manually from tuples of tuples (or lists of lists) as follows

A = ((1, 2),
     (3, 4))

type(A)

tuple

http://www.mathsisfun.com/algebra/matrix-multiplying.html
https://en.wikipedia.org/wiki/Matrix\_multiplication
https://en.wikipedia.org/wiki/Identity\_matrix


A = np.array(A)

type(A)

numpy.ndarray

A.shape

(2, 2)

The shape attribute is a tuple giving the number of rows and columns — see here for more
discussion.

To get the transpose of A, use A.transpose() or, more simply, A.T.

There are many convenient functions for creating common matrices (matrices of zeros, ones, etc.) —
see here.

Since operations are performed elementwise by default, scalar multiplication and addition have very
natural syntax.

A = np.identity(3)    # 3 x 3 identity matrix
B = np.ones((3, 3))   # 3 x 3 matrix of ones
2 * A

array([[2., 0., 0.],
       [0., 2., 0.],
       [0., 0., 2.]])

A + B

array([[2., 1., 1.],
       [1., 2., 1.],
       [1., 1., 2.]])

To multiply matrices we use the @ symbol.

Note

In particular, A @ B is matrix multiplication, whereas A * B is element-by-element
multiplication.

3.2.4.4 Two good model in matrix form
We can now revisit the two good model and solve (3) numerically via matrix algebra.

This involves some extra steps but the method is widely applicable — as we will see when we
include more goods.

First we rewrite (1) as

𝑞𝑑 = 𝐷𝑝 + ℎ where 𝑞𝑑 = [𝑞𝑑
0

𝑞𝑑
1
] 𝐷 = [−10

−1
−5
−10] and ℎ = [100

50 ]. (3.44)

Recall that 𝑝 ∈ ℝ2 is the price of two goods.

(Please check that 𝑞𝑑 = 𝐷𝑝 + ℎ represents the same equations as (1).)

We rewrite (2) as

𝑞𝑠 = 𝐶𝑝 where 𝑞𝑠 = [𝑞𝑠
0

𝑞𝑠
1
] and 𝐶 = [10

5
5
10]. (3.45)

Now equality of supply and demand can be expressed as 𝑞𝑠 = 𝑞𝑑, or

https://python-programming.quantecon.org/numpy.html\#shape-and-dimension
https://python-programming.quantecon.org/numpy.html\#creating-arrays


𝐶𝑝 = 𝐷𝑝 + ℎ. (3.46)

We can rearrange the terms to get

(𝐶 − 𝐷)𝑝 = ℎ. (3.47)

If all of the terms were numbers, we could solve for prices as 𝑝 = ℎ/(𝐶 − 𝐷).

Matrix algebra allows us to do something similar: we can solve for equilibrium prices using the
inverse of 𝐶 − 𝐷:

𝑝 = (𝐶 − 𝐷)−1ℎ. (3.48)

Before we implement the solution let us consider a more general setting.

3.2.4.5 More goods
It is natural to think about demand systems with more goods.

For example, even within energy commodities there are many different goods, including crude oil,
gasoline, coal, natural gas, ethanol, and uranium.

The prices of these goods are related, so it makes sense to study them together.

Pencil and paper methods become very time consuming with large systems.

But fortunately the matrix methods described above are essentially unchanged.

In general, we can write the demand equation as 𝑞𝑑 = 𝐷𝑝 + ℎ, where

• 𝑞𝑑 is an 𝑛 × 1 vector of demand quantities for 𝑛 different goods.
• 𝐷 is an 𝑛 × 𝑛 “coefficient” matrix.
• ℎ is an 𝑛 × 1 vector of constant values.

Similarly, we can write the supply equation as 𝑞𝑠 = 𝐶𝑝 + 𝑒, where

• 𝑞𝑠 is an 𝑛 × 1 vector of supply quantities for the same goods.
• 𝐶 is an 𝑛 × 𝑛 “coefficient” matrix.
• 𝑒 is an 𝑛 × 1 vector of constant values.

To find an equilibrium, we solve 𝐷𝑝 + ℎ = 𝐶𝑝 + 𝑒, or

(𝐷 − 𝐶)𝑝 = 𝑒 − ℎ. (3.49)

Then the price vector of the n different goods is

𝑝 = (𝐷 − 𝐶)−1(𝑒 − ℎ). (3.50)

3.2.4.6 General linear systems
A more general version of the problem described above looks as follows.

𝑎11𝑥1
⋮

𝑎𝑛1𝑥1

+

+

𝑎12𝑥2
⋮

𝑎𝑛2𝑥2

+

+

⋯

⋯

+

+

𝑎1𝑛𝑥𝑛
⋮

𝑎𝑛𝑛𝑥𝑛

=

=

𝑏1
⋮

𝑏𝑛

(3.51)

The objective here is to solve for the “unknowns” 𝑥1, …, 𝑥𝑛.

We take as given the coefficients 𝑎11, …, 𝑎𝑛𝑛 and constants 𝑏1, …, 𝑏𝑛.

Notice that we are treating a setting where the number of unknowns equals the number of
equations.

This is the case where we are most likely to find a well-defined solution.



Example 3.10.

For example, (25) has this form with

𝐴 = 𝐷 − 𝐶, 𝑏 = 𝑒 − ℎ and 𝑥 = 𝑝. (3.53)

(The other cases are referred to as overdetermined and underdetermined systems of equations — we
defer discussion of these cases until later lectures.)

In matrix form, the system (27) becomes

𝐴𝑥 = 𝑏 where 𝐴 =
[
[
[𝑎11

⋮
𝑎𝑛1

⋯
⋮
⋯

𝑎1𝑛
⋮

𝑎𝑛𝑛]
]
] and 𝑏 =

[
[
[𝑏1

⋮
𝑏𝑛]

]
]. (3.52)

When considering problems such as (28), we need to ask at least some of the following questions

• Does a solution actually exist?
• If a solution exists, how should we compute it?

3.2.5 Solving systems of equations
Recall again the system of equations (27), which we write here again as

𝐴𝑥 = 𝑏. (3.54)
The problem we face is to find a vector 𝑥 ∈ ℝ𝑛 that solves (30), taking 𝑏 and 𝐴 as given.

We may not always find a unique vector 𝑥 that solves (30).

We illustrate two such cases below.

3.2.5.1 No solution
Consider the system of equations given by,

𝑥 + 3𝑦 = 3
2𝑥 + 6𝑦 = −8. (3.55)

It can be verified manually that this system has no possible solution.

To illustrate why this situation arises let’s plot the two lines.

fig, ax = plt.subplots()
x = np.linspace(-10, 10)
plt.plot(x, (3-x)/3, label=f'$x + 3y = 3$')
plt.plot(x, (-8-2*x)/6, label=f'$2x + 6y = -8$')
plt.legend()
plt.show()

https://en.wikipedia.org/wiki/Overdetermined\_system
https://en.wikipedia.org/wiki/Underdetermined\_system


Clearly, these are parallel lines and hence we will never find a point 𝑥 ∈ ℝ2 such that these lines
intersect.

Thus, this system has no possible solution.

We can rewrite this system in matrix form as

𝐴𝑥 = 𝑏 where 𝐴 = [1
2

3
6] and 𝑏 = [ 3

−8]. (3.56)

It can be noted that the 2𝑛𝑑 row of matrix 𝐴 = (2, 6) is just a scalar multiple of the 1𝑠𝑡 row of
matrix 𝐴 = (1, 3).

The rows of matrix 𝐴 in this case are called linearly dependent.

Note

Advanced readers can find a detailed explanation of linear dependence and independence here.

But these details are not needed in what follows.

3.2.5.2 Many solutions
Now consider,

𝑥 − 2𝑦 = −4
−2𝑥 + 4𝑦 = 8. (3.57)

Any vector 𝑣 = (𝑥, 𝑦) such that 𝑥 = 2𝑦 − 4 will solve the above system.

Since we can find infinite such vectors this system has infinitely many solutions.

This is because the rows of the corresponding matrix

https://python.quantecon.org/linear\_algebra.html\#linear-independence


𝐴 = [ 1
−2

−2
4 ]. (3.58)

are linearly dependent — can you see why?

We now impose conditions on 𝐴 in (30) that rule out these problems.

3.2.5.3 Nonsingular matrices
To every square matrix we can assign a unique number called the determinant.

For 2 × 2 matrices, the determinant is given by,

[𝑎
𝑐

𝑏
𝑑] = 𝑎𝑑 − 𝑏𝑐. (3.59)

If the determinant of 𝐴 is not zero, then we say that 𝐴 is nonsingular.

A square matrix 𝐴 is nonsingular if and only if the rows and columns of 𝐴 are linearly independent.

A more detailed explanation of matrix inverse can be found here.

You can check yourself that the in (32) and (34) with linearly dependent rows are singular matrices.

This gives us a useful one-number summary of whether or not a square matrix can be inverted.

In particular, a square matrix 𝐴 has a nonzero determinant, if and only if it possesses an inverse
matrix 𝐴−1, with the property that 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼 .

As a consequence, if we pre-multiply both sides of 𝐴𝑥 = 𝑏 by 𝐴−1, we get

𝑥 = 𝐴−1𝑏. (3.60)
This is the solution to 𝐴𝑥 = 𝑏 — the solution we are looking for.

3.2.5.4 Linear equations with NumPy
In the two good example we obtained the matrix equation,

𝑝 = (𝐶 − 𝐷)−1ℎ. (3.61)

where 𝐶 , 𝐷 and ℎ are given by (20) and (21).

This equation is analogous to (36) with 𝐴 = (𝐶 − 𝐷)−1, 𝑏 = ℎ, and 𝑥 = 𝑝.

We can now solve for equilibrium prices with NumPy’s linalg submodule.

All of these routines are Python front ends to time-tested and highly optimized FORTRAN code.

C = ((10, 5),      # Matrix C
     (5, 10))

Now we change this to a NumPy array.

C = np.array(C)

D = ((-10, -5),     # Matrix D
     (-1, -10))
D = np.array(D)

h = np.array((100, 50))   # Vector h
h.shape = 2,1             # Transforming h to a column vector

from numpy.linalg import det, inv
A = C - D
# Check that A is nonsingular (non-zero determinant), and hence invertible
det(A)

https://en.wikipedia.org/wiki/Determinant
https://www.mathsisfun.com/algebra/matrix-inverse.html


340.0000000000001

A_inv = inv(A)  # compute the inverse
A_inv

array([[ 0.05882353, -0.02941176],
       [-0.01764706,  0.05882353]])

p = A_inv @ h  # equilibrium prices
p

array([[4.41176471],
       [1.17647059]])

q = C @ p  # equilibrium quantities
q

array([[50.        ],
       [33.82352941]])

Notice that we get the same solutions as the pencil and paper case.

We can also solve for 𝑝 using solve(A, h) as follows.

from numpy.linalg import solve
p = solve(A, h)  # equilibrium prices
p

array([[4.41176471],
       [1.17647059]])

q = C @ p  # equilibrium quantities
q

array([[50.        ],
       [33.82352941]])

Observe how we can solve for 𝑥 = 𝐴−1𝑦 by either via inv(A) @ y, or using solve(A, y).

The latter method uses a different algorithm that is numerically more stable and hence should be the
default option.

3.2.6 Exercises

3.2.6.1 Further reading
The documentation of the numpy.linalg submodule can be found here.

More advanced topics in linear algebra can be found here.

https://numpy.org/devdocs/reference/routines.linalg.html
https://python.quantecon.org/linear\_algebra.html\#id5


Exercise 3.8.

Let’s consider a market with 3 commodities - good 0, good 1 and good 2.

The demand for each good depends on the price of the other two goods and is given by:

𝑞𝑑
0 = 90 − 15𝑝0 + 5𝑝1 + 5𝑝2

𝑞𝑑
1 = 60 + 5𝑝0 − 10𝑝1 + 10𝑝2

𝑞𝑑
2 = 50 + 5𝑝0 + 5𝑝1 − 5𝑝2

(3.62)

(Here demand decreases when own price increases but increases when prices of other goods
increase.)

The supply of each good is given by:

𝑞𝑠
0 = −10 + 20𝑝0

𝑞𝑠
1 = −15 + 15𝑝1

𝑞𝑠
2 = −5 + 10𝑝2

(3.63)

Equilibrium holds when supply equals demand, i.e, 𝑞𝑑
0 = 𝑞𝑠

0 , 𝑞𝑑
1 = 𝑞𝑠

1 and 𝑞𝑑
2 = 𝑞𝑠

2 .

1. Set up the market as a system of linear equations.
2. Use matrix algebra to solve for equilibrium prices. Do this using both the

numpy.linalg.solve and inv(A) methods. Compare the solutions.



Solution 3.8. Solution to Exercise 1

The generated system would be:

35𝑝0 − 5𝑝1 − 5𝑝2 = 100
−5𝑝0 + 25𝑝1 − 10𝑝2 = 75
−5𝑝0 − 5𝑝1 + 15𝑝2 = 55

(3.64)

In matrix form we will write this as:

𝐴𝑝 = 𝑏 where 𝐴 =
[
[
[35

−5
−5

−5
25
−5

−5
−10
15 ]

]
], 𝑝 =

[
[
[𝑝0

𝑝1
𝑝2]

]
] and 𝑏 =

[
[
[100

75
55 ]

]
] (3.65)

import numpy as np
from numpy.linalg import det

A = np.array([[35, -5, -5],  # matrix A
              [-5, 25, -10],
              [-5, -5, 15]])

b = np.array((100, 75, 55))  # column vector b
b.shape = (3, 1)

det(A)  # check if A is nonsingular

9999.99999999999

# Using inverse
from numpy.linalg import det

A_inv = inv(A)

p = A_inv @ b
p

array([[4.9625],
       [7.0625],
       [7.675 ]])

# Using numpy.linalg.solve
from numpy.linalg import solve
p = solve(A, b)
p

array([[4.9625],
       [7.0625],
       [7.675 ]])

The solution is given by:

𝑝0 = 4.6925, 𝑝1 = 7.0625 and 𝑝2 = 7.675 (3.66)



Exercise 3.9.

Earlier in the lecture we discussed cases where the system of equations given by 𝐴𝑥 = 𝑏 has no
solution.

In this case 𝐴𝑥 = 𝑏 is called an inconsistent system of equations.

When faced with an inconsistent system we try to find the best “approximate” solution.

There are various methods to do this, one such method is the method of least squares.

Suppose we have an inconsistent system

𝐴𝑥 = 𝑏 (3.67)
where 𝐴 is an 𝑚 × 𝑛 matrix and 𝑏 is an 𝑚 × 1 column vector.

A least squares solution to (43) is an 𝑛 × 1 column vector 𝑥 such that, for all other vectors 𝑥 ∈
ℝ𝑛, the distance from 𝐴𝑥 to 𝑏 is less than the distance from 𝐴𝑥 to 𝑏.

That is,

| 𝐴𝑥 − 𝑏 | ≤ | 𝐴𝑥 − 𝑏 | (3.68)

It can be shown that, for the system of equations 𝐴𝑥 = 𝑏, the least squares solution 𝑥 is

𝑥 = (𝐴𝑇 𝐴)−1𝐴𝑇 𝑏 (3.69)

Now consider the general equation of a linear demand curve of a good given by:

𝑝 = 𝑚 − 𝑛𝑞 (3.70)

where 𝑝 is the price of the good and 𝑞 is the quantity demanded.

Suppose we are trying to estimate the values of 𝑚 and 𝑛.

We do this by repeatedly observing the price and quantity (for example, each month) and then
choosing 𝑚 and 𝑛 to fit the relationship between 𝑝 and 𝑞.

We have the following observations:

Price Quantity Demanded
1 9
3 7
8 3

Requiring the demand curve 𝑝 = 𝑚 − 𝑛𝑞 to pass through all these points leads to the following
three equations:

1 = 𝑚 − 9𝑛
3 = 𝑚 − 7𝑛
8 = 𝑚 − 3𝑛

(3.71)

Thus we obtain a system of equations 𝐴𝑥 = 𝑏 where 𝐴 = [
1
1
1

−9
−7
−3

], 𝑥 = [𝑚
𝑛] and 𝑏 = [

1
3
8
].

It can be verified that this system has no solutions.

(The problem is that we have three equations and only two unknowns.)

We will thus try to find the best approximate solution for 𝑥.

1. Use (45) and matrix algebra to find the least squares solution 𝑥.
2. Find the least squares solution using numpy.linalg.lstsq and compare the results.



Solution 3.9. Solution to Exercise 2

import numpy as np
from numpy.linalg import inv

# Using matrix algebra
A = np.array([[1, -9],  # matrix A
              [1, -7],
              [1, -3]])

A_T = np.transpose(A)  # transpose of matrix A

b = np.array((1, 3, 8))  # column vector b
b.shape = (3, 1)

x = inv(A_T @ A) @ A_T @ b
x

array([[11.46428571],
       [ 1.17857143]])

# Using numpy.linalg.lstsq
x, res, _, _ = np.linalg.lstsq(A, b, rcond=None)

xx̂ = [[11.46428571]
 [ 1.17857143]]
‖Axx̂ - b‖² = 0.07142857142857129

Here is a visualization of how the least squares method approximates the equation of a line
connecting a set of points.

We can also describe this as “fitting” a line between a set of points.

fig, ax = plt.subplots()
p = np.array((1, 3, 8))
q = np.array((9, 7, 3))

a, b = x

ax.plot(q, p, 'o', label='observations', markersize=5)
ax.plot(q, a - b*q, 'r', label='Fitted line')
plt.xlabel('quantity demanded')
plt.ylabel('price')
plt.legend()
plt.show()



3.3 Complex Numbers and Trigonometry

3.3.1 Overview
This lecture introduces some elementary mathematics and trigonometry.

Useful and interesting in its own right, these concepts reap substantial rewards when studying
dynamics generated by linear difference equations or linear differential equations.

For example, these tools are keys to understanding outcomes attained by Paul Samuelson (1939)
Samuelson (1939) in his classic paper on interactions between the investment accelerator and the
Keynesian consumption function, our topic in the lecture Samuelson Multiplier Accelerator.

In addition to providing foundations for Samuelson’s work and extensions of it, this lecture can be
read as a stand-alone quick reminder of key results from elementary high school trigonometry.

So let’s dive in.

3.3.1.1 Complex Numbers
A complex number has a real part 𝑥 and a purely imaginary part 𝑦.

The Euclidean, polar, and trigonometric forms of a complex number 𝑧 are:

𝑧 = 𝑥 + 𝑖𝑦 = 𝑟𝑒𝑖𝜃 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) (3.72)

The second equality above is known as Euler’s formula

• Euler contributed many other formulas too!

The complex conjugate ̄𝑧 of 𝑧 is defined as

̄𝑧 = 𝑥 − 𝑖𝑦 = 𝑟𝑒−𝑖𝜃 = 𝑟(cos 𝜃 − 𝑖 sin 𝜃) (3.73)

The value 𝑥 is the real part of 𝑧 and 𝑦 is the imaginary part of 𝑧.

The symbol | 𝑧 | = 
√

̄𝑧 ⋅ 𝑧 = 𝑟 represents the modulus of 𝑧.

The value 𝑟 is the Euclidean distance of vector (𝑥, 𝑦) from the origin:

𝑟 = | 𝑧 | = √𝑥2 + 𝑦2 (3.74)

The value 𝜃 is the angle of (𝑥, 𝑦) with respect to the real axis.

Evidently, the tangent of 𝜃 is (𝑦
𝑥).

Therefore,

𝜃 = tan−1( 𝑦
𝑥 ) (3.75)

Three elementary trigonometric functions are

cos 𝜃 = 𝑥
𝑟

= 𝑒𝑖𝜃 + 𝑒−𝑖𝜃

2
, sin 𝜃 = 𝑦

𝑟
= 𝑒𝑖𝜃 − 𝑒−𝑖𝜃

2𝑖
, tan 𝜃 = 𝑦

𝑥
(3.76)

We’ll need the following imports:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  #set default figure size
import numpy as np
from sympy import (Symbol, symbols, Eq, nsolve, sqrt, cos, sin, simplify,
                  init_printing, integrate)

https://quantecon.github.io/lecture-dynamics/samuelson.html
https://en.wikipedia.org/wiki/Leonhard\_Euler


Example 3.11.

Consider the complex number 𝑧 = 1 +
√

3𝑖.

For 𝑧 = 1 +
√

3𝑖, 𝑥 = 1, 𝑦 =
√

3.

It follows that 𝑟 = 2 and 𝜃 = tan−1(
√

3) = 𝜋
3 = 60𝑜.

3.3.1.2 An Example
Let’s use Python to plot the trigonometric form of the complex number 𝑧 = 1 +

√
3𝑖.

# Abbreviate useful values and functions
π = np.pi

# Set parameters
r = 2
θ = π/3
x = r * np.cos(θ)
x_range = np.linspace(0, x, 1000)
θ_range = np.linspace(0, θ, 1000)

# Plot
fig = plt.figure(figsize=(8, 8))
ax = plt.subplot(111, projection='polar')

ax.plot((0, θ), (0, r), marker='o', color='b')          # Plot r
ax.plot(np.zeros(x_range.shape), x_range, color='b')       # Plot x
ax.plot(θ_range, x / np.cos(θ_range), color='b')        # Plot y
ax.plot(θ_range, np.full(θ_range.shape, 0.1), color='r')  # Plot θ

ax.margins(0) # Let the plot starts at origin

ax.set_title("Trigonometry of complex numbers", va='bottom',
    fontsize='x-large')

ax.set_rmax(2)
ax.set_rticks((0.5, 1, 1.5, 2))  # Less radial ticks
ax.set_rlabel_position(-88.5)    # Get radial labels away from plotted line

ax.text(θ, r+0.01 , r'$z = x + iy = 1 + \sqrt{3}\, i$')   # Label z
ax.text(θ+0.2, 1 , '$r = 2$')                             # Label r
ax.text(0-0.2, 0.5, '$x = 1$')                            # Label x
ax.text(0.5, 1.2, r'$y = \sqrt{3}$')                      # Label y
ax.text(0.25, 0.15, r'$\theta = 60^o$')                   # Label θ

ax.grid(True)
plt.show()



3.3.2 De Moivre’s Theorem
de Moivre’s theorem states that:

(𝑟(cos 𝜃 + 𝑖 sin 𝜃))𝑛 = 𝑟𝑛𝑒𝑖𝑛𝜃 = 𝑟𝑛(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃) (3.77)

To prove de Moivre’s theorem, note that

(𝑟(cos 𝜃 + 𝑖 sin 𝜃))𝑛 = ( 𝑟𝑒𝑖𝜃)𝑛 (3.78)

and compute.

3.3.3 Applications of de Moivre’s Theorem

3.3.3.1 Example 1
We can use de Moivre’s theorem to show that 𝑟 = √𝑥2 + 𝑦2.

We have



1 = 𝑒𝑖𝜃𝑒−𝑖𝜃

= (cos 𝜃 + 𝑖 sin 𝜃)(cos(-𝜃) + 𝑖 sin(-𝜃))
= (cos 𝜃 + 𝑖 sin 𝜃)(cos 𝜃 − 𝑖 sin 𝜃)

= cos2 𝜃 + sin2 𝜃

= 𝑥2

𝑟2 + 𝑦2

𝑟2

(3.79)

and thus

𝑥2 + 𝑦2 = 𝑟2 (3.80)

We recognize this as a theorem of Pythagoras.

3.3.3.2 Example 2
Let 𝑧 = 𝑟𝑒𝑖𝜃 and ̄𝑧 = 𝑟𝑒−𝑖𝜃 so that ̄𝑧 is the complex conjugate of 𝑧.

(𝑧, ̄𝑧) form a complex conjugate pair of complex numbers.

Let 𝑎 = 𝑝𝑒𝑖𝜔 and ̄𝑎 = 𝑝𝑒−𝑖𝜔 be another complex conjugate pair.

For each element of a sequence of integers 𝑛 = 0, 1, 2, …,.

To do so, we can apply de Moivre’s formula.

Thus,

𝑥𝑛 = 𝑎𝑧𝑛 + ̄𝑎 ̄𝑧𝑛

= 𝑝𝑒𝑖𝜔(𝑟𝑒𝑖𝜃)𝑛 + 𝑝𝑒−𝑖𝜔(𝑟𝑒−𝑖𝜃)𝑛

= 𝑝𝑟𝑛𝑒𝑖(𝜔+𝑛𝜃) + 𝑝𝑟𝑛𝑒−𝑖(𝜔+𝑛𝜃)

= 𝑝𝑟𝑛[cos(𝜔 + 𝑛𝜃) + 𝑖 sin(𝜔 + 𝑛𝜃) + cos(𝜔 + 𝑛𝜃) − 𝑖 sin(𝜔 + 𝑛𝜃)]
= 2𝑝𝑟𝑛 cos(𝜔 + 𝑛𝜃)

(3.81)

3.3.3.3 Example 3
This example provides machinery that is at the heard of Samuelson’s analysis of his multiplier-
accelerator model Samuelson (1939).

Thus, consider a second-order linear difference equation

𝑥𝑛+2 = 𝑐1𝑥𝑛+1 + 𝑐2𝑥𝑛 (3.82)

whose characteristic polynomial is

𝑧2 − 𝑐1𝑧 − 𝑐2 = 0 (3.83)

or

(𝑧2 − 𝑐1𝑧 − 𝑐2) = (𝑧 − 𝑧1)(𝑧 − 𝑧2) = 0 (3.84)

has roots 𝑧1, 𝑧1.

A solution is a sequence {𝑥𝑛}∞
𝑛=0 that satisfies the difference equation.

Under the following circumstances, we can apply our example 2 formula to solve the difference
equation

• the roots 𝑧1, 𝑧2 of the characteristic polynomial of the difference equation form a complex
conjugate pair

• the values 𝑥0, 𝑥1 are given initial conditions



To solve the difference equation, recall from example 2 that

𝑥𝑛 = 2𝑝𝑟𝑛 cos(𝜔 + 𝑛𝜃) (3.85)

where 𝜔, 𝑝 are coefficients to be determined from information encoded in the initial conditions
𝑥1, 𝑥0.

Since 𝑥0 = 2𝑝 cos 𝜔 and 𝑥1 = 2𝑝𝑟 cos(𝜔 + 𝜃) the ratio of 𝑥1 to 𝑥0 is

𝑥1
𝑥0

= 𝑟 cos(𝜔 + 𝜃)
cos 𝜔

(3.86)

We can solve this equation for 𝜔 then solve for 𝑝 using 𝑥0 = 2𝑝𝑟0 cos(𝜔 + 𝑛𝜃).

With the sympy package in Python, we are able to solve and plot the dynamics of 𝑥𝑛 given different
values of 𝑛.

In this example, we set the initial values: - 𝑟 = 0.9 - 𝜃 = 1
4𝜋 - 𝑥0 = 4 - 𝑥1 = 𝑟 ⋅ 2

√
2 = 1.8

√
2.

We first numerically solve for 𝜔 and 𝑝 using nsolve in the sympy package based on the above initial
condition:

# Set parameters
r = 0.9
θ = π/4
x0 = 4
x1 = 2 * r * sqrt(2)

# Define symbols to be calculated
ω, p = symbols('ω p', real=True)

# Solve for ω
## Note: we choose the solution near 0
eq1 = Eq(x1/x0 - r * cos(ω+θ) / cos(ω), 0)
ω = nsolve(eq1, ω, 0)
ω = float(ω)
print(f'ω = {ω:1.3f}')

# Solve for p
eq2 = Eq(x0 - 2 * p * cos(ω), 0)
p = nsolve(eq2, p, 0)
p = float(p)
print(f'p = {p:1.3f}')

ω = 0.000
p = 2.000

Using the code above, we compute that 𝜔 = 0 and 𝑝 = 2.

Then we plug in the values we solve for 𝜔 and 𝑝 and plot the dynamic.

# Define range of n
max_n = 30
n = np.arange(0, max_n+1, 0.01)

# Define x_n
x = lambda n: 2 * p * r**n * np.cos(ω + n * θ)

# Plot
fig, ax = plt.subplots(figsize=(12, 8))



ax.plot(n, x(n))
ax.set(xlim=(0, max_n), ylim=(-5, 5), xlabel='$n$', ylabel='$x_n$')

# Set x-axis in the middle of the plot
ax.spines['bottom'].set_position('center')
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')

ticklab = ax.xaxis.get_ticklabels()[0] # Set x-label position
trans = ticklab.get_transform()
ax.xaxis.set_label_coords(31, 0, transform=trans)

ticklab = ax.yaxis.get_ticklabels()[0] # Set y-label position
trans = ticklab.get_transform()
ax.yaxis.set_label_coords(0, 5, transform=trans)

ax.grid()
plt.show()

3.3.3.4 Trigonometric Identities
We can obtain a complete suite of trigonometric identities by appropriately manipulating polar
forms of complex numbers.

We’ll get many of them by deducing implications of the equality

𝑒𝑖(𝜔+𝜃) = 𝑒𝑖𝜔𝑒𝑖𝜃 (3.87)
For example, we’ll calculate identities for

cos(𝜔 + 𝜃) and sin(𝜔 + 𝜃).

Using the sine and cosine formulas presented at the beginning of this lecture, we have:



cos(𝜔 + 𝜃) = 𝑒𝑖(𝜔+𝜃) + 𝑒−𝑖(𝜔+𝜃)

2

sin(𝜔 + 𝜃) = 𝑒𝑖(𝜔+𝜃) − 𝑒−𝑖(𝜔+𝜃)

2𝑖

(3.88)

We can also obtain the trigonometric identities as follows:

cos(𝜔 + 𝜃) + 𝑖 sin(𝜔 + 𝜃) = 𝑒𝑖(𝜔+𝜃)

= 𝑒𝑖𝜔𝑒𝑖𝜃

= (cos 𝜔 + 𝑖 sin 𝜔)(cos 𝜃 + 𝑖 sin 𝜃)
= (cos 𝜔 cos 𝜃 − sin 𝜔 sin 𝜃) + 𝑖(cos 𝜔 sin 𝜃 + sin 𝜔 cos 𝜃)

(3.89)

Since both real and imaginary parts of the above formula should be equal, we get:

cos(𝜔 + 𝜃) = cos 𝜔 cos 𝜃 − sin 𝜔 sin 𝜃
sin(𝜔 + 𝜃) = cos 𝜔 sin 𝜃 + sin 𝜔 cos 𝜃

(3.90)

The equations above are also known as the angle sum identities. We can verify the equations
using the simplify function in the sympy package:

# Define symbols
ω, θ = symbols('ω θ', real=True)

# Verify
print("cos(ω)cos(θ) - sin(ω)sin(θ) =",
    simplify(cos(ω)*cos(θ) - sin(ω) * sin(θ)))
print("cos(ω)sin(θ) + sin(ω)cos(θ) =",
    simplify(cos(ω)*sin(θ) + sin(ω) * cos(θ)))

cos(ω)cos(θ) - sin(ω)sin(θ) = cos(θ + ω)
cos(ω)sin(θ) + sin(ω)cos(θ) = sin(θ + ω)

3.3.3.5 Trigonometric Integrals
We can also compute the trigonometric integrals using polar forms of complex numbers.

For example, we want to solve the following integral:

∫
𝜋

−𝜋
cos(𝜔) sin(𝜔) 𝑑𝜔 (3.91)

Using Euler’s formula, we have:



∫ cos(𝜔) sin(𝜔) 𝑑𝜔 = ∫
(𝑒𝑖𝜔 + 𝑒−𝑖𝜔)

2
(𝑒𝑖𝜔 − 𝑒−𝑖𝜔)

2𝑖
𝑑𝜔

= 1
4𝑖

∫ 𝑒2𝑖𝜔 − 𝑒−2𝑖𝜔 𝑑𝜔

= 1
4𝑖(−𝑖

2
𝑒2𝑖𝜔 − 𝑖

2
𝑒−2𝑖𝜔 + 𝐶1)

= −1
8 [(𝑒𝑖𝜔)2 +(𝑒−𝑖𝜔)2 − 2]+ 𝐶2

= −1
8
(𝑒𝑖𝜔 − 𝑒−𝑖𝜔)2 + 𝐶2

= 1
2(𝑒𝑖𝜔 − 𝑒−𝑖𝜔

2𝑖 )2 + 𝐶2

= 1
2

sin2(𝜔) + 𝐶2

(3.92)

and thus:

∫
𝜋

−𝜋
cos(𝜔) sin(𝜔) 𝑑𝜔 = 1

2
sin2(𝜋) − 1

2
sin2(−𝜋) = 0 (3.93)

We can verify the analytical as well as numerical results using integrate in the sympy package:

# Set initial printing
init_printing(use_latex="mathjax")

ω = Symbol('ω')
print('The analytical solution for integral of cos(ω)sin(ω) is:')
integrate(cos(ω) * sin(ω), ω)

The analytical solution for integral of cos(ω)sin(ω) is:

   2   
sin (ω)
───────
   2   

print('The numerical solution for the integral of cos(ω)sin(ω) \
from -π to π is:')
integrate(cos(ω) * sin(ω), (ω, -π, π))

The numerical solution for the integral of cos(ω)sin(ω) from -π to π is:

0

Exercise 3.10.

We invite the reader to verify analytically and with the sympy package the following two
equalities:

∫
𝜋

−𝜋
cos (𝜔)2 𝑑𝜔 = 𝜋 (3.94)

∫
𝜋

−𝜋
sin (𝜔)2 𝑑𝜔 = 𝜋 (3.95)



Solution 3.10. Solution to Exercise 1

Let’s import symbolic 𝜋 from sympy

# Import symbolic π from sympy
from sympy import pi

print('The analytical solution for the integral of cos(ω)**2 \
from -π to π is:')

integrate(cos(ω)**2, (ω, -pi, pi))

The analytical solution for the integral of cos(ω)**2 from -π to π is:

π

print('The analytical solution for the integral of sin(ω)**2 \
from -π to π is:')

integrate(sin(ω)**2, (ω, -pi, pi))

The analytical solution for the integral of sin(ω)**2 from -π to π is:

π

3.3.3.6 Exercises



3.4 Geometric Series for Elementary Economics

3.4.1 Overview
The lecture describes important ideas in economics that use the mathematics of geometric series.

Among these are

• the Keynesian multiplier
• the money multiplier that prevails in fractional reserve banking systems
• interest rates and present values of streams of payouts from assets

(As we shall see below, the term multiplier comes down to meaning sum of a convergent
geometric series)

These and other applications prove the truth of the wise crack that

“In economics, a little knowledge of geometric series goes a long way.”

Below we’ll use the following imports:

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  #set default figure size
import numpy as np
import sympy as sym
from sympy import init_printing
from matplotlib import cm

3.4.2 Key formulas
To start, let 𝑐 be a real number that lies strictly between −1 and 1.

• We often write this as 𝑐 ∈ (−1, 1).
• Here (−1, 1) denotes the collection of all real numbers that are strictly less than 1 and strictly

greater than −1.
• The symbol ∈ means in or belongs to the set after the symbol.

We want to evaluate geometric series of two types – infinite and finite.

3.4.2.1 Infinite geometric series
The first type of geometric that interests us is the infinite series

1 + 𝑐 + 𝑐2 + 𝑐3 + ⋯ (3.96)

Where ⋯ means that the series continues without end.

The key formula is

1 + 𝑐 + 𝑐2 + 𝑐3 + ⋯ = 1
1 − 𝑐

(3.97)

To prove key formula (2), multiply both sides by (1 − 𝑐) and verify that if 𝑐 ∈ (−1, 1), then the
outcome is the equation 1 = 1.

3.4.2.2 Finite geometric series
The second series that interests us is the finite geometric series

1 + 𝑐 + 𝑐2 + 𝑐3 + ⋯ + 𝑐𝑇 (3.98)

where 𝑇  is a positive integer.



Remark 3.1.

The above formula works for any value of the scalar 𝑐. We don’t have to restrict 𝑐 to be in the set
(−1, 1).

The key formula here is

1 + 𝑐 + 𝑐2 + 𝑐3 + ⋯ + 𝑐𝑇 = 1 − 𝑐𝑇+1

1 − 𝑐
(3.99)

We now move on to describe some famous economic applications of geometric series.

3.4.3 Example: The Money Multiplier in Fractional Reserve Banking
In a fractional reserve banking system, banks hold only a fraction 𝑟 ∈ (0, 1) of cash behind each
deposit receipt that they issue

• In recent times
‣ cash consists of pieces of paper issued by the government and called dollars or pounds or

…
‣ a deposit is a balance in a checking or savings account that entitles the owner to ask the

bank for immediate payment in cash
• When the UK and France and the US were on either a gold or silver standard (before 1914, for

example)
‣ cash was a gold or silver coin
‣ a deposit receipt was a bank note that the bank promised to convert into gold or silver on

demand; (sometimes it was also a checking or savings account balance)

Economists and financiers often define the supply of money as an economy-wide sum of cash plus
deposits.

In a fractional reserve banking system (one in which the reserve ratio 𝑟 satisfies 0 < 𝑟 < 1),
banks create money by issuing deposits backed by fractional reserves plus loans that they make to
their customers.

A geometric series is a key tool for understanding how banks create money (i.e., deposits) in a
fractional reserve system.

The geometric series formula (2) is at the heart of the classic model of the money creation process –
one that leads us to the celebrated money multiplier.

3.4.3.1 A simple model
There is a set of banks named 𝑖 = 0, 1, 2, ….

Bank 𝑖’s loans 𝐿𝑖, deposits 𝐷𝑖, and reserves 𝑅𝑖 must satisfy the balance sheet equation (because
balance sheets balance):

𝐿𝑖 + 𝑅𝑖 = 𝐷𝑖 (3.100)

The left side of the above equation is the sum of the bank’s assets, namely, the loans 𝐿𝑖 it has
outstanding plus its reserves of cash 𝑅𝑖.

The right side records bank 𝑖’s liabilities, namely, the deposits 𝐷𝑖 held by its depositors; these are
IOU’s from the bank to its depositors in the form of either checking accounts or savings accounts (or
before 1914, bank notes issued by a bank stating promises to redeem notes for gold or silver on
demand).



Each bank 𝑖 sets its reserves to satisfy the equation

𝑅𝑖 = 𝑟𝐷𝑖 (3.101)

where 𝑟 ∈ (0, 1) is its reserve-deposit ratio or reserve ratio for short

• the reserve ratio is either set by a government or chosen by banks for precautionary reasons

Next we add a theory stating that bank 𝑖 + 1’s deposits depend entirely on loans made by bank 𝑖,
namely

𝐷𝑖+1 = 𝐿𝑖 (3.102)

Thus, we can think of the banks as being arranged along a line with loans from bank 𝑖 being
immediately deposited in 𝑖 + 1

• in this way, the debtors to bank 𝑖 become creditors of bank 𝑖 + 1

Finally, we add an initial condition about an exogenous level of bank 0′s deposits

𝐷0 is given exogenously (3.103)

We can think of 𝐷0 as being the amount of cash that a first depositor put into the first bank in the
system, bank number 𝑖 = 0.

Now we do a little algebra.

Combining equations (5) and (6) tells us that

𝐿𝑖 = (1 − 𝑟)𝐷𝑖 (3.104)

This states that bank 𝑖 loans a fraction (1 − 𝑟) of its deposits and keeps a fraction 𝑟 as cash reserves.

Combining equation (9) with equation (7) tells us that

𝐷𝑖+1 = (1 − 𝑟)𝐷𝑖 for𝑖 ≥ 0 (3.105)

which implies that

𝐷𝑖 = (1 − 𝑟)𝑖𝐷0 for𝑖 ≥ 0 (3.106)

Equation (11) expresses 𝐷𝑖 as the 𝑖 th term in the product of 𝐷0 and the geometric series

1, (1 − 𝑟), (1 − 𝑟)2, ⋯ (3.107)

Therefore, the sum of all deposits in our banking system 𝑖 = 0, 1, 2, … is

∑
∞

𝑖=0
(1 − 𝑟)𝑖𝐷0 = 𝐷0

1 − (1 − 𝑟)
= 𝐷0

𝑟
(3.108)

3.4.3.2 Money multiplier
The money multiplier is a number that tells the multiplicative factor by which an exogenous
injection of cash into bank 0 leads to an increase in the total deposits in the banking system.

Equation (13) asserts that the money multiplier is 1𝑟
• An initial deposit of cash of 𝐷0 in bank 0 leads the banking system to create total deposits of

𝐷0
𝑟 .

• The initial deposit 𝐷0 is held as reserves, distributed throughout the banking system according
to 𝐷0 = ∑∞

𝑖=0 𝑅𝑖.



3.4.4 Example: The Keynesian Multiplier
The famous economist John Maynard Keynes and his followers created a simple model intended to
determine national income 𝑦 in circumstances in which

• there are substantial unemployed resources, in particular excess supply of labor and capital
• prices and interest rates fail to adjust to make aggregate supply equal demand (e.g., prices

and interest rates are frozen)
• national income is entirely determined by aggregate demand

3.4.4.1 Static version
An elementary Keynesian model of national income determination consists of three equations that
describe aggregate demand for 𝑦 and its components.

The first equation is a national income identity asserting that consumption 𝑐 plus investment 𝑖
equals national income 𝑦:

𝑐 + 𝑖 = 𝑦 (3.109)

The second equation is a Keynesian consumption function asserting that people consume a fraction
𝑏 ∈ (0, 1) of their income:

𝑐 = 𝑏𝑦 (3.110)

The fraction 𝑏 ∈ (0, 1) is called the marginal propensity to consume.

The fraction 1 − 𝑏 ∈ (0, 1) is called the marginal propensity to save.

The third equation simply states that investment is exogenous at level 𝑖.

• exogenous means determined outside this model.

Substituting the second equation into the first gives (1 − 𝑏)𝑦 = 𝑖.

Solving this equation for 𝑦 gives

𝑦 = 1
1 − 𝑏

𝑖 (3.111)

The quantity 1
1−𝑏  is called the investment multiplier or simply the multiplier.

Applying the formula for the sum of an infinite geometric series, we can write the above equation as

𝑦 = 𝑖 ∑
∞

𝑡=0
𝑏𝑡 (3.112)

where 𝑡 is a nonnegative integer.

So we arrive at the following equivalent expressions for the multiplier:

1
1 − 𝑏

= ∑
∞

𝑡=0
𝑏𝑡 (3.113)

The expression ∑∞
𝑡=0 𝑏𝑡 motivates an interpretation of the multiplier as the outcome of a dynamic

process that we describe next.

3.4.4.2 Dynamic version
We arrive at a dynamic version by interpreting the nonnegative integer 𝑡 as indexing time and
changing our specification of the consumption function to take time into account

• we add a one-period lag in how income affects consumption



We let 𝑐𝑡 be consumption at time 𝑡 and 𝑖𝑡 be investment at time 𝑡.

We modify our consumption function to assume the form

𝑐𝑡 = 𝑏𝑦𝑡−1 (3.114)

so that 𝑏 is the marginal propensity to consume (now) out of last period’s income.

We begin with an initial condition stating that

𝑦−1 = 0 (3.115)

We also assume that

𝑖𝑡 = 𝑖  forall𝑡 ≥ 0 (3.116)

so that investment is constant over time.

It follows that

𝑦0 = 𝑖 + 𝑐0 = 𝑖 + 𝑏𝑦−1 = 𝑖 (3.117)

and

𝑦1 = 𝑐1 + 𝑖 = 𝑏𝑦0 + 𝑖 = (1 + 𝑏)𝑖 (3.118)

and

𝑦2 = 𝑐2 + 𝑖 = 𝑏𝑦1 + 𝑖 = (1 + 𝑏 + 𝑏2)𝑖 (3.119)

and more generally

𝑦𝑡 = 𝑏𝑦𝑡−1 + 𝑖 = (1 + 𝑏 + 𝑏2 + ⋯ + 𝑏𝑡)𝑖 (3.120)

or

𝑦𝑡 = 1 − 𝑏𝑡+1

1 − 𝑏
𝑖 (3.121)

Evidently, as 𝑡 → +∞,

𝑦𝑡 → 1
1 − 𝑏

𝑖 (3.122)

Remark 1: The above formula is often applied to assert that an exogenous increase in investment of
Δ𝑖 at time 0 ignites a dynamic process of increases in national income by successive amounts

Δ𝑖, (1 + 𝑏)Δ𝑖, (1 + 𝑏 + 𝑏2)Δ𝑖, ⋯ (3.123)

at times 0, 1, 2, ….

Remark 2 Let 𝑔𝑡 be an exogenous sequence of government expenditures.

If we generalize the model so that the national income identity becomes

𝑐𝑡 + 𝑖𝑡 + 𝑔𝑡 = 𝑦𝑡 (3.124)

then a version of the preceding argument shows that the government expenditures multiplier is
also 1

1−𝑏 , so that a permanent increase in government expenditures ultimately leads to an increase in
national income equal to the multiplier times the increase in government expenditures.

3.4.5 Example: Interest Rates and Present Values
We can apply our formula for geometric series to study how interest rates affect values of streams of
dollar payments that extend over time.

We work in discrete time and assume that 𝑡 = 0, 1, 2, … indexes time.



We let 𝑟 ∈ (0, 1) be a one-period net nominal interest rate

• if the nominal interest rate is 5 percent, then 𝑟 = .05

A one-period gross nominal interest rate 𝑅 is defined as

𝑅 = 1 + 𝑟 ∈ (1, 2) (3.125)

• if 𝑟 = .05, then 𝑅 = 1.05

Remark: The gross nominal interest rate 𝑅 is an exchange rate or relative price of dollars at
between times 𝑡 and 𝑡 + 1. The units of 𝑅 are dollars at time 𝑡 + 1 per dollar at time 𝑡.

When people borrow and lend, they trade dollars now for dollars later or dollars later for dollars
now.

The price at which these exchanges occur is the gross nominal interest rate.

• If I sell 𝑥 dollars to you today, you pay me 𝑅𝑥 dollars tomorrow.
• This means that you borrowed 𝑥 dollars for me at a gross interest rate 𝑅 and a net interest rate

𝑟.

We assume that the net nominal interest rate 𝑟 is fixed over time, so that 𝑅 is the gross nominal
interest rate at times 𝑡 = 0, 1, 2, ….

Two important geometric sequences are

1, 𝑅, 𝑅2, ⋯ (3.126)

and

1, 𝑅−1, 𝑅−2, ⋯ (3.127)

Sequence (31) tells us how dollar values of an investment accumulate through time.

Sequence (32) tells us how to discount future dollars to get their values in terms of today’s dollars.

3.4.5.1 Accumulation
Geometric sequence (31) tells us how one dollar invested and re-invested in a project with gross one
period nominal rate of return accumulates

• here we assume that net interest payments are reinvested in the project
• thus, 1 dollar invested at time 0 pays interest 𝑟 dollars after one period, so we have 𝑟 + 1 = 𝑅

dollars at time1
• at time 1 we reinvest 1 + 𝑟 = 𝑅 dollars and receive interest of 𝑟𝑅 dollars at time 2 plus the

principal 𝑅 dollars, so we receive 𝑟𝑅 + 𝑅 = (1 + 𝑟)𝑅 = 𝑅2 dollars at the end of period 2
• and so on

Evidently, if we invest 𝑥 dollars at time 0 and reinvest the proceeds, then the sequence

𝑥, 𝑥𝑅, 𝑥𝑅2, ⋯ (3.128)

tells how our account accumulates at dates 𝑡 = 0, 1, 2, ….

3.4.5.2 Discounting
Geometric sequence (32) tells us how much future dollars are worth in terms of today’s dollars.

Remember that the units of 𝑅 are dollars at 𝑡 + 1 per dollar at 𝑡.

It follows that

• the units of 𝑅−1 are dollars at 𝑡 per dollar at 𝑡 + 1



• the units of 𝑅−2 are dollars at 𝑡 per dollar at 𝑡 + 2
• and so on; the units of 𝑅−𝑗 are dollars at 𝑡 per dollar at 𝑡 + 𝑗

So if someone has a claim on 𝑥 dollars at time 𝑡 + 𝑗, it is worth 𝑥𝑅−𝑗 dollars at time 𝑡 (e.g., today).

3.4.5.3 Application to asset pricing
A lease requires a payments stream of 𝑥𝑡 dollars at times 𝑡 = 0, 1, 2, … where

𝑥𝑡 = 𝐺𝑡𝑥0 (3.129)

where 𝐺 = (1 + 𝑔) and 𝑔 ∈ (0, 1).

Thus, lease payments increase at 𝑔 percent per period.

For a reason soon to be revealed, we assume that 𝐺 < 𝑅.

The present value of the lease is

𝑝0 = 𝑥0 + 𝑥1/𝑅 + 𝑥2/(𝑅2) + ⋯

= 𝑥0(1 + 𝐺𝑅−1 + 𝐺2𝑅−2 + ⋯)

= 𝑥0
1

1 − 𝐺𝑅−1

(3.130)

where the last line uses the formula for an infinite geometric series.

Recall that 𝑅 = 1 + 𝑟 and 𝐺 = 1 + 𝑔 and that 𝑅 > 𝐺 and 𝑟 > 𝑔 and that 𝑟 and 𝑔 are typically small
numbers, e.g., .05 or .03.

Use the Taylor series of 1
1+𝑟  about 𝑟 = 0, namely,

1
1 + 𝑟

= 1 − 𝑟 + 𝑟2 − 𝑟3 + ⋯ (3.131)

and the fact that 𝑟 is small to approximate 1
1+𝑟 ≈ 1 − 𝑟.

Use this approximation to write 𝑝0 as

𝑝0 = 𝑥0
1

1 − 𝐺𝑅−1

= 𝑥0
1

1 − (1 + 𝑔)(1 − 𝑟)

= 𝑥0
1

1 − (1 + 𝑔 − 𝑟 − 𝑟𝑔)

≈ 𝑥0
1

𝑟 − 𝑔

(3.132)

where the last step uses the approximation 𝑟𝑔 ≈ 0.

The approximation

𝑝0 = 𝑥0
𝑟 − 𝑔

(3.133)

is known as the Gordon formula for the present value or current price of an infinite payment
stream 𝑥0𝐺𝑡 when the nominal one-period interest rate is 𝑟 and when 𝑟 > 𝑔.

We can also extend the asset pricing formula so that it applies to finite leases.

Let the payment stream on the lease now be 𝑥𝑡 for 𝑡 = 1, 2, …, 𝑇 , where again

https://en.wikipedia.org/wiki/Taylor\_series


𝑥𝑡 = 𝐺𝑡𝑥0 (3.134)

The present value of this lease is:

𝑝0 = 𝑥0 + 𝑥1/𝑅 + … + 𝑥𝑇 /𝑅𝑇

= 𝑥0(1 + 𝐺𝑅−1 + … + 𝐺𝑇 𝑅−𝑇 )

=
𝑥0(1 − 𝐺𝑇+1𝑅−(𝑇+1))

1 − 𝐺𝑅−1

(3.135)

Applying the Taylor series to 𝑅−(𝑇+1) about 𝑟 = 0 we get:

1
(1 + 𝑟)𝑇+1 = 1 − 𝑟(𝑇 + 1) + 1

2
𝑟2(𝑇 + 1)(𝑇 + 2) + … ≈ 1 − 𝑟(𝑇 + 1) (3.136)

Similarly, applying the Taylor series to 𝐺𝑇+1 about 𝑔 = 0:

(1 + 𝑔)𝑇+1 = 1 + (𝑇 + 1)𝑔 + 𝑇(𝑇 + 1)
2!

𝑔2 + (𝑇 − 1)𝑇 (𝑇 + 1)
3!

𝑔3 + … ≈ 1 + (𝑇 + 1)𝑔(3.137)

Thus, we get the following approximation:

𝑝0 = 𝑥0(1 − (1 + (𝑇 + 1)𝑔)(1 − 𝑟(𝑇 + 1)))
1 − (1 − 𝑟)(1 + 𝑔)

(3.138)

Expanding:

𝑝0 =
𝑥0(1 − 1 + (𝑇 + 1)2𝑟𝑔 + 𝑟(𝑇 + 1) − 𝑔(𝑇 + 1))

1 − 1 + 𝑟 − 𝑔 + 𝑟𝑔

= 𝑥0(𝑇 + 1)((𝑇 + 1)𝑟𝑔 + 𝑟 − 𝑔)
𝑟 − 𝑔 + 𝑟𝑔

= 𝑥0(𝑇 + 1)(𝑟 − 𝑔)
𝑟 − 𝑔 + 𝑟𝑔

+ 𝑥0𝑟𝑔(𝑇 + 1)2

𝑟 − 𝑔 + 𝑟𝑔

≈ 𝑥0(𝑇 + 1)(𝑟 − 𝑔)
𝑟 − 𝑔

+ 𝑥0𝑟𝑔(𝑇 + 1)
𝑟 − 𝑔

= 𝑥0(𝑇 + 1) + 𝑥0𝑟𝑔(𝑇 + 1)
𝑟 − 𝑔

(3.139)

We could have also approximated by removing the second term 𝑟𝑔𝑥0(𝑇 + 1) when 𝑇  is relatively
small compared to 1/(𝑟𝑔) to get 𝑥0(𝑇 + 1) as in the finite stream approximation.

We will plot the true finite stream present-value and the two approximations, under different values
of 𝑇 , and 𝑔 and 𝑟 in Python.

First we plot the true finite stream present-value after computing it below

# True present value of a finite lease
def finite_lease_pv_true(T, g, r, x_0):
    G = (1 + g)
    R = (1 + r)
    return (x_0 * (1 - G**(T + 1) * R**(-T - 1))) / (1 - G * R**(-1))
# First approximation for our finite lease

def finite_lease_pv_approx_1(T, g, r, x_0):
    p = x_0 * (T + 1) + x_0 * r * g * (T + 1) / (r - g)
    return p



# Second approximation for our finite lease
def finite_lease_pv_approx_2(T, g, r, x_0):
    return (x_0 * (T + 1))

# Infinite lease
def infinite_lease(g, r, x_0):
    G = (1 + g)
    R = (1 + r)
    return x_0 / (1 - G * R**(-1))

Now that we have defined our functions, we can plot some outcomes.

First we study the quality of our approximations

def plot_function(axes, x_vals, func, args):
    axes.plot(x_vals, func(*args), label=func.__name__)

T_max = 50

T = np.arange(0, T_max+1)
g = 0.02
r = 0.03
x_0 = 1

our_args = (T, g, r, x_0)
funcs = [finite_lease_pv_true,
        finite_lease_pv_approx_1,
        finite_lease_pv_approx_2]
        # the three functions we want to compare

fig, ax = plt.subplots()
for f in funcs:
    plot_function(ax, T, f, our_args)
ax.legend()
ax.set_xlabel('$T$ Periods Ahead')
ax.set_ylabel('Present Value, $p_0$')
plt.show()

Figure 73.  Finite lease present value 𝑇  periods ahead

Evidently our approximations perform well for small values of 𝑇 .

However, holding 𝑔 and r fixed, our approximations deteriorate as 𝑇  increases.



Next we compare the infinite and finite duration lease present values over different lease lengths 𝑇 .

# Convergence of infinite and finite
T_max = 1000
T = np.arange(0, T_max+1)
fig, ax = plt.subplots()
f_1 = finite_lease_pv_true(T, g, r, x_0)
f_2 = np.full(T_max+1, infinite_lease(g, r, x_0))
ax.plot(T, f_1, label='T-period lease PV')
ax.plot(T, f_2, '--', label='Infinite lease PV')
ax.set_xlabel('$T$ Periods Ahead')
ax.set_ylabel('Present Value, $p_0$')
ax.legend()
plt.show()

Figure 74.  Infinite and finite lease present value 𝑇  periods ahead

The graph above shows how as duration 𝑇 → +∞, the value of a lease of duration 𝑇  approaches
the value of a perpetual lease.

Now we consider two different views of what happens as 𝑟 and 𝑔 covary

# First view
# Changing r and g
fig, ax = plt.subplots()
ax.set_ylabel('Present Value, $p_0$')
ax.set_xlabel('$T$ periods ahead')
T_max = 10
T=np.arange(0, T_max+1)

rs, gs = (0.9, 0.5, 0.4001, 0.4), (0.4, 0.4, 0.4, 0.5),
comparisons = (r'$\gg$', '$>$', r'$\approx$', '$<$')
for r, g, comp in zip(rs, gs, comparisons):
    ax.plot(finite_lease_pv_true(T, g, r, x_0), label=f'r(={r}) {comp} g(={g})')

ax.legend()
plt.show()



Figure 75.  Value of lease of length 𝑇

This graph gives a big hint for why the condition 𝑟 > 𝑔 is necessary if a lease of length 𝑇 = +∞ is
to have finite value.

For fans of 3-d graphs the same point comes through in the following graph.

If you aren’t enamored of 3-d graphs, feel free to skip the next visualization!

# Second view
fig = plt.figure(figsize = [16, 5])
T = 3
ax = plt.subplot(projection='3d')
r = np.arange(0.01, 0.99, 0.005)
g = np.arange(0.011, 0.991, 0.005)

rr, gg = np.meshgrid(r, g)
z = finite_lease_pv_true(T, gg, rr, x_0)

# Removes points where undefined
same = (rr == gg)
z[same] = np.nan
surf = ax.plot_surface(rr, gg, z, cmap=cm.coolwarm,
    antialiased=True, clim=(0, 15))
fig.colorbar(surf, shrink=0.5, aspect=5)
ax.set_xlabel('$r$')
ax.set_ylabel('$g$')
ax.set_zlabel('Present Value, $p_0$')
ax.view_init(20, 8)
plt.show()



Figure 76.  Three period lease PV with varying 𝑔 and 𝑟

We can use a little calculus to study how the present value 𝑝0 of a lease varies with 𝑟 and 𝑔.

We will use a library called SymPy.

SymPy enables us to do symbolic math calculations including computing derivatives of algebraic
equations.

We will illustrate how it works by creating a symbolic expression that represents our present value
formula for an infinite lease.

After that, we’ll use SymPy to compute derivatives

# Creates algebraic symbols that can be used in an algebraic expression
g, r, x0 = sym.symbols('g, r, x0')
G = (1 + g)
R = (1 + r)
p0 = x0 / (1 - G * R**(-1))
init_printing(use_latex='mathjax')
print('Our formula is:')
p0

Our formula is:

    x₀     
───────────
  g + 1    
- ───── + 1
  r + 1    

print('dp0 / dg is:')
dp_dg = sym.diff(p0, g)
dp_dg

dp0 / dg is:

          x₀          
──────────────────────

https://www.sympy.org/


                     2
        ⎛  g + 1    ⎞ 
(r + 1)⋅⎜- ───── + 1⎟ 
        ⎝  r + 1    ⎠ 

print('dp0 / dr is:')
dp_dr = sym.diff(p0, r)
dp_dr

dp0 / dr is:

     -x₀⋅(g + 1)       
───────────────────────
                      2
       2 ⎛  g + 1    ⎞ 
(r + 1) ⋅⎜- ───── + 1⎟ 
         ⎝  r + 1    ⎠ 

We can see that for 𝜕𝑝0
𝜕𝑟 < 0 as long as 𝑟 > 𝑔, 𝑟 > 0 and 𝑔 > 0 and 𝑥0 is positive, so 𝜕𝑝0

𝜕𝑟  will always
be negative.

Similarly, 𝜕𝑝0
𝜕𝑔 > 0 as long as 𝑟 > 𝑔, 𝑟 > 0 and 𝑔 > 0 and 𝑥0 is positive, so 𝜕𝑝0

𝜕𝑔  will always be
positive.

3.4.6 Back to the Keynesian multiplier
We will now go back to the case of the Keynesian multiplier and plot the time path of 𝑦𝑡, given that
consumption is a constant fraction of national income, and investment is fixed.

# Function that calculates a path of y
def calculate_y(i, b, g, T, y_init):
    y = np.zeros(T+1)
    y[0] = i + b * y_init + g
    for t in range(1, T+1):
        y[t] = b * y[t-1] + i + g
    return y

# Initial values
i_0 = 0.3
g_0 = 0.3
# 2/3 of income goes towards consumption
b = 2/3
y_init = 0
T = 100

fig, ax = plt.subplots()
ax.set_xlabel('$t$')
ax.set_ylabel('$y_t$')
ax.plot(np.arange(0, T+1), calculate_y(i_0, b, g_0, T, y_init))
# Output predicted by geometric series
ax.hlines(i_0 / (1 - b) + g_0 / (1 - b), xmin=-1, xmax=101, linestyles='--')
plt.show()



Figure 77.  Path of aggregate output tver time

In this model, income grows over time, until it gradually converges to the infinite geometric series
sum of income.

We now examine what will happen if we vary the so-called marginal propensity to consume, i.e.,
the fraction of income that is consumed

bs = (1/3, 2/3, 5/6, 0.9)

fig,ax = plt.subplots()
ax.set_ylabel('$y_t$')
ax.set_xlabel('$t$')
x = np.arange(0, T+1)
for b in bs:
    y = calculate_y(i_0, b, g_0, T, y_init)
    ax.plot(x, y, label=r'$b=$'+f"{b:.2f}")
ax.legend()
plt.show()

Figure 78.  Changing consumption as a fraction of income

Increasing the marginal propensity to consume 𝑏 increases the path of output over time.

Now we will compare the effects on output of increases in investment and government spending.

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 10))
fig.subplots_adjust(hspace=0.3)



x = np.arange(0, T+1)
values = [0.3, 0.4]

for i in values:
    y = calculate_y(i, b, g_0, T, y_init)
    ax1.plot(x, y, label=f"i={i}")
for g in values:
    y = calculate_y(i_0, b, g, T, y_init)
    ax2.plot(x, y, label=f"g={g}")

axes = ax1, ax2
param_labels = "Investment", "Government Spending"
for ax, param in zip(axes, param_labels):
    ax.set_title(f'An Increase in {param} on Output')
    ax.legend(loc ="lower right")
    ax.set_ylabel('$y_t$')
    ax.set_xlabel('$t$')
plt.show()



Figure 79.  Different increase on output

Notice here, whether government spending increases from 0.3 to 0.4 or investment increases from
0.3 to 0.4, the shifts in the graphs are identical.





Chapter 4

4. Linear Dynamics: Finite Horizons
4.1 Present Values

4.1.1 Overview
This lecture describes the present value model that is a starting point of much asset pricing
theory.

Asset pricing theory is a component of theories about many economic decisions including

• consumption
• labor supply
• education choice
• demand for money

In asset pricing theory, and in economic dynamics more generally, a basic topic is the relationship
among different time series.

A time series is a sequence indexed by time.

In this lecture, we’ll represent a sequence as a vector.

So our analysis will typically boil down to studying relationships among vectors.

Our main tools in this lecture will be

• matrix multiplication, and
• matrix inversion.

We’ll use the calculations described here in subsequent lectures, including consumption smoothing,
equalizing difference model, and monetarist theory of price levels.

Let’s dive in.

4.1.2 Analysis
Let

• {𝑑𝑡}
𝑇
𝑡=0 be a sequence of dividends or “payouts”

• {𝑝𝑡}
𝑇
𝑡=0 be a sequence of prices of a claim on the continuation of the asset’s payout stream

from date 𝑡 on, namely, {𝑑𝑠}
𝑇
𝑠=𝑡

• 𝛿 ∈ (0, 1) be a one-period “discount factor”
• 𝑝∗

𝑇+1 be a terminal price of the asset at time 𝑇 + 1

We assume that the dividend stream {𝑑𝑡}
𝑇
𝑡=0 and the terminal price 𝑝∗

𝑇+1 are both exogenous.

This means that they are determined outside the model.

Assume the sequence of asset pricing equations

𝑝𝑡 = 𝑑𝑡 + 𝛿𝑝𝑡+1, 𝑡 = 0, 1, …, 𝑇 (4.1)

We say equations, plural, because there are 𝑇 + 1 equations, one for each 𝑡 = 0, 1, …, 𝑇 .

Equations (1) assert that price paid to purchase the asset at time 𝑡 equals the payout 𝑑𝑡 plus the price
at time 𝑡 + 1 multiplied by a time discount factor 𝛿.

Discounting tomorrow’s price by multiplying it by 𝛿 accounts for the “value of waiting one period”.
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We want to solve the system of 𝑇 + 1 equations (1) for the asset price sequence {𝑝𝑡}
𝑇
𝑡=0 as a

function of the dividend sequence {𝑑𝑡}
𝑇
𝑡=0 and the exogenous terminal price 𝑝∗

𝑇+1.

A system of equations like (1) is an example of a linear difference equation.

There are powerful mathematical methods available for solving such systems and they are well
worth studying in their own right, being the foundation for the analysis of many interesting
economic models.

For an example, see Samuelson multiplier-accelerator

In this lecture, we’ll solve system (1) using matrix multiplication and matrix inversion, basic tools
from linear algebra introduced in linear equations and matrix algebra.

We will use the following imports

import numpy as np
import matplotlib.pyplot as plt

4.1.3 Representing sequences as vectors
The equations in system (1) can be arranged as follows:

𝑝0 = 𝑑0 + 𝛿𝑝1

𝑝1 = 𝑑1 + 𝛿𝑝2

⋮
𝑝𝑇−1 = 𝑑𝑇−1 + 𝛿𝑝𝑇

𝑝𝑇 = 𝑑𝑇 + 𝛿𝑝∗
𝑇+1

(4.2)

Write the system (2) of 𝑇 + 1 asset pricing equations as the single matrix equation

[
[
[
[
[
[
[1

0
0
⋮
0
0

−𝛿
1
0
⋮
0
0

0
−𝛿
1
⋮
0
0

0
0

−𝛿
⋮
0
0

⋯
⋯
⋯
⋮
⋯
⋯

0
0
0
0
1
0

0
0
0
0

−𝛿
1 ]

]
]
]
]
]
]

[
[
[
[
[
[
[ 𝑝0

𝑝1
𝑝2
⋮

𝑝𝑇−1
𝑝𝑇 ]

]
]
]
]
]
]

=

[
[
[
[
[
[
[ 𝑑0

𝑑1
𝑑2
⋮

𝑑𝑇−1
𝑑𝑇 ]

]
]
]
]
]
]

+

[
[
[
[
[
[
[ 0

0
0
⋮
0

𝛿𝑝∗
𝑇+1]

]
]
]
]
]
]

(4.3)

In vector-matrix notation, we can write system (3) as

𝐴𝑝 = 𝑑 + 𝑏 (4.4)

Here 𝐴 is the matrix on the left side of equation (3), while

𝑝 =

[
[
[
[
[𝑝0

𝑝1
⋮

𝑝𝑇 ]
]
]
]
]

, 𝑑 =

[
[
[
[
[𝑑0

𝑑1
⋮

𝑑𝑇 ]
]
]
]
]

, and 𝑏 =

[
[
[
[
[ 0

0
⋮

𝛿𝑝∗
𝑇+1]

]
]
]
]

(4.5)

The solution for the vector of prices is

𝑝 = 𝐴−1(𝑑 + 𝑏) (4.6)

Exercise 4.11.

Carry out the matrix multiplication in (3) by hand and confirm that you recover the equations in
(2).

https://quantecon.github.io/lecture-dynamics/samuelson.html
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For example, suppose that the dividend stream is

𝑑𝑡+1 = 1.05𝑑𝑡, 𝑡 = 0, 1, …, 𝑇 − 1. (4.7)

Let’s write Python code to compute and plot the dividend stream.

T = 6
current_d = 1.0
d = []
for t in range(T+1):
    d.append(current_d)
    current_d = current_d * 1.05 

fig, ax = plt.subplots()
ax.plot(d, 'o', label='dividends')
ax.legend()
ax.set_xlabel('time')
plt.show()

Now let’s compute and plot the asset price.

We set 𝛿 and 𝑝∗
𝑇+1 to

δ = 0.99
p_star = 10.0

Let’s build the matrix 𝐴

A = np.zeros((T+1, T+1))
for i in range(T+1):
    for j in range(T+1):
        if i == j:
            A[i, j] = 1



            if j < T:
                A[i, j+1] = -δ

Let’s inspect 𝐴

A

array([[ 1.  , -0.99,  0.  ,  0.  ,  0.  ,  0.  ,  0.  ],
       [ 0.  ,  1.  , -0.99,  0.  ,  0.  ,  0.  ,  0.  ],
       [ 0.  ,  0.  ,  1.  , -0.99,  0.  ,  0.  ,  0.  ],
       [ 0.  ,  0.  ,  0.  ,  1.  , -0.99,  0.  ,  0.  ],
       [ 0.  ,  0.  ,  0.  ,  0.  ,  1.  , -0.99,  0.  ],
       [ 0.  ,  0.  ,  0.  ,  0.  ,  0.  ,  1.  , -0.99],
       [ 0.  ,  0.  ,  0.  ,  0.  ,  0.  ,  0.  ,  1.  ]])

Now let’s solve for prices using (6).

b = np.zeros(T+1)
b[-1] = δ * p_star
p = np.linalg.solve(A, d + b)
fig, ax = plt.subplots()
ax.plot(p, 'o', label='asset price')
ax.legend()
ax.set_xlabel('time')
plt.show()

Now let’s consider a cyclically growing dividend sequence:

𝑑𝑡+1 = 1.01𝑑𝑡 + 0.1 sin 𝑡, 𝑡 = 0, 1, …, 𝑇 − 1. (4.8)

T = 100
current_d = 1.0



d = []
for t in range(T+1):
    d.append(current_d)
    current_d = current_d * 1.01 + 0.1 * np.sin(t)

fig, ax = plt.subplots()
ax.plot(d, 'o-', ms=4, alpha=0.8, label='dividends')
ax.legend()
ax.set_xlabel('time')
plt.show()

4.1.4 Analytical expressions
By the inverse matrix theorem, a matrix 𝐵 is the inverse of 𝐴 whenever 𝐴𝐵 is the identity.

It can be verified that the inverse of the matrix 𝐴 in (3) is

𝐴−1 =

[
[
[
[
[
[1

0
⋮
0
0

𝛿
1
⋮
0
0

𝛿2

𝛿
⋮
0
0

⋯
⋯
⋯
⋯
⋯

𝛿𝑇−1

𝛿𝑇−2

⋮
1
0

𝛿𝑇

𝛿𝑇−1

⋮
𝛿
1 ]

]
]
]
]
]

(4.9)

If we use the expression (9) in (6) and perform the indicated matrix multiplication, we shall find that

Exercise 4.12.

Compute the corresponding asset price sequence when 𝑝∗
𝑇+1 = 0 and 𝛿 = 0.98.

https://en.wikipedia.org/wiki/Invertible\_matrix


Solution 4.11. Solution to Exercise 2

We proceed as above after modifying parameters and consequently the matrix 𝐴.

δ = 0.98
p_star = 0.0
A = np.zeros((T+1, T+1))
for i in range(T+1):
    for j in range(T+1):
        if i == j:
            A[i, j] = 1
            if j < T:
                A[i, j+1] = -δ

b = np.zeros(T+1)
b[-1] = δ * p_star
p = np.linalg.solve(A, d + b)
fig, ax = plt.subplots()
ax.plot(p, 'o-', ms=4, alpha=0.8, label='asset price')
ax.legend()
ax.set_xlabel('time')
plt.show()

The weighted averaging associated with the present value calculation largely eliminates the
cycles.

Exercise 4.13.

Check this by showing that 𝐴𝐴−1 is equal to the identity matrix.



𝑝𝑡 = ∑
𝑇

𝑠=𝑡
𝛿𝑠−𝑡𝑑𝑠 + 𝛿𝑇+1−𝑡𝑝∗

𝑇+1 (4.10)

Pricing formula (10) asserts that two components sum to the asset price 𝑝𝑡:

• a fundamental component ∑𝑇
𝑠=𝑡 𝛿𝑠−𝑡𝑑𝑠 that equals the discounted present value of

prospective dividends
• a bubble component 𝛿𝑇+1−𝑡𝑝∗

𝑇+1

The fundamental component is pinned down by the discount factor 𝛿 and the payout of the asset (in
this case, dividends).

The bubble component is the part of the price that is not pinned down by fundamentals.

It is sometimes convenient to rewrite the bubble component as

𝑐𝛿−𝑡 (4.11)
where

𝑐 ≡ 𝛿𝑇+1𝑝∗
𝑇+1 (4.12)

4.1.5 More about bubbles
For a few moments, let’s focus on the special case of an asset that never pays dividends, in which
case

[
[
[
[
[
[
[ 𝑑0

𝑑1
𝑑2
⋮

𝑑𝑇−1
𝑑𝑇 ]

]
]
]
]
]
]

=

[
[
[
[
[
[
[0

0
0
⋮
0
0]
]
]
]
]
]
]

(4.13)

In this case system (1) of our 𝑇 + 1 asset pricing equations takes the form of the single matrix
equation

[
[
[
[
[
[
[1

0
0
⋮
0
0

−𝛿
1
0
⋮
0
0

0
−𝛿
1
⋮
0
0

0
0

−𝛿
⋮
0
0

⋯
⋯
⋯
⋮
⋯
⋯

0
0
0
0
1
0

0
0
0
0

−𝛿
1 ]

]
]
]
]
]
]

[
[
[
[
[
[
[ 𝑝0

𝑝1
𝑝2
⋮

𝑝𝑇−1
𝑝𝑇 ]

]
]
]
]
]
]

=

[
[
[
[
[
[
[ 0

0
0
⋮
0

𝛿𝑝∗
𝑇+1]

]
]
]
]
]
]

(4.14)

Evidently, if 𝑝∗
𝑇+1 = 0, a price vector 𝑝 of all entries zero solves this equation and the only the

fundamental component of our pricing formula (10) is present.

But let’s activate the bubble component by setting

𝑝∗
𝑇+1 = 𝑐𝛿−(𝑇+1) (4.15)

for some positive constant 𝑐.

In this case, when we multiply both sides of (14) by the matrix 𝐴−1 presented in equation (9), we
find that

𝑝𝑡 = 𝑐𝛿−𝑡 (4.16)



Exercise 4.14.

Assume that 𝑔 > 1 and that 𝛿𝑔 ∈ (0, 1). Give analytical expressions for an asset price 𝑝𝑡 under
the following settings for 𝑑 and 𝑝∗

𝑇+1:

1. 𝑝∗
𝑇+1 = 0, 𝑑𝑡 = 𝑔𝑡𝑑0 (a modified version of the Gordon growth formula)

2. 𝑝∗
𝑇+1 = 𝑔𝑇+1𝑑0

1−𝛿𝑔 , 𝑑𝑡 = 𝑔𝑡𝑑0 (the plain vanilla Gordon growth formula)
3. 𝑝∗

𝑇+1 = 0, 𝑑𝑡 = 0 (price of a worthless stock)
4. 𝑝∗

𝑇+1 = 𝑐𝛿−(𝑇+1), 𝑑𝑡 = 0 (price of a pure bubble stock)

Solution 4.12. Solution to Exercise 4

Plugging each of the above 𝑝∗
𝑇+1, 𝑑𝑡 pairs into Equation (10) yields:

1. 𝑝𝑡 = ∑𝑇
𝑠=𝑡 𝛿𝑠−𝑡𝑔𝑠𝑑0 = 𝑑𝑡

1−(𝛿𝑔)𝑇+1−𝑡

1−𝛿𝑔
2. 𝑝𝑡 = ∑𝑇

𝑠=𝑡 𝛿𝑠−𝑡𝑔𝑠𝑑0 + 𝛿𝑇+1−𝑡𝑔𝑇+1𝑑0
1−𝛿𝑔 = 𝑑𝑡

1−𝛿𝑔
3. 𝑝𝑡 = 0
4. 𝑝𝑡 = 𝑐𝛿−𝑡

4.1.6 Gross rate of return
Define the gross rate of return on holding the asset from period 𝑡 to period 𝑡 + 1 as

𝑅𝑡 =
𝑝𝑡+1
𝑝𝑡

(4.17)

Substituting equation (16) into equation (17) confirms that an asset whose sole source of value is a
bubble earns a gross rate of return

𝑅𝑡 = 𝛿−1 > 1, 𝑡 = 0, 1, …, 𝑇 (4.18)

4.1.7 Exercises



4.2 Consumption Smoothing

4.2.1 Overview
In this lecture, we’ll study a famous model of the “consumption function” that Milton Friedman
Friedman (1956) and Robert Hall Hall (1978)) proposed to fit some empirical data patterns that the
original Keynesian consumption function described in this QuantEcon lecture geometric series
missed.

We’ll study what is often called the “consumption-smoothing model.”

We’ll use matrix multiplication and matrix inversion, the same tools that we used in this QuantEcon
lecture present values.

Formulas presented in present value formulas are at the core of the consumption-smoothing model
because we shall use them to define a consumer’s “human wealth”.

The key idea that inspired Milton Friedman was that a person’s non-financial income, i.e., his or her
wages from working, can be viewed as a dividend stream from ‘’human capital’‘ and that standard
asset-pricing formulas can be applied to compute ‘’non-financial wealth’‘ that capitalizes that
earnings stream.

Note

As we’ll see in this QuantEcon lecture equalizing difference model, Milton Friedman had used
this idea in his PhD thesis at Columbia University, eventually published as Kuznets & Friedman
(1939) and Friedman & Kuznets (1945).

It will take a while for a “present value” or asset price explicitly to appear in this lecture, but when it
does it will be a key actor.

4.2.2 Analysis
As usual, we’ll start by importing some Python modules.

import numpy as np
import matplotlib.pyplot as plt
from collections import namedtuple

The model describes a consumer who lives from time 𝑡 = 0, 1, …, 𝑇 , receives a stream {𝑦𝑡}
𝑇
𝑡=0 of

non-financial income and chooses a consumption stream {𝑐𝑡}
𝑇
𝑡=0.

We usually think of the non-financial income stream as coming from the person’s earnings from
supplying labor.

The model takes a non-financial income stream as an input, regarding it as “exogenous” in the sense
that it is determined outside the model.

The consumer faces a gross interest rate of 𝑅 > 1 that is constant over time, at which she is free to
borrow or lend, up to limits that we’ll describe below.

Let

• 𝑇 ≥ 2 be a positive integer that constitutes a time-horizon.
• 𝑦 = {𝑦𝑡}

𝑇
𝑡=0 be an exogenous sequence of non-negative non-financial incomes 𝑦𝑡.

• 𝑎 = {𝑎𝑡}
𝑇+1
𝑡=0  be a sequence of financial wealth.

• 𝑐 = {𝑐𝑡}
𝑇
𝑡=0 be a sequence of non-negative consumption rates.

• 𝑅 ≥ 1 be a fixed gross one period rate of return on financial assets.
• 𝛽 ∈ (0, 1) be a fixed discount factor.

/geom-series
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• 𝑎0 be a given initial level of financial assets
• 𝑎𝑇+1 ≥ 0 be a terminal condition on final assets.

The sequence of financial wealth 𝑎 is to be determined by the model.

We require it to satisfy two boundary conditions:

• it must equal an exogenous value 𝑎0 at time 0
• it must equal or exceed an exogenous value 𝑎𝑇+1 at time 𝑇 + 1.

The terminal condition 𝑎𝑇+1 ≥ 0 requires that the consumer not leave the model in debt.

(We’ll soon see that a utility maximizing consumer won’t want to die leaving positive assets, so
she’ll arrange her affairs to make 𝑎𝑇+1 = 0.)

The consumer faces a sequence of budget constraints that constrains sequences (𝑦, 𝑐, 𝑎)

𝑎𝑡+1 = 𝑅(𝑎𝑡 + 𝑦𝑡 − 𝑐𝑡), 𝑡 = 0, 1, …𝑇 (4.19)

Equations (1) constitute 𝑇 + 1 such budget constraints, one for each 𝑡 = 0, 1, …, 𝑇 .

Given a sequence 𝑦 of non-financial incomes, a large set of pairs (𝑎, 𝑐) of (financial wealth,
consumption) sequences satisfy the sequence of budget constraints (1).

Our model has the following logical flow.

• start with an exogenous non-financial income sequence 𝑦, an initial financial wealth 𝑎0, and a
candidate consumption path 𝑐.

• use the system of equations (1) for 𝑡 = 0, …, 𝑇  to compute a path 𝑎 of financial wealth
• verify that 𝑎𝑇+1 satisfies the terminal wealth constraint 𝑎𝑇+1 ≥ 0.

‣ If it does, declare that the candidate path is budget feasible.
‣ if the candidate consumption path is not budget feasible, propose a less greedy

consumption path and start over

Below, we’ll describe how to execute these steps using linear algebra – matrix inversion and
multiplication.

The above procedure seems like a sensible way to find “budget-feasible” consumption paths 𝑐, i.e.,
paths that are consistent with the exogenous non-financial income stream 𝑦, the initial financial
asset level 𝑎0, and the terminal asset level 𝑎𝑇+1.

In general, there are many budget feasible consumption paths 𝑐.

Among all budget-feasible consumption paths, which one should a consumer want?

To answer this question, we shall eventually evaluate alternative budget feasible consumption paths
𝑐 using the following utility functional or welfare criterion:

𝑊 = ∑
𝑇

𝑡=0
𝛽𝑡(𝑔1𝑐𝑡 − 𝑔2

2
𝑐2
𝑡 ) (4.20)

where 𝑔1 > 0, 𝑔2 > 0.

When 𝛽𝑅 ≈ 1, the fact that the utility function 𝑔1𝑐𝑡 − 𝑔2
2 𝑐2

𝑡  has diminishing marginal utility imparts
a preference for consumption that is very smooth.

Indeed, we shall see that when 𝛽𝑅 = 1 (a condition assumed by Milton Friedman Friedman (1956)
and Robert Hall Hall (1978)), criterion (2) assigns higher welfare to smoother consumption paths.

By smoother we mean as close as possible to being constant over time.



The preference for smooth consumption paths that is built into the model gives it the name
“consumption-smoothing model”.

We’ll postpone verifying our claim that a constant consumption path is optimal when 𝛽𝑅 = 1 by
comparing welfare levels that comes from a constant path with ones that involve non-constant
paths.

Before doing that, let’s dive in and do some calculations that will help us understand how the model
works in practice when we provide the consumer with some different streams on non-financial
income.

Here we use default parameters 𝑅 = 1.05, 𝑔1 = 1, 𝑔2 = 1/2, and 𝑇 = 65.

We create a Python namedtuple to store these parameters with default values.

ConsumptionSmoothing = namedtuple("ConsumptionSmoothing", 
                        ["R", "g1", "g2", "β_seq", "T"])

def create_consumption_smoothing_model(R=1.05, g1=1, g2=1/2, T=65):
    β = 1/R
    β_seq = np.array([β**i for i in range(T+1)])
    return ConsumptionSmoothing(R, g1, g2, 
                                β_seq, T)

4.2.3 Friedman-Hall consumption-smoothing model
A key object is what Milton Friedman called “human” or “non-financial” wealth at time 0:

ℎ0 ≡ ∑
𝑇

𝑡=0
𝑅−𝑡𝑦𝑡 = [1 𝑅−1 ⋯ 𝑅−𝑇 ]

[
[
[
[
[𝑦0

𝑦1
⋮

𝑦𝑇 ]
]
]
]
]

(4.21)

Human or non-financial wealth at time 0 is evidently just the present value of the consumer’s non-
financial income stream 𝑦.

Formally it very much resembles the asset price that we computed in this QuantEcon lecture present
values.

Indeed, this is why Milton Friedman called it “human capital”.

By iterating on equation (1) and imposing the terminal condition

𝑎𝑇+1 = 0, (4.22)

it is possible to convert a sequence of budget constraints (1) into a single intertemporal constraint

∑
𝑇

𝑡=0
𝑅−𝑡𝑐𝑡 = 𝑎0 + ℎ0. (4.23)

Equation (5) says that the present value of the consumption stream equals the sum of financial and
non-financial (or human) wealth.

Robert Hall Hall (1978) showed that when 𝛽𝑅 = 1, a condition Milton Friedman had also assumed, it
is “optimal” for a consumer to smooth consumption by setting

𝑐𝑡 = 𝑐0 𝑡 = 0, 1, …, 𝑇 (4.24)

(Later we’ll present a “variational argument” that shows that this constant path maximizes criterion
(2) when 𝛽𝑅 = 1.)
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In this case, we can use the intertemporal budget constraint to write

𝑐𝑡 = 𝑐0 = (∑
𝑇

𝑡=0
𝑅−𝑡)

−1

(𝑎0 + ℎ0), 𝑡 = 0, 1, …, 𝑇 . (4.25)

Equation (7) is the consumption-smoothing model in a nutshell.

4.2.4 Mechanics of consumption-smoothing model
As promised, we’ll provide step-by-step instructions on how to use linear algebra, readily
implemented in Python, to compute all objects in play in the consumption-smoothing model.

In the calculations below, we’ll set default values of 𝑅 > 1, e.g., 𝑅 = 1.05, and 𝛽 = 𝑅−1.

4.2.4.1 Step 1
For a (𝑇 + 1) × 1 vector 𝑦, use matrix algebra to compute ℎ0

ℎ0 = ∑
𝑇

𝑡=0
𝑅−𝑡𝑦𝑡 = [1 𝑅−1 ⋯ 𝑅−𝑇 ]

[
[
[
[
[𝑦0

𝑦1
⋮

𝑦𝑇 ]
]
]
]
]

(4.26)

4.2.4.2 Step 2
Compute an time 0 consumption 𝑐0 :

𝑐𝑡 = 𝑐0 = ( 1 − 𝑅−1

1 − 𝑅−(𝑇+1) )(𝑎0 + ∑
𝑇

𝑡=0
𝑅−𝑡𝑦𝑡), 𝑡 = 0, 1, …, 𝑇 (4.27)

4.2.4.3 Step 3
Use the system of equations (1) for 𝑡 = 0, …, 𝑇  to compute a path 𝑎 of financial wealth.

To do this, we translate that system of difference equations into a single matrix equation as follows:

[
[
[
[
[
[
[ 1

−𝑅
0
⋮
0
0

0
1

−𝑅
⋮
0
0

0
0
1
⋮
0
0

⋯
⋯
⋯
⋯
⋯
⋯

0
0
0
⋮

−𝑅
0

0
0
0
⋮
1

−𝑅

0
0
0
⋮
0
1]
]
]
]
]
]
]

[
[
[
[
[
[
[ 𝑎1

𝑎2
𝑎3
⋮

𝑎𝑇
𝑎𝑇+1]

]
]
]
]
]
]

= 𝑅

[
[
[
[
[
[
[𝑦0 + 𝑎0 − 𝑐0

𝑦1 − 𝑐0
𝑦2 − 𝑐0

⋮
𝑦𝑇−1 − 𝑐0
𝑦𝑇 − 𝑐0 ]

]
]
]
]
]
]

(4.28)

Multiply both sides by the inverse of the matrix on the left side to compute

[
[
[
[
[
[
[ 𝑎1

𝑎2
𝑎3
⋮

𝑎𝑇
𝑎𝑇+1]

]
]
]
]
]
]

(4.29)

Because we have built into our calculations that the consumer leaves the model with exactly zero
assets, just barely satisfying the terminal condition that 𝑎𝑇+1 ≥ 0, it should turn out that

𝑎𝑇+1 = 0. (4.30)

Let’s verify this with Python code.

First we implement the model with compute_optimal



def compute_optimal(model, a0, y_seq):
    R, T = model.R, model.T

    # non-financial wealth
    h0 = model.β_seq @ y_seq     # since β = 1/R

    # c0
    c0 = (1 - 1/R) / (1 - (1/R)**(T+1)) * (a0 + h0)
    c_seq = c0*np.ones(T+1)

    # verify
    A = np.diag(-R*np.ones(T), k=-1) + np.eye(T+1)
    b = y_seq - c_seq
    b[0] = b[0] + a0

    a_seq = np.linalg.inv(A) @ b
    a_seq = np.concatenate([[a0], a_seq])

    return c_seq, a_seq, h0

We use an example where the consumer inherits 𝑎0 < 0.

This can be interpreted as student debt with which the consumer begins his or her working life.

The non-financial process {𝑦𝑡}
𝑇
𝑡=0 is constant and positive up to 𝑡 = 45 and then becomes zero

afterward.

The drop in non-financial income late in life reflects retirement from work.

# Financial wealth
a0 = -2     # such as "student debt"

# non-financial Income process
y_seq = np.concatenate([np.ones(46), np.zeros(20)])

cs_model = create_consumption_smoothing_model()
c_seq, a_seq, h0 = compute_optimal(cs_model, a0, y_seq)

print('check a_T+1=0:', 
      np.abs(a_seq[-1] - 0) <= 1e-8)

check a_T+1=0: True

The graphs below show paths of non-financial income, consumption, and financial assets.

# Sequence length
T = cs_model.T

fig, axes = plt.subplots(1, 2, figsize=(12,5))

axes[0].plot(range(T+1), y_seq, label='non-financial income', lw=2)
axes[0].plot(range(T+1), c_seq, label='consumption', lw=2)
axes[1].plot(range(T+2), a_seq, label='financial wealth', color='green', lw=2)
axes[0].set_ylabel(r'$c_t,y_t$')
axes[1].set_ylabel(r'$a_t$')

for ax in axes:
    ax.plot(range(T+2), np.zeros(T+2), '--', lw=1, color='black')
    ax.legend()



    ax.set_xlabel(r'$t$')

plt.show()

Note that 𝑎𝑇+1 = 0, as anticipated.

We can evaluate welfare criterion (2)

def welfare(model, c_seq):
    β_seq, g1, g2 = model.β_seq, model.g1, model.g2

    u_seq = g1 * c_seq - g2/2 * c_seq**2
    return β_seq @ u_seq

print('Welfare:', welfare(cs_model, c_seq))

Welfare: 13.285050962183442

4.2.4.4 Experiments
In this section we describe how a consumption sequence would optimally respond to different
sequences sequences of non-financial income.

First we create a function plot_cs that generates graphs for different instances of the consumption-
smoothing model cs_model.

This will help us avoid rewriting code to plot outcomes for different non-financial income
sequences.

def plot_cs(model,    # consumption-smoothing model      
            a0,       # initial financial wealth
            y_seq     # non-financial income process
           ):
    
    # Compute optimal consumption
    c_seq, a_seq, h0 = compute_optimal(model, a0, y_seq)
    
    # Sequence length
    T = cs_model.T
    
    fig, axes = plt.subplots(1, 2, figsize=(12,5))
    
    axes[0].plot(range(T+1), y_seq, label='non-financial income', lw=2)
    axes[0].plot(range(T+1), c_seq, label='consumption', lw=2)



    axes[1].plot(range(T+2), a_seq, label='financial wealth', color='green', lw=2)
    axes[0].set_ylabel(r'$c_t,y_t$')
    axes[1].set_ylabel(r'$a_t$')
    
    for ax in axes:
        ax.plot(range(T+2), np.zeros(T+2), '--', lw=1, color='black')
        ax.legend()
        ax.set_xlabel(r'$t$')
    
    plt.show()

In the experiments below, please study how consumption and financial asset sequences vary across
different sequences for non-financial income.

4.2.4.4.1 Experiment 1: one-time gain/loss
We first assume a one-time windfall of 𝑊0 in year 21 of the income sequence 𝑦.

We’ll make 𝑊0 big - positive to indicate a one-time windfall, and negative to indicate a one-time
“disaster”.

# Windfall W_0 = 2.5
y_seq_pos = np.concatenate([np.ones(21), np.array([2.5]), np.ones(24), np.zeros(20)])

plot_cs(cs_model, a0, y_seq_pos)

# Disaster W_0 = -2.5
y_seq_neg = np.concatenate([np.ones(21), np.array([-2.5]), np.ones(24),
np.zeros(20)])

plot_cs(cs_model, a0, y_seq_neg)



4.2.4.4.2 Experiment 2: permanent wage gain/loss
Now we assume a permanent increase in income of 𝑊  in year 21 of the 𝑦-sequence.

Again we can study positive and negative cases

# Positive permanent income change W = 0.5 when t >= 21
y_seq_pos = np.concatenate(
    [np.ones(21), 1.5*np.ones(25), np.zeros(20)])

plot_cs(cs_model, a0, y_seq_pos)

# Negative permanent income change W = -0.5 when t >= 21
y_seq_neg = np.concatenate(
    [np.ones(21), .5*np.ones(25), np.zeros(20)])

plot_cs(cs_model, a0, y_seq_neg)



4.2.4.4.3 Experiment 3: a late starter
Now we simulate a 𝑦 sequence in which a person gets zero for 46 years, and then works and gets 1
for the last 20 years of life (a “late starter”)

# Late starter
y_seq_late = np.concatenate(
    [np.ones(46), 2*np.ones(20)])

plot_cs(cs_model, a0, y_seq_late)

4.2.4.4.4 Experiment 4: geometric earner
Now we simulate a geometric 𝑦 sequence in which a person gets 𝑦𝑡 = 𝜆𝑡𝑦0 in first 46 years.

We first experiment with 𝜆 = 1.05

# Geometric earner parameters where λ = 1.05
λ = 1.05
y_0 = 1
t_max = 46

# Generate geometric y sequence
geo_seq = λ ** np.arange(t_max) * y_0 
y_seq_geo = np.concatenate(
            [geo_seq, np.zeros(20)])



plot_cs(cs_model, a0, y_seq_geo)

Now we show the behavior when 𝜆 = 0.95

λ = 0.95

geo_seq = λ ** np.arange(t_max) * y_0 
y_seq_geo = np.concatenate(
            [geo_seq, np.zeros(20)])

plot_cs(cs_model, a0, y_seq_geo)

What happens when 𝜆 is negative

λ = -0.95

geo_seq = λ ** np.arange(t_max) * y_0 + 1
y_seq_geo = np.concatenate(
            [geo_seq, np.ones(20)])

plot_cs(cs_model, a0, y_seq_geo)



4.2.4.5 Feasible consumption variations
We promised to justify our claim that when 𝛽𝑅 = 1 as Friedman assumed, a constant consumption
play 𝑐𝑡 = 𝑐0 for all 𝑡 is optimal.

Let’s do that now.

The approach we’ll take is an elementary example of the “calculus of variations”.

Let’s dive in and see what the key idea is.

To explore what types of consumption paths are welfare-improving, we shall create an admissible
consumption path variation sequence {𝑣𝑡}

𝑇
𝑡=0 that satisfies

∑
𝑇

𝑡=0
𝑅−𝑡𝑣𝑡 = 0 (4.31)

This equation says that the present value of admissible consumption path variations must be zero.

So once again, we encounter a formula for the present value of an “asset”:

• we require that the present value of consumption path variations be zero.

Here we’ll restrict ourselves to a two-parameter class of admissible consumption path variations of
the form

𝑣𝑡 = 𝜉1𝜙𝑡 − 𝜉0 (4.32)

We say two and not three-parameter class because 𝜉0 will be a function of (𝜙, 𝜉1; 𝑅) that guarantees
that the variation sequence is feasible.

Let’s compute that function.

We require

∑
𝑇

𝑡=0
𝑅−𝑡[𝜉1𝜙𝑡 − 𝜉0] = 0 (4.33)

which implies that

𝜉1 ∑
𝑇

𝑡=0
𝜙𝑡𝑅−𝑡 − 𝜉0 ∑

𝑇

𝑡=0
𝑅−𝑡 = 0 (4.34)

which implies that



𝜉1
1 − (𝜙𝑅−1)𝑇+1

1 − 𝜙𝑅−1 − 𝜉0
1 − 𝑅−(𝑇+1)

1 − 𝑅−1 = 0 (4.35)

which implies that

𝜉0 = 𝜉0(𝜙, 𝜉1; 𝑅) = 𝜉1(
1 − 𝑅−1

1 − 𝑅−(𝑇+1) )(
1 − (𝜙𝑅−1)𝑇+1

1 − 𝜙𝑅−1 ) (4.36)

This is our formula for 𝜉0.

Key Idea: if 𝑐𝑜 is a budget-feasible consumption path, then so is 𝑐𝑜 + 𝑣, where 𝑣 is a budget-feasible
variation.

Given 𝑅, we thus have a two parameter class of budget feasible variations 𝑣 that we can use to
compute alternative consumption paths, then evaluate their welfare.

Now let’s compute and plot consumption path variations

def compute_variation(model, ξ1, ϕ, a0, y_seq, verbose=1):
    R, T, β_seq = model.R, model.T, model.β_seq

    ξ0 = ξ1*((1 - 1/R) / (1 - (1/R)**(T+1))) * ((1 - (ϕ/R)**(T+1)) / (1 - ϕ/R))
    v_seq = np.array([(ξ1*ϕ**t - ξ0) for t in range(T+1)])
    
    if verbose == 1:
        print('check feasible:', np.isclose(β_seq @ v_seq, 0))     # since β = 1/R

    c_opt, _, _ = compute_optimal(model, a0, y_seq)
    cvar_seq = c_opt + v_seq

    return cvar_seq

We visualize variations for 𝜉1 ∈ {.01, .05} and 𝜙 ∈ {.95, 1.02}

fig, ax = plt.subplots()

ξ1s = [.01, .05]
ϕs= [.95, 1.02]
colors = {.01: 'tab:blue', .05: 'tab:green'}

params = np.array(np.meshgrid(ξ1s, ϕs)).T.reshape(-1, 2)

for i, param in enumerate(params):
    ξ1, ϕ = param
    print(f'variation {i}: ξ1={ξ1}, ϕ={ϕ}')
    cvar_seq = compute_variation(model=cs_model, 
                                 ξ1=ξ1, ϕ=ϕ, a0=a0, 
                                 y_seq=y_seq)
    print(f'welfare={welfare(cs_model, cvar_seq)}')
    print('-'*64)
    if i % 2 == 0:
        ls = '-.'
    else: 
        ls = '-'  
    ax.plot(range(T+1), cvar_seq, ls=ls, 
            color=colors[ξ1], 
            label=fr'$\xi_1 = {ξ1}, \phi = {ϕ}$')



plt.plot(range(T+1), c_seq, 
         color='orange', label=r'Optimal $\vec{c}$ ')

plt.legend()
plt.xlabel(r'$t$')
plt.ylabel(r'$c_t$')
plt.show()

variation 0: ξ1=0.01, ϕ=0.95
check feasible: True

welfare=13.28500934606484
----------------------------------------------------------------
variation 1: ξ1=0.01, ϕ=1.02
check feasible: True

welfare=13.284911631015444
----------------------------------------------------------------
variation 2: ξ1=0.05, ϕ=0.95
check feasible: True
welfare=13.284010559218514
----------------------------------------------------------------
variation 3: ξ1=0.05, ϕ=1.02
check feasible: True

welfare=13.28156768298361
----------------------------------------------------------------

We can even use the Python np.gradient command to compute derivatives of welfare with respect
to our two parameters.

(We are actually discovering the key idea beneath the calculus of variations.)

First, we define the welfare with respect to 𝜉1 and 𝜙



def welfare_rel(ξ1, ϕ):
    """
    Compute welfare of variation sequence 
    for given ϕ, ξ1 with a consumption-smoothing model
    """
    
    cvar_seq = compute_variation(cs_model, ξ1=ξ1, 
                                 ϕ=ϕ, a0=a0, 
                                 y_seq=y_seq, 
                                 verbose=0)
    return welfare(cs_model, cvar_seq)

# Vectorize the function to allow array input
welfare_vec = np.vectorize(welfare_rel)

Then we can visualize the relationship between welfare and 𝜉1 and compute its derivatives

ξ1_arr = np.linspace(-0.5, 0.5, 20)

plt.plot(ξ1_arr, welfare_vec(ξ1_arr, 1.02))
plt.ylabel('welfare')
plt.xlabel(r'$\xi_1$')
plt.show()

welfare_grad = welfare_vec(ξ1_arr, 1.02)
welfare_grad = np.gradient(welfare_grad)
plt.plot(ξ1_arr, welfare_grad)
plt.ylabel('derivative of welfare')
plt.xlabel(r'$\xi_1$')
plt.show()



The same can be done on 𝜙

ϕ_arr = np.linspace(-0.5, 0.5, 20)

plt.plot(ξ1_arr, welfare_vec(0.05, ϕ_arr))
plt.ylabel('welfare')
plt.xlabel(r'$\phi$')
plt.show()

welfare_grad = welfare_vec(0.05, ϕ_arr)
welfare_grad = np.gradient(welfare_grad)
plt.plot(ξ1_arr, welfare_grad)
plt.ylabel('derivative of welfare')
plt.xlabel(r'$\phi$')
plt.show()





4.2.5 Wrapping up the consumption-smoothing model
The consumption-smoothing model of Milton Friedman Friedman (1956) and Robert Hall Hall
(1978)) is a cornerstone of modern economics that has important ramifications for the size of the
Keynesian “fiscal policy multiplier” that we described in QuantEcon lecture geometric series.

The consumption-smoothingmodel lowers the government expenditure multiplier relative to one
implied by the original Keynesian consumption function presented in geometric series.

Friedman’s work opened the door to an enlightening literature on the aggregate consumption
function and associated government expenditure multipliers that remains active today.

4.2.6 Appendix: solving difference equations with linear algebra
In the preceding sections we have used linear algebra to solve a consumption-smoothing model.

The same tools from linear algebra – matrix multiplication and matrix inversion – can be used to
study many other dynamic models.

We’ll conclude this lecture by giving a couple of examples.

We’ll describe a useful way of representing and “solving” linear difference equations.

To generate some 𝑦 vectors, we’ll just write down a linear difference equation with appropriate
initial conditions and then use linear algebra to solve it.

4.2.6.1 First-order difference equation
We’ll start with a first-order linear difference equation for {𝑦𝑡}

𝑇
𝑡=0:

𝑦𝑡 = 𝜆𝑦𝑡−1, 𝑡 = 1, 2, …, 𝑇 (4.37)

where 𝑦0 is a given initial condition.

We can cast this set of 𝑇  equations as a single matrix equation

[
[
[
[
[
[ 1

−𝜆
0
⋮
0

0
1

−𝜆
⋮
0

0
0
1
⋮
0

⋯
⋯
⋯
⋯
⋯

0
0
0
⋮

−𝜆

0
0
0
⋮
1]
]
]
]
]
]

[
[
[
[
[
[𝑦1

𝑦2
𝑦3
⋮

𝑦𝑇 ]
]
]
]
]
]

=

[
[
[
[
[
[𝜆𝑦0

0
0
⋮
0 ]

]
]
]
]
]

(4.38)

Multiplying both sides of (20) by the inverse of the matrix on the left provides the solution

[
[
[
[
[
[𝑦1

𝑦2
𝑦3
⋮

𝑦𝑇 ]
]
]
]
]
]

=

[
[
[
[
[
[ 1

𝜆
𝜆2

⋮
𝜆𝑇−1

0
1
𝜆
⋮

𝜆𝑇−2

0
0
1
⋮

𝜆𝑇−3

⋯
⋯
⋯
⋯
⋯

0
0
0
⋮
𝜆

0
0
0
⋮
1]
]
]
]
]
]

[
[
[
[
[
[𝜆𝑦0

0
0
⋮
0 ]

]
]
]
]
]

(4.39)

4.2.6.2 Second-order difference equation
A second-order linear difference equation for {𝑦𝑡}

𝑇
𝑡=0 is

𝑦𝑡 = 𝜆1𝑦𝑡−1 + 𝜆2𝑦𝑡−2, 𝑡 = 1, 2, …, 𝑇 (4.41)

where now 𝑦0 and 𝑦−1 are two given initial equations determined outside the model.

As we did with the first-order difference equation, we can cast this set of 𝑇  equations as a single
matrix equation

/geom-series
/geom-series


Exercise 4.15.

To get (21), we multiplied both sides of (20) by the inverse of the matrix 𝐴. Please confirm that

[
[
[
[
[
[ 1

𝜆
𝜆2

⋮
𝜆𝑇−1

0
1
𝜆
⋮

𝜆𝑇−2

0
0
1
⋮

𝜆𝑇−3

⋯
⋯
⋯
⋯
⋯

0
0
0
⋮
𝜆

0
0
0
⋮
1]
]
]
]
]
]

(4.40)

is the inverse of 𝐴 and check that 𝐴𝐴−1 = 𝐼

Exercise 4.16.

As an exercise, we ask you to represent and solve a third-order linear difference equation.
How many initial conditions must you specify?

[
[
[
[
[
[ 1

−𝜆1
−𝜆2

⋮
0

0
1

−𝜆1
⋮
0

0
0
1
⋮
0

⋯
⋯
⋯
⋯
⋯

0
0
0
⋮

−𝜆2

0
0
0
⋮

−𝜆1

0
0
0

1]
]
]
]
]
]

[
[
[
[
[
[𝑦1

𝑦2
𝑦3
⋮

𝑦𝑇 ]
]
]
]
]
]

=

[
[
[
[
[
[𝜆1𝑦0 + 𝜆2𝑦−1

𝜆2𝑦0
0
⋮
0 ]

]
]
]
]
]

(4.42)

Multiplying both sides by inverse of the matrix on the left again provides the solution.



4.3 Equalizing Difference Model

4.3.1 Overview
This lecture presents a model of the college-high-school wage gap in which the “time to build” a
college graduate plays a key role.

Milton Friedman invented the model to study whether differences in earnings of US dentists and
doctors were outcomes of competitive labor markets or whether they reflected entry barriers
imposed by governments working in conjunction with doctors’ professional organizations.

Chapter 4 of Jennifer Burns Burns (2023) describes Milton Friedman’s joint work with Simon
Kuznets that eventually led to the publication of Kuznets & Friedman (1939) and Friedman &
Kuznets (1945).

To map Friedman’s application into our model, think of our high school students as Friedman’s
dentists and our college graduates as Friedman’s doctors.

Our presentation is “incomplete” in the sense that it is based on a single equation that would be part
of set equilibrium conditions of a more fully articulated model.

This ‘’equalizing difference’‘ equation determines a college-high-school wage ratio that equalizes
present values of a high school educated worker and a college educated worker.

The idea is that lifetime earnings somehow adjust to make a new high school worker indifferent
between going to college and not going to college but instead going to work immediately.

(The job of the “other equations” in a more complete model would be to describe what adjusts to
bring about this outcome.)

Our model is just one example of an “equalizing difference” theory of relative wage rates, a class of
theories dating back at least to Adam Smith’s Wealth of Nations Smith (2010).

For most of this lecture, the only mathematical tools that we’ll use are from linear algebra, in
particular, matrix multiplication and matrix inversion.

However, near the end of the lecture, we’ll use calculus just in case readers want to see how
computing partial derivatives could let us present some findings more concisely.

And doing that will let illustrate how good Python is at doing calculus!

But if you don’t know calculus, our tools from linear algebra are certainly enough.

As usual, we’ll start by importing some Python modules.

import numpy as np
import matplotlib.pyplot as plt
from collections import namedtuple
from sympy import Symbol, Lambda, symbols

4.3.2 The indifference condition
The key idea is that the entry level college wage premium has to adjust to make a representative
worker indifferent between going to college and not going to college.

Let

• 𝑅 > 1 be the gross rate of return on a one-period bond
• 𝑡 = 0, 1, 2, …𝑇  denote the years that a person either works or attends college
• 0 denote the first period after high school that a person can work if he does not go to college
• 𝑇  denote the last period that a person works



• 𝑤ℎ
𝑡  be the wage at time 𝑡 of a high school graduate

• 𝑤𝑐
𝑡  be the wage at time 𝑡 of a college graduate

• 𝛾ℎ > 1 be the (gross) rate of growth of wages of a high school graduate, so that 𝑤ℎ
𝑡 = 𝑤ℎ

0𝛾𝑡
ℎ

• 𝛾𝑐 > 1 be the (gross) rate of growth of wages of a college graduate, so that 𝑤𝑐
𝑡 = 𝑤𝑐

0𝛾𝑡
𝑐

• 𝐷 be the upfront monetary costs of going to college

We now compute present values that a new high school graduate earns if

• he goes to work immediately and earns wages paid to someone without a college education
• he goes to college for four years and after graduating earns wages paid to a college graduate

4.3.2.1 Present value of a high school educated worker
If someone goes to work immediately after high school and works for the 𝑇 + 1 years 𝑡 =
0, 1, 2, …, 𝑇 , she earns present value

ℎ0 = ∑
𝑇

𝑡=0
𝑅−𝑡𝑤ℎ

𝑡 = 𝑤ℎ
0[

1 − (𝑅−1𝛾ℎ)𝑇+1

1 − 𝑅−1𝛾ℎ
] ≡ 𝑤ℎ

0𝐴ℎ (4.43)

where

𝐴ℎ = [
1 − (𝑅−1𝛾ℎ)𝑇+1

1 − 𝑅−1𝛾ℎ
]. (4.44)

The present value ℎ0 is the “human wealth” at the beginning of time 0 of someone who chooses not
to attend college but instead to go to work immediately at the wage of a high school graduate.

4.3.2.2 Present value of a college-bound new high school graduate
If someone goes to college for the four years 𝑡 = 0, 1, 2, 3 during which she earns 0, but then goes to
work immediately after college and works for the 𝑇 − 3 years 𝑡 = 4, 5, …, 𝑇 , she earns present value

𝑐0 = ∑
𝑇

𝑡=4
𝑅−𝑡𝑤𝑐

𝑡 = 𝑤𝑐
0(𝑅−1𝛾𝑐)

4[
1 − (𝑅−1𝛾𝑐)

𝑇−3

1 − 𝑅−1𝛾𝑐
] ≡ 𝑤𝑐

0𝐴𝑐 (4.45)

where

𝐴𝑐 = (𝑅−1𝛾𝑐)
4[

1 − (𝑅−1𝛾𝑐)
𝑇−3

1 − 𝑅−1𝛾𝑐
]. (4.46)

The present value 𝑐0 is the “human wealth” at the beginning of time 0 of someone who chooses to
attend college for four years and then start to work at time 𝑡 = 4 at the wage of a college graduate.

Assume that college tuition plus four years of room and board amount to 𝐷 and must be paid at
time 0.

So net of monetary cost of college, the present value of attending college as of the first period after
high school is

𝑐0 − 𝐷 (4.47)

We now formulate a pure equalizing difference model of the initial college-high school wage gap
𝜙 that verifies

𝑤𝑐
0 = 𝜙𝑤ℎ

0 (4.48)

We suppose that 𝑅, 𝛾ℎ, 𝛾𝑐, 𝑇  and also 𝑤ℎ
0  are fixed parameters.



We start by noting that the pure equalizing difference model asserts that the college-high-school
wage gap 𝜙 solves an “equalizing” equation that sets the present value not going to college equal to
the present value of going to college:

ℎ0 = 𝑐0 − 𝐷 (4.49)

or

𝑤ℎ
0𝐴ℎ = 𝜙𝑤ℎ

0𝐴𝑐 − 𝐷. (4.50)

This “indifference condition” is the heart of the model.

Solving equation (8) for the college wage premium 𝜙 we obtain

𝜙 = 𝐴ℎ
𝐴𝑐

+ 𝐷
𝑤ℎ

0𝐴𝑐
. (4.51)

In a free college special case 𝐷 = 0.

Here the only cost of going to college is the forgone earnings from being a high school educated
worker.

In that case,

𝜙 = 𝐴ℎ
𝐴𝑐

. (4.52)

In the next section we’ll write Python code to compute 𝜙 and plot it as a function of its
determinants.

4.3.3 Computations
We can have some fun with examples that tweak various parameters, prominently including
𝛾ℎ, 𝛾𝑐, 𝑅.

Now let’s write some Python code to compute 𝜙 and plot it as a function of some of its
determinants.

# Define the namedtuple for the equalizing difference model
EqDiffModel = namedtuple('EqDiffModel', 'R T γ_h γ_c w_h0 D')

def create_edm(R=1.05,   # gross rate of return
               T=40,     # time horizon
               γ_h=1.01, # high-school wage growth
               γ_c=1.01, # college wage growth
               w_h0=1,   # initial wage (high school)
               D=10,     # cost for college
              ):
    
    return EqDiffModel(R, T, γ_h, γ_c, w_h0, D)

def compute_gap(model):
    R, T, γ_h, γ_c, w_h0, D = model
    
    A_h = (1 - (γ_h/R)**(T+1)) / (1 - γ_h/R)
    A_c = (1 - (γ_c/R)**(T-3)) / (1 - γ_c/R) * (γ_c/R)**4
    ϕ = A_h / A_c + D / (w_h0 * A_c)
    
    return ϕ

Using vectorization instead of loops, we build some functions to help do comparative statics .



For a given instance of the class, we want to recompute 𝜙 when one parameter changes and others
remain fixed.

Let’s do an example.

ex1 = create_edm()
gap1 = compute_gap(ex1)

gap1

1.8041412724969135

Let’s not charge for college and recompute 𝜙.

The initial college wage premium should go down.

# free college
ex2 = create_edm(D=0)
gap2 = compute_gap(ex2)
gap2

1.2204649517903732

Let us construct some graphs that show us how the initial college-high-school wage ratio 𝜙 would
change if one of its determinants were to change.

Let’s start with the gross interest rate 𝑅.

R_arr = np.linspace(1, 1.2, 50)
models = [create_edm(R=r) for r in R_arr]
gaps = [compute_gap(model) for model in models]

plt.plot(R_arr, gaps)
plt.xlabel(r'$R$')
plt.ylabel(r'wage gap')
plt.show()



Evidently, the initial wage ratio 𝜙 must rise to compensate a prospective high school student for
waiting to start receiving income – remember that while she is earning nothing in years 𝑡 =
0, 1, 2, 3, the high school worker is earning a salary.

Not let’s study what happens to the initial wage ratio 𝜙 if the rate of growth of college wages rises,
holding constant other determinants of 𝜙.

γc_arr = np.linspace(1, 1.2, 50)
models = [create_edm(γ_c=γ_c) for γ_c in γc_arr]
gaps = [compute_gap(model) for model in models]

plt.plot(γc_arr, gaps)
plt.xlabel(r'$\gamma_c$')
plt.ylabel(r'wage gap')
plt.show()



Notice how the initial wage gap falls when the rate of growth 𝛾𝑐 of college wages rises.

The wage gap falls to “equalize” the present values of the two types of career, one as a high school
worker, the other as a college worker.

Can you guess what happens to the initial wage ratio 𝜙 when next we vary the rate of growth of
high school wages, holding all other determinants of 𝜙 constant?

The following graph shows what happens.

γh_arr = np.linspace(1, 1.1, 50)
models = [create_edm(γ_h=γ_h) for γ_h in γh_arr]
gaps = [compute_gap(model) for model in models]

plt.plot(γh_arr, gaps)
plt.xlabel(r'$\gamma_h$')
plt.ylabel(r'wage gap')
plt.show()



4.3.4 Entrepreneur-worker interpretation
We can add a parameter and reinterpret variables to get a model of entrepreneurs versus workers.

We now let ℎ be the present value of a “worker”.

We define the present value of an entrepreneur to be

𝑐0 = 𝜋 ∑
𝑇

𝑡=4
𝑅−𝑡𝑤𝑐

𝑡 (4.53)

where 𝜋 ∈ (0, 1) is the probability that an entrepreneur’s “project” succeeds.

For our model of workers and firms, we’ll interpret 𝐷 as the cost of becoming an entrepreneur.

This cost might include costs of hiring workers, office space, and lawyers.

What we used to call the college, high school wage gap 𝜙 now becomes the ratio of a successful
entrepreneur’s earnings to a worker’s earnings.

We’ll find that as 𝜋 decreases, 𝜙 increases, indicating that the riskier it is to be an entrepreneur, the
higher must be the reward for a successful project.

Now let’s adopt the entrepreneur-worker interpretation of our model

# Define a model of entrepreneur-worker interpretation
EqDiffModel = namedtuple('EqDiffModel', 'R T γ_h γ_c w_h0 D π')

def create_edm_π(R=1.05,   # gross rate of return
                 T=40,     # time horizon
                 γ_h=1.01, # high-school wage growth
                 γ_c=1.01, # college wage growth
                 w_h0=1,   # initial wage (high school)



                 D=10,     # cost for college
                 π=0       # chance of business success
              ):
    
    return EqDiffModel(R, T, γ_h, γ_c, w_h0, D, π)

def compute_gap(model):
    R, T, γ_h, γ_c, w_h0, D, π = model
    
    A_h = (1 - (γ_h/R)**(T+1)) / (1 - γ_h/R)
    A_c = (1 - (γ_c/R)**(T-3)) / (1 - γ_c/R) * (γ_c/R)**4
    
    # Incorprate chance of success
    A_c = π * A_c
    
    ϕ = A_h / A_c + D / (w_h0 * A_c)
    return ϕ

If the probability that a new business succeeds is 0.2, let’s compute the initial wage premium for
successful entrepreneurs.

ex3 = create_edm_π(π=0.2)
gap3 = compute_gap(ex3)

gap3

9.020706362484567

Now let’s study how the initial wage premium for successful entrepreneurs depend on the success
probability.

π_arr = np.linspace(0.2, 1, 50)
models = [create_edm_π(π=π) for π in π_arr]
gaps = [compute_gap(model) for model in models]

plt.plot(π_arr, gaps)
plt.ylabel(r'wage gap')
plt.xlabel(r'$\pi$')
plt.show()



Does the graph make sense to you?

4.3.5 An application of calculus
So far, we have used only linear algebra and it has been a good enough tool for us to figure out how
our model works.

However, someone who knows calculus might want us just to take partial derivatives.

We’ll do that now.

A reader who doesn’t know calculus could read no further and feel confident that applying linear
algebra has taught us the main properties of the model.

But for a reader interested in how we can get Python to do all the hard work involved in computing
partial derivatives, we’ll say a few things about that now.

We’ll use the Python module ‘sympy’ to compute partial derivatives of 𝜙 with respect to the
parameters that determine it.

Define symbols

γ_h, γ_c, w_h0, D = symbols(r'\gamma_h, \gamma_c, w_0^h, D', real=True)
R, T = Symbol('R', real=True), Symbol('T', integer=True)

Define function 𝐴ℎ

A_h = Lambda((γ_h, R, T), (1 - (γ_h/R)**(T+1)) / (1 - γ_h/R))
A_h

Lambda((\gamma_h, R, T), (1 - (\gamma_h/R)**(T + 1))/(1 - \gamma_h/R))

Define function 𝐴𝑐



A_c = Lambda((γ_c, R, T), (1 - (γ_c/R)**(T-3)) / (1 - γ_c/R) * (γ_c/R)**4)
A_c

Lambda((\gamma_c, R, T), \gamma_c**4*(1 - (\gamma_c/R)**(T - 3))/(R**4*(1 - \gamma_c/
R)))

Now, define 𝜙

ϕ = Lambda((D, γ_h, γ_c, R, T, w_h0), A_h(γ_h, R, T)/A_c(γ_c, R, T) + D/
(w_h0*A_c(γ_c, R, T)))

ϕ

Lambda((D, \gamma_h, \gamma_c, R, T, w_0^h), D*R**4*(1 - \gamma_c/R)/
(\gamma_c**4*w_0^h*(1 - (\gamma_c/R)**(T - 3))) + R**4*(1 - \gamma_c/R)*(1 -
(\gamma_h/R)**(T + 1))/(\gamma_c**4*(1 - (\gamma_c/R)**(T - 3))*(1 - \gamma_h/R)))

We begin by setting default parameter values.

R_value = 1.05
T_value = 40
γ_h_value, γ_c_value = 1.01, 1.01
w_h0_value = 1
D_value = 10

Now let’s compute 𝜕𝜙
𝜕𝐷  and then evaluate it at the default values

ϕ_D = ϕ(D, γ_h, γ_c, R, T, w_h0).diff(D)
ϕ_D

R**4*(1 - \gamma_c/R)/(\gamma_c**4*w_0^h*(1 - (\gamma_c/R)**(T - 3)))

# Numerical value at default parameters
ϕ_D_func = Lambda((D, γ_h, γ_c, R, T, w_h0), ϕ_D)
ϕ_D_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)

0.0583676320706540

Thus, as with our earlier graph, we find that raising 𝑅 increases the initial college wage premium 𝜙.

Compute 𝜕𝜙
𝜕𝑇  and evaluate it at default parameters

ϕ_T = ϕ(D, γ_h, γ_c, R, T, w_h0).diff(T)
ϕ_T

D*R**4*(\gamma_c/R)**(T - 3)*(1 - \gamma_c/R)*log(\gamma_c/R)/(\gamma_c**4*w_0^h*(1 -
(\gamma_c/R)**(T - 3))**2) + R**4*(\gamma_c/R)**(T - 3)*(1 - \gamma_c/R)*(1 -
(\gamma_h/R)**(T + 1))*log(\gamma_c/R)/(\gamma_c**4*(1 - (\gamma_c/R)**(T - 3))**2*(1
- \gamma_h/R)) - R**4*(\gamma_h/R)**(T + 1)*(1 - \gamma_c/R)*log(\gamma_h/R)/
(\gamma_c**4*(1 - (\gamma_c/R)**(T - 3))*(1 - \gamma_h/R))

# Numerical value at default parameters
ϕ_T_func = Lambda((D, γ_h, γ_c, R, T, w_h0), ϕ_T)
ϕ_T_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)

-0.00973478032996598

We find that raising 𝑇  decreases the initial college wage premium 𝜙.

This is because college graduates now have longer career lengths to “pay off” the time and other
costs they paid to go to college

Let’s compute 𝜕𝜙
𝜕𝛾ℎ

 and evaluate it at default parameters.

ϕ_γ_h = ϕ(D, γ_h, γ_c, R, T, w_h0).diff(γ_h)
ϕ_γ_h



-R**4*(\gamma_h/R)**(T + 1)*(1 - \gamma_c/R)*(T + 1)/(\gamma_c**4*\gamma_h*(1 -
(\gamma_c/R)**(T - 3))*(1 - \gamma_h/R)) + R**3*(1 - \gamma_c/R)*(1 - (\gamma_h/
R)**(T + 1))/(\gamma_c**4*(1 - (\gamma_c/R)**(T - 3))*(1 - \gamma_h/R)**2)

# Numerical value at default parameters
ϕ_γ_h_func = Lambda((D, γ_h, γ_c, R, T, w_h0), ϕ_γ_h)
ϕ_γ_h_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)

17.8590485545256

We find that raising 𝛾ℎ increases the initial college wage premium 𝜙, in line with our earlier
graphical analysis.

Compute 𝜕𝜙
𝜕𝛾𝑐

 and evaluate it numerically at default parameter values

ϕ_γ_c = ϕ(D, γ_h, γ_c, R, T, w_h0).diff(γ_c)
ϕ_γ_c

D*R**4*(\gamma_c/R)**(T - 3)*(1 - \gamma_c/R)*(T - 3)/(\gamma_c**5*w_0^h*(1 -
(\gamma_c/R)**(T - 3))**2) - 4*D*R**4*(1 - \gamma_c/R)/(\gamma_c**5*w_0^h*(1 -
(\gamma_c/R)**(T - 3))) - D*R**3/(\gamma_c**4*w_0^h*(1 - (\gamma_c/R)**(T - 3))) +
R**4*(\gamma_c/R)**(T - 3)*(1 - \gamma_c/R)*(1 - (\gamma_h/R)**(T + 1))*(T - 3)/
(\gamma_c**5*(1 - (\gamma_c/R)**(T - 3))**2*(1 - \gamma_h/R)) - 4*R**4*(1 - \gamma_c/
R)*(1 - (\gamma_h/R)**(T + 1))/(\gamma_c**5*(1 - (\gamma_c/R)**(T - 3))*(1 -
\gamma_h/R)) - R**3*(1 - (\gamma_h/R)**(T + 1))/(\gamma_c**4*(1 - (\gamma_c/R)**(T -
3))*(1 - \gamma_h/R))

# Numerical value at default parameters
ϕ_γ_c_func = Lambda((D, γ_h, γ_c, R, T, w_h0), ϕ_γ_c)
ϕ_γ_c_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)

-31.6486401973376

We find that raising 𝛾𝑐 decreases the initial college wage premium 𝜙, in line with our earlier
graphical analysis.

Let’s compute 𝜕𝜙
𝜕𝑅  and evaluate it numerically at default parameter values

ϕ_R = ϕ(D, γ_h, γ_c, R, T, w_h0).diff(R)
ϕ_R

-D*R**3*(\gamma_c/R)**(T - 3)*(1 - \gamma_c/R)*(T - 3)/(\gamma_c**4*w_0^h*(1 -
(\gamma_c/R)**(T - 3))**2) + 4*D*R**3*(1 - \gamma_c/R)/(\gamma_c**4*w_0^h*(1 -
(\gamma_c/R)**(T - 3))) + D*R**2/(\gamma_c**3*w_0^h*(1 - (\gamma_c/R)**(T - 3))) -
R**3*(\gamma_c/R)**(T - 3)*(1 - \gamma_c/R)*(1 - (\gamma_h/R)**(T + 1))*(T - 3)/
(\gamma_c**4*(1 - (\gamma_c/R)**(T - 3))**2*(1 - \gamma_h/R)) + R**3*(\gamma_h/R)**(T
+ 1)*(1 - \gamma_c/R)*(T + 1)/(\gamma_c**4*(1 - (\gamma_c/R)**(T - 3))*(1 - \gamma_h/
R)) + 4*R**3*(1 - \gamma_c/R)*(1 - (\gamma_h/R)**(T + 1))/(\gamma_c**4*(1 -
(\gamma_c/R)**(T - 3))*(1 - \gamma_h/R)) + R**2*(1 - (\gamma_h/R)**(T + 1))/
(\gamma_c**3*(1 - (\gamma_c/R)**(T - 3))*(1 - \gamma_h/R)) - R**2*\gamma_h*(1 -
\gamma_c/R)*(1 - (\gamma_h/R)**(T + 1))/(\gamma_c**4*(1 - (\gamma_c/R)**(T - 3))*(1 -
\gamma_h/R)**2)

# Numerical value at default parameters
ϕ_R_func = Lambda((D, γ_h, γ_c, R, T, w_h0), ϕ_R)
ϕ_R_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)

13.2642738659429

We find that raising the gross interest rate 𝑅 increases the initial college wage premium 𝜙, in line
with our earlier graphical analysis.



4.4 A Monetarist Theory of Price Levels

4.4.1 Overview
We’ll use linear algebra first to explain and then do some experiments with a “monetarist theory of
price levels”.

Economists call it a “monetary” or “monetarist” theory of price levels because effects on price levels
occur via a central bank’s decisions to print money supply.

• a goverment’s fiscal policies determine whether its expenditures exceed its tax collections
• if its expenditures exceed its tax collections, the government can instruct the central bank to

cover the difference by printing money
• that leads to effects on the price level as price level path adjusts to equate the supply of money

to the demand for money

Such a theory of price levels was described by Thomas Sargent and Neil Wallace in chapter 5 of
Sargent (2013), which reprints a 1981 Federal Reserve Bank of Minneapolis article entitled
“Unpleasant Monetarist Arithmetic”.

Sometimes this theory is also called a “fiscal theory of price levels” to emphasize the importance of
fiscal deficits in shaping changes in the money supply.

The theory has been extended, criticized, and applied by John Cochrane Cochrane (2023).

In another lecture price level histories, we described some European hyperinflations that occurred in
the wake of World War I.

Elemental forces at work in the fiscal theory of the price level help to understand those episodes.

According to this theory, when the government persistently spends more than it collects in taxes
and prints money to finance the shortfall (the “shortfall” is called the “government deficit”), it puts
upward pressure on the price level and generates persistent inflation.

The “monetarist” or “fiscal theory of price levels” asserts that

• to start a persistent inflation the government begins persistently to run a money-financed
government deficit

• to stop a persistent inflation the government stops persistently running a money-financed
government deficit

The model in this lecture is a “rational expectations” (or “perfect foresight”) version of a model that
Philip Cagan Cagan (1956) used to study the monetary dynamics of hyperinflations.

While Cagan didn’t use that “rational expectations” version of the model, Thomas Sargent Sargent
(1982) did when he studied the Ends of Four Big Inflations in Europe after World War I.

• this lecture fiscal theory of the price level with adaptive expectations describes a version of the
model that does not impose “rational expectations” but instead uses what Cagan and his
teacher Milton Friedman called “adaptive expectations”

‣ a reader of both lectures will notice that the algebra is less complicated in the present
rational expectations version of the model

‣ the difference in algebra complications can be traced to the following source: the adaptive
expectations version of the model has more endogenous variables and more free
parameters

Some of our quantitative experiments with the rational expectations version of the model are
designed to illustrate how the fiscal theory explains the abrupt end of those big inflations.

/inflation-history
/cagan-adaptive


In those experiments, we’ll encounter an instance of a “velocity dividend” that has sometimes
accompanied successful inflation stabilization programs.

To facilitate using linear matrix algebra as our main mathematical tool, we’ll use a finite horizon
version of the model.

As in the present values and consumption smoothing lectures, our mathematical tools are matrix
multiplication and matrix inversion.

4.4.2 Structure of the model
The model consists of

• a function that expresses the demand for real balances of government printed money as an
inverse function of the public’s expected rate of inflation

• an exogenous sequence of rates of growth of the money supply. The money supply grows
because the government prints it to pay for goods and services

• an equilibrium condition that equates the demand for money to the supply
• a “perfect foresight” assumption that the public’s expected rate of inflation equals the actual

rate of inflation.

To represent the model formally, let

• 𝑚𝑡 be the log of the supply of nominal money balances;
• 𝜇𝑡 = 𝑚𝑡+1 − 𝑚𝑡 be the net rate of growth of nominal balances;
• 𝑝𝑡 be the log of the price level;
• 𝜋𝑡 = 𝑝𝑡+1 − 𝑝𝑡 be the net rate of inflation between 𝑡 and 𝑡 + 1;
• 𝜋∗

𝑡  be the public’s expected rate of inflation between 𝑡 and 𝑡 + 1;
• 𝑇  the horizon – i.e., the last period for which the model will determine 𝑝𝑡
• 𝜋∗

𝑇+1 the terminal rate of inflation between times 𝑇  and 𝑇 + 1.

The demand for real balances exp(𝑚𝑑
𝑡 − 𝑝𝑡) is governed by the following version of the Cagan

demand function

𝑚𝑑
𝑡 − 𝑝𝑡 = −𝛼𝜋∗

𝑡 , 𝛼 > 0; 𝑡 = 0, 1, …, 𝑇 . (4.54)

This equation asserts that the demand for real balances is inversely related to the public’s expected
rate of inflation with sensitivity 𝛼.

People somehow acquire perfect foresight by their having solved a forecasting problem.

This lets us set

𝜋∗
𝑡 = 𝜋𝑡, (4.55)

while equating demand for money to supply lets us set 𝑚𝑑
𝑡 = 𝑚𝑡 for all 𝑡 ≥ 0.

The preceding equations then imply

𝑚𝑡 − 𝑝𝑡 = −𝛼(𝑝𝑡+1 − 𝑝𝑡) (4.56)

To fill in details about what it means for private agents to have perfect foresight, we subtract
equation (3) at time 𝑡 from the same equation at 𝑡 + 1 to get

𝜇𝑡 − 𝜋𝑡 = −𝛼𝜋𝑡+1 + 𝛼𝜋𝑡, (4.57)

which we rewrite as a forward-looking first-order linear difference equation in 𝜋𝑠 with 𝜇𝑠 as a
“forcing variable”:
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𝜋𝑡 = 𝛼
1 + 𝛼

𝜋𝑡+1 + 1
1 + 𝛼

𝜇𝑡, 𝑡 = 0, 1, …, 𝑇 (4.58)

where 0 < 𝛼
1+𝛼 < 1.

Setting 𝛿 = 𝛼
1+𝛼 , let’s us represent the preceding equation as

𝜋𝑡 = 𝛿𝜋𝑡+1 + (1 − 𝛿)𝜇𝑡, 𝑡 = 0, 1, …, 𝑇 (4.59)

Write this system of 𝑇 + 1 equations as the single matrix equation

[
[
[
[
[
[
[1

0
0
⋮
0
0

−𝛿
1
0
⋮
0
0

0
−𝛿
1
⋮
0
0

0
0

−𝛿
⋮
0
0

⋯
⋯
⋯
⋮
⋯
⋯

0
0
0

−𝛿
1
0

0
0
0
0

−𝛿
1 ]

]
]
]
]
]
]

[
[
[
[
[
[
[ 𝜋0

𝜋1
𝜋2
⋮

𝜋𝑇−1
𝜋𝑇 ]

]
]
]
]
]
]

= (1 − 𝛿)

[
[
[
[
[
[
[ 𝜇0

𝜇1
𝜇2
⋮

𝜇𝑇−1
𝜇𝑇 ]

]
]
]
]
]
]

+

[
[
[
[
[
[
[ 0

0
0
⋮
0

𝛿𝜋∗
𝑇+1]

]
]
]
]
]
]

(4.60)

By multiplying both sides of equation (7) by the inverse of the matrix on the left side, we can
calculate

𝜋 ≡

[
[
[
[
[
[
[ 𝜋0

𝜋1
𝜋2
⋮

𝜋𝑇−1
𝜋𝑇 ]

]
]
]
]
]
]

(4.61)

It turns out that

𝜋𝑡 = (1 − 𝛿) ∑
𝑇

𝑠=𝑡
𝛿𝑠−𝑡𝜇𝑠 + 𝛿𝑇+1−𝑡𝜋∗

𝑇+1 (4.62)

We can represent the equations

𝑚𝑡+1 = 𝑚𝑡 + 𝜇𝑡, 𝑡 = 0, 1, …, 𝑇 (4.63)

as the matrix equation

[
[
[
[
[
[
[ 1

−1
0
⋮
0
0

0
1

−1
⋮
0
0

0
0
1
⋮
0
0

⋯
⋯
⋯
⋮
⋯
⋯

0
0
0
0
1

−1

0
0
0
0
0
1]
]
]
]
]
]
]

[
[
[
[
[
[
[ 𝑚1

𝑚2
𝑚3
⋮

𝑚𝑇
𝑚𝑇+1]

]
]
]
]
]
]

=

[
[
[
[
[
[
[ 𝜇0

𝜇1
𝜇2
⋮

𝜇𝑇−1
𝜇𝑇 ]

]
]
]
]
]
]

+

[
[
[
[
[
[
[𝑚0

0
0
⋮
0
0 ]

]
]
]
]
]
]

(4.64)

Multiplying both sides of equation (11) with the inverse of the matrix on the left will give

𝑚𝑡 = 𝑚0 + ∑
𝑡−1

𝑠=0
𝜇𝑠, 𝑡 = 1, …, 𝑇 + 1 (4.65)

Equation (12) shows that the log of the money supply at 𝑡 equals the log of the initial money supply
𝑚0 plus accumulation of rates of money growth between times 0 and 𝑇 .

4.4.3 Continuation values
To determine the continuation inflation rate 𝜋∗

𝑇+1 we shall proceed by applying the following
infinite-horizon version of equation (9) at time 𝑡 = 𝑇 + 1:



𝜋𝑡 = (1 − 𝛿) ∑
∞

𝑠=𝑡
𝛿𝑠−𝑡𝜇𝑠, (4.66)

and by also assuming the following continuation path for 𝜇𝑡 beyond 𝑇 :

𝜇𝑡+1 = 𝛾∗𝜇𝑡, 𝑡 ≥ 𝑇 . (4.67)

Plugging the preceding equation into equation (13) at 𝑡 = 𝑇 + 1 and rearranging we can deduce that

𝜋∗
𝑇+1 = 1 − 𝛿

1 − 𝛿𝛾∗ 𝛾∗𝜇𝑇 (4.68)

where we require that | 𝛾∗𝛿 | < 1.

Let’s implement and solve this model.

As usual, we’ll start by importing some Python modules.

import numpy as np
from collections import namedtuple
import matplotlib.pyplot as plt

First, we store parameters in a namedtuple:

# Create the rational expectation version of Cagan model in finite time
CaganREE = namedtuple("CaganREE", 
                        ["m0",    # initial money supply
                         "μ_seq", # sequence of rate of growth
                         "α",     # sensitivity parameter
                         "δ",     # α/(1 + α)
                         "π_end"  # terminal expected inflation
                        ])

def create_cagan_model(m0=1, α=5, μ_seq=None):
    δ = α/(1 + α)
    π_end = μ_seq[-1]    # compute terminal expected inflation
    return CaganREE(m0, μ_seq, α, δ, π_end)

Now we can solve the model to compute 𝜋𝑡, 𝑚𝑡 and 𝑝𝑡 for 𝑡 = 1, …, 𝑇 + 1 using the matrix equation
above

def solve(model, T):
    m0, π_end, μ_seq, α, δ = (model.m0, model.π_end, 
                              model.μ_seq, model.α, model.δ)
    
    # Create matrix representation above
    A1 = np.eye(T+1, T+1) - δ * np.eye(T+1, T+1, k=1)
    A2 = np.eye(T+1, T+1) - np.eye(T+1, T+1, k=-1)

    b1 = (1-δ) * μ_seq + np.concatenate([np.zeros(T), [δ * π_end]])
    b2 = μ_seq + np.concatenate([[m0], np.zeros(T)])

    π_seq = np.linalg.solve(A1, b1)
    m_seq = np.linalg.solve(A2, b2)

    π_seq = np.append(π_seq, π_end)
    m_seq = np.append(m0, m_seq)

    p_seq = m_seq + α * π_seq



    return π_seq, m_seq, p_seq

4.4.3.1 Some quantitative experiments
In the experiments below, we’ll use formula (15) as our terminal condition for expected inflation.

In devising these experiments, we’ll make assumptions about {𝜇𝑡} that are consistent with formula
(15).

We describe several such experiments.

In all of them,

𝜇𝑡 = 𝜇∗, 𝑡 ≥ 𝑇1 (4.69)

so that, in terms of our notation and formula for 𝜋∗
𝑇+1 above, 𝛾∗ = 1.

4.4.3.1.1 Experiment 1: Foreseen sudden stabilization
In this experiment, we’ll study how, when 𝛼 > 0, a foreseen inflation stabilization has effects on
inflation that proceed it.

We’ll study a situation in which the rate of growth of the money supply is 𝜇0 from 𝑡 = 0 to 𝑡 = 𝑇1
and then permanently falls to 𝜇∗ at 𝑡 = 𝑇1.

Thus, let 𝑇1 ∈ (0, 𝑇 ).

So where 𝜇0 > 𝜇∗, we assume that

𝜇𝑡+1 = (4.70)

We’ll start by executing a version of our “experiment 1” in which the government implements a
foreseen sudden permanent reduction in the rate of money creation at time 𝑇1.

Let’s experiment with the following parameters

T1 = 60
μ0 = 0.5
μ_star = 0
T = 80

μ_seq_1 = np.append(μ0*np.ones(T1+1), μ_star*np.ones(T-T1))

cm = create_cagan_model(μ_seq=μ_seq_1)

# solve the model
π_seq_1, m_seq_1, p_seq_1 = solve(cm, T)

Now we use the following function to plot the result

def plot_sequences(sequences, labels):
    fig, axs = plt.subplots(len(sequences), 1, figsize=(5, 12), dpi=200)
    for ax, seq, label in zip(axs, sequences, labels):
        ax.plot(range(len(seq)), seq, label=label)
        ax.set_ylabel(label)
        ax.set_xlabel('$t$')
        ax.legend()
    plt.tight_layout()
    plt.show()

sequences = (μ_seq_1, π_seq_1, m_seq_1 - p_seq_1, m_seq_1, p_seq_1)
plot_sequences(sequences, (r'$\mu$', r'$\pi$', r'$m - p$', r'$m$', r'$p$'))





The plot of the money growth rate 𝜇𝑡 in the top level panel portrays a sudden reduction from .5 to 0
at time 𝑇1 = 60.

This brings about a gradual reduction of the inflation rate 𝜋𝑡 that precedes the money supply growth
rate reduction at time 𝑇1.

Notice how the inflation rate declines smoothly (i.e., continuously) to 0 at 𝑇1 – unlike the money
growth rate, it does not suddenly “jump” downward at 𝑇1.

This is because the reduction in 𝜇 at 𝑇1 has been foreseen from the start.

While the log money supply portrayed in the bottom panel has a kink at 𝑇1, the log price level does
not – it is “smooth” – once again a consequence of the fact that the reduction in 𝜇 has been foreseen.

To set the stage for our next experiment, we want to study the determinants of the price level a little
more.

4.4.3.2 The log price level
We can use equations (1) and (2) to discover that the log of the price level satisfies

𝑝𝑡 = 𝑚𝑡 + 𝛼𝜋𝑡 (4.71)

or, by using equation (9),

𝑝𝑡 = 𝑚𝑡 + 𝛼[(1 − 𝛿) ∑
𝑇

𝑠=𝑡
𝛿𝑠−𝑡𝜇𝑠 + 𝛿𝑇+1−𝑡𝜋∗

𝑇+1] (4.72)

In our next experiment, we’ll study a “surprise” permanent change in the money growth that
beforehand was completely unanticipated.

At time 𝑇1 when the “surprise” money growth rate change occurs, to satisfy equation (18), the log of
real balances jumps upward as 𝜋𝑡 jumps downward.

But in order for 𝑚𝑡 − 𝑝𝑡 to jump, which variable jumps, 𝑚𝑇1
 or 𝑝𝑇1

?

We’ll study that interesting question next.

4.4.3.3 What jumps?
What jumps at 𝑇1?

Is it 𝑝𝑇1
 or 𝑚𝑇1

?

If we insist that the money supply 𝑚𝑇1
 is locked at its value 𝑚1

𝑇1
 inherited from the past, then

formula (18) implies that the price level jumps downward at time 𝑇1, to coincide with the downward
jump in 𝜋𝑇1

An alternative assumption about the money supply level is that as part of the “inflation
stabilization”, the government resets 𝑚𝑇1

 according to

𝑚2
𝑇1

− 𝑚1
𝑇1

= 𝛼(𝜋1
𝑇1

− 𝜋2
𝑇1

), (4.73)

which describes how the government could reset the money supply at 𝑇1 in response to the jump in
expected inflation associated with monetary stabilization.

Doing this would let the price level be continuous at 𝑇1.

By letting money jump according to equation (20) the monetary authority prevents the price level
from falling at the moment that the unanticipated stabilization arrives.



In various research papers about stabilizations of high inflations, the jump in the money supply
described by equation (20) has been called “the velocity dividend” that a government reaps from
implementing a regime change that sustains a permanently lower inflation rate.

4.4.3.3.1 Technical details about whether 𝑝 or 𝑚 jumps at 𝑇1
We have noted that with a constant expected forward sequence 𝜇𝑠 = ̄𝜇 for 𝑠 ≥ 𝑡, 𝜋𝑡 = ̄𝜇.

A consequence is that at 𝑇1, either 𝑚 or 𝑝 must “jump” at 𝑇1.

We’ll study both cases.

4.4.3.3.2 𝑚𝑇1
 does not jump.

𝑚𝑇1
= 𝑚𝑇1−1 + 𝜇0

𝜋𝑇1
= 𝜇∗

𝑝𝑇1
= 𝑚𝑇1

+ 𝛼𝜋𝑇1

(4.74)

Simply glue the sequences 𝑡 ≤ 𝑇1 and 𝑡 > 𝑇1.

4.4.3.3.3 𝑚𝑇1
 jumps.

We reset 𝑚𝑇1
 so that 𝑝𝑇1

= (𝑚𝑇1−1 + 𝜇0) + 𝛼𝜇0, with 𝜋𝑇1
= 𝜇∗.

Then,

𝑚𝑇1
= 𝑝𝑇1

− 𝛼𝜋𝑇1
= (𝑚𝑇1−1 + 𝜇0) + 𝛼(𝜇0 − 𝜇∗) (4.75)

We then compute for the remaining 𝑇 − 𝑇1 periods with 𝜇𝑠 = 𝜇∗, ∀𝑠 ≥ 𝑇1 and the initial condition
𝑚𝑇1

 from above.

We are now technically equipped to discuss our next experiment.

4.4.3.3.4 Experiment 2: an unforeseen sudden stabilization
This experiment deviates a little bit from a pure version of our “perfect foresight” assumption by
assuming that a sudden permanent reduction in 𝜇𝑡 like that analyzed in experiment 1 is completely
unanticipated.

Such a completely unanticipated shock is popularly known as an “MIT shock”.

The mental experiment involves switching at time 𝑇1 from an initial “continuation path” for
{𝜇𝑡, 𝜋𝑡} to another path that involves a permanently lower inflation rate.

Initial Path: 𝜇𝑡 = 𝜇0 for all 𝑡 ≥ 0. So this path is for {𝜇𝑡}
∞
𝑡=0; the associated path for 𝜋𝑡 has 𝜋𝑡 =

𝜇0.

Revised Continuation Path Where 𝜇0 > 𝜇∗, we construct a continuation path {𝜇𝑠}
∞
𝑠=𝑇1

 by
setting 𝜇𝑠 = 𝜇∗ for all 𝑠 ≥ 𝑇1. The perfect foresight continuation path for 𝜋 is 𝜋𝑠 = 𝜇∗

To capture a “completely unanticipated permanent shock to the {𝜇𝑡} process at time 𝑇1, we simply
glue the 𝜇𝑡, 𝜋𝑡 that emerges under path 2 for 𝑡 ≥ 𝑇1 to the 𝜇𝑡, 𝜋𝑡 path that had emerged under path
1 for 𝑡 = 0, …, 𝑇1 − 1.

We can do the MIT shock calculations mostly by hand.

Thus, for path 1, 𝜋𝑡 = 𝜇0 for all 𝑡 ∈ [0, 𝑇1 − 1], while for path 2, 𝜇𝑠 = 𝜇∗ for all 𝑠 ≥ 𝑇1.

We now move on to experiment 2, our “MIT shock”, completely unforeseen sudden stabilization.



We set this up so that the {𝜇𝑡} sequences that describe the sudden stabilization are identical to those
for experiment 1, the foreseen sudden stabilization.

The following code does the calculations and plots outcomes.

# path 1
μ_seq_2_path1 = μ0 * np.ones(T+1)

cm1 = create_cagan_model(μ_seq=μ_seq_2_path1)
π_seq_2_path1, m_seq_2_path1, p_seq_2_path1 = solve(cm1, T)

# continuation path
μ_seq_2_cont = μ_star * np.ones(T-T1)

cm2 = create_cagan_model(m0=m_seq_2_path1[T1+1], 
                         μ_seq=μ_seq_2_cont)
π_seq_2_cont, m_seq_2_cont1, p_seq_2_cont1 = solve(cm2, T-1-T1)

# regime 1 - simply glue π_seq, μ_seq
μ_seq_2 = np.concatenate((μ_seq_2_path1[:T1+1],
                          μ_seq_2_cont))
π_seq_2 = np.concatenate((π_seq_2_path1[:T1+1], 
                          π_seq_2_cont))
m_seq_2_regime1 = np.concatenate((m_seq_2_path1[:T1+1], 
                                  m_seq_2_cont1))
p_seq_2_regime1 = np.concatenate((p_seq_2_path1[:T1+1], 
                                  p_seq_2_cont1))

# regime 2 - reset m_T1
m_T1 = (m_seq_2_path1[T1] + μ0) + cm2.α*(μ0 - μ_star)

cm3 = create_cagan_model(m0=m_T1, μ_seq=μ_seq_2_cont)
π_seq_2_cont2, m_seq_2_cont2, p_seq_2_cont2 = solve(cm3, T-1-T1)

m_seq_2_regime2 = np.concatenate((m_seq_2_path1[:T1+1], 
                                  m_seq_2_cont2))
p_seq_2_regime2 = np.concatenate((p_seq_2_path1[:T1+1],
                                  p_seq_2_cont2))





We invite you to compare these graphs with corresponding ones for the foreseen stabilization
analyzed in experiment 1 above.

Note how the inflation graph in the second panel is now identical to the money growth graph in the
top panel, and how now the log of real balances portrayed in the third panel jumps upward at time
𝑇1.

The bottom two panels plot 𝑚 and 𝑝 under two possible ways that 𝑚𝑇1
 might adjust as required by

the upward jump in 𝑚 − 𝑝 at 𝑇1.

• the orange line lets 𝑚𝑇1
 jump upward in order to make sure that the log price level 𝑝𝑇1

 does
not fall.

• the blue line lets 𝑝𝑇1
 fall while stopping the money supply from jumping.

Here is a way to interpret what the government is doing when the orange line policy is in place.

The government prints money to finance expenditure with the “velocity dividend” that it reaps from
the increased demand for real balances brought about by the permanent decrease in the rate of
growth of the money supply.

The next code generates a multi-panel graph that includes outcomes of both experiments 1 and 2.

That allows us to assess how important it is to understand whether the sudden permanent drop in
𝜇𝑡 at 𝑡 = 𝑇1 is fully unanticipated, as in experiment 1, or completely unanticipated, as in experiment
2.





It is instructive to compare the preceding graphs with graphs of log price levels and inflation rates
for data from four big inflations described in this lecture.

In particular, in the above graphs, notice how a gradual fall in inflation precedes the “sudden stop”
when it has been anticipated long beforehand, but how inflation instead falls abruptly when the
permanent drop in money supply growth is unanticipated.

It seems to the author team at quantecon that the drops in inflation near the ends of the four
hyperinflations described in this lecture more closely resemble outcomes from the experiment 2
“unforeseen stabilization”.

(It is fair to say that the preceding informal pattern recognition exercise should be supplemented
with a more formal structural statistical analysis.)

4.4.3.3.5 Experiment 3
Foreseen gradual stabilization

Instead of a foreseen sudden stabilization of the type studied with experiment 1, it is also interesting
to study the consequences of a foreseen gradual stabilization.

Thus, suppose that 𝜙 ∈ (0, 1), that 𝜇0 > 𝜇∗, and that for 𝑡 = 0, …, 𝑇 − 1

𝜇𝑡 = 𝜙𝑡𝜇0 + (1 − 𝜙𝑡)𝜇∗. (4.76)

Next we perform an experiment in which there is a perfectly foreseen gradual decrease in the rate of
growth of the money supply.

The following code does the calculations and plots the results.

# parameters
ϕ = 0.9
μ_seq_stab = np.array([ϕ**t * μ0 + (1-ϕ**t)*μ_star for t in range(T)])
μ_seq_stab = np.append(μ_seq_stab, μ_star)

cm4 = create_cagan_model(μ_seq=μ_seq_stab)

π_seq_4, m_seq_4, p_seq_4 = solve(cm4, T)

sequences = (μ_seq_stab, π_seq_4, 
             m_seq_4 - p_seq_4, m_seq_4, p_seq_4)
plot_sequences(sequences, (r'$\mu$', r'$\pi$', 
                           r'$m - p$', r'$m$', r'$p$'))

/inflation-history
/inflation-history




4.4.4 Sequel
Another lecture monetarist theory of price levels with adaptive expectations describes an “adaptive
expectations” version of Cagan’s model.

The dynamics become more complicated and so does the algebra.

Nowadays, the “rational expectations” version of the model is more popular among central bankers
and economists advising them.

/cagan-adaptive


4.5 Monetarist Theory of Price Levels with Adaptive Expectations

4.5.1 Overview
This lecture is a sequel or prequel to A Monetarist Theory of Price Levels.

We’ll use linear algebra to do some experiments with an alternative “monetarist” or “fiscal” theory of
price levels.

Like the model in A Monetarist Theory of Price Levels, the model asserts that when a government
persistently spends more than it collects in taxes and prints money to finance the shortfall, it puts
upward pressure on the price level and generates persistent inflation.

Instead of the “perfect foresight” or “rational expectations” version of the model in A Monetarist
Theory of Price Levels, our model in the present lecture is an “adaptive expectations” version of a
model that Cagan (1956) used to study the monetary dynamics of hyperinflations.

It combines these components:

• a demand function for real money balances that asserts that the logarithm of the quantity of
real balances demanded depends inversely on the public’s expected rate of inflation

• an adaptive expectations model that describes how the public’s anticipated rate of inflation
responds to past values of actual inflation

• an equilibrium condition that equates the demand for money to the supply
• an exogenous sequence of rates of growth of the money supply

Our model stays quite close to Cagan’s original specification.

As in Present Values and Consumption Smoothing, the only linear algebra operations that we’ll be
using are matrix multiplication and matrix inversion.

To facilitate using linear matrix algebra as our principal mathematical tool, we’ll use a finite horizon
version of the model.

4.5.2 Structure of the model
Let

• 𝑚𝑡 be the log of the supply of nominal money balances;
• 𝜇𝑡 = 𝑚𝑡+1 − 𝑚𝑡 be the net rate of growth of nominal balances;
• 𝑝𝑡 be the log of the price level;
• 𝜋𝑡 = 𝑝𝑡+1 − 𝑝𝑡 be the net rate of inflation between 𝑡 and 𝑡 + 1;
• 𝜋∗

𝑡  be the public’s expected rate of inflation between 𝑡 and 𝑡 + 1;
• 𝑇  the horizon – i.e., the last period for which the model will determine 𝑝𝑡
• 𝜋∗

0 public’s initial expected rate of inflation between time 0 and time 1.

The demand for real balances exp(𝑚𝑑
𝑡 − 𝑝𝑡) is governed by the following version of the Cagan

demand function

𝑚𝑑
𝑡 − 𝑝𝑡 = −𝛼𝜋∗

𝑡 , 𝛼 > 0; 𝑡 = 0, 1, …, 𝑇 . (4.77)

This equation asserts that the demand for real balances is inversely related to the public’s expected
rate of inflation with sensitivity 𝛼.

Equating the logarithm 𝑚𝑑
𝑡  of the demand for money to the logarithm 𝑚𝑡 of the supply of money in

equation (1) and solving for the logarithm 𝑝𝑡 of the price level gives

𝑝𝑡 = 𝑚𝑡 + 𝛼𝜋∗
𝑡 (4.78)

Taking the difference between equation (2) at time 𝑡 + 1 and at time 𝑡 gives

/cagan-ree
/cagan-ree
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𝜋𝑡 = 𝜇𝑡 + 𝛼𝜋∗
𝑡+1 − 𝛼𝜋∗

𝑡 (4.79)

We assume that the expected rate of inflation 𝜋∗
𝑡  is governed by the following adaptive expectations

scheme proposed by Friedman (1956) and Cagan (1956), where 𝜆 ∈ [0, 1] denotes the weight on
expected inflation.

𝜋∗
𝑡+1 = 𝜆𝜋∗

𝑡 + (1 − 𝜆)𝜋𝑡 (4.80)

As exogenous inputs into the model, we take initial conditions 𝑚0, 𝜋∗
0 and a money growth

sequence 𝜇 = {𝜇𝑡}
𝑇
𝑡=0.

As endogenous outputs of our model we want to find sequences 𝜋 = {𝜋𝑡}
𝑇
𝑡=0, 𝑝 = {𝑝𝑡}

𝑇
𝑡=0 as

functions of the exogenous inputs.

We’ll do some mental experiments by studying how the model outputs vary as we vary the model
inputs.

4.5.3 Representing key equations with linear algebra
We begin by writing the equation (4) adaptive expectations model for 𝜋∗

𝑡  for 𝑡 = 0, …, 𝑇  as

[
[
[
[
[
[ 1

−𝜆
0
⋮
0

0
1

−𝜆
⋮
0

0
0
1
⋮
0

⋯
⋯
⋯
⋯
⋯

0
0
0
⋮

−𝜆

0
0
0
⋮
1]
]
]
]
]
]

[
[
[
[
[
[ 𝜋∗

0
𝜋∗

1
𝜋∗

2
⋮

𝜋∗
𝑇+1]

]
]
]
]
]

= (1 − 𝜆)

[
[
[
[
[
[0

1
0
⋮
0

0
0
1
⋮
0

0
0
0
⋮
0

⋯
⋯
⋯
⋯
⋯

0
0
0
⋮
1]
]
]
]
]
]

[
[
[
[
[
[𝜋0

𝜋1
𝜋2
⋮

𝜋𝑇 ]
]
]
]
]
]

+

[
[
[
[
[
[𝜋∗

0
0
0
⋮
0 ]

]
]
]
]
]

(4.81)

Write this equation as

𝐴𝜋∗ = (1 − 𝜆)𝐵𝜋 + 𝜋∗
0 (4.82)

where the (𝑇 + 2) × (𝑇 + 2)matrix 𝐴, the (𝑇 + 2) × (𝑇 + 1) matrix 𝐵, and the vectors 𝜋∗, 𝜋0, 𝜋∗
0

are defined implicitly by aligning these two equations.

Next we write the key equation (3) in matrix notation as

[
[
[
[
[
[𝜋0

𝜋1
𝜋1
⋮

𝜋𝑇 ]
]
]
]
]
]

=

[
[
[
[
[
[𝜇0

𝜇1
𝜇2
⋮

𝜇𝑇 ]
]
]
]
]
]

+

[
[
[
[
[
[−𝛼

0
0
⋮
0

𝛼
−𝛼
0
⋮
0

0
𝛼

−𝛼
⋮
0

⋯
⋯
⋯
⋯
⋯

0
0
0
𝛼

−𝛼

0
0
0
0
𝛼]
]
]
]
]
]

[
[
[
[
[
[ 𝜋∗

0
𝜋∗

1
𝜋∗

2
⋮

𝜋∗
𝑇+1]

]
]
]
]
]

(4.83)

Represent the previous equation system in terms of vectors and matrices as

𝜋 = 𝜇 + 𝐶𝜋∗ (4.84)

where the (𝑇 + 1) × (𝑇 + 2) matrix 𝐶 is defined implicitly to align this equation with the
preceding equation system.

4.5.4 Harvesting insights from our matrix formulation
We now have all of the ingredients we need to solve for 𝜋 as a function of 𝜇, 𝜋0, 𝜋∗

0.

Combine equations (6)and (8) to get

𝐴𝜋∗ = (1 − 𝜆)𝐵𝜋 + 𝜋∗
0

= (1 − 𝜆)𝐵[𝜇 + 𝐶𝜋∗] + 𝜋∗
0

(4.85)

which implies that

[𝐴 − (1 − 𝜆)𝐵𝐶]𝜋∗ = (1 − 𝜆)𝐵𝜇 + 𝜋∗
0 (4.86)



Multiplying both sides of the above equation by the inverse of the matrix on the left side gives

𝜋∗ = [𝐴 − (1 − 𝜆)𝐵𝐶]−1[(1 − 𝜆)𝐵𝜇 + 𝜋∗
0] (4.87)

Having solved equation (11) for 𝜋∗, we can use equation (8) to solve for 𝜋:

𝜋 = 𝜇 + 𝐶𝜋∗ (4.88)

We have thus solved for two of the key endogenous time series determined by our model, namely,
the sequence 𝜋∗ of expected inflation rates and the sequence 𝜋 of actual inflation rates.

Knowing these, we can then quickly calculate the associated sequence 𝑝 of the logarithm of the price
level from equation (2).

Let’s fill in the details for this step.

Since we now know 𝜇 it is easy to compute 𝑚.

Thus, notice that we can represent the equations

𝑚𝑡+1 = 𝑚𝑡 + 𝜇𝑡, 𝑡 = 0, 1, …, 𝑇 (4.89)

as the matrix equation

[
[
[
[
[
[
[ 1

−1
0
⋮
0
0

0
1

−1
⋮
0
0

0
0
1
⋮
0
0

⋯
⋯
⋯
⋮
⋯
⋯

0
0
0
0
1

−1

0
0
0
0
0
1]
]
]
]
]
]
]

[
[
[
[
[
[
[ 𝑚1

𝑚2
𝑚3
⋮

𝑚𝑇
𝑚𝑇+1]

]
]
]
]
]
]

=

[
[
[
[
[
[
[ 𝜇0

𝜇1
𝜇2
⋮

𝜇𝑇−1
𝜇𝑇 ]

]
]
]
]
]
]

+

[
[
[
[
[
[
[𝑚0

0
0
⋮
0
0 ]

]
]
]
]
]
]

(4.90)

Multiplying both sides of equation (14) with the inverse of the matrix on the left will give

𝑚𝑡 = 𝑚0 + ∑
𝑡−1

𝑠=0
𝜇𝑠, 𝑡 = 1, …, 𝑇 + 1 (4.91)

Equation (15) shows that the log of the money supply at 𝑡 equals the log 𝑚0 of the initial money
supply plus accumulation of rates of money growth between times 0 and 𝑡.

We can then compute 𝑝𝑡 for each 𝑡 from equation (2).

We can write a compact formula for 𝑝 as

𝑝 = 𝑚 + 𝛼𝜋∗ (4.92)

where

𝜋∗ =

[
[
[
[
[
[𝜋∗

0
𝜋∗

1
𝜋∗

2
⋮

𝜋∗
𝑇 ]
]
]
]
]
]

, (4.93)

which is just 𝜋∗ with the last element dropped.

4.5.5 Forecast errors and model computation
Our computations will verify that

𝜋∗ ≠ 𝜋, (4.94)

so that in general



𝜋∗
𝑡 ≠ 𝜋𝑡, 𝑡 = 0, 1, …, 𝑇 (4.95)

This outcome is typical in models in which adaptive expectations hypothesis like equation (4)
appear as a component.

In A Monetarist Theory of Price Levels, we studied a version of the model that replaces hypothesis
(4) with a “perfect foresight” or “rational expectations” hypothesis.

But now, let’s dive in and do some computations with the adaptive expectations version of the
model.

As usual, we’ll start by importing some Python modules.

import numpy as np
from collections import namedtuple
import matplotlib.pyplot as plt

Cagan_Adaptive = namedtuple("Cagan_Adaptive", 
                        ["α", "m0", "Eπ0", "T", "λ"])

def create_cagan_adaptive_model(α = 5, m0 = 1, Eπ0 = 0.5, T=80, λ = 0.9):
    return Cagan_Adaptive(α, m0, Eπ0, T, λ)

md = create_cagan_adaptive_model()

We solve the model and plot variables of interests using the following functions.

def solve_cagan_adaptive(model, μ_seq):
    " Solve the Cagan model in finite time. "
    α, m0, Eπ0, T, λ = model
    
    A = np.eye(T+2, T+2) - λ*np.eye(T+2, T+2, k=-1)
    B = np.eye(T+2, T+1, k=-1)
    C = -α*np.eye(T+1, T+2) + α*np.eye(T+1, T+2, k=1)
    Eπ0_seq = np.append(Eπ0, np.zeros(T+1))

    # Eπ_seq is of length T+2
    Eπ_seq = np.linalg.solve(A - (1-λ)*B @ C, (1-λ) * B @ μ_seq + Eπ0_seq)

    # π_seq is of length T+1
    π_seq = μ_seq + C @ Eπ_seq

    D = np.eye(T+1, T+1) - np.eye(T+1, T+1, k=-1) # D is the coefficient matrix in
Equation (14.8)
    m0_seq = np.append(m0, np.zeros(T))

    # m_seq is of length T+2
    m_seq = np.linalg.solve(D, μ_seq + m0_seq)
    m_seq = np.append(m0, m_seq)

    # p_seq is of length T+2
    p_seq = m_seq + α * Eπ_seq

    return π_seq, Eπ_seq, m_seq, p_seq

def solve_and_plot(model, μ_seq):
    
    π_seq, Eπ_seq, m_seq, p_seq = solve_cagan_adaptive(model, μ_seq)
    
    T_seq = range(model.T+2)
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    fig, ax = plt.subplots(5, 1, figsize=[5, 12], dpi=200)
    ax[0].plot(T_seq[:-1], μ_seq)
    ax[1].plot(T_seq[:-1], π_seq, label=r'$\pi_t$')
    ax[1].plot(T_seq, Eπ_seq, label=r'$\pi^{*}_{t}$')
    ax[2].plot(T_seq, m_seq - p_seq)
    ax[3].plot(T_seq, m_seq)
    ax[4].plot(T_seq, p_seq)
    
    y_labs = [r'$\mu$', r'$\pi$', r'$m - p$', r'$m$', r'$p$']
    subplot_title = [r'Money supply growth', r'Inflation', r'Real balances', r'Money
supply', r'Price level']

    for i in range(5):
        ax[i].set_xlabel(r'$t$')
        ax[i].set_ylabel(y_labs[i])
        ax[i].set_title(subplot_title[i])

    ax[1].legend()
    plt.tight_layout()
    plt.show()
    
    return π_seq, Eπ_seq, m_seq, p_seq

4.5.6 Technical condition for stability
In constructing our examples, we shall assume that (𝜆, 𝛼) satisfy

| 𝜆 − 𝛼(1 − 𝜆)
1 − 𝛼(1 − 𝜆) |< 1 (4.96)

The source of this condition is the following string of deductions:

𝜋𝑡 = 𝜇𝑡 + 𝛼𝜋∗
𝑡+1 − 𝛼𝜋∗

𝑡

𝜋∗
𝑡+1 = 𝜆𝜋∗

𝑡 + (1 − 𝜆)𝜋𝑡

𝜋𝑡 = 𝜇𝑡
1 − 𝛼(1 − 𝜆)

− 𝛼(1 − 𝜆)
1 − 𝛼(1 − 𝜆)

𝜋∗
𝑡

⟹ 𝜋∗
𝑡 = 1

𝛼(1 − 𝜆)
𝜇𝑡 − 1 − 𝛼(1 − 𝜆)

𝛼(1 − 𝜆)
𝜋𝑡

𝜋𝑡+1 =
𝜇𝑡+1

1 − 𝛼(1 − 𝜆)
− 𝛼(1 − 𝜆)

1 − 𝛼(1 − 𝜆)
(𝜆𝜋∗

𝑡 + (1 − 𝜆)𝜋𝑡)

=
𝜇𝑡+1

1 − 𝛼(1 − 𝜆)
− 𝜆

1 − 𝛼(1 − 𝜆)
𝜇𝑡 + 𝜆 − 𝛼(1 − 𝜆)

1 − 𝛼(1 − 𝜆)
𝜋𝑡

(4.97)

By assuring that the coefficient on 𝜋𝑡 is less than one in absolute value, condition (20) assures
stability of the dynamics of {𝜋𝑡} described by the last line of our string of deductions.

The reader is free to study outcomes in examples that violate condition (20).

print(np.abs((md.λ - md.α*(1-md.λ))/(1 - md.α*(1-md.λ))))

0.8

4.5.7 Experiments
Now we’ll turn to some experiments.



4.5.7.1 Experiment 1
We’ll study a situation in which the rate of growth of the money supply is 𝜇0 from 𝑡 = 0 to 𝑡 = 𝑇1
and then permanently falls to 𝜇∗ at 𝑡 = 𝑇1.

Thus, let 𝑇1 ∈ (0, 𝑇 ).

So where 𝜇0 > 𝜇∗, we assume that

𝜇𝑡 = (4.98)

Notice that we studied exactly this experiment in a rational expectations version of the model in A
Monetarist Theory of Price Levels.

So by comparing outcomes across the two lectures, we can learn about consequences of assuming
adaptive expectations, as we do here, instead of rational expectations as we assumed in that other
lecture.

# Parameters for the experiment 1
T1 = 60
μ0 = 0.5
μ_star = 0

μ_seq_1 = np.append(μ0*np.ones(T1), μ_star*np.ones(md.T+1-T1))

# solve and plot
π_seq_1, Eπ_seq_1, m_seq_1, p_seq_1 = solve_and_plot(md, μ_seq_1)
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We invite the reader to compare outcomes with those under rational expectations studied in A
Monetarist Theory of Price Levels.

Please note how the actual inflation rate 𝜋𝑡 “overshoots” its ultimate steady-state value at the time of
the sudden reduction in the rate of growth of the money supply at time 𝑇1.

We invite you to explain to yourself the source of this overshooting and why it does not occur in the
rational expectations version of the model.

4.5.7.2 Experiment 2
Now we’ll do a different experiment, namely, a gradual stabilization in which the rate of growth of
the money supply smoothly decline from a high value to a persistently low value.

While price level inflation eventually falls, it falls more slowly than the driving force that ultimately
causes it to fall, namely, the falling rate of growth of the money supply.

The sluggish fall in inflation is explained by how anticipated inflation 𝜋∗
𝑡  persistently exceeds actual

inflation 𝜋𝑡 during the transition from a high inflation to a low inflation situation.

# parameters
ϕ = 0.9
μ_seq_2 = np.array([ϕ**t * μ0 + (1-ϕ**t)*μ_star for t in range(md.T)])
μ_seq_2 = np.append(μ_seq_2, μ_star)

# solve and plot
π_seq_2, Eπ_seq_2, m_seq_2, p_seq_2 = solve_and_plot(md, μ_seq_2)

/cagan-ree
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Chapter 5

5. Linear Dynamics: Infinite Horizons
5.1 Eigenvalues and Eigenvectors

5.1.1 Overview
Eigenvalues and eigenvectors are a relatively advanced topic in linear algebra.

At the same time, these concepts are extremely useful for

• economic modeling (especially dynamics!)
• statistics
• some parts of applied mathematics
• machine learning
• and many other fields of science.

In this lecture we explain the basics of eigenvalues and eigenvectors and introduce the Neumann
Series Lemma.

We assume in this lecture that students are familiar with matrices and understand the basics of
matrix algebra.

We will use the following imports:

import matplotlib.pyplot as plt
import numpy as np
from numpy.linalg import matrix_power
from matplotlib.lines import Line2D
from matplotlib.patches import FancyArrowPatch
from mpl_toolkits.mplot3d import proj3d

5.1.2 Matrices as transformations
Let’s start by discussing an important concept concerning matrices.

5.1.2.1 Mapping vectors to vectors
One way to think about a matrix is as a rectangular collection of numbers.

Another way to think about a matrix is as a map (i.e., as a function) that transforms vectors to new
vectors.

To understand the second point of view, suppose we multiply an 𝑛 × 𝑚 matrix 𝐴 with an 𝑚 × 1
column vector 𝑥 to obtain an 𝑛 × 1 column vector 𝑦:

𝐴𝑥 = 𝑦 (5.1)

If we fix 𝐴 and consider different choices of 𝑥, we can understand 𝐴 as a map transforming 𝑥 to 𝐴𝑥.

Because 𝐴 is 𝑛 × 𝑚, it transforms 𝑚-vectors to 𝑛-vectors.

We can write this formally as 𝐴 : ℝ𝑚 → ℝ𝑛.

You might argue that if 𝐴 is a function then we should write 𝐴(𝑥) = 𝑦 rather than 𝐴𝑥 = 𝑦 but the
second notation is more conventional.

5.1.2.2 Square matrices
Let’s restrict our discussion to square matrices.

In the above discussion, this means that 𝑚 = 𝑛 and 𝐴 maps ℝ𝑛 to itself.
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Example 5.12.

[ 2
−1

1
1][1

3] = [5
2] (5.2)

Here, the matrix

𝐴 = [ 2
−1

1
1] (5.3)

transforms the vector 𝑥 = [1
3] to the vector 𝑦 = [5

2].

This means 𝐴 is an 𝑛 × 𝑛 matrix that maps (or “transforms”) a vector 𝑥 in ℝ𝑛 to a new vector 𝑦 =
𝐴𝑥 also in ℝ𝑛.

Let’s visualize this using Python:

A = np.array([[2,  1],
              [-1, 1]])

from math import sqrt

fig, ax = plt.subplots()
# Set the axes through the origin

for spine in ['left', 'bottom']:
    ax.spines[spine].set_position('zero')
for spine in ['right', 'top']:
    ax.spines[spine].set_color('none')

ax.set(xlim=(-2, 6), ylim=(-2, 4), aspect=1)

vecs = ((1, 3), (5, 2))
c = ['r', 'black']
for i, v in enumerate(vecs):
    ax.annotate('', xy=v, xytext=(0, 0),
                arrowprops=dict(color=c[i],
                shrink=0,
                alpha=0.7,
                width=0.5))

ax.text(0.2 + 1, 0.2 + 3, 'x=$(1,3)$')
ax.text(0.2 + 5, 0.2 + 2, 'Ax=$(5,2)$')

ax.annotate('', xy=(sqrt(10/29) * 5, sqrt(10/29) * 2), xytext=(0, 0),
            arrowprops=dict(color='purple',
                            shrink=0,
                            alpha=0.7,
                            width=0.5))

ax.annotate('', xy=(1, 2/5), xytext=(1/3, 1),
            arrowprops={'arrowstyle': '->',
                        'connectionstyle': 'arc3,rad=-0.3'},
            horizontalalignment='center')
ax.text(0.8, 0.8, f'θ', fontsize=14)

plt.show()



One way to understand this transformation is that 𝐴

• first rotates 𝑥 by some angle 𝜃 and
• then scales it by some scalar 𝛾 to obtain the image 𝑦 of 𝑥.

5.1.3 Types of transformations
Let’s examine some standard transformations we can perform with matrices.

Below we visualize transformations by thinking of vectors as points instead of arrows.

We consider how a given matrix transforms

• a grid of points and
• a set of points located on the unit circle in ℝ2.

To build the transformations we will use two functions, called grid_transform and
circle_transform.

Each of these functions visualizes the actions of a given 2 × 2 matrix 𝐴.

5.1.3.1 Scaling
A matrix of the form

[𝛼
0

0
𝛽] (5.4)

scales vectors across the x-axis by a factor 𝛼 and along the y-axis by a factor 𝛽.

Here we illustrate a simple example where 𝛼 = 𝛽 = 3.

A = np.array([[3, 0],  # scaling by 3 in both directions
              [0, 3]])



grid_transform(A)
circle_transform(A)

5.1.3.2 Shearing
A “shear” matrix of the form

[1
0

𝜆
1] (5.5)

stretches vectors along the x-axis by an amount proportional to the y-coordinate of a point.

A = np.array([[1, 2],     # shear along x-axis
              [0, 1]])
grid_transform(A)
circle_transform(A)



5.1.3.3 Rotation
A matrix of the form

[ cos 𝜃
− sin 𝜃

sin 𝜃
cos 𝜃] (5.6)

is called a rotation matrix.

This matrix rotates vectors clockwise by an angle 𝜃.

θ = np.pi/4  # 45 degree clockwise rotation
A = np.array([[np.cos(θ), np.sin(θ)],
              [-np.sin(θ), np.cos(θ)]])
grid_transform(A)



5.1.3.4 Permutation
The permutation matrix

[0
1

1
0] (5.7)

interchanges the coordinates of a vector.

A = np.column_stack([[0, 1], [1, 0]])
grid_transform(A)

More examples of common transition matrices can be found here.

5.1.4 Matrix multiplication as composition
Since matrices act as functions that transform one vector to another, we can apply the concept of
function composition to matrices as well.

5.1.4.1 Linear compositions
Consider the two matrices

https://en.wikipedia.org/wiki/Transformation\_matrix\#Examples\_in\_2\_dimensions


𝐴 = [ 0
−1

1
0] and 𝐵 = [1

0
2
1] (5.8)

What will the output be when we try to obtain 𝐴𝐵𝑥 for some 2 × 1 vector 𝑥?

[ 0
−1

1
0]

⏟
𝐴

[1
0

2
1]

⏟
𝐵

𝑥
⏞
[1
3] → [ 0

−1
1

−2]
⏟⏟⏟⏟⏟

AB

𝑥
⏞
[1
3] →

𝑦

⏞
[ 3
−7] (5.9)

[ 0
−1

1
0]

⏟
𝐴

[1
0

2
1]

⏟
𝐵

𝑥
⏞
[1
3] → [ 0

−1
1
0]

⏟
𝐴

Bx
⏞
[7
3] →

𝑦

⏞
[ 3
−7] (5.10)

We can observe that applying the transformation 𝐴𝐵 on the vector 𝑥 is the same as first applying 𝐵
on 𝑥 and then applying 𝐴 on the vector 𝐵𝑥.

Thus the matrix product 𝐴𝐵 is the composition of the matrix transformations 𝐴 and 𝐵

This means first apply transformation 𝐵 and then transformation 𝐴.

When we matrix multiply an 𝑛 × 𝑚 matrix 𝐴 with an 𝑚 × 𝑘 matrix 𝐵 the obtained matrix product
is an 𝑛 × 𝑘 matrix 𝐴𝐵.

Thus, if 𝐴 and 𝐵 are transformations such that 𝐴 : ℝ𝑚 → ℝ𝑛 and 𝐵 : ℝ𝑘 → ℝ𝑚, then 𝐴𝐵
transforms ℝ𝑘 to ℝ𝑛.

Viewing matrix multiplication as composition of maps helps us understand why, under matrix
multiplication, 𝐴𝐵 is generally not equal to 𝐵𝐴.

(After all, when we compose functions, the order usually matters.)

5.1.4.2 Examples
Let 𝐴 be the 90∘ clockwise rotation matrix given by [ 0

−1
1
0] and let 𝐵 be a shear matrix along the x-

axis given by [1
0

2
1].

We will visualize how a grid of points changes when we apply the transformation 𝐴𝐵 and then
compare it with the transformation 𝐵𝐴.

A = np.array([[0, 1],     # 90 degree clockwise rotation
              [-1, 0]])
B = np.array([[1, 2],     # shear along x-axis
              [0, 1]])

5.1.4.2.1 Shear then rotate
grid_composition_transform(A, B)  # transformation AB

https://en.wikipedia.org/wiki/Function\_composition


5.1.4.2.2 Rotate then shear
grid_composition_transform(B,A)         # transformation BA

It is evident that the transformation 𝐴𝐵 is not the same as the transformation 𝐵𝐴.

5.1.5 Iterating on a fixed map
In economics (and especially in dynamic modeling), we are often interested in analyzing behavior
where we repeatedly apply a fixed matrix.

For example, given a vector 𝑣 and a matrix 𝐴, we are interested in studying the sequence

𝑣, 𝐴𝑣, 𝐴𝐴𝑣 = 𝐴2𝑣, … (5.11)

Let’s first see examples of a sequence of iterates (𝐴𝑘𝑣)
𝑘≥0

 under different maps 𝐴.

def plot_series(A, v, n):

    B = np.array([[1, -1],
                  [1, 0]])

    fig, ax = plt.subplots()

    ax.set(xlim=(-4, 4), ylim=(-4, 4))
    ax.set_xticks([])
    ax.set_yticks([])
    for spine in ['left', 'bottom']:
        ax.spines[spine].set_position('zero')
    for spine in ['right', 'top']:
        ax.spines[spine].set_color('none')

    θ = np.linspace(0, 2 * np.pi, 150)



    r = 2.5
    x = r * np.cos(θ)
    y = r * np.sin(θ)
    x1 = x.reshape(1, -1)
    y1 = y.reshape(1, -1)
    xy = np.concatenate((x1, y1), axis=0)

    ellipse = B @ xy
    ax.plot(ellipse[0, :], ellipse[1, :], color='black',
            linestyle=(0, (5, 10)), linewidth=0.5)

    # Initialize holder for trajectories
    colors = plt.cm.rainbow(np.linspace(0, 1, 20))

    for i in range(n):
        iteration = matrix_power(A, i) @ v
        v1 = iteration[0]
        v2 = iteration[1]
        ax.scatter(v1, v2, color=colors[i])
        if i == 0:
            ax.text(v1+0.25, v2, f'$v$')
        elif i == 1:
            ax.text(v1+0.25, v2, f'$Av$')
        elif 1 < i < 4:
            ax.text(v1+0.25, v2, f'$A^{i}v$')
    plt.show()

A = np.array([[sqrt(3) + 1, -2],
              [1, sqrt(3) - 1]])
A = (1/(2*sqrt(2))) * A
v = (-3, -3)
n = 12

plot_series(A, v, n)



Here with each iteration the vectors get shorter, i.e., move closer to the origin.

In this case, repeatedly multiplying a vector by 𝐴 makes the vector “spiral in”.

B = np.array([[sqrt(3) + 1, -2],
              [1, sqrt(3) - 1]])
B = (1/2) * B
v = (2.5, 0)
n = 12

plot_series(B, v, n)



Here with each iteration vectors do not tend to get longer or shorter.

In this case, repeatedly multiplying a vector by 𝐴 simply “rotates it around an ellipse”.

B = np.array([[sqrt(3) + 1, -2],
              [1, sqrt(3) - 1]])
B = (1/sqrt(2)) * B
v = (-1, -0.25)
n = 6

plot_series(B, v, n)



Here with each iteration vectors tend to get longer, i.e., farther from the origin.

In this case, repeatedly multiplying a vector by 𝐴 makes the vector “spiral out”.

We thus observe that the sequence (𝐴𝑘𝑣)
𝑘≥0

 behaves differently depending on the map 𝐴 itself.

We now discuss the property of A that determines this behavior.

5.1.6 Eigenvalues
In this section we introduce the notions of eigenvalues and eigenvectors.

5.1.6.1 Definitions
Let 𝐴 be an 𝑛 × 𝑛 square matrix.

If 𝜆 is scalar and 𝑣 is a non-zero 𝑛-vector such that

𝐴𝑣 = 𝜆𝑣. (5.12)
Then we say that 𝜆 is an eigenvalue of 𝐴, and 𝑣 is the corresponding eigenvector.

Thus, an eigenvector of 𝐴 is a nonzero vector 𝑣 such that when the map 𝐴 is applied, 𝑣 is merely
scaled.

The next figure shows two eigenvectors (blue arrows) and their images under 𝐴 (red arrows).

As expected, the image 𝐴𝑣 of each 𝑣 is just a scaled version of the original

from numpy.linalg import eig

A = [[1, 2],
     [2, 1]]
A = np.array(A)
evals, evecs = eig(A)
evecs = evecs[:, 0], evecs[:, 1]



fig, ax = plt.subplots(figsize=(10, 8))
# Set the axes through the origin
for spine in ['left', 'bottom']:
    ax.spines[spine].set_position('zero')
for spine in ['right', 'top']:
    ax.spines[spine].set_color('none')
# ax.grid(alpha=0.4)

xmin, xmax = -3, 3
ymin, ymax = -3, 3
ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax))

# Plot each eigenvector
for v in evecs:
    ax.annotate('', xy=v, xytext=(0, 0),
                arrowprops=dict(facecolor='blue',
                shrink=0,
                alpha=0.6,
                width=0.5))

# Plot the image of each eigenvector
for v in evecs:
    v = A @ v
    ax.annotate('', xy=v, xytext=(0, 0),
                arrowprops=dict(facecolor='red',
                shrink=0,
                alpha=0.6,
                width=0.5))

# Plot the lines they run through
x = np.linspace(xmin, xmax, 3)
for v in evecs:
    a = v[1] / v[0]
    ax.plot(x, a * x, 'b-', lw=0.4)

plt.show()



5.1.6.2 Complex values
So far our definition of eigenvalues and eigenvectors seems straightforward.

There is one complication we haven’t mentioned yet:

When solving 𝐴𝑣 = 𝜆𝑣,

• 𝜆 is allowed to be a complex number and
• 𝑣 is allowed to be an 𝑛-vector of complex numbers.

We will see some examples below.

5.1.6.3 Some mathematical details
We note some mathematical details for more advanced readers.

(Other readers can skip to the next section.)

The eigenvalue equation is equivalent to (𝐴 − 𝜆𝐼)𝑣 = 0.

This equation has a nonzero solution 𝑣 only when the columns of 𝐴 − 𝜆𝐼  are linearly dependent.

This in turn is equivalent to stating the determinant is zero.

Hence, to find all eigenvalues, we can look for 𝜆 such that the determinant of 𝐴 − 𝜆𝐼  is zero.

This problem can be expressed as one of solving for the roots of a polynomial in 𝜆 of degree 𝑛.

This in turn implies the existence of 𝑛 solutions in the complex plane, although some might be
repeated.

5.1.6.4 Facts
Some nice facts about the eigenvalues of a square matrix 𝐴 are as follows:



1. the determinant of 𝐴 equals the product of the eigenvalues
2. the trace of 𝐴 (the sum of the elements on the principal diagonal) equals the sum of the

eigenvalues
3. if 𝐴 is symmetric, then all of its eigenvalues are real
4. if 𝐴 is invertible and 𝜆1, …, 𝜆𝑛 are its eigenvalues, then the eigenvalues of 𝐴−1 are

1/𝜆1, …, 1/𝜆𝑛.

A corollary of the last statement is that a matrix is invertible if and only if all its eigenvalues are
nonzero.

5.1.6.5 Computation
Using NumPy, we can solve for the eigenvalues and eigenvectors of a matrix as follows

from numpy.linalg import eig

A = ((1, 2),
     (2, 1))

A = np.array(A)
evals, evecs = eig(A)
evals  # eigenvalues

array([ 3., -1.])

evecs  # eigenvectors

array([[ 0.70710678, -0.70710678],
       [ 0.70710678,  0.70710678]])

Note that the columns of evecs are the eigenvectors.

Since any scalar multiple of an eigenvector is an eigenvector with the same eigenvalue (which can
be verified), the eig routine normalizes the length of each eigenvector to one.

The eigenvectors and eigenvalues of a map 𝐴 determine how a vector 𝑣 is transformed when we
repeatedly multiply by 𝐴.

This is discussed further later.

5.1.7 The Neumann Series Lemma
In this section we present a famous result about series of matrices that has many applications in
economics.

5.1.7.1 Scalar series
Here’s a fundamental result about series:

If 𝑎 is a number and | 𝑎 | < 1, then

∑
∞

𝑘=0
𝑎𝑘 = 1

1 − 𝑎
= (1 − 𝑎)−1 (5.13)

For a one-dimensional linear equation 𝑥 = 𝑎𝑥 + 𝑏 where x is unknown we can thus conclude that
the solution 𝑥∗ is given by:

𝑥∗ = 𝑏
1 − 𝑎

= ∑
∞

𝑘=0
𝑎𝑘𝑏 (5.14)

5.1.7.2 Matrix series
A generalization of this idea exists in the matrix setting.



Theorem 5.1. Neumann Series Lemma

Let 𝐴 be a square matrix and let 𝐴𝑘 be the 𝑘-th power of 𝐴.

Let 𝑟(𝐴) be the spectral radius of 𝐴, defined as max𝑖| 𝜆𝑖 |, where

• {𝜆𝑖}𝑖 is the set of eigenvalues of 𝐴 and
• | 𝜆𝑖 | is the modulus of the complex number 𝜆𝑖

Neumann’s Theorem states the following: If 𝑟(𝐴) < 1, then 𝐼 − 𝐴 is invertible, and

(𝐼 − 𝐴)−1 = ∑
∞

𝑘=0
𝐴𝑘 (5.16)

Consider the system of equations 𝑥 = 𝐴𝑥 + 𝑏 where 𝐴 is an 𝑛 × 𝑛 square matrix and 𝑥 and 𝑏 are
both column vectors in ℝ𝑛.

Using matrix algebra we can conclude that the solution to this system of equations will be given by:

𝑥∗ = (𝐼 − 𝐴)−1𝑏 (5.15)

What guarantees the existence of a unique vector 𝑥∗ that satisfies (15)?

The following is a fundamental result in functional analysis that generalizes (13) to a multivariate
case.

We can see the Neumann Series Lemma in action in the following example.

A = np.array([[0.4, 0.1],
              [0.7, 0.2]])

evals, evecs = eig(A)   # finding eigenvalues and eigenvectors

r = max(abs(λ) for λ in evals)    # compute spectral radius
print(r)

0.5828427124746189

The spectral radius 𝑟(𝐴) obtained is less than 1.

Thus, we can apply the Neumann Series Lemma to find (𝐼 − 𝐴)−1.

I = np.identity(2)  # 2 x 2 identity matrix
B = I - A

B_inverse = np.linalg.inv(B)  # direct inverse method

A_sum = np.zeros((2, 2))  # power series sum of A
A_power = I
for i in range(50):
    A_sum += A_power
    A_power = A_power @ A

Let’s check equality between the sum and the inverse methods.

np.allclose(A_sum, B_inverse)

True

Although we truncate the infinite sum at 𝑘 = 50, both methods give us the same result which
illustrates the result of the Neumann Series Lemma.



Exercise 5.17.

Power iteration is a method for finding the greatest absolute eigenvalue of a diagonalizable
matrix.

The method starts with a random vector 𝑏0 and repeatedly applies the matrix 𝐴 to it

𝑏𝑘+1 = 𝐴𝑏𝑘
| 𝐴𝑏𝑘 |

(5.17)

A thorough discussion of the method can be found here.

In this exercise, first implement the power iteration method and use it to find the greatest
absolute eigenvalue and its corresponding eigenvector.

Then visualize the convergence.

5.1.8 Exercises

https://pythonnumericalmethods.berkeley.edu/notebooks/chapter15.02-The-Power-Method.html


Solution 5.13. Solution to Exercise 1

Here is one solution.

We start by looking into the distance between the eigenvector approximation and the true
eigenvector.

# Define a matrix A
A = np.array([[1, 0, 3],
              [0, 2, 0],
              [3, 0, 1]])

num_iters = 20

# Define a random starting vector b
b = np.random.rand(A.shape[1])

# Get the leading eigenvector of matrix A
eigenvector = np.linalg.eig(A)[1][:, 0]

errors = []
res = []

# Power iteration loop
for i in range(num_iters):
    # Multiply b by A
    b = A @ b
    # Normalize b
    b = b / np.linalg.norm(b)
    # Append b to the list of eigenvector approximations
    res.append(b)
    err = np.linalg.norm(np.array(b)
                         - eigenvector)
    errors.append(err)

greatest_eigenvalue = np.dot(A @ b, b) / np.dot(b, b)
print(f'The approximated greatest absolute eigenvalue is \
        {greatest_eigenvalue:.2f}')
print('The real eigenvalue is', np.linalg.eig(A)[0])

# Plot the eigenvector approximations for each iteration
plt.figure(figsize=(10, 6))
plt.xlabel('iterations')
plt.ylabel('error')
_ = plt.plot(errors)

The approximated greatest absolute eigenvalue is         4.00
The real eigenvalue is [ 4. -2.  2.]

Figure 80.  Power iteration
Then we can look at the trajectory of the eigenvector approximation.

# Set up the figure and axis for 3D plot
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

# Plot the eigenvectors
ax.scatter(eigenvector[0],
           eigenvector[1],
           eigenvector[2],
           color='r', s=80)

for i, vec in enumerate(res):
    ax.scatter(vec[0], vec[1], vec[2],
               color='b',
               alpha=(i+1)/(num_iters+1),
               s=80)

ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.tick_params(axis='both', which='major', labelsize=7)

points = [plt.Line2D([0], [0], linestyle='none',
                     c=i, marker='o') for i in ['r', 'b']]
ax.legend(points, ['actual eigenvector',
                   r'approximated eigenvector ($b_k$)'])
ax.set_box_aspect(aspect=None, zoom=0.8)

plt.show()
Figure 81.  Power iteration trajectory



Exercise 5.18.

We have discussed the trajectory of the vector 𝑣 after being transformed by 𝐴.

Consider the matrix 𝐴 = [1
1

2
1] and the vector 𝑣 = [ 2

−2].

Try to compute the trajectory of 𝑣 after being transformed by 𝐴 for 𝑛 = 4 iterations and plot the
result.



Solution 5.14. Solution to Exercise 2

A = np.array([[1, 2],
              [1, 1]])
v = (0.4, -0.4)
n = 11

# Compute eigenvectors and eigenvalues
eigenvalues, eigenvectors = np.linalg.eig(A)

print(f'eigenvalues:\n {eigenvalues}')
print(f'eigenvectors:\n {eigenvectors}')

plot_series(A, v, n)

eigenvalues:
 [ 2.41421356 -0.41421356]
eigenvectors:
 [[ 0.81649658 -0.81649658]
 [ 0.57735027  0.57735027]]

The result seems to converge to the eigenvector of 𝐴 with the largest eigenvalue.

Let’s use a vector field to visualize the transformation brought by A.

(This is a more advanced topic in linear algebra, please step ahead if you are comfortable with
the math.)

# Create a grid of points
x, y = np.meshgrid(np.linspace(-5, 5, 15),
                   np.linspace(-5, 5, 20))

# Apply the matrix A to each point in the vector field
vec_field = np.stack([x, y])
u, v = np.tensordot(A, vec_field, axes=1)

# Plot the transformed vector field
c = plt.streamplot(x, y, u - x, v - y,
                   density=1, linewidth=None, color='#A23BEC')
c.lines.set_alpha(0.5)
c.arrows.set_alpha(0.5)

# Draw eigenvectors
origin = np.zeros((2, len(eigenvectors)))
parameters = {'color': ['b', 'g'], 'angles': 'xy',
              'scale_units': 'xy', 'scale': 0.1, 'width': 0.01}
plt.quiver(*origin, eigenvectors[0],
           eigenvectors[1], **parameters)
plt.quiver(*origin, - eigenvectors[0],
           - eigenvectors[1], **parameters)

colors = ['b', 'g']
lines = [Line2D([0], [0], color=c, linewidth=3) for c in colors]
labels = ["2.4 eigenspace", "0.4 eigenspace"]
plt.legend(lines, labels, loc='center left',
           bbox_to_anchor=(1, 0.5))

plt.xlabel("x")
plt.ylabel("y")
plt.grid()
plt.gca().set_aspect('equal', adjustable='box')
plt.show()

Figure 82.  Convergence towards eigenvectors
Note that the vector field converges to the eigenvector of 𝐴 with the largest eigenvalue and
diverges from the eigenvector of 𝐴 with the smallest eigenvalue.

In fact, the eigenvectors are also the directions in which the matrix 𝐴 stretches or shrinks the
space.

Specifically, the eigenvector with the largest eigenvalue is the direction in which the matrix 𝐴
stretches the space the most.

We will see more intriguing examples in the following exercise.

https://en.wikipedia.org/wiki/Vector\_field


Exercise 5.19.

Previously, we demonstrated the trajectory of the vector 𝑣 after being transformed by 𝐴 for three
different matrices.

Use the visualization in the previous exercise to explain the trajectory of the vector 𝑣 after being
transformed by 𝐴 for the three different matrices.



Solution 5.15. Solution to Exercise 3

Here is one solution

figure, ax = plt.subplots(1, 3, figsize=(15, 5))
A = np.array([[sqrt(3) + 1, -2],
              [1, sqrt(3) - 1]])
A = (1/(2*sqrt(2))) * A

B = np.array([[sqrt(3) + 1, -2],
              [1, sqrt(3) - 1]])
B = (1/2) * B

C = np.array([[sqrt(3) + 1, -2],
              [1, sqrt(3) - 1]])
C = (1/sqrt(2)) * C

examples = [A, B, C]

for i, example in enumerate(examples):
    M = example

    # Compute right eigenvectors and eigenvalues
    eigenvalues, eigenvectors = np.linalg.eig(M)
    print(f'Example {i+1}:\n')
    print(f'eigenvalues:\n {eigenvalues}')
    print(f'eigenvectors:\n {eigenvectors}\n')

    eigenvalues_real = eigenvalues.real
    eigenvectors_real = eigenvectors.real

    # Create a grid of points
    x, y = np.meshgrid(np.linspace(-20, 20, 15),
                       np.linspace(-20, 20, 20))

    # Apply the matrix A to each point in the vector field
    vec_field = np.stack([x, y])
    u, v = np.tensordot(M, vec_field, axes=1)

    # Plot the transformed vector field
    c = ax[i].streamplot(x, y, u - x, v - y, density=1,
                         linewidth=None, color='#A23BEC')
    c.lines.set_alpha(0.5)
    c.arrows.set_alpha(0.5)

    # Draw eigenvectors
    parameters = {'color': ['b', 'g'], 'angles': 'xy',
                  'scale_units': 'xy', 'scale': 1,
                  'width': 0.01, 'alpha': 0.5}
    origin = np.zeros((2, len(eigenvectors)))
    ax[i].quiver(*origin, eigenvectors_real[0],
                 eigenvectors_real[1], **parameters)
    ax[i].quiver(*origin,
                 - eigenvectors_real[0],
                 - eigenvectors_real[1],
                 **parameters)

    ax[i].set_xlabel("x-axis")
    ax[i].set_ylabel("y-axis")
    ax[i].grid()
    ax[i].set_aspect('equal', adjustable='box')

plt.show()

Example 1:

eigenvalues:
 [0.61237244+0.35355339j 0.61237244-0.35355339j]
eigenvectors:
 [[0.81649658+0.j         0.81649658-0.j        ]
 [0.40824829-0.40824829j 0.40824829+0.40824829j]]

Example 2:

eigenvalues:
 [0.8660254+0.5j 0.8660254-0.5j]
eigenvectors:
 [[0.81649658+0.j         0.81649658-0.j        ]
 [0.40824829-0.40824829j 0.40824829+0.40824829j]]

Example 3:

eigenvalues:
 [1.22474487+0.70710678j 1.22474487-0.70710678j]
eigenvectors:
 [[0.81649658+0.j         0.81649658-0.j        ]
 [0.40824829-0.40824829j 0.40824829+0.40824829j]]

Figure 83.  Vector fields of the three matrices
The vector fields explain why we observed the trajectories of the vector 𝑣 multiplied by 𝐴
iteratively before.

The pattern demonstrated here is because we have complex eigenvalues and eigenvectors.

We can plot the complex plane for one of the matrices using Arrow3D class retrieved from
stackoverflow.

class Arrow3D(FancyArrowPatch):
    def __init__(self, xs, ys, zs, *args, **kwargs):
        super().__init__((0, 0), (0, 0), *args, **kwargs)
        self._verts3d = xs, ys, zs

    def do_3d_projection(self):
        xs3d, ys3d, zs3d = self._verts3d
        xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d,
                                           self.axes.M)
        self.set_positions((0.1*xs[0], 0.1*ys[0]),
                           (0.1*xs[1], 0.1*ys[1]))

        return np.min(zs)

eigenvalues, eigenvectors = np.linalg.eig(A)

# Create meshgrid for vector field
x, y = np.meshgrid(np.linspace(-2, 2, 15),
                   np.linspace(-2, 2, 15))

# Calculate vector field (real and imaginary parts)
u_real = A[0][0] * x + A[0][1] * y
v_real = A[1][0] * x + A[1][1] * y
u_imag = np.zeros_like(x)
v_imag = np.zeros_like(y)

# Create 3D figure
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
vlength = np.linalg.norm(eigenvectors)
ax.quiver(x, y, u_imag, u_real-x, v_real-y, v_imag-u_imag,
          colors='b', alpha=0.3, length=.2,
          arrow_length_ratio=0.01)

arrow_prop_dict = dict(mutation_scale=5,
                       arrowstyle='-|>', shrinkA=0, shrinkB=0)

# Plot 3D eigenvectors
for c, i in zip(['b', 'g'], [0, 1]):
    a = Arrow3D([0, eigenvectors[0][i].real],
                [0, eigenvectors[1][i].real],
                [0, eigenvectors[1][i].imag],
                color=c, **arrow_prop_dict)
    ax.add_artist(a)

# Set axis labels and title
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('Im')
ax.set_box_aspect(aspect=None, zoom=0.8)

plt.draw()
plt.show()

Figure 84.  3D plot of the vector field

https://stackoverflow.com/questions/22867620/putting-arrowheads-on-vectors-in-a-3d-plot


5.2 Computing Square Roots

5.2.1 Introduction
Chapter 24 of Russell (2004) about early Greek mathematics and astronomy contains this fascinating
passage:

The square root of 2, which was the first irrational to be discovered, was known to the early
Pythagoreans, and ingenious methods of approximating to its value were discovered. The best
was as follows: Form two columns of numbers, which we will call the 𝑎’s and the 𝑏’s; each
starts with a 1. The next 𝑎, at each stage, is formed by adding the last 𝑎 and the 𝑏 already
obtained; the next 𝑏 is formed by adding twice the previous 𝑎 to the previous 𝑏. The first 6 pairs
so obtained are (1, 1), (2, 3), (5, 7), (12, 17), (29, 41), (70, 99). In each pair, 2𝑎 − 𝑏 is 1 or −1.
Thus 𝑏/𝑎 is nearly the square root of two, and at each fresh step it gets nearer. For instance, the
reader may satisy himself that the square of 99/70 is very nearly equal to 2.

This lecture drills down and studies this ancient method for computing square roots by using some
of the matrix algebra that we’ve learned in earlier quantecon lectures.

In particular, this lecture can be viewed as a sequel to Eigenvalues and Eigenvectors.

It provides an example of how eigenvectors isolate invariant subspaces that help construct and
analyze solutions of linear difference equations.

When vector 𝑥𝑡 starts in an invariant subspace, iterating the different equation keeps 𝑥𝑡+𝑗 in that
subspace for all 𝑗 ≥ 1.

Invariant subspace methods are used throughout applied economic dynamics, for example, in the
lecture Money Financed Government Deficits and Price Levels.

Our approach here is to illustrate the method with an ancient example, one that ancient Greek
mathematicians used to compute square roots of positive integers.

5.2.2 Perfect squares and irrational numbers
An integer is called a perfect square if its square root is also an integer.

An ordered sequence of perfect squares starts with

4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, … (5.18)

If an integer is not a perfect square, then its square root is an irrational number – i.e., it cannot be
expressed as a ratio of two integers, and its decimal expansion is indefinite.

The ancient Greeks invented an algorithm to compute square roots of integers, including integers
that are not perfect squares.

Their method involved

• computing a particular sequence of integers {𝑦𝑡}
∞
𝑡=0;

• computing lim𝑡→∞(𝑦𝑡+1
𝑦𝑡

) = ̄𝑟;
• deducing the desired square root from ̄𝑟.

In this lecture, we’ll describe this method.

We’ll also use invariant subspaces to describe variations on this method that are faster.

/eigen-i
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5.2.3 Second-order linear difference equations
Before telling how the ancient Greeks computed square roots, we’ll provide a quick introduction to
second-order linear difference equations.

We’ll study the following second-order linear difference equation

𝑦𝑡 = 𝑎1𝑦𝑡−1 + 𝑎2𝑦𝑡−2, 𝑡 ≥ 0 (5.19)

where (𝑦−1, 𝑦−2) is a pair of given initial conditions.

Equation (2) is actually an infinite number of linear equations in the sequence {𝑦𝑡}
∞
𝑡=0.

There is one equation each for 𝑡 = 0, 1, 2, ….

We could follow an approach taken in the lecture on present values and stack all of these equations
into a single matrix equation that we would then solve by using matrix inversion.

Note

In the present instance, the matrix equation would multiply a countably infinite dimensional
square matrix by a countably infinite dimensional vector. With some qualifications, matrix
multiplication and inversion tools apply to such an equation.

But we won’t pursue that approach here.

Instead, we’ll seek to find a time-invariant function that solves our difference equation, meaning that
it provides a formula for a {𝑦𝑡}

∞
𝑡=0 sequence that satisfies equation (2) for each 𝑡 ≥ 0.

We seek an expression for 𝑦𝑡, 𝑡 ≥ 0 as functions of the initial conditions (𝑦−1, 𝑦−2):

𝑦𝑡 = 𝑔((𝑦−1, 𝑦−2); 𝑡), 𝑡 ≥ 0. (5.20)

We call such a function 𝑔 a solution of the difference equation (2).

One way to discover a solution is to use a guess and verify method.

We shall begin by considering a special initial pair of initial conditions that satisfy

𝑦−1 = 𝛿𝑦−2 (5.21)

where 𝛿 is a scalar to be determined.

For initial condition that satisfy (4) equation (2) impllies that

𝑦0 = (𝑎1 + 𝑎2
𝛿

)𝑦−1. (5.22)

We want

(𝑎1 + 𝑎2
𝛿

) = 𝛿 (5.23)

which we can rewrite as the characteristic equation

𝛿2 − 𝑎1𝛿 − 𝑎2 = 0. (5.24)

Applying the quadratic formula to solve for the roots of (7) we find that

𝛿 = 𝑎1 ± √𝑎2
1 + 4𝑎2

2
. (5.25)

For either of the two 𝛿’s that satisfy equation (8), a solution of difference equation (2) is

𝑦𝑡 = 𝛿𝑡𝑦0, ∀𝑡 ≥ 0 (5.26)

/pv


provided that we set

𝑦0 = 𝛿𝑦−1. (5.27)

The general solution of difference equation (2) takes the form

𝑦𝑡 = 𝜂1𝛿𝑡
1 + 𝜂2𝛿𝑡

2 (5.28)

where 𝛿1, 𝛿2 are the two solutions (8) of the characteristic equation (7), and 𝜂1, 𝜂2 are two constants
chosen to satisfy

[𝑦−1
𝑦−2

] = [𝛿−1
1

𝛿−2
1

𝛿−1
2

𝛿−2
2

][𝜂1
𝜂2

] (5.29)

or

[𝜂1
𝜂2

] = [𝛿−1
1

𝛿−2
1

𝛿−1
2

𝛿−2
2

]
−1

[𝑦−1
𝑦−2

] (5.30)

Sometimes we are free to choose the initial conditions (𝑦−1, 𝑦−2), in which case we use system (12)
to find the associated (𝜂1, 𝜂2).

If we choose (𝑦−1, 𝑦−2) to set (𝜂1, 𝜂2) = (1, 0), then 𝑦𝑡 = 𝛿𝑡
1 for all 𝑡 ≥ 0.

If we choose (𝑦−1, 𝑦−2) to set (𝜂1, 𝜂2) = (0, 1), then 𝑦𝑡 = 𝛿𝑡
2 for all 𝑡 ≥ 0.

Soon we’ll relate the preceding calculations to components an eigen decomposition of a transition
matrix that represents difference equation (2) in a very convenient way.

We’ll turn to that after we describe how Ancient Greeks figured out how to compute square roots of
positive integers that are not perfect squares.

5.2.4 Algorithm of the Ancient Greeks
Let 𝜎 be a positive integer greater than 1.

So 𝜎 ∈ ℐ ≡ {2, 3, …}.

We want an algorithm to compute the square root of 𝜎 ∈ ℐ.

If 
√

𝜎 ∈ ℐ, 𝜎 is said to be a perfect square.

If 
√

𝜎¬ ∈ ℐ, it turns out that it is irrational.

Ancient Greeks used a recursive algorithm to compute square roots of integers that are not perfect
squares.

The algorithm iterates on a second-order linear difference equation in the sequence {𝑦𝑡}
∞
𝑡=0:

𝑦𝑡 = 2𝑦𝑡−1 − (1 − 𝜎)𝑦𝑡−2, 𝑡 ≥ 0 (5.31)

together with a pair of integers that are initial conditions for 𝑦−1, 𝑦−2.

First, we’ll deploy some techniques for solving the difference equations that are also deployed in
Samuelson Multiplier-Accelerator.

The characteristic equation associated with difference equation (14) is

𝑐(𝑥) ≡ 𝑥2 − 2𝑥 + (1 − 𝜎) = 0 (5.32)

(Notice how this is an instance of equation (7) above.)

Factoring the right side of equation (15), we obtain

https://quantecon.github.io/lecture-dynamics/samuelson.html


𝑐(𝑥) = (𝑥 − 𝜆1)(𝑥 − 𝜆2) = 0 (5.33)

where

𝑐(𝑥) = 0 (5.34)

for 𝑥 = 𝜆1 or 𝑥 = 𝜆2.

These two special values of 𝑥 are sometimes called zeros or roots of 𝑐(𝑥).

By applying the quadratic formula to solve for the roots the characteristic equation (15), we find that

𝜆1 = 1 +
√

𝜎, 𝜆2 = 1 −
√

𝜎. (5.35)

Formulas (18) indicate that 𝜆1 and 𝜆2 are each functions of a single variable, namely, 
√

𝜎, the object
that we along with some Ancient Greeks want to compute.

Ancient Greeks had an indirect way of exploiting this fact to compute square roots of a positive
integer.

They did this by starting from particular initial conditions 𝑦−1, 𝑦−2 and iterating on the difference
equation (14).

Solutions of difference equation (14) take the form

𝑦𝑡 = 𝜆𝑡
1𝜂1 + 𝜆𝑡

2𝜂2 (5.36)

where 𝜂1 and 𝜂2 are chosen to satisfy prescribed initial conditions 𝑦−1, 𝑦−2:

𝜆−1
1 𝜂1 + 𝜆−1

2 𝜂2 = 𝑦−1

𝜆−2
1 𝜂1 + 𝜆−2

2 𝜂2 = 𝑦−2
(5.37)

System (20) of simultaneous linear equations will play a big role in the remainder of this lecture.

Since 𝜆1 = 1 +
√

𝜎 > 1 > 𝜆2 = 1 −
√

𝜎, it follows that for almost all (but not all) initial conditions

lim
𝑡→∞

(
𝑦𝑡+1
𝑦𝑡

) = 1 +
√

𝜎. (5.38)

Thus,

√
𝜎 = lim

𝑡→∞
(

𝑦𝑡+1
𝑦𝑡

) − 1. (5.39)

However, notice that if 𝜂1 = 0, then

lim
𝑡→∞

(
𝑦𝑡+1
𝑦𝑡

) = 1 −
√

𝜎 (5.40)

so that

√
𝜎 = 1 − lim

𝑡→∞
(

𝑦𝑡+1
𝑦𝑡

). (5.41)

Actually, if 𝜂1 = 0, it follows that

√
𝜎 = 1 − (

𝑦𝑡+1
𝑦𝑡

) ∀𝑡 ≥ 0, (5.42)

so that convergence is immediate and there is no need to take limits.

Symmetrically, if 𝜂2 = 0, it follows that



√
𝜎 = (

𝑦𝑡+1
𝑦𝑡

) − 1 ∀𝑡 ≥ 0 (5.43)

so again, convergence is immediate, and we have no need to compute a limit.

System (20) of simultaneous linear equations can be used in various ways.

• we can take 𝑦−1, 𝑦−2 as given initial conditions and solve for 𝜂1, 𝜂2;
• we can instead take 𝜂1, 𝜂2 as given and solve for initial conditions 𝑦−1, 𝑦−2.

Notice how we used the second approach above when we set 𝜂1, 𝜂2 either to (0, 1), for example, or
(1, 0), for example.

In taking this second approach, we constructed an invariant subspace of 𝑹2.

Here is what is going on.

For 𝑡 ≥ 0 and for most pairs of initial conditions (𝑦−1, 𝑦−2) ∈ 𝑹2 for equation (14), 𝑦𝑡 can be
expressed as a linear combination of 𝑦𝑡−1 and 𝑦𝑡−2.

But for some special initial conditions (𝑦−1, 𝑦−2) ∈ 𝑹2, 𝑦𝑡 can be expressed as a linear function of
𝑦𝑡−1 only.

These special initial conditions require that 𝑦−1 be a linear function of 𝑦−2.

We’ll study these special initial conditions soon.

But first let’s write some Python code to iterate on equation (14) starting from an arbitrary
(𝑦−1, 𝑦−2) ∈ 𝑹2.

5.2.5 Implementation
We now implement the above algorithm to compute the square root of 𝜎.

In this lecture, we use the following import:

import numpy as np
import matplotlib.pyplot as plt

def solve_λs(coefs):    
    # Calculate the roots using numpy.roots
    λs = np.roots(coefs)
    
    # Sort the roots for consistency
    return sorted(λs, reverse=True)

def solve_η(λ_1, λ_2, y_neg1, y_neg2):
    # Solve the system of linear equation
    A = np.array([
        [1/λ_1, 1/λ_2],
        [1/(λ_1**2), 1/(λ_2**2)]
    ])
    b = np.array((y_neg1, y_neg2))
    ηs = np.linalg.solve(A, b)
    
    return ηs

def solve_sqrt(σ, coefs, y_neg1, y_neg2, t_max=100):
    # Ensure σ is greater than 1
    if σ <= 1:
        raise ValueError("σ must be greater than 1")



        
    # Characteristic roots
    λ_1, λ_2 = solve_λs(coefs)
    
    # Solve for η_1 and η_2
    η_1, η_2 = solve_η(λ_1, λ_2, y_neg1, y_neg2)

    # Compute the sequence up to t_max
    t = np.arange(t_max + 1)
    y = (λ_1 ** t) * η_1 + (λ_2 ** t) * η_2
    
    # Compute the ratio y_{t+1} / y_t for large t
    sqrt_σ_estimate = (y[-1] / y[-2]) - 1
    
    return sqrt_σ_estimate

# Use σ = 2 as an example
σ = 2

# Encode characteristic equation
coefs = (1, -2, (1 - σ))

# Solve for the square root of σ
sqrt_σ = solve_sqrt(σ, coefs, y_neg1=2, y_neg2=1)

# Calculate the deviation
dev = abs(sqrt_σ-np.sqrt(σ))
print(f"sqrt({σ}) is approximately {sqrt_σ:.5f} (error: {dev:.5f})")

sqrt(2) is approximately 1.41421 (error: 0.00000)

Now we consider cases where (𝜂1, 𝜂2) = (0, 1) and (𝜂1, 𝜂2) = (1, 0)

# Compute λ_1, λ_2
λ_1, λ_2 = solve_λs(coefs)
print(f'Roots for the characteristic equation are ({λ_1:.5f}, {λ_2:.5f}))')

Roots for the characteristic equation are (2.41421, -0.41421))

# Case 1: η_1, η_2 = (0, 1)
ηs = (0, 1)

# Compute y_{t} and y_{t-1} with t >= 0
y = lambda t, ηs: (λ_1 ** t) * ηs[0] + (λ_2 ** t) * ηs[1]
sqrt_σ = 1 - y(1, ηs) / y(0, ηs)

print(f"For η_1, η_2 = (0, 1), sqrt_σ = {sqrt_σ:.5f}")

For η_1, η_2 = (0, 1), sqrt_σ = 1.41421

# Case 2: η_1, η_2 = (1, 0)
ηs = (1, 0)
sqrt_σ = y(1, ηs) / y(0, ηs) - 1

print(f"For η_1, η_2 = (1, 0), sqrt_σ = {sqrt_σ:.5f}")

For η_1, η_2 = (1, 0), sqrt_σ = 1.41421

We find that convergence is immediate.



Next, we’ll represent the preceding analysis by first vectorizing our second-order difference equation
(14) and then using eigendecompositions of an associated state transition matrix.

5.2.6 Vectorizing the difference equation
Represent (14) with the first-order matrix difference equation

[𝑦𝑡+1
𝑦𝑡

] = [2
1

−(1 − 𝜎)
0 ][ 𝑦𝑡

𝑦𝑡−1
] (5.44)

or

𝑥𝑡+1 = 𝑀𝑥𝑡 (5.45)

where

𝑀 = [2
1

−(1 − 𝜎)
0 ], 𝑥𝑡 = [ 𝑦𝑡

𝑦𝑡−1
] (5.46)

Construct an eigendecomposition of 𝑀 :

𝑀 = 𝑉 [𝜆1
0

0
𝜆2

]𝑉 −1 (5.47)

where columns of 𝑉  are eigenvectors corresponding to eigenvalues 𝜆1 and 𝜆2.

The eigenvalues can be ordered so that 𝜆1 > 1 > 𝜆2.

Write equation (14) as

𝑥𝑡+1 = 𝑉 Λ𝑉 −1𝑥𝑡 (5.48)

Now we implement the algorithm above.

First we write a function that iterates 𝑀

def iterate_M(x_0, M, num_steps, dtype=np.float64):
    
    # Eigendecomposition of M
    Λ, V = np.linalg.eig(M)
    V_inv = np.linalg.inv(V)
    
    # Initialize the array to store results
    xs = np.zeros((x_0.shape[0], 
                   num_steps + 1))
    
    # Perform the iterations
    xs[:, 0] = x_0
    for t in range(num_steps):
        xs[:, t + 1] = M @ xs[:, t]
    
    return xs, Λ, V, V_inv

# Define the state transition matrix M
M = np.array([
      [2, -(1 - σ)],
      [1, 0]])

# Initial condition vector x_0
x_0 = np.array([2, 2])



# Perform the iteration
xs, Λ, V, V_inv = iterate_M(x_0, M, num_steps=100)

print(f"eigenvalues:\n{Λ}")
print(f"eigenvectors:\n{V}")
print(f"inverse eigenvectors:\n{V_inv}")

eigenvalues:
[ 2.41421356 -0.41421356]
eigenvectors:
[[ 0.92387953 -0.38268343]
 [ 0.38268343  0.92387953]]
inverse eigenvectors:
[[ 0.92387953  0.38268343]
 [-0.38268343  0.92387953]]

Let’s compare the eigenvalues to the roots (18) of equation (15) that we computed above.

roots = solve_λs((1, -2, (1 - σ)))
print(f"roots: {np.round(roots, 8)}")

roots: [ 2.41421356 -0.41421356]

Hence we confirmed (30).

Information about the square root we are after is also contained in the two eigenvectors.

Indeed, each eigenvector is just a two-dimensional subspace of ℝ3 pinned down by dynamics of the
form

𝑦𝑡 = 𝜆𝑖𝑦𝑡−1, 𝑖 = 1, 2 (5.49)

that we encountered above in equation (9) above.

In equation (32), the 𝑖th 𝜆𝑖 equals the 𝑉𝑖,1/𝑉𝑖,2.

The following graph verifies this for our example.
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5.2.7 Invariant subspace approach
The preceding calculation indicates that we can use the eigenvectors 𝑉  to construct 2-dimensional
invariant subspaces.

We’ll pursue that possibility now.

Define the transformed variables

𝑥∗
𝑡 = 𝑉 −1𝑥𝑡 (5.50)

Evidently, we can recover 𝑥𝑡 from 𝑥∗
𝑡 :

𝑥𝑡 = 𝑉 𝑥∗
𝑡 (5.51)

The following notations and equations will help us.

Let

$$

V = \begin{bmatrix} V_{1,1} & V_{1,2} \cr V_{2,1} & V_{2,2} \end{bmatrix}, \quad V^{−1} =
\begin{bmatrix} V^{1,1} & V^{1,2} \cr V^{2,1} & V^{2,2} \end{bmatrix} $$

Notice that it follows from



[𝑉 1,1

𝑉 2,1
𝑉 1,2

𝑉 2,2][
𝑉1,1
𝑉2,1

𝑉1,2
𝑉2,2

] = [1
0

0
1] (5.52)

that

𝑉 2,1𝑉1,1 + 𝑉 2,2𝑉2,1 = 0 (5.53)

and

𝑉 1,1𝑉1,2 + 𝑉 1,2𝑉2,2 = 0. (5.54)

These equations will be very useful soon.

Notice that

[
𝑥∗

1,𝑡+1
𝑥∗

2,𝑡+1
] = [𝜆1

0
0
𝜆2

][
𝑥∗

1,𝑡
𝑥∗

2,𝑡
] (5.55)

To deactivate 𝜆1 we want to set

𝑥∗
1,0 = 0. (5.56)

This can be achieved by setting

𝑥2,0 = −(𝑉 1,2)−1𝑉 1,1𝑥1,0 = 𝑉2,2𝑉 −1
1,2 𝑥1,0. (5.57)

To deactivate 𝜆2, we want to set

𝑥∗
2,0 = 0 (5.58)

This can be achieved by setting

𝑥2,0 = −(𝑉 2,2)−1𝑉 2,1𝑥1,0 = 𝑉2,1𝑉 −1
1,1 𝑥1,0. (5.59)

Let’s verify (40) and (42) below

To deactivate 𝜆1 we use (40)

xd_1 = np.array((x_0[0], 
                 V[1,1]/V[0,1] * x_0[0]),
                dtype=np.float64)

# Compute x_{1,0}^*
np.round(V_inv @ xd_1, 8)

array([-0.        , -5.22625186])

We find 𝑥∗
1,0 = 0.

Now we deactivate 𝜆2 using (42)

xd_2 = np.array((x_0[0], 
                 V[1,0]/V[0,0] * x_0[0]), 
                 dtype=np.float64)

# Compute x_{2,0}^*
np.round(V_inv @ xd_2, 8)

array([2.1647844, 0.       ])

We find 𝑥∗
2,0 = 0.



# Simulate with muted λ1 λ2.
num_steps = 10
xs_λ1 = iterate_M(xd_1, M, num_steps)[0]
xs_λ2 = iterate_M(xd_2, M, num_steps)[0]

# Compute ratios y_t / y_{t-1}
ratios_λ1 = xs_λ1[1, 1:] / xs_λ1[1, :-1]
ratios_λ2 = xs_λ2[1, 1:] / xs_λ2[1, :-1]

The following graph shows the ratios 𝑦𝑡/𝑦𝑡−1 for the two cases.

We find that the ratios converge to 𝜆2 in the first case and 𝜆1 in the second case.
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5.2.8 Concluding remarks
This lecture sets the stage for many other applications of the invariant subspace methods.

All of these exploit very similar equations based on eigen decompositions.

We shall encounter equations very similar to (40) and (42) in Money Financed Government Deficits
and Price Levels and in many other places in dynamic economic theory.

Exercise 5.20.

Please use matrix algebra to formulate the method described by Bertrand Russell at the
beginning of this lecture.

1. Define a state vector 𝑥𝑡 = [𝑎𝑡
𝑏𝑡

].
2. Formulate a first-order vector difference equation for 𝑥𝑡 of the form 𝑥𝑡+1 = 𝐴𝑥𝑡 and

compute the matrix 𝐴.
3. Use the system 𝑥𝑡+1 = 𝐴𝑥𝑡 to replicate the sequence of 𝑎𝑡’s and 𝑏𝑡’s described by Bertrand

Russell.
4. Compute the eigenvectors and eigenvalues of 𝐴 and compare them to corresponding

objects computed in the text of this lecture.

/money-inflation
/money-inflation


5.2.9 Exercise



Solution 5.16. Solution to Exercise 1

Here is one soluition.

According to the quote, we can formulate

𝑎𝑡+1 = 𝑎𝑡 + 𝑏𝑡

𝑏𝑡+1 = 2𝑎𝑡 + 𝑏𝑡
(5.60)

with 𝑥0 = [𝑎0
𝑏0

] = [1
1]

By (43), we can write matrix 𝐴 as

𝐴 = [1
2

1
1] (5.61)

Then 𝑥𝑡+1 = 𝐴𝑥𝑡 for 𝑡 ∈ {0, …, 5}

# Define the matrix A
A = np.array([[1, 1],
              [2, 1]])

# Initial vector x_0
x_0 = np.array([1, 1])

# Number of iterations
n = 6

# Generate the sequence
xs = np.array([x_0])
x_t = x_0
for _ in range(1, n):
    x_t = A @ x_t
    xs = np.vstack([xs, x_t])

# Print the sequence
for i, (a_t, b_t) in enumerate(xs):
    print(f"Iter {i}: a_t = {a_t}, b_t = {b_t}")

# Compute eigenvalues and eigenvectors of A
eigenvalues, eigenvectors = np.linalg.eig(A)

print(f'\nEigenvalues:\n{eigenvalues}')
print(f'\nEigenvectors:\n{eigenvectors}')

Iter 0: a_t = 1, b_t = 1
Iter 1: a_t = 2, b_t = 3
Iter 2: a_t = 5, b_t = 7
Iter 3: a_t = 12, b_t = 17
Iter 4: a_t = 29, b_t = 41
Iter 5: a_t = 70, b_t = 99

Eigenvalues:
[ 2.41421356 -0.41421356]

Eigenvectors:
[[ 0.57735027 -0.57735027]
 [ 0.81649658  0.81649658]]





Chapter 6

6. Probability and Distributions
6.1 Distributions and Probabilities

6.1.1 Outline
In this lecture we give a quick introduction to data and probability distributions using Python.

!pip install --upgrade yfinance

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import yfinance as yf
import scipy.stats
import seaborn as sns

6.1.2 Common distributions
In this section we recall the definitions of some well-known distributions and explore how to
manipulate them with SciPy.

6.1.2.1 Discrete distributions
Let’s start with discrete distributions.

A discrete distribution is defined by a set of numbers 𝑆 = {𝑥1, …, 𝑥𝑛} and a probability mass
function (PMF) on 𝑆, which is a function 𝑝 from 𝑆 to [0, 1] with the property

∑
𝑛

𝑖=1
𝑝(𝑥𝑖) = 1 (6.1)

We say that a random variable 𝑋 has distribution 𝑝 if 𝑋 takes value 𝑥𝑖 with probability 𝑝(𝑥𝑖).

That is,

ℙ{𝑋 = 𝑥𝑖} = 𝑝(𝑥𝑖) for𝑖 = 1, …, 𝑛 (6.2)

The mean or expected value of a random variable 𝑋 with distribution 𝑝 is

𝔼[𝑋] = ∑
𝑛

𝑖=1
𝑥𝑖𝑝(𝑥𝑖) (6.3)

Expectation is also called the first moment of the distribution.

We also refer to this number as the mean of the distribution (represented by) 𝑝.

The variance of 𝑋 is defined as

𝕍[𝑋] = ∑
𝑛

𝑖=1
(𝑥𝑖 − 𝔼[𝑋])2𝑝(𝑥𝑖) (6.4)

Variance is also called the second central moment of the distribution.

The cumulative distribution function (CDF) of 𝑋 is defined by

𝐹(𝑥) = ℙ{𝑋 ≤ 𝑥} = ∑
𝑛

𝑖=1
11{𝑥𝑖 ≤ 𝑥}𝑝(𝑥𝑖) (6.5)

Here 11{statement} = 1 if “statement” is true and zero otherwise.



Hence the second term takes all 𝑥𝑖 ≤ 𝑥 and sums their probabilities.

6.1.2.1.1 Uniform distribution
One simple example is the uniform distribution, where 𝑝(𝑥𝑖) = 1/𝑛 for all 𝑖.

We can import the uniform distribution on 𝑆 = {1, …, 𝑛} from SciPy like so:

n = 10
u = scipy.stats.randint(1, n+1)

Here’s the mean and variance:

u.mean(), u.var()

(5.5, 8.25)

The formula for the mean is (𝑛 + 1)/2, and the formula for the variance is (𝑛2 − 1)/12.

Now let’s evaluate the PMF:

u.pmf(1)

0.1

u.pmf(2)

0.1

Here’s a plot of the probability mass function:

fig, ax = plt.subplots()
S = np.arange(1, n+1)
ax.plot(S, u.pmf(S), linestyle='', marker='o', alpha=0.8, ms=4)
ax.vlines(S, 0, u.pmf(S), lw=0.2)
ax.set_xticks(S)
ax.set_xlabel('S')
ax.set_ylabel('PMF')
plt.show()



Here’s a plot of the CDF:

fig, ax = plt.subplots()
S = np.arange(1, n+1)
ax.step(S, u.cdf(S))
ax.vlines(S, 0, u.cdf(S), lw=0.2)
ax.set_xticks(S)
ax.set_xlabel('S')
ax.set_ylabel('CDF')
plt.show()



The CDF jumps up by 𝑝(𝑥𝑖) at 𝑥𝑖.

6.1.2.1.2 Bernoulli distribution
Another useful distribution is the Bernoulli distribution on 𝑆 = {0, 1}, which has PMF:

𝑝(𝑖) = 𝜃𝑖(1 − 𝜃)1−𝑖 (𝑖 = 0, 1) (6.6)

Here 𝜃 ∈ [0, 1] is a parameter.

We can think of this distribution as modeling probabilities for a random trial with success
probability 𝜃.

• 𝑝(1) = 𝜃 means that the trial succeeds (takes value 1) with probability 𝜃
• 𝑝(0) = 1 − 𝜃 means that the trial fails (takes value 0) with probability 1 − 𝜃

The formula for the mean is 𝜃, and the formula for the variance is 𝜃(1 − 𝜃).

We can import the Bernoulli distribution on 𝑆 = {0, 1} from SciPy like so:

θ = 0.4
u = scipy.stats.bernoulli(θ)

Here’s the mean and variance at 𝜃 = 0.4

u.mean(), u.var()

Exercise 6.21.

Calculate the mean and variance for this parameterization (i.e., 𝑛 = 10) directly from the PMF,
using the expressions given above.

Check that your answers agree with u.mean() and u.var().



(0.4, 0.24)

We can evaluate the PMF as follows

u.pmf(0), u.pmf(1)

(0.5999999999999998, 0.4)

6.1.2.1.3 Binomial distribution
Another useful (and more interesting) distribution is the binomial distribution on 𝑆 = {0, …, 𝑛},
which has PMF:

𝑝(𝑖) = binom 𝑛𝑖𝜃𝑖(1 − 𝜃)𝑛−𝑖 (6.7)

Again, 𝜃 ∈ [0, 1] is a parameter.

The interpretation of 𝑝(𝑖) is: the probability of 𝑖 successes in 𝑛 independent trials with success
probability 𝜃.

For example, if 𝜃 = 0.5, then 𝑝(𝑖) is the probability of 𝑖 heads in 𝑛 flips of a fair coin.

The formula for the mean is 𝑛𝜃 and the formula for the variance is 𝑛𝜃(1 − 𝜃).

Let’s investigate an example

n = 10
θ = 0.5
u = scipy.stats.binom(n, θ)

According to our formulas, the mean and variance are

n * θ,  n *  θ * (1 - θ)

(5.0, 2.5)

Let’s see if SciPy gives us the same results:

u.mean(), u.var()

(5.0, 2.5)

Here’s the PMF:

u.pmf(1)

0.009765625000000009

fig, ax = plt.subplots()
S = np.arange(1, n+1)
ax.plot(S, u.pmf(S), linestyle='', marker='o', alpha=0.8, ms=4)
ax.vlines(S, 0, u.pmf(S), lw=0.2)
ax.set_xticks(S)
ax.set_xlabel('S')
ax.set_ylabel('PMF')
plt.show()



Here’s the CDF:

fig, ax = plt.subplots()
S = np.arange(1, n+1)
ax.step(S, u.cdf(S))
ax.vlines(S, 0, u.cdf(S), lw=0.2)
ax.set_xticks(S)
ax.set_xlabel('S')
ax.set_ylabel('CDF')
plt.show()



Exercise 6.22.

Using u.pmf, check that our definition of the CDF given above calculates the same function as
u.cdf.

6.1.2.1.4 Geometric distribution
The geometric distribution has infinite support 𝑆 = {0, 1, 2, …} and its PMF is given by

𝑝(𝑖) = (1 − 𝜃)𝑖𝜃 (6.8)

where 𝜃 ∈ [0, 1] is a parameter

(A discrete distribution has infinite support if the set of points to which it assigns positive
probability is infinite.)

To understand the distribution, think of repeated independent random trials, each with success
probability 𝜃.

The interpretation of 𝑝(𝑖) is: the probability there are 𝑖 failures before the first success occurs.

It can be shown that the mean of the distribution is 1/𝜃 and the variance is (1 − 𝜃)/𝜃.

Here’s an example.

θ = 0.1
u = scipy.stats.geom(θ)
u.mean(), u.var()

(10.0, 90.0)

Here’s part of the PMF:



Solution 6.17. Solution to Exercise 2

Here is one solution:

fig, ax = plt.subplots()
S = np.arange(1, n+1)
u_sum = np.cumsum(u.pmf(S))
ax.step(S, u_sum)
ax.vlines(S, 0, u_sum, lw=0.2)
ax.set_xticks(S)
ax.set_xlabel('S')
ax.set_ylabel('CDF')
plt.show()

We can see that the output graph is the same as the one above.

fig, ax = plt.subplots()
n = 20
S = np.arange(n)
ax.plot(S, u.pmf(S), linestyle='', marker='o', alpha=0.8, ms=4)
ax.vlines(S, 0, u.pmf(S), lw=0.2)
ax.set_xticks(S)
ax.set_xlabel('S')
ax.set_ylabel('PMF')
plt.show()



6.1.2.1.5 Poisson distribution
The Poisson distribution on 𝑆 = {0, 1, …} with parameter 𝜆 > 0 has PMF

𝑝(𝑖) = 𝜆𝑖

𝑖!
𝑒−𝜆 (6.9)

The interpretation of 𝑝(𝑖) is: the probability of 𝑖 events in a fixed time interval, where the events
occur independently at a constant rate 𝜆.

It can be shown that the mean is 𝜆 and the variance is also 𝜆.

Here’s an example.

λ = 2
u = scipy.stats.poisson(λ)
u.mean(), u.var()

(2.0, 2.0)

Here’s the PMF:

u.pmf(1)

0.2706705664732254

fig, ax = plt.subplots()
S = np.arange(1, n+1)
ax.plot(S, u.pmf(S), linestyle='', marker='o', alpha=0.8, ms=4)
ax.vlines(S, 0, u.pmf(S), lw=0.2)
ax.set_xticks(S)
ax.set_xlabel('S')
ax.set_ylabel('PMF')
plt.show()



6.1.2.2 Continuous distributions
A continuous distribution is represented by a probability density function, which is a function 𝑝
over ℝ (the set of all real numbers) such that 𝑝(𝑥) ≥ 0 for all 𝑥 and

∫
∞

−∞
𝑝(𝑥)𝑑𝑥 = 1 (6.10)

We say that random variable 𝑋 has distribution 𝑝 if

ℙ{𝑎 < 𝑋 < 𝑏} = ∫
𝑏

𝑎
𝑝(𝑥)𝑑𝑥 (6.11)

for all 𝑎 ≤ 𝑏.

The definition of the mean and variance of a random variable 𝑋 with distribution 𝑝 are the same as
the discrete case, after replacing the sum with an integral.

For example, the mean of 𝑋 is

𝔼[𝑋] = ∫
∞

−∞
𝑥𝑝(𝑥)𝑑𝑥 (6.12)

The cumulative distribution function (CDF) of 𝑋 is defined by

𝐹(𝑥) = ℙ{𝑋 ≤ 𝑥} = ∫
𝑥

−∞
𝑝(𝑥)𝑑𝑥 (6.13)

6.1.2.2.1 Normal distribution
Perhaps the most famous distribution is the normal distribution, which has density



𝑝(𝑥) = 1√
2𝜋𝜎

exp(−(𝑥 − 𝜇)2

2𝜎2 ) (6.14)

This distribution has two parameters, 𝜇 ∈ ℝ and 𝜎 ∈ (0, ∞).

Using calculus, it can be shown that, for this distribution, the mean is 𝜇 and the variance is 𝜎2.

We can obtain the moments, PDF and CDF of the normal density via SciPy as follows:

μ, σ = 0.0, 1.0
u = scipy.stats.norm(μ, σ)

u.mean(), u.var()

(0.0, 1.0)

Here’s a plot of the density — the famous “bell-shaped curve”:

μ_vals = [-1, 0, 1]
σ_vals = [0.4, 1, 1.6]
fig, ax = plt.subplots()
x_grid = np.linspace(-4, 4, 200)

for μ, σ in zip(μ_vals, σ_vals):
    u = scipy.stats.norm(μ, σ)
    ax.plot(x_grid, u.pdf(x_grid),
    alpha=0.5, lw=2,
    label=rf'$\mu={μ}, \sigma={σ}$')
ax.set_xlabel('x')
ax.set_ylabel('PDF')
plt.legend()
plt.show()



Here’s a plot of the CDF:

fig, ax = plt.subplots()
for μ, σ in zip(μ_vals, σ_vals):
    u = scipy.stats.norm(μ, σ)
    ax.plot(x_grid, u.cdf(x_grid),
    alpha=0.5, lw=2,
    label=rf'$\mu={μ}, \sigma={σ}$')
    ax.set_ylim(0, 1)
ax.set_xlabel('x')
ax.set_ylabel('CDF')
plt.legend()
plt.show()

6.1.2.2.2 Lognormal distribution
The lognormal distribution is a distribution on (0, ∞) with density

𝑝(𝑥) = 1
𝜎𝑥

√
2𝜋

exp(−(log 𝑥 − 𝜇)2

2𝜎2 ) (6.15)

This distribution has two parameters, 𝜇 and 𝜎.

It can be shown that, for this distribution, the mean is exp(𝜇 + 𝜎2/2) and the variance is
[exp(𝜎2) − 1] exp(2𝜇 + 𝜎2).

It can be proved that

• if 𝑋 is lognormally distributed, then log 𝑋 is normally distributed, and
• if 𝑋 is normally distributed, then exp 𝑋 is lognormally distributed.

We can obtain the moments, PDF, and CDF of the lognormal density as follows:



μ, σ = 0.0, 1.0
u = scipy.stats.lognorm(s=σ, scale=np.exp(μ))

u.mean(), u.var()

(1.6487212707001282, 4.670774270471604)

μ_vals = [-1, 0, 1]
σ_vals = [0.25, 0.5, 1]
x_grid = np.linspace(0, 3, 200)

fig, ax = plt.subplots()
for μ, σ in zip(μ_vals, σ_vals):
    u = scipy.stats.lognorm(σ, scale=np.exp(μ))
    ax.plot(x_grid, u.pdf(x_grid),
    alpha=0.5, lw=2,
    label=fr'$\mu={μ}, \sigma={σ}$')
ax.set_xlabel('x')
ax.set_ylabel('PDF')
plt.legend()
plt.show()

fig, ax = plt.subplots()
μ = 1
for σ in σ_vals:
    u = scipy.stats.norm(μ, σ)
    ax.plot(x_grid, u.cdf(x_grid),
    alpha=0.5, lw=2,
    label=rf'$\mu={μ}, \sigma={σ}$')
    ax.set_ylim(0, 1)
    ax.set_xlim(0, 3)
ax.set_xlabel('x')



ax.set_ylabel('CDF')
plt.legend()
plt.show()

6.1.2.2.3 Exponential distribution
The exponential distribution is a distribution supported on (0, ∞) with density

𝑝(𝑥) = 𝜆 exp(−𝜆𝑥) (𝑥 > 0) (6.16)

This distribution has one parameter 𝜆.

The exponential distribution can be thought of as the continuous analog of the geometric
distribution.

It can be shown that, for this distribution, the mean is 1/𝜆 and the variance is 1/𝜆2.

We can obtain the moments, PDF, and CDF of the exponential density as follows:

λ = 1.0
u = scipy.stats.expon(scale=1/λ)

u.mean(), u.var()

(1.0, 1.0)

fig, ax = plt.subplots()
λ_vals = [0.5, 1, 2]
x_grid = np.linspace(0, 6, 200)

for λ in λ_vals:
    u = scipy.stats.expon(scale=1/λ)
    ax.plot(x_grid, u.pdf(x_grid),
    alpha=0.5, lw=2,
    label=rf'$\lambda={λ}$')



ax.set_xlabel('x')
ax.set_ylabel('PDF')
plt.legend()
plt.show()

fig, ax = plt.subplots()
for λ in λ_vals:
    u = scipy.stats.expon(scale=1/λ)
    ax.plot(x_grid, u.cdf(x_grid),
    alpha=0.5, lw=2,
    label=rf'$\lambda={λ}$')
    ax.set_ylim(0, 1)
ax.set_xlabel('x')
ax.set_ylabel('CDF')
plt.legend()
plt.show()



6.1.2.2.4 Beta distribution
The beta distribution is a distribution on (0, 1) with density

𝑝(𝑥) = Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

𝑥𝛼−1(1 − 𝑥)𝛽−1 (6.17)

where Γ is the gamma function.

(The role of the gamma function is just to normalize the density, so that it integrates to one.)

This distribution has two parameters, 𝛼 > 0 and 𝛽 > 0.

It can be shown that, for this distribution, the mean is 𝛼/(𝛼 + 𝛽) and the variance is
𝛼𝛽/(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1).

We can obtain the moments, PDF, and CDF of the Beta density as follows:

α, β = 3.0, 1.0
u = scipy.stats.beta(α, β)

u.mean(), u.var()

(0.75, 0.0375)

α_vals = [0.5, 1, 5, 25, 3]
β_vals = [3, 1, 10, 20, 0.5]
x_grid = np.linspace(0, 1, 200)

fig, ax = plt.subplots()
for α, β in zip(α_vals, β_vals):
    u = scipy.stats.beta(α, β)
    ax.plot(x_grid, u.pdf(x_grid),
    alpha=0.5, lw=2,

https://en.wikipedia.org/wiki/Gamma\_function


    label=rf'$\alpha={α}, \beta={β}$')
ax.set_xlabel('x')
ax.set_ylabel('PDF')
plt.legend()
plt.show()

fig, ax = plt.subplots()
for α, β in zip(α_vals, β_vals):
    u = scipy.stats.beta(α, β)
    ax.plot(x_grid, u.cdf(x_grid),
    alpha=0.5, lw=2,
    label=rf'$\alpha={α}, \beta={β}$')
    ax.set_ylim(0, 1)
ax.set_xlabel('x')
ax.set_ylabel('CDF')
plt.legend()
plt.show()



6.1.2.2.5 Gamma distribution
The gamma distribution is a distribution on (0, ∞) with density

𝑝(𝑥) = 𝛽𝛼

Γ(𝛼)
𝑥𝛼−1 exp(−𝛽𝑥) (6.18)

This distribution has two parameters, 𝛼 > 0 and 𝛽 > 0.

It can be shown that, for this distribution, the mean is 𝛼/𝛽 and the variance is 𝛼/𝛽2.

One interpretation is that if 𝑋 is gamma distributed and 𝛼 is an integer, then 𝑋 is the sum of 𝛼
independent exponentially distributed random variables with mean 1/𝛽.

We can obtain the moments, PDF, and CDF of the Gamma density as follows:

α, β = 3.0, 2.0
u = scipy.stats.gamma(α, scale=1/β)

u.mean(), u.var()

(1.5, 0.75)

α_vals = [1, 3, 5, 10]
β_vals = [3, 5, 3, 3]
x_grid = np.linspace(0, 7, 200)

fig, ax = plt.subplots()
for α, β in zip(α_vals, β_vals):
    u = scipy.stats.gamma(α, scale=1/β)
    ax.plot(x_grid, u.pdf(x_grid),
    alpha=0.5, lw=2,
    label=rf'$\alpha={α}, \beta={β}$')
ax.set_xlabel('x')



ax.set_ylabel('PDF')
plt.legend()
plt.show()

fig, ax = plt.subplots()
for α, β in zip(α_vals, β_vals):
    u = scipy.stats.gamma(α, scale=1/β)
    ax.plot(x_grid, u.cdf(x_grid),
    alpha=0.5, lw=2,
    label=rf'$\alpha={α}, \beta={β}$')
    ax.set_ylim(0, 1)
ax.set_xlabel('x')
ax.set_ylabel('CDF')
plt.legend()
plt.show()



6.1.3 Observed distributions
Sometimes we refer to observed data or measurements as “distributions”.

For example, let’s say we observe the income of 10 people over a year:

data = [['Hiroshi', 1200], 
        ['Ako', 1210], 
        ['Emi', 1400],
        ['Daiki', 990],
        ['Chiyo', 1530],
        ['Taka', 1210],
        ['Katsuhiko', 1240],
        ['Daisuke', 1124],
        ['Yoshi', 1330],
        ['Rie', 1340]]

df = pd.DataFrame(data, columns=['name', 'income'])
df

name income
0 Hiroshi 1200
1 Ako 1210
2 Emi 1400
3 Daiki 990
4 Chiyo 1530
5 Taka 1210
6 Katsuhiko 1240



name income
7 Daisuke 1124
8 Yoshi 1330
9 Rie 1340

In this situation, we might refer to the set of their incomes as the “income distribution.”

The terminology is confusing because this set is not a probability distribution — it’s just a collection
of numbers.

However, as we will see, there are connections between observed distributions (i.e., sets of numbers
like the income distribution above) and probability distributions.

Below we explore some observed distributions.

6.1.3.1 Summary statistics
Suppose we have an observed distribution with values {𝑥1, …, 𝑥𝑛}

The sample mean of this distribution is defined as

̄𝑥 = 1
𝑛

∑
𝑛

𝑖=1
𝑥𝑖 (6.19)

The sample variance is defined as

1
𝑛

∑
𝑛

𝑖=1
(𝑥𝑖 − ̄𝑥)2 (6.20)

For the income distribution given above, we can calculate these numbers via

x = df['income']
x.mean(), x.var()

(1257.4, 22680.933333333334)

6.1.3.2 Visualization
Let’s look at different ways that we can visualize one or more observed distributions.

We will cover

• histograms
• kernel density estimates and
• violin plots

6.1.3.2.1 Histograms
We can histogram the income distribution we just constructed as follows

fig, ax = plt.subplots()
ax.hist(x, bins=5, density=True, histtype='bar')
ax.set_xlabel('income')

Exercise 6.23.

If you try to check that the formulas given above for the sample mean and sample variance
produce the same numbers, you will see that the variance isn’t quite right. This is because SciPy
uses 1/(𝑛 − 1) instead of 1/𝑛 as the term at the front of the variance. (Some books define the
sample variance this way.) Confirm.



ax.set_ylabel('density')
plt.show()

Let’s look at a distribution from real data.

In particular, we will look at the monthly return on Amazon shares between 2000/1/1 and 2024/1/1.

The monthly return is calculated as the percent change in the share price over each month.

So we will have one observation for each month.

df = yf.download('AMZN', '2000-1-1', '2024-1-1', interval='1mo')
prices = df['Close']
x_amazon = prices.pct_change()[1:] * 100
x_amazon.head()

The first observation is the monthly return (percent change) over January 2000, which was

x_amazon.iloc[0]

Ticker
AMZN    6.679568
Name: 2000-02-01 00:00:00, dtype: float64

Let’s turn the return observations into an array and histogram it.

fig, ax = plt.subplots()
ax.hist(x_amazon, bins=20)
ax.set_xlabel('monthly return (percent change)')
ax.set_ylabel('density')
plt.show()



6.1.3.2.2 Kernel density estimates
Kernel density estimates (KDE) provide a simple way to estimate and visualize the density of a
distribution.

If you are not familiar with KDEs, you can think of them as a smoothed histogram.

Let’s have a look at a KDE formed from the Amazon return data.

fig, ax = plt.subplots()
sns.kdeplot(x_amazon, ax=ax)
ax.set_xlabel('monthly return (percent change)')
ax.set_ylabel('KDE')
plt.show()



The smoothness of the KDE is dependent on how we choose the bandwidth.

fig, ax = plt.subplots()
sns.kdeplot(x_amazon, ax=ax, bw_adjust=0.1, alpha=0.5, label="bw=0.1")
sns.kdeplot(x_amazon, ax=ax, bw_adjust=0.5, alpha=0.5, label="bw=0.5")
sns.kdeplot(x_amazon, ax=ax, bw_adjust=1, alpha=0.5, label="bw=1")
ax.set_xlabel('monthly return (percent change)')
ax.set_ylabel('KDE')
plt.legend()
plt.show()



When we use a larger bandwidth, the KDE is smoother.

A suitable bandwidth is not too smooth (underfitting) or too wiggly (overfitting).

6.1.3.2.3 Violin plots
Another way to display an observed distribution is via a violin plot.

fig, ax = plt.subplots()
ax.violinplot(x_amazon)
ax.set_ylabel('monthly return (percent change)')
ax.set_xlabel('KDE')
plt.show()



Violin plots are particularly useful when we want to compare different distributions.

For example, let’s compare the monthly returns on Amazon shares with the monthly return on
Costco shares.

df = yf.download('COST', '2000-1-1', '2024-1-1', interval='1mo')
prices = df['Close']
x_costco = prices.pct_change()[1:] * 100

fig, ax = plt.subplots()
ax.violinplot([x_amazon['AMZN'], x_costco['COST']])
ax.set_ylabel('monthly return (percent change)')
ax.set_xlabel('retailers')

ax.set_xticks([1, 2])
ax.set_xticklabels(['Amazon', 'Costco'])
plt.show()



6.1.3.3 Connection to probability distributions
Let’s discuss the connection between observed distributions and probability distributions.

Sometimes it’s helpful to imagine that an observed distribution is generated by a particular
probability distribution.

For example, we might look at the returns from Amazon above and imagine that they were
generated by a normal distribution.

(Even though this is not true, it might be a helpful way to think about the data.)

Here we match a normal distribution to the Amazon monthly returns by setting the sample mean to
the mean of the normal distribution and the sample variance equal to the variance.

Then we plot the density and the histogram.

μ = x_amazon.mean()
σ_squared = x_amazon.var()
σ = np.sqrt(σ_squared)
u = scipy.stats.norm(μ, σ)

x_grid = np.linspace(-50, 65, 200)
fig, ax = plt.subplots()
ax.plot(x_grid, u.pdf(x_grid))
ax.hist(x_amazon, density=True, bins=40)
ax.set_xlabel('monthly return (percent change)')
ax.set_ylabel('density')
plt.show()



The match between the histogram and the density is not bad but also not very good.

One reason is that the normal distribution is not really a good fit for this observed data — we will
discuss this point again when we talk about heavy tailed distributions.

Of course, if the data really is generated by the normal distribution, then the fit will be better.

Let’s see this in action

• first we generate random draws from the normal distribution
• then we histogram them and compare with the density.

μ, σ = 0, 1
u = scipy.stats.norm(μ, σ)
N = 2000  # Number of observations
x_draws = u.rvs(N)
x_grid = np.linspace(-4, 4, 200)
fig, ax = plt.subplots()
ax.plot(x_grid, u.pdf(x_grid))
ax.hist(x_draws, density=True, bins=40)
ax.set_xlabel('x')
ax.set_ylabel('density')
plt.show()

/heavy-tails


Note that if you keep increasing 𝑁 , which is the number of observations, the fit will get better and
better.

This convergence is a version of the “law of large numbers”, which we will discuss later.



6.2 LLN and CLT

6.2.1 Overview
This lecture illustrates two of the most important results in probability and statistics:

1. the law of large numbers (LLN) and
2. the central limit theorem (CLT).

These beautiful theorems lie behind many of the most fundamental results in econometrics and
quantitative economic modeling.

The lecture is based around simulations that show the LLN and CLT in action.

We also demonstrate how the LLN and CLT break down when the assumptions they are based on do
not hold.

This lecture will focus on the univariate case (the multivariate case is treated in a more advanced
lecture).

We’ll need the following imports:

import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st

6.2.2 The law of large numbers
We begin with the law of large numbers, which tells us when sample averages will converge to their
population means.

6.2.2.1 The LLN in action
Let’s see an example of the LLN in action before we go further.

We can generate a draw of 𝑋 with scipy.stats (imported as st) as follows:

p = 0.8
X = st.bernoulli.rvs(p)
print(X)

1

In this setting, the LLN tells us if we flip the coin many times, the fraction of heads that we see will
be close to the mean 𝑝.

Example 6.13.

Consider a Bernoulli random variable 𝑋 with parameter 𝑝.

This means that 𝑋 takes values in {0, 1} and ℙ{𝑋 = 1} = 𝑝.

We can think of drawing 𝑋 as tossing a biased coin where

• the coin falls on “heads” with probability 𝑝 and
• the coin falls on “tails” with probability 1 − 𝑝

We set 𝑋 = 1 if the coin is “heads” and zero otherwise.

The (population) mean of 𝑋 is

𝔼𝑋 = 0 ⋅ ℙ{𝑋 = 0} + 1 ⋅ ℙ{𝑋 = 1} = ℙ{𝑋 = 1} = 𝑝 (6.21)

https://python.quantecon.org/lln\_clt.html\#the-multivariate-case
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We use 𝑛 to represent the number of times the coin is flipped.

Let’s check this:

n = 1_000_000
X_draws = st.bernoulli.rvs(p, size=n)
print(X_draws.mean()) # count the number of 1's and divide by n

0.799532

If we change 𝑝 the claim still holds:

p = 0.3
X_draws = st.bernoulli.rvs(p, size=n)
print(X_draws.mean())

0.300495

Let’s connect this to the discussion above, where we said the sample average converges to the
“population mean”.

Think of 𝑋1, …, 𝑋𝑛 as independent flips of the coin.

The population mean is the mean in an infinite sample, which equals the expectation 𝔼𝑋.

The sample mean of the draws 𝑋1, …, 𝑋𝑛 is

𝑋̄𝑛 := 1
𝑛

∑
𝑛

𝑖=1
𝑋𝑖 (6.22)

In this case, it is the fraction of draws that equal one (the number of heads divided by 𝑛).

Thus, the LLN tells us that for the Bernoulli trials above

𝑋̄𝑛 → 𝔼𝑋 = 𝑝 (𝑛 → ∞) (6.23)

This is exactly what we illustrated in the code.

6.2.2.2 Statement of the LLN
Let’s state the LLN more carefully.

Let 𝑋1, …, 𝑋𝑛 be random variables, all of which have the same distribution.

These random variables can be continuous or discrete.

For simplicity we will

• assume they are continuous and
• let 𝑓  denote their common density function

The last statement means that for any 𝑖 in {1, …, 𝑛} and any numbers 𝑎, 𝑏,

ℙ{𝑎 ≤ 𝑋𝑖 ≤ 𝑏} = ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 (6.24)

(For the discrete case, we need to replace densities with probability mass functions and integrals
with sums.)

Let 𝜇 denote the common mean of this sample.

Thus, for each 𝑖,

𝜇 := 𝔼𝑋𝑖 = ∫
∞

−∞
𝑥𝑓(𝑥)𝑑𝑥 (6.25)



Theorem 6.2.

If 𝑋1, …, 𝑋𝑛 are IID and 𝔼 | 𝑋 | is finite, then

ℙ{𝑋̄𝑛 → 𝜇 as𝑛 → ∞} = 1 (6.27)

The sample mean is

𝑋̄𝑛 := 1
𝑛

∑
𝑛

𝑖=1
𝑋𝑖 (6.26)

The next theorem is called Kolmogorov’s strong law of large numbers.

Here

• IID means independent and identically distributed and
• 𝔼 | 𝑋 | = ∫∞

−∞
| 𝑥 | 𝑓(𝑥)𝑑𝑥

6.2.2.3 Comments on the theorem
What does the probability one statement in the theorem mean?

Let’s think about it from a simulation perspective, imagining for a moment that our computer can
generate perfect random samples (although this isn’t strictly true).

Let’s also imagine that we can generate infinite sequences so that the statement 𝑋̄𝑛 → 𝜇 can be
evaluated.

In this setting, (7) should be interpreted as meaning that the probability of the computer producing a
sequence where 𝑋̄𝑛 → 𝜇 fails to occur is zero.

6.2.2.4 Illustration
Let’s illustrate the LLN using simulation.

When we illustrate it, we will use a key idea: the sample mean 𝑋̄𝑛 is itself a random variable.

The reason 𝑋̄𝑛 is a random variable is that it’s a function of the random variables 𝑋1, …, 𝑋𝑛.

What we are going to do now is

1. pick some fixed distribution to draw each 𝑋𝑖 from
2. set 𝑛 to some large number

and then repeat the following three instructions.

1. generate the draws 𝑋1, …, 𝑋𝑛
2. calculate the sample mean 𝑋̄𝑛 and record its value in an array sample_means
3. go to step 1.

We will loop over these three steps 𝑚 times, where 𝑚 is some large integer.

The array sample_means will now contain 𝑚 draws of the random variable 𝑋̄𝑛.

If we histogram these observations of 𝑋̄𝑛, we should see that they are clustered around the
population mean 𝔼𝑋.

Moreover, if we repeat the exercise with a larger value of 𝑛, we should see that the observations are
even more tightly clustered around the population mean.

This is, in essence, what the LLN is telling us.

https://en.wikipedia.org/wiki/Pseudorandom\_number\_generator


To implement these steps, we will use functions.

Our first function generates a sample mean of size 𝑛 given a distribution.

def draw_means(X_distribution,  # The distribution of each X_i
               n):              # The size of the sample mean

    # Generate n draws: X_1, ..., X_n
    X_samples = X_distribution.rvs(size=n)

    # Return the sample mean
    return np.mean(X_samples)

Now we write a function to generate 𝑚 sample means and histogram them.

def generate_histogram(X_distribution, n, m):

    # Compute m sample means

    sample_means = np.empty(m)
    for j in range(m):
      sample_means[j] = draw_means(X_distribution, n)

    # Generate a histogram

    fig, ax = plt.subplots()
    ax.hist(sample_means, bins=30, alpha=0.5, density=True)
    μ = X_distribution.mean()  # Get the population mean
    σ = X_distribution.std()    # and the standard deviation
    ax.axvline(x=μ, ls="--", c="k", label=fr"$\mu = {μ}$")

    ax.set_xlim(μ - σ, μ + σ)
    ax.set_xlabel(r'$\bar X_n$', size=12)
    ax.set_ylabel('density', size=12)
    ax.legend()
    plt.show()

Now we call the function.

# pick a distribution to draw each $X_i$ from
X_distribution = st.norm(loc=5, scale=2)
# Call the function
generate_histogram(X_distribution, n=1_000, m=1000)



We can see that the distribution of 𝑋̄ is clustered around 𝔼𝑋 as expected.

Let’s vary n to see how the distribution of the sample mean changes.

We will use a violin plot to show the different distributions.

Each distribution in the violin plot represents the distribution of 𝑋𝑛 for some 𝑛, calculated by
simulation.

def means_violin_plot(distribution,
                      ns = [1_000, 10_000, 100_000],
                      m = 10_000):

    data = []
    for n in ns:
        sample_means = [draw_means(distribution, n) for i in range(m)]
        data.append(sample_means)

    fig, ax = plt.subplots()

    ax.violinplot(data)
    μ = distribution.mean()
    ax.axhline(y=μ, ls="--", c="k", label=fr"$\mu = {μ}$")

    labels=[fr'$n = {n}$' for n in ns]

    ax.set_xticks(np.arange(1, len(labels) + 1), labels=labels)
    ax.set_xlim(0.25, len(labels) + 0.75)

    plt.subplots_adjust(bottom=0.15, wspace=0.05)

https://intro.quantecon.org/prob\_dist.html\#violin-plots


    ax.set_ylabel('density', size=12)
    ax.legend()
    plt.show()

Let’s try with a normal distribution.

means_violin_plot(st.norm(loc=5, scale=2))

As 𝑛 gets large, more probability mass clusters around the population mean 𝜇.

Now let’s try with a Beta distribution.

means_violin_plot(st.beta(6, 6))



We get a similar result.

6.2.3 Breaking the LLN
We have to pay attention to the assumptions in the statement of the LLN.

If these assumptions do not hold, then the LLN might fail.

6.2.3.1 Infinite first moment
As indicated by the theorem, the LLN can break when 𝔼 | 𝑋 | is not finite.

We can demonstrate this using the Cauchy distribution.

The Cauchy distribution has the following property:

If 𝑋1, …, 𝑋𝑛 are IID and Cauchy, then so is 𝑋̄𝑛.

This means that the distribution of 𝑋̄𝑛 does not eventually concentrate on a single number.

Hence the LLN does not hold.

The LLN fails to hold here because the assumption 𝔼 | 𝑋 | < ∞ is violated by the Cauchy
distribution.

6.2.3.2 Failure of the IID condition
The LLN can also fail to hold when the IID assumption is violated.

Does this contradict the LLN, which says that the distribution of 𝑋̄𝑛 collapses to the single point 𝜇?

No, the LLN is correct — the issue is that its assumptions are not satisfied.

In particular, the sequence 𝑋1, …, 𝑋𝑛 is not independent.

Note

Although in this case the violation of IID breaks the LLN, there are situations where IID fails but
the LLN still holds.

https://en.wikipedia.org/wiki/Cauchy\_distribution


Example 6.14.

𝑋0 ∼ 𝑁(0, 1) and 𝑋𝑖 = 𝑋𝑖−1 for 𝑖 = 1, …, 𝑛 (6.28)

In this case,

𝑋̄𝑛 = 1
𝑛

∑
𝑛

𝑖=1
𝑋𝑖 = 𝑋0 ∼ 𝑁(0, 1) (6.29)

Therefore, the distribution of 𝑋̄𝑛 is 𝑁(0, 1) for all 𝑛!

Theorem 6.3.

If 𝑋1, …, 𝑋𝑛 is IID with common mean 𝜇 and common variance 𝜎2 ∈ (0, ∞), then
√

𝑛(𝑋̄𝑛 − 𝜇) →
𝑑

𝑁(0, 𝜎2) as 𝑛 → ∞ (6.30)

We will show an example in the exercise.

6.2.4 Central limit theorem
Next, we turn to the central limit theorem (CLT), which tells us about the distribution of the
deviation between sample averages and population means.

6.2.4.1 Statement of the theorem
The central limit theorem is one of the most remarkable results in all of mathematics.

In the IID setting, it tells us the following:

Here →
𝑑

𝑁(0, 𝜎2) indicates convergence in distribution to a centered (i.e., zero mean) normal with
standard deviation 𝜎.

The striking implication of the CLT is that for any distribution with finite second moment, the
simple operation of adding independent copies always leads to a Gaussian(Normal) curve.

6.2.4.2 Simulation 1
Since the CLT seems almost magical, running simulations that verify its implications is one good
way to build understanding.

To this end, we now perform the following simulation

1. Choose an arbitrary distribution 𝐹  for the underlying observations 𝑋𝑖.
2. Generate independent draws of 𝑌𝑛 :=

√
𝑛(𝑋̄𝑛 − 𝜇).

3. Use these draws to compute some measure of their distribution — such as a histogram.
4. Compare the latter to 𝑁(0, 𝜎2).

Here’s some code that does exactly this for the exponential distribution 𝐹(𝑥) = 1 − 𝑒−𝜆𝑥.

(Please experiment with other choices of 𝐹 , but remember that, to conform with the conditions of
the CLT, the distribution must have a finite second moment.)

# Set parameters
n = 250         # Choice of n
k = 1_000_000        # Number of draws of Y_n
distribution = st.expon(2) # Exponential distribution, λ = 1/2
μ, σ = distribution.mean(), distribution.std()

https://en.wikipedia.org/wiki/Convergence\_of\_random\_variables\#Convergence\_in\_distribution
https://en.wikipedia.org/wiki/Moment\_(mathematics)


# Draw underlying RVs. Each row contains a draw of X_1,..,X_n
data = distribution.rvs((k, n))
# Compute mean of each row, producing k draws of \bar X_n
sample_means = data.mean(axis=1)
# Generate observations of Y_n
Y = np.sqrt(n) * (sample_means - μ)

# Plot
fig, ax = plt.subplots(figsize=(10, 6))
xmin, xmax = -3 * σ, 3 * σ
ax.set_xlim(xmin, xmax)
ax.hist(Y, bins=60, alpha=0.4, density=True)
xgrid = np.linspace(xmin, xmax, 200)
ax.plot(xgrid, st.norm.pdf(xgrid, scale=σ),
        'k-', lw=2, label=r'$N(0, \sigma^2)$')
ax.set_xlabel(r"$Y_n$", size=12)
ax.set_ylabel(r"$density$", size=12)

ax.legend()

plt.show()

(Notice the absence of for loops — every operation is vectorized, meaning that the major calculations
are all shifted to fast C code.)

The fit to the normal density is already tight and can be further improved by increasing n.

Exercise 6.24.

Repeat the simulation above with the Beta distribution.

You can choose any 𝛼 > 0 and 𝛽 > 0.

https://en.wikipedia.org/wiki/Beta\_distribution


Solution 6.18. Solution to Exercise 1

# Set parameters
n = 250         # Choice of n
k = 1_000_000        # Number of draws of Y_n
distribution = st.beta(2,2) # We chose Beta(2, 2) as an example
μ, σ = distribution.mean(), distribution.std()

# Draw underlying RVs. Each row contains a draw of X_1,..,X_n
data = distribution.rvs((k, n))
# Compute mean of each row, producing k draws of \bar X_n
sample_means = data.mean(axis=1)
# Generate observations of Y_n
Y = np.sqrt(n) * (sample_means - μ)

# Plot
fig, ax = plt.subplots(figsize=(10, 6))
xmin, xmax = -3 * σ, 3 * σ
ax.set_xlim(xmin, xmax)
ax.hist(Y, bins=60, alpha=0.4, density=True)
ax.set_xlabel(r"$Y_n$", size=12)
ax.set_ylabel(r"$density$", size=12)
xgrid = np.linspace(xmin, xmax, 200)
ax.plot(xgrid, st.norm.pdf(xgrid, scale=σ), 'k-', lw=2, label=r'$N(0, \sigma^2)$')
ax.legend()

plt.show()

6.2.5 Exercises



Exercise 6.25.

At the start of this lecture we discussed Bernoulli random variables.

NumPy doesn’t provide a bernoulli function that we can sample from.

However, we can generate a draw of Bernoulli 𝑋 using NumPy via

U = np.random.rand()
X = 1 if U < p else 0
print(X)

Explain why this provides a random variable 𝑋 with the right distribution.

Solution 6.19. Solution to Exercise 2

We can write 𝑋 as 𝑋 = 𝟏{𝑈 < 𝑝} where 𝟏 is the indicator function (i.e., 1 if the statement is
true and zero otherwise).

Here we generated a uniform draw 𝑈  on [0, 1] and then used the fact that

ℙ{0 ≤ 𝑈 < 𝑝} = 𝑝 − 0 = 𝑝 (6.31)

This means that 𝑋 = 𝟏{𝑈 < 𝑝} has the right distribution.

Exercise 6.26.

We mentioned above that LLN can still hold sometimes when IID is violated.

Let’s investigate this claim further.

Consider the AR(1) process

𝑋𝑡+1 = 𝛼 + 𝛽𝑋𝑡 + 𝜎𝜀𝑡+1 (6.32)

where 𝛼, 𝛽, 𝜎 are constants and 𝜀1, 𝜀2, … are IID and standard normal.

Suppose that

𝑋0 ∼ 𝑁( 𝛼
1 − 𝛽

, 𝜎2

1 − 𝛽2 ) (6.33)

This process violates the independence assumption of the LLN (since 𝑋𝑡+1 depends on the value
of 𝑋𝑡).

However, the next exercise teaches us that LLN type convergence of the sample mean to the
population mean still occurs.

1. Prove that the sequence 𝑋1, 𝑋2, … is identically distributed.
2. Show that LLN convergence holds using simulations with 𝛼 = 0.8, 𝛽 = 0.2.

https://en.wikipedia.org/wiki/Indicator\_function


Solution 6.20. Solution to Exercise 3

Q1 Solution

Regarding part 1, we claim that 𝑋𝑡 has the same distribution as 𝑋0 for all 𝑡.

To construct a proof, we suppose that the claim is true for 𝑋𝑡.

Now we claim it is also true for 𝑋𝑡+1.

Observe that we have the correct mean:

𝔼𝑋𝑡+1 = 𝛼 + 𝛽𝔼𝑋𝑡

= 𝛼 + 𝛽 𝛼
1 − 𝛽

= 𝛼
1 − 𝛽

(6.34)

We also have the correct variance:

Var(𝑋𝑡+1) = 𝛽2Var(𝑋𝑡) + 𝜎2

= 𝛽2𝜎2

1 − 𝛽2 + 𝜎2

= 𝜎2

1 − 𝛽2

(6.35)

Finally, since both 𝑋𝑡 and 𝜀0 are normally distributed and independent from each other, any
linear combination of these two variables is also normally distributed.

We have now shown that

𝑋𝑡+1 ∼ 𝑁( 𝛼
1 − 𝛽

, 𝜎2

1 − 𝛽2 ) (6.36)

We can conclude this AR(1) process violates the independence assumption but is identically
distributed.

Q2 Solution

σ = 10
α = 0.8
β = 0.2
n = 100_000

fig, ax = plt.subplots(figsize=(10, 6))
x = np.ones(n)
x[0] = st.norm.rvs(α/(1-β), α**2/(1-β**2))
ϵ = st.norm.rvs(size=n+1)
means = np.ones(n)
means[0] = x[0]
for t in range(n-1):
    x[t+1] = α + β * x[t] + σ * ϵ[t+1]
    means[t+1] = np.mean(x[:t+1])

ax.scatter(range(100, n), means[100:n], s=10, alpha=0.5)

ax.set_xlabel(r"$n$", size=12)
ax.set_ylabel(r"$\bar X_n$", size=12)
yabs_max = max(ax.get_ylim(), key=abs)
ax.axhline(y=α/(1-β), ls="--", lw=3,
           label=r"$\mu = \frac{\alpha}{1-\beta}$",
           color = 'black')

plt.legend()
plt.show()

We see the convergence of ̄𝑥 around 𝜇 even when the independence assumption is violated.



6.3 Monte Carlo and Option Pricing

6.3.1 Overview
Simple probability calculations can be done either

• with pencil and paper, or
• by looking up facts about well known probability distributions, or
• in our heads.

For example, we can easily work out

• the probability of three heads in five flips of a fair coin
• the expected value of a random variable that equals −10 with probability 1/2 and 100 with

probability 1/2.

But some probability calculations are very complex.

Complex calculations concerning probabilities and expectations occur in many economic and
financial problems.

Perhaps the most important tool for handling complicated probability calculations is Monte Carlo
methods.

In this lecture we introduce Monte Carlo methods for computing expectations, with some
applications in finance.

We will use the following imports.

import numpy as np
import matplotlib.pyplot as plt
from numpy.random import randn

6.3.2 An introduction to Monte Carlo
In this section we describe how Monte Carlo can be used to compute expectations.

6.3.2.1 Share price with known distribution
Suppose that we are considering buying a share in some company.

Our plan is either to

1. buy the share now, hold it for one year and then sell it, or
2. do something else with our money.

We start by thinking of the share price in one year as a random variable 𝑆.

Before deciding whether or not to buy the share, we need to know some features of the distribution
of 𝑆.

For example, suppose the mean of 𝑆 is high relative to the price of buying the share.

This suggests we have a good chance of selling at a relatively high price.

Suppose, however, that the variance of 𝑆 is also high.

This suggests that buying the share is risky, so perhaps we should refrain.

Either way, this discussion shows the importance of understanding the distribution of 𝑆.

Suppose that, after analyzing the data, we guess that 𝑆 is well represented by a lognormal
distribution with parameters 𝜇, 𝜎 .

https://en.wikipedia.org/wiki/Monte\_Carlo\_method
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• 𝑆 has the same distribution as exp(𝜇 + 𝜎𝑍) where 𝑍 is standard normal.
• We write this statement as 𝑆 ∼ 𝐿𝑁(𝜇, 𝜎).

Any good reference on statistics (such as Wikipedia) will tell us that the mean and variance are

𝔼𝑆 = exp(𝜇 + 𝜎2

2
) (6.37)

and

Var 𝑆 = [exp(𝜎2) − 1] exp(2𝜇 + 𝜎2) (6.38)

So far we have no need for a computer.

6.3.2.2 Share price with unknown distribution
But now suppose that we study the distribution of 𝑆 more carefully.

We decide that the share price depends on three variables, 𝑋1, 𝑋2, and 𝑋3 (e.g., sales, inflation, and
interest rates).

In particular, our study suggests that

𝑆 = (𝑋1 + 𝑋2 + 𝑋3)
𝑝 (6.39)

where

• 𝑝 is a positive number, which is known to us (i.e., has been estimated),
• 𝑋𝑖 ∼ 𝐿𝑁(𝜇𝑖, 𝜎𝑖) for 𝑖 = 1, 2, 3,
• the values 𝜇𝑖, 𝜎𝑖 are also known, and
• the random variables 𝑋1, 𝑋2 and 𝑋3 are independent.

How should we compute the mean of 𝑆?

To do this with pencil and paper is hard (unless, say, 𝑝 = 1).

But fortunately there’s an easy way to do this, at least approximately.

This is the Monte Carlo method, which runs as follows:

1. Generate 𝑛 independent draws of 𝑋1, 𝑋2 and 𝑋3 on a computer,
2. use these draws to generate 𝑛 independent draws of 𝑆, and
3. take the average value of these draws of 𝑆.

This average will be close to the true mean when 𝑛 is large.

This is due to the law of large numbers, which we discussed in LLN and CLT.

We use the following values for 𝑝 and each 𝜇𝑖 and 𝜎𝑖.

n = 1_000_000
p = 0.5
μ_1, μ_2, μ_3 = 0.2, 0.8, 0.4
σ_1, σ_2, σ_3 = 0.1, 0.05, 0.2

6.3.2.2.1 A routine using loops in python
Here’s a routine using native Python loops to calculate the desired mean

1
𝑛

∑
𝑛

𝑖=1
𝑆𝑖 ≈ 𝔼𝑆 (6.40)

%%time

https://en.wikipedia.org/wiki/Log-normal\_distribution
/lln-clt


S = 0.0
for i in range(n):
    X_1 = np.exp(μ_1 + σ_1 * randn())
    X_2 = np.exp(μ_2 + σ_2 * randn())
    X_3 = np.exp(μ_3 + σ_3 * randn())
    S += (X_1 + X_2 + X_3)**p
S / n

CPU times: user 2.39 s, sys: 17.8 ms, total: 2.41 s
Wall time: 16.9 s

2.2296466208100156

We can also construct a function that contains these operations:

def compute_mean(n=1_000_000):
    S = 0.0
    for i in range(n):
        X_1 = np.exp(μ_1 + σ_1 * randn())
        X_2 = np.exp(μ_2 + σ_2 * randn())
        X_3 = np.exp(μ_3 + σ_3 * randn())
        S += (X_1 + X_2 + X_3)**p
    return (S / n)

Now let’s call it.

compute_mean()

2.2296656267049886

6.3.2.3 A vectorized routine
If we want a more accurate estimate we should increase 𝑛.

But the code above runs quite slowly.

To make it faster, let’s implement a vectorized routine using NumPy.

def compute_mean_vectorized(n=1_000_000):
    X_1 = np.exp(μ_1 + σ_1 * randn(n))
    X_2 = np.exp(μ_2 + σ_2 * randn(n))
    X_3 = np.exp(μ_3 + σ_3 * randn(n))
    S = (X_1 + X_2 + X_3)**p
    return S.mean()

%%time

compute_mean_vectorized()

CPU times: user 63 ms, sys: 6.34 ms, total: 69.4 ms
Wall time: 162 ms

2.229555485735586

Notice that this routine is much faster.

We can increase 𝑛 to get more accuracy and still have reasonable speed:

%%time

compute_mean_vectorized(n=10_000_000)

CPU times: user 598 ms, sys: 69.2 ms, total: 667 ms
Wall time: 2.2 s



2.2296882633738186

6.3.3 Pricing a European call option under risk neutrality
Next we are going to price a European call option under risk neutrality.

Let’s first discuss risk neutrality and then consider European options.

6.3.3.1 Risk-neutral pricing
When we use risk-neutral pricing, we determine the price of a given asset according to its expected
payoff:

cost = expected benefit (6.41)

For example, suppose someone promises to pay you

• 1,000,000 dollars if “heads” is the outcome of a fair coin flip
• 0 dollars if “tails” is the outcome

Let’s denote the payoff as 𝐺, so that

ℙ{𝐺 = 106} = ℙ{𝐺 = 0} = 1
2

(6.42)

Suppose in addition that you can sell this promise to anyone who wants it.

• First they pay you 𝑃 , the price at which you sell it
• Then they get 𝐺, which could be either 1,000,000 or 0.

What’s a fair price for this asset (this promise)?

The definition of “fair” is ambiguous, but we can say that the risk-neutral price is 500,000 dollars.

This is because the risk-neutral price is just the expected payoff of the asset, which is

𝔼𝐺 = 1
2

× 106 + 1
2

× 0 = 5 × 105 (6.43)

6.3.3.2 A comment on risk
As suggested by the name, the risk-neutral price ignores risk.

To understand this, consider whether you would pay 500,000 dollars for such a promise.

Would you prefer to receive 500,000 for sure or 1,000,000 dollars with 50% probability and nothing
with 50% probability?

At least some readers will strictly prefer the first option — although some might prefer the second.

Thinking about this makes us realize that 500,000 is not necessarily the “right” price — or the price
that we would see if there was a market for these promises.

Nonetheless, the risk-neutral price is an important benchmark, which economists and financial
market participants try to calculate every day.

6.3.3.3 Discounting
Another thing we ignored in the previous discussion was time.

In general, receiving 𝑥 dollars now is preferable to receiving 𝑥 dollars in 𝑛 periods (e.g., 10 years).

After all, if we receive 𝑥 dollars now, we could put it in the bank at interest rate 𝑟 > 0 and receive
(1 + 𝑟)𝑛𝑥 in 𝑛 periods.

Hence future payments need to be discounted when we consider their present value.



We will implement discounting by

• multiplying a payment in one period by 𝛽 < 1
• multiplying a payment in 𝑛 periods by 𝛽𝑛, etc.

The same adjustment needs to be applied to our risk-neutral price for the promise described above.

Thus, if 𝐺 is realized in 𝑛 periods, then the risk-neutral price is

𝑃 = 𝛽𝑛𝔼𝐺 = 𝛽𝑛5 × 105 (6.44)

6.3.3.4 European call options
Now let’s price a European call option.

The option is described by three things:

2. 𝑛, the expiry date,
3. 𝐾 , the strike price, and
4. 𝑆𝑛, the price of the underlying asset at date 𝑛.

For example, suppose that the underlying is one share in Amazon.

The owner of this option has the right to buy one share in Amazon at price 𝐾 after 𝑛 days.

If 𝑆𝑛 > 𝐾 , then the owner will exercise the option, buy at 𝐾 , sell at 𝑆𝑛, and make profit 𝑆𝑛 − 𝐾 .

If 𝑆𝑛 ≤ 𝐾 , then the owner will not exercise the option and the payoff is zero.

Thus, the payoff is max{𝑆𝑛 − 𝐾, 0}.

Under the assumption of risk neutrality, the price of the option is the expected discounted payoff:

𝑃 = 𝛽𝑛𝔼 max{𝑆𝑛 − 𝐾, 0} (6.45)

Now all we need to do is specify the distribution of 𝑆𝑛, so the expectation can be calculated.

Suppose we know that 𝑆𝑛 ∼ 𝐿𝑁(𝜇, 𝜎) and 𝜇 and 𝜎 are known.

If 𝑆1
𝑛, …, 𝑆𝑀

𝑛  are independent draws from this lognormal distribution then, by the law of large
numbers,

𝔼 max{𝑆𝑛 − 𝐾, 0} ≈ 1
𝑀

∑
𝑀

𝑚=1
max{𝑆𝑚

𝑛 − 𝐾, 0} (6.46)

We suppose that

μ = 1.0
σ = 0.1
K = 1
n = 10
β = 0.95

We set the simulation size to

M = 10_000_000

Here is our code

S = np.exp(μ + σ * np.random.randn(M))
return_draws = np.maximum(S - K, 0)
P = β**n * np.mean(return_draws)
print(f"The Monte Carlo option price is approximately {P:3f}")

The Monte Carlo option price is approximately 1.037056



6.3.4 Pricing via a dynamic model
In this exercise we investigate a more realistic model for the share price 𝑆𝑛.

This comes from specifying the underlying dynamics of the share price.

First we specify the dynamics.

Then we’ll compute the price of the option using Monte Carlo.

6.3.4.1 Simple dynamics
One simple model for {𝑆𝑡} is

ln
𝑆𝑡+1
𝑆𝑡

= 𝜇 + 𝜎𝜉𝑡+1 (6.47)

where

• 𝑆0 is lognormally distributed and
• {𝜉𝑡} is IID and standard normal.

Under the stated assumptions, 𝑆𝑛 is lognormally distributed.

To see why, observe that, with 𝑠𝑡 := ln 𝑆𝑡, the price dynamics become

𝑠𝑡+1 = 𝑠𝑡 + 𝜇 + 𝜎𝜉𝑡+1 (6.48)

Since 𝑠0 is normal and 𝜉1 is normal and IID, we see that 𝑠1 is normally distributed.

Continuing in this way shows that 𝑠𝑛 is normally distributed.

Hence 𝑆𝑛 = exp(𝑠𝑛) is lognormal.

6.3.4.2 Problems with simple dynamics
The simple dynamic model we studied above is convenient, since we can work out the distribution
of 𝑆𝑛.

However, its predictions are counterfactual because, in the real world, volatility (measured by 𝜎) is
not stationary.

Instead it rather changes over time, sometimes high (like during the GFC) and sometimes low.

In terms of our model above, this means that 𝜎 should not be constant.

6.3.4.3 More realistic dynamics
This leads us to study the improved version:

ln
𝑆𝑡+1
𝑆𝑡

= 𝜇 + 𝜎𝑡𝜉𝑡+1 (6.49)

where

𝜎𝑡 = exp(ℎ𝑡), ℎ𝑡+1 = 𝜌ℎ𝑡 + 𝜈𝜂𝑡+1 (6.50)

Here {𝜂𝑡} is also IID and standard normal.

6.3.4.4 Default parameters
For the dynamic model, we adopt the following parameter values.

default_μ  = 0.0001
default_ρ  = 0.1
default_ν  = 0.001



default_S0 = 10
default_h0 = 0

(Here default_S0 is 𝑆0 and default_h0 is ℎ0.)

For the option we use the following defaults.

default_K = 100
default_n = 10
default_β = 0.95

6.3.4.5 Visualizations
With 𝑠𝑡 := ln 𝑆𝑡, the price dynamics become

𝑠𝑡+1 = 𝑠𝑡 + 𝜇 + exp(ℎ𝑡)𝜉𝑡+1 (6.51)

Here is a function to simulate a path using this equation:

def simulate_asset_price_path(μ=default_μ, S0=default_S0, h0=default_h0, n=default_n,
ρ=default_ρ, ν=default_ν):
    s = np.empty(n+1)
    s[0] = np.log(S0)

    h = h0
    for t in range(n):
        s[t+1] = s[t] + μ + np.exp(h) * randn()
        h = ρ * h + ν * randn()

    return np.exp(s)

Here we plot the paths and the log of the paths.

fig, axes = plt.subplots(2, 1)

titles = 'log paths', 'paths'
transforms = np.log, lambda x: x
for ax, transform, title in zip(axes, transforms, titles):
    for i in range(50):
        path = simulate_asset_price_path()
        ax.plot(transform(path))
    ax.set_title(title)

fig.tight_layout()
plt.show()



6.3.4.6 Computing the price
Now that our model is more complicated, we cannot easily determine the distribution of 𝑆𝑛.

So to compute the price 𝑃  of the option, we use Monte Carlo.

We average over realizations 𝑆1
𝑛, …, 𝑆𝑀

𝑛  of 𝑆𝑛 and appealing to the law of large numbers:

𝔼 max{𝑆𝑛 − 𝐾, 0} ≈ 1
𝑀

∑
𝑀

𝑚=1
max{𝑆𝑚

𝑛 − 𝐾, 0} (6.52)

Here’s a version using Python loops.

def compute_call_price(β=default_β,
                       μ=default_μ,
                       S0=default_S0,
                       h0=default_h0,
                       K=default_K,
                       n=default_n,
                       ρ=default_ρ,
                       ν=default_ν,
                       M=10_000):
    current_sum = 0.0
    # For each sample path
    for m in range(M):
        s = np.log(S0)
        h = h0
        # Simulate forward in time
        for t in range(n):
            s = s + μ + np.exp(h) * randn()
            h = ρ * h + ν * randn()
        # And add the value max{S_n - K, 0} to current_sum
        current_sum += np.maximum(np.exp(s) - K, 0)



Exercise 6.27.

We would like to increase 𝑀  in the code above to make the calculation more accurate.

But this is problematic because Python loops are slow.

Your task is to write a faster version of this code using NumPy.

    return β**n * current_sum / M

%%time
compute_call_price()

CPU times: user 144 ms, sys: 2.64 ms, total: 146 ms
Wall time: 355 ms

834.0841676623891



Solution 6.21. Solution to Exercise 1

def compute_call_price_vector(β=default_β,
                       μ=default_μ,
                       S0=default_S0,
                       h0=default_h0,
                       K=default_K,
                       n=default_n,
                       ρ=default_ρ,
                       ν=default_ν,
                       M=10_000):

    s = np.full(M, np.log(S0))
    h = np.full(M, h0)
    for t in range(n):
        Z = np.random.randn(2, M)
        s = s + μ + np.exp(h) * Z[0, :]
        h = ρ * h + ν * Z[1, :]
    expectation = np.mean(np.maximum(np.exp(s) - K, 0))

    return β**n * expectation

%%time
compute_call_price_vector()

CPU times: user 4.74 ms, sys: 710 μs, total: 5.45 ms
Wall time: 5.4 ms

640.354928466415

Notice that this version is faster than the one using a Python loop.

Now let’s try with larger 𝑀  to get a more accurate calculation.

%%time
compute_call_price(M=10_000_000)

CPU times: user 2min, sys: 335 ms, total: 2min
Wall time: 2min 8s

873.3267976861929

6.3.5 Exercises

Exercise 6.28.

Consider that a European call option may be written on an underlying with spot price of $100
and a knockout barrier of $120.

This option behaves in every way like a vanilla European call, except if the spot price ever moves
above $120, the option “knocks out” and the contract is null and void.

Note that the option does not reactivate if the spot price falls below $120 again.

Use the dynamics defined in (12) to price the European call option.



Solution 6.22. Solution to Exercise 2

default_μ  = 0.0001
default_ρ  = 0.1
default_ν  = 0.001
default_S0 = 10
default_h0 = 0
default_K = 100
default_n = 10
default_β = 0.95
default_bp = 120

def compute_call_price_with_barrier(β=default_β,
                                    μ=default_μ,
                                    S0=default_S0,
                                    h0=default_h0,
                                    K=default_K,
                                    n=default_n,
                                    ρ=default_ρ,
                                    ν=default_ν,
                                    bp=default_bp,
                                    M=50_000):
    current_sum = 0.0
    # For each sample path
    for m in range(M):
        s = np.log(S0)
        h = h0
        payoff = 0
        option_is_null = False
        # Simulate forward in time
        for t in range(n):
            s = s + μ + np.exp(h) * randn()
            h = ρ * h + ν * randn()
            if np.exp(s) > bp:
                payoff = 0
                option_is_null = True
                break

        if not option_is_null:
            payoff = np.maximum(np.exp(s) - K, 0)
        # And add the payoff to current_sum
        current_sum += payoff

    return β**n * current_sum / M

%time compute_call_price_with_barrier()

CPU times: user 688 ms, sys: 1.85 ms, total: 690 ms
Wall time: 689 ms

0.0369361499512818

Let’s look at the vectorized version which is faster than using Python loops.

def compute_call_price_with_barrier_vector(β=default_β,
                                           μ=default_μ,
                                           S0=default_S0,
                                           h0=default_h0,
                                           K=default_K,
                                           n=default_n,
                                           ρ=default_ρ,
                                           ν=default_ν,
                                           bp=default_bp,
                                           M=50_000):
    s = np.full(M, np.log(S0))
    h = np.full(M, h0)
    option_is_null = np.full(M, False)
    for t in range(n):
        Z = np.random.randn(2, M)
        s = s + μ + np.exp(h) * Z[0, :]
        h = ρ * h + ν * Z[1, :]
        # Mark all the options null where S_n > barrier price
        option_is_null = np.where(np.exp(s) > bp, True, option_is_null)

    # mark payoff as 0 in the indices where options are null
    payoff = np.where(option_is_null, 0, np.maximum(np.exp(s) - K, 0))
    expectation = np.mean(payoff)
    return β**n * expectation

%time compute_call_price_with_barrier_vector()

CPU times: user 20.5 ms, sys: 2.11 ms, total: 22.6 ms
Wall time: 22.1 ms

0.03769414055494242



6.4 Heavy-Tailed Distributions
In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade yfinance pandas_datareader

We use the following imports.

import matplotlib.pyplot as plt
import numpy as np
import yfinance as yf
import pandas as pd
import statsmodels.api as sm

from pandas_datareader import wb
from scipy.stats import norm, cauchy
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

6.4.1 Overview
Heavy-tailed distributions are a class of distributions that generate “extreme” outcomes.

In the natural sciences (and in more traditional economics courses), heavy-tailed distributions are
seen as quite exotic and non-standard.

However, it turns out that heavy-tailed distributions play a crucial role in economics.

In fact many – if not most – of the important distributions in economics are heavy-tailed.

In this lecture we explain what heavy tails are and why they are – or at least why they should be –
central to economic analysis.

6.4.1.1 Introduction: light tails
Most commonly used probability distributions in classical statistics and the natural sciences have
“light tails.”

To explain this concept, let’s look first at examples.

We can see this when we plot the density and show a histogram of observations, as with the
following code (which assumes 𝜇 = 0 and 𝜎 = 1).

fig, ax = plt.subplots()
X = norm.rvs(size=1_000_000)
ax.hist(X, bins=40, alpha=0.4, label='histogram', density=True)
x_grid = np.linspace(-4, 4, 400)
ax.plot(x_grid, norm.pdf(x_grid), label='density')
ax.legend()
plt.show()

Example 6.15.

The classic example is the normal distribution, which has density

𝑓(𝑥) = 1√
2𝜋𝜎

exp(−(𝑥 − 𝜇)2

2𝜎2 ) (−∞ < 𝑥 < ∞) (6.53)

The two parameters 𝜇 and 𝜎 are the mean and standard deviation respectively.

As 𝑥 deviates from 𝜇, the value of 𝑓(𝑥) goes to zero extremely quickly.

/prob-dist
https://en.wikipedia.org/wiki/Normal\_distribution


Figure 85.  Histogram of observations

Notice how

• the density’s tails converge quickly to zero in both directions and
• even with 1,000,000 draws, we get no very large or very small observations.

We can see the last point more clearly by executing

X.min(), X.max()

(-5.253604712064156, 4.365367057398956)

Here’s another view of draws from the same distribution:

n = 2000
fig, ax = plt.subplots()
data = norm.rvs(size=n)
ax.plot(list(range(n)), data, linestyle='', marker='o', alpha=0.5, ms=4)
ax.vlines(list(range(n)), 0, data, lw=0.2)
ax.set_ylim(-15, 15)
ax.set_xlabel('$i$')
ax.set_ylabel('$X_i$', rotation=0)
plt.show()



Figure 86.  Histogram of observations

We have plotted each individual draw 𝑋𝑖 against 𝑖.

None are very large or very small.

In other words, extreme observations are rare and draws tend not to deviate too much from the
mean.

Putting this another way, light-tailed distributions are those that rarely generate extreme values.

(A more formal definition is given below.)

Many statisticians and econometricians use rules of thumb such as “outcomes more than four or five
standard deviations from the mean can safely be ignored.”

But this is only true when distributions have light tails.

6.4.1.2 When are light tails valid?
In probability theory and in the real world, many distributions are light-tailed.

For example, human height is light-tailed.

Yes, it’s true that we see some very tall people.

• For example, basketballer Sun Mingming is 2.32 meters tall

But have you ever heard of someone who is 20 meters tall? Or 200? Or 2000?

Have you ever wondered why not?

After all, there are 8 billion people in the world!

In essence, the reason we don’t see such draws is that the distribution of human height has very
light tails.

In fact the distribution of human height obeys a bell-shaped curve similar to the normal distribution.

https://en.wikipedia.org/wiki/Sun\_Mingming


6.4.1.3 Returns on assets
But what about economic data?

Let’s look at some financial data first.

Our aim is to plot the daily change in the price of Amazon (AMZN) stock for the period from 1st
January 2015 to 1st July 2022.

This equates to daily returns if we set dividends aside.

The code below produces the desired plot using Yahoo financial data via the yfinance library.

data = yf.download('AMZN', '2015-1-1', '2022-7-1')

s = data['Close']
r = s.pct_change()

fig, ax = plt.subplots()

ax.plot(r, linestyle='', marker='o', alpha=0.5, ms=4)
ax.vlines(r.index, 0, r.values, lw=0.2)
ax.set_ylabel('returns', fontsize=12)
ax.set_xlabel('date', fontsize=12)

plt.show()

Figure 87.  Daily Amazon returns

This data looks different to the draws from the normal distribution we saw above.

Several of observations are quite extreme.

We get a similar picture if we look at other assets, such as Bitcoin

data = yf.download('BTC-USD', '2015-1-1', '2022-7-1')

s = data['Close']
r = s.pct_change()



fig, ax = plt.subplots()

ax.plot(r, linestyle='', marker='o', alpha=0.5, ms=4)
ax.vlines(r.index, 0, r.values, lw=0.2)
ax.set_ylabel('returns', fontsize=12)
ax.set_xlabel('date', fontsize=12)

plt.show()

Figure 88.  Daily Bitcoin returns

The histogram also looks different to the histogram of the normal distribution:

r = np.random.standard_t(df=5, size=1000)

fig, ax = plt.subplots()
ax.hist(r, bins=60, alpha=0.4, label='bitcoin returns', density=True)

xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, np.mean(r), np.std(r))
ax.plot(x, p, linewidth=2, label='normal distribution')

ax.set_xlabel('returns', fontsize=12)
ax.legend()

plt.show()



Figure 89.  Histogram (normal vs bitcoin returns)

If we look at higher frequency returns data (e.g., tick-by-tick), we often see even more extreme
observations.

See, for example, Mandelbrot (1963) or Rachev (2003).

6.4.1.4 Other data
The data we have just seen is said to be “heavy-tailed”.

With heavy-tailed distributions, extreme outcomes occur relatively frequently.

Later in this lecture, we examine heavy tails in these distributions.

6.4.1.5 Why should we care?
Heavy tails are common in economic data but does that mean they are important?

Example 6.16.

Importantly, there are many examples of heavy-tailed distributions observed in economic and
financial settings!

For example, the income and the wealth distributions are heavy-tailed

• You can imagine this: most people have low or modest wealth but some people are
extremely rich.

The firm size distribution is also heavy-tailed

• You can imagine this too: most firms are small but some firms are enormous.

The distribution of town and city sizes is heavy-tailed

• Most towns and cities are small but some are very large.



The answer to this question is affirmative!

When distributions are heavy-tailed, we need to think carefully about issues like

• diversification and risk
• forecasting
• taxation (across a heavy-tailed income distribution), etc.

We return to these points below.

6.4.2 Visual comparisons
In this section, we will introduce important concepts such as the Pareto distribution, Counter CDFs,
and Power laws, which aid in recognizing heavy-tailed distributions.

Later we will provide a mathematical definition of the difference between light and heavy tails.

But for now let’s do some visual comparisons to help us build intuition on the difference between
these two types of distributions.

6.4.2.1 Simulations
The figure below shows a simulation.

The top two subfigures each show 120 independent draws from the normal distribution, which is
light-tailed.

The bottom subfigure shows 120 independent draws from the Cauchy distribution, which is heavy-
tailed.

n = 120
np.random.seed(11)

fig, axes = plt.subplots(3, 1, figsize=(6, 12))

for ax in axes:
    ax.set_ylim((-120, 120))

s_vals = 2, 12

for ax, s in zip(axes[:2], s_vals):
    data = np.random.randn(n) * s
    ax.plot(list(range(n)), data, linestyle='', marker='o', alpha=0.5, ms=4)
    ax.vlines(list(range(n)), 0, data, lw=0.2)
    ax.set_title(fr"draws from $N(0, \sigma^2)$ with $\sigma = {s}$", fontsize=11)

ax = axes[2]
distribution = cauchy()
data = distribution.rvs(n)
ax.plot(list(range(n)), data, linestyle='', marker='o', alpha=0.5, ms=4)
ax.vlines(list(range(n)), 0, data, lw=0.2)
ax.set_title(f"draws from the Cauchy distribution", fontsize=11)

plt.subplots_adjust(hspace=0.25)

plt.show()

https://en.wikipedia.org/wiki/Cauchy\_distribution




Figure 90.  Draws from normal and Cauchy distributions

In the top subfigure, the standard deviation of the normal distribution is 2, and the draws are
clustered around the mean.

In the middle subfigure, the standard deviation is increased to 12 and, as expected, the amount of
dispersion rises.

The bottom subfigure, with the Cauchy draws, shows a different pattern: tight clustering around the
mean for the great majority of observations, combined with a few sudden large deviations from the
mean.

This is typical of a heavy-tailed distribution.

6.4.2.2 Nonnegative distributions
Let’s compare some distributions that only take nonnegative values.

One is the exponential distribution, which we discussed in our lecture on probability and
distributions.

The exponential distribution is a light-tailed distribution.

Here are some draws from the exponential distribution.

n = 120
np.random.seed(11)

fig, ax = plt.subplots()
ax.set_ylim((0, 50))

data = np.random.exponential(size=n)
ax.plot(list(range(n)), data, linestyle='', marker='o', alpha=0.5, ms=4)
ax.vlines(list(range(n)), 0, data, lw=0.2)

plt.show()

Figure 91.  Draws of exponential distribution

/prob-dist
/prob-dist


Another nonnegative distribution is the Pareto distribution.

If 𝑋 has the Pareto distribution, then there are positive constants ̄𝑥 and 𝛼 such that

ℙ{𝑋 > 𝑥} = (6.54)

The parameter 𝛼 is called the tail index and ̄𝑥 is called the minimum.

The Pareto distribution is a heavy-tailed distribution.

One way that the Pareto distribution arises is as the exponential of an exponential random variable.

In particular, if 𝑋 is exponentially distributed with rate parameter 𝛼, then

𝑌 = ̄𝑥 exp(𝑋) (6.55)

is Pareto-distributed with minimum ̄𝑥 and tail index 𝛼.

Here are some draws from the Pareto distribution with tail index 1 and minimum 1.

n = 120
np.random.seed(11)

fig, ax = plt.subplots()
ax.set_ylim((0, 80))
exponential_data = np.random.exponential(size=n)
pareto_data = np.exp(exponential_data)
ax.plot(list(range(n)), pareto_data, linestyle='', marker='o', alpha=0.5, ms=4)
ax.vlines(list(range(n)), 0, pareto_data, lw=0.2)

plt.show()

Figure 92.  Draws from Pareto distribution

Notice how extreme outcomes are more common.

https://en.wikipedia.org/wiki/Pareto\_distribution


Exercise 6.29.

Show how the CCDF of the standard Pareto distribution can be derived from the CCDF of the
exponential distribution.

6.4.2.3 Counter CDFs
For nonnegative random variables, one way to visualize the difference between light and heavy tails
is to look at the counter CDF (CCDF).

For a random variable 𝑋 with CDF 𝐹 , the CCDF is the function

𝐺(𝑥) := 1 − 𝐹(𝑥) = ℙ{𝑋 > 𝑥} (6.56)

(Some authors call 𝐺 the “survival” function.)

The CCDF shows how fast the upper tail goes to zero as 𝑥 → ∞.

If 𝑋 is exponentially distributed with rate parameter 𝛼, then the CCDF is

𝐺𝐸(𝑥) = exp(−𝛼𝑥) (6.57)

This function goes to zero relatively quickly as 𝑥 gets large.

The standard Pareto distribution, where ̄𝑥 = 1, has CCDF

𝐺𝑃 (𝑥) = 𝑥−𝛼 (6.58)

This function goes to zero as 𝑥 → ∞, but much slower than 𝐺𝐸 .

Here’s a plot that illustrates how 𝐺𝐸  goes to zero faster than 𝐺𝑃 .

x = np.linspace(1.5, 100, 1000)
fig, ax = plt.subplots()
alpha = 1.0
ax.plot(x, np.exp(- alpha * x), label='exponential', alpha=0.8)
ax.plot(x, x**(- alpha), label='Pareto', alpha=0.8)
ax.set_xlabel('X value')
ax.set_ylabel('CCDF')
ax.legend()
plt.show()

Solution 6.23. Solution to Exercise 1

Letting 𝐺𝐸  and 𝐺𝑃  be defined as above, letting 𝑋 be exponentially distributed with rate
parameter 𝛼, and letting 𝑌 = exp(𝑋), we have

𝐺𝑃 (𝑦) = ℙ{𝑌 > 𝑦}
= ℙ{exp(𝑋) > 𝑦}
= ℙ{𝑋 > ln 𝑦}
= 𝐺𝐸(ln 𝑦)
= exp(−𝛼 ln 𝑦)
= 𝑦−𝛼

(6.59)



Figure 93.  Pareto and exponential distribution comparison

Here’s a log-log plot of the same functions, which makes visual comparison easier.

fig, ax = plt.subplots()
alpha = 1.0
ax.loglog(x, np.exp(- alpha * x), label='exponential', alpha=0.8)
ax.loglog(x, x**(- alpha), label='Pareto', alpha=0.8)
ax.set_xlabel('log value')
ax.set_ylabel('log prob')
ax.legend()
plt.show()



Figure 94.  Pareto and exponential distribution comparison (log-log)

In the log-log plot, the Pareto CCDF is linear, while the exponential one is concave.

This idea is often used to separate light- and heavy-tailed distributions in visualisations — we return
to this point below.

6.4.2.4 Empirical CCDFs
The sample counterpart of the CCDF function is the empirical CCDF.

Given a sample 𝑥1, …, 𝑥𝑛, the empirical CCDF is given by

𝐺̂(𝑥) = 1
𝑛

∑
𝑛

𝑖=1
11{𝑥𝑖 > 𝑥} (6.60)

Thus, 𝐺̂(𝑥) shows the fraction of the sample that exceeds 𝑥.

def eccdf(x, data):
    "Simple empirical CCDF function."
    return np.mean(data > x)

Here’s a figure containing some empirical CCDFs from simulated data.

# Parameters and grid
x_grid = np.linspace(1, 1000, 1000)
sample_size = 1000
np.random.seed(13)
z = np.random.randn(sample_size)

# Draws
data_exp = np.random.exponential(size=sample_size)
data_logn = np.exp(z)
data_pareto = np.exp(np.random.exponential(size=sample_size))

data_list = [data_exp, data_logn, data_pareto]



# Build figure
fig, axes = plt.subplots(3, 1, figsize=(6, 8))
axes = axes.flatten()
labels = ['exponential', 'lognormal', 'Pareto']

for data, label, ax in zip(data_list, labels, axes):

    ax.loglog(x_grid, [eccdf(x, data) for x in x_grid],
        'o', markersize=3.0, alpha=0.5, label=label)
    ax.set_xlabel("log value")
    ax.set_ylabel("log prob")

    ax.legend()

fig.subplots_adjust(hspace=0.4)

plt.show()

Figure 95.  Empirical CCDFs



As with the CCDF, the empirical CCDF from the Pareto distributions is approximately linear in a
log-log plot.

We will use this idea below when we look at real data.

6.4.2.4.1 Q-Q Plots
We can also use a qq plot to do a visual comparison between two probability distributions.

The statsmodels package provides a convenient qqplot function that, by default, compares sample
data to the quintiles of the normal distribution.

If the data is drawn from a normal distribution, the plot would look like:

data_normal = np.random.normal(size=sample_size)
sm.qqplot(data_normal, line='45')
plt.show()

We can now compare this with the exponential, log-normal, and Pareto distributions

# Build figure
fig, axes = plt.subplots(1, 3, figsize=(12, 4))
axes = axes.flatten()
labels = ['exponential', 'lognormal', 'Pareto']
for data, label, ax in zip(data_list, labels, axes):
    sm.qqplot(data, line='45', ax=ax, )
    ax.set_title(label)
plt.tight_layout()
plt.show()

https://intro.quantecon.org/heavy\_tails.html\#heavy-tails-in-economic-cross-sections
https://en.wikipedia.org/wiki/Q%E2%80%93Q\_plot
https://www.statsmodels.org/stable/index.html
https://www.statsmodels.org/stable/generated/statsmodels.graphics.gofplots.qqplot.html


6.4.2.5 Power laws
One specific class of heavy-tailed distributions has been found repeatedly in economic and social
phenomena: the class of so-called power laws.

A random variable 𝑋 is said to have a power law if, for some 𝛼 > 0,

ℙ{𝑋 > 𝑥} ≈ 𝑥−𝛼 when x is large (6.61)

We can write this more mathematically as

lim
𝑥→∞

𝑥𝛼 ℙ{𝑋 > 𝑥} = 𝑐 for some c > 0 (6.62)

It is also common to say that a random variable 𝑋 with this property has a Pareto tail with tail
index 𝛼.

Notice that every Pareto distribution with tail index 𝛼 has a Pareto tail with tail index 𝛼.

We can think of power laws as a generalization of Pareto distributions.

They are distributions that resemble Pareto distributions in their upper right tail.

Another way to think of power laws is a set of distributions with a specific kind of (very) heavy tail.

6.4.3 Heavy tails in economic cross-sections
As mentioned above, heavy tails are pervasive in economic data.

In fact power laws seem to be very common as well.

We now illustrate this by showing the empirical CCDF of heavy tails.

All plots are in log-log, so that a power law shows up as a linear log-log plot, at least in the upper
tail.

We hide the code that generates the figures, which is somewhat complex, but readers are of course
welcome to explore the code (perhaps after examining the figures).

6.4.3.1 Firm size
Here is a plot of the firm size distribution for the largest 500 firms in 2020 taken from Forbes Global
2000.



Figure 96.  Firm size distribution

6.4.3.2 City size
Here are plots of the city size distribution for the US and Brazil in 2023 from the World Population
Review.

The size is measured by population.

Figure 97.  City size distribution

6.4.3.3 Wealth
Here is a plot of the upper tail (top 500) of the wealth distribution.

The data is from the Forbes Billionaires list in 2020.



Figure 98.  Wealth distribution (Forbes billionaires in 2020)

6.4.3.4 GDP
Of course, not all cross-sectional distributions are heavy-tailed.

Here we show cross-country per capita GDP.

Figure 99.  GDP per capita distribution

The plot is concave rather than linear, so the distribution has light tails.

One reason is that this is data on an aggregate variable, which involves some averaging in its
definition.

Averaging tends to eliminate extreme outcomes.

6.4.4 Failure of the LLN
One impact of heavy tails is that sample averages can be poor estimators of the underlying mean of
the distribution.



To understand this point better, recall our earlier discussion of the law of large numbers, which
considered IID 𝑋1, …, 𝑋𝑛 with common distribution 𝐹

If 𝔼 | 𝑋𝑖 | is finite, then the sample mean 𝑋̄𝑛 := 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖 satisfies

ℙ{𝑋̄𝑛 → 𝜇 as𝑛 → ∞} = 1 (6.63)

where 𝜇 := 𝔼𝑋𝑖 = ∫ 𝑥𝐹(𝑑𝑥) is the common mean of the sample.

The condition 𝔼 | 𝑋𝑖 | = ∫| 𝑥 | 𝐹(𝑑𝑥) < ∞ holds in most cases but can fail if the distribution 𝐹  is
very heavy-tailed.

For example, it fails for the Cauchy distribution.

Let’s have a look at the behavior of the sample mean in this case, and see whether or not the LLN is
still valid.

from scipy.stats import cauchy

np.random.seed(1234)
N = 1_000

distribution = cauchy()

fig, ax = plt.subplots()
data = distribution.rvs(N)

# Compute sample mean at each n
sample_mean = np.empty(N)
for n in range(1, N):
    sample_mean[n] = np.mean(data[:n])

# Plot
ax.plot(range(N), sample_mean, alpha=0.6, label='$\\bar{X}_n$')
ax.plot(range(N), np.zeros(N), 'k--', lw=0.5)
ax.set_xlabel(r"$n$")
ax.legend()

plt.show()

/lln-clt


Figure 100.  LLN failure

The sequence shows no sign of converging.

We return to this point in the exercises.

6.4.5 Why do heavy tails matter?
We have now seen that

1. heavy tails are frequent in economics and
2. the law of large numbers fails when tails are very heavy.

But what about in the real world? Do heavy tails matter?

Let’s briefly discuss why they do.

6.4.5.1 Diversification
One of the most important ideas in investing is using diversification to reduce risk.

This is a very old idea — consider, for example, the expression “don’t put all your eggs in one
basket”.

To illustrate, consider an investor with one dollar of wealth and a choice over 𝑛 assets with payoffs
𝑋1, …, 𝑋𝑛.

Suppose that returns on distinct assets are independent and each return has mean 𝜇 and variance
𝜎2.

If the investor puts all wealth in one asset, say, then the expected payoff of the portfolio is 𝜇 and the
variance is 𝜎2.

If instead the investor puts share 1/𝑛 of her wealth in each asset, then the portfolio payoff is

𝑌𝑛 = ∑
𝑛

𝑖=1

𝑋𝑖
𝑛

= 1
𝑛

∑
𝑛

𝑖=1
𝑋𝑖. (6.64)



Try computing the mean and variance.

You will find that

• The mean is unchanged at 𝜇, while
• the variance of the portfolio has fallen to 𝜎2/𝑛.

Diversification reduces risk, as expected.

But there is a hidden assumption here: the variance of returns is finite.

If the distribution is heavy-tailed and the variance is infinite, then this logic is incorrect.

For example, we saw above that if every 𝑋𝑖 is Cauchy, then so is 𝑌𝑛.

This means that diversification doesn’t help at all!

6.4.5.2 Fiscal policy
The heaviness of the tail in the wealth distribution matters for taxation and redistribution policies.

The same is true for the income distribution.

For example, the heaviness of the tail of the income distribution helps determine how much revenue
a given tax policy will raise.

6.4.6 Classifying tail properties
Up until now we have discussed light and heavy tails without any mathematical definitions.

Let’s now rectify this.

We will focus our attention on the right hand tails of nonnegative random variables and their
distributions.

The definitions for left hand tails are very similar and we omit them to simplify the exposition.

6.4.6.1 Light and heavy tails
A distribution 𝐹  with density 𝑓  on ℝ+ is called heavy-tailed if

∫
∞

0
exp(𝑡𝑥)𝑓(𝑥)𝑑𝑥 = ∞ for all𝑡 > 0. (6.65)

We say that a nonnegative random variable 𝑋 is heavy-tailed if its density is heavy-tailed.

This is equivalent to stating that its moment generating function 𝑚(𝑡) := 𝔼 exp(𝑡𝑋) is infinite
for all 𝑡 > 0.

For example, the log-normal distribution is heavy-tailed because its moment generating function is
infinite everywhere on (0, ∞).

The Pareto distribution is also heavy-tailed.

Less formally, a heavy-tailed distribution is one that is not exponentially bounded (i.e. the tails are
heavier than the exponential distribution).

A distribution 𝐹  on ℝ+ is called light-tailed if it is not heavy-tailed.

A nonnegative random variable 𝑋 is light-tailed if its distribution 𝐹  is light-tailed.

For example, every random variable with bounded support is light-tailed. (Why?)

As another example, if 𝑋 has the exponential distribution, with cdf 𝐹(𝑥) = 1 − exp(−𝜆𝑥) for some
𝜆 > 0, then its moment generating function is

/mle
/mle
https://en.wikipedia.org/wiki/Heavy-tailed\_distribution
https://en.wikipedia.org/wiki/Log-normal\_distribution
https://en.wikipedia.org/wiki/Exponential\_distribution


𝑚(𝑡) = 𝜆
𝜆 − 𝑡

when𝑡 < 𝜆 (6.66)

In particular, 𝑚(𝑡) is finite whenever 𝑡 < 𝜆, so 𝑋 is light-tailed.

One can show that if 𝑋 is light-tailed, then all of its moments are finite.

Conversely, if some moment is infinite, then 𝑋 is heavy-tailed.

The latter condition is not necessary, however.

For example, the lognormal distribution is heavy-tailed but every moment is finite.

6.4.7 Further reading
For more on heavy tails in the wealth distribution, see e.g., Vilfredo (1896) and Benhabib & Bisin
(2018).

For more on heavy tails in the firm size distribution, see e.g., Axtell (2001), Gabaix (2016).

For more on heavy tails in the city size distribution, see e.g., Rozenfeld et al. (2011), Gabaix (2016).

There are other important implications of heavy tails, aside from those discussed above.

For example, heavy tails in income and wealth affect productivity growth, business cycles, and
political economy.

For further reading, see, for example, Acemoglu & Robinson (2002), Glaeser et al. (2003), Bhandari et
al. (2018) or Ahn et al. (2018).

Exercise 6.30.

Prove: If 𝑋 has a Pareto tail with tail index 𝛼, then 𝔼[𝑋𝑟] = ∞ for all 𝑟 ≥ 𝛼.

Solution 6.24. Solution to Exercise 2

Let 𝑋 have a Pareto tail with tail index 𝛼 and let 𝐹  be its cdf.

Fix 𝑟 ≥ 𝛼.

In view of (10), we can take positive constants 𝑏 and ̄𝑥 such that

ℙ{𝑋 > 𝑥} ≥ 𝑏𝑥−𝛼 whenever𝑥 ≥ ̄𝑥 (6.67)

But then

𝔼𝑋𝑟 = 𝑟 ∫
∞

0
𝑥𝑟−1ℙ{𝑋 > 𝑥}𝑑𝑥 ≥ 𝑟 ∫

𝑥̄

0
𝑥𝑟−1ℙ{𝑋 > 𝑥}𝑑𝑥 + 𝑟 ∫

∞

𝑥̄
𝑥𝑟−1𝑏𝑥−𝛼𝑑𝑥. (6.68)

We know that ∫∞
𝑥̄

𝑥𝑟−𝛼−1𝑑𝑥 = ∞ whenever 𝑟 − 𝛼 − 1 ≥ −1.

Since 𝑟 ≥ 𝛼, we have 𝔼𝑋𝑟 = ∞.

https://en.wikipedia.org/wiki/Moment\_(mathematics)


Exercise 6.31.

Repeat exercise 1, but replace the three distributions (two normal, one Cauchy) with three Pareto
distributions using different choices of 𝛼.

For 𝛼, try 1.15, 1.5 and 1.75.

Use np.random.seed(11) to set the seed.

6.4.8 Exercises



Solution 6.25. Solution to Exercise 3

from scipy.stats import pareto

np.random.seed(11)

n = 120
alphas = [1.15, 1.50, 1.75]

fig, axes = plt.subplots(3, 1, figsize=(6, 8))

for (a, ax) in zip(alphas, axes):
    ax.set_ylim((-5, 50))
    data = pareto.rvs(size=n, scale=1, b=a)
    ax.plot(list(range(n)), data, linestyle='', marker='o', alpha=0.5, ms=4)
    ax.vlines(list(range(n)), 0, data, lw=0.2)
    ax.set_title(f"Pareto draws with $\\alpha = {a}$", fontsize=11)

plt.subplots_adjust(hspace=0.4)

plt.show()



Exercise 6.32.

There is an ongoing argument about whether the firm size distribution should be modeled as a
Pareto distribution or a lognormal distribution (see, e.g., Fujiwara et al. (2004), Kondo et al. (2018)
or Schluter & Trede (2019)).

This sounds esoteric but has real implications for a variety of economic phenomena.

To illustrate this fact in a simple way, let us consider an economy with 100,000 firms, an interest
rate of r = 0.05 and a corporate tax rate of 15%.

Your task is to estimate the present discounted value of projected corporate tax revenue over the
next 10 years.

Because we are forecasting, we need a model.

We will suppose that

1. the number of firms and the firm size distribution (measured in profits) remain fixed and
2. the firm size distribution is either lognormal or Pareto.

Present discounted value of tax revenue will be estimated by

1. generating 100,000 draws of firm profit from the firm size distribution,
2. multiplying by the tax rate, and
3. summing the results with discounting to obtain present value.

The Pareto distribution is assumed to take the form (2) with ̄𝑥 = 1 and 𝛼 = 1.05.

(The value of the tail index 𝛼 is plausible given the data Gabaix (2016).)

To make the lognormal option as similar as possible to the Pareto option, choose its parameters
such that the mean and median of both distributions are the same.

Note that, for each distribution, your estimate of tax revenue will be random because it is based
on a finite number of draws.

To take this into account, generate 100 replications (evaluations of tax revenue) for each of the
two distributions and compare the two samples by

• producing a violin plot visualizing the two samples side-by-side and
• printing the mean and standard deviation of both samples.

For the seed use np.random.seed(1234).

What differences do you observe?

(Note: a better approach to this problem would be to model firm dynamics and try to track
individual firms given the current distribution. We will discuss firm dynamics in later lectures.)

https://en.wikipedia.org/wiki/Violin\_plot


Solution 6.26. Solution to Exercise 4

To do the exercise, we need to choose the parameters 𝜇 and 𝜎 of the lognormal distribution to
match the mean and median of the Pareto distribution.

Here we understand the lognormal distribution as that of the random variable exp(𝜇 + 𝜎𝑍)
when 𝑍 is standard normal.

The mean and median of the Pareto distribution (2) with ̄𝑥 = 1 are

mean = 𝛼
𝛼 − 1

and median = 21/𝛼 (6.69)

Using the corresponding expressions for the lognormal distribution leads us to the equations
𝛼

𝛼 − 1
= exp(𝜇 + 𝜎2/2) and 21/𝛼 = exp(𝜇) (6.70)

which we solve for 𝜇 and 𝜎 given 𝛼 = 1.05.

Here is the code that generates the two samples, produces the violin plot and prints the mean
and standard deviation of the two samples.

num_firms = 100_000
num_years = 10
tax_rate = 0.15
r = 0.05

β = 1 / (1 + r)    # discount factor

x_bar = 1.0
α = 1.05

def pareto_rvs(n):
    "Uses a standard method to generate Pareto draws."
    u = np.random.uniform(size=n)
    y = x_bar / (u**(1/α))
    return y

Let’s compute the lognormal parameters:

μ = np.log(2) / α
σ_sq = 2 * (np.log(α/(α - 1)) - np.log(2)/α)
σ = np.sqrt(σ_sq)

Here’s a function to compute a single estimate of tax revenue for a particular choice of
distribution dist.

def tax_rev(dist):
    tax_raised = 0
    for t in range(num_years):
        if dist == 'pareto':
            π = pareto_rvs(num_firms)
        else:
            π = np.exp(μ + σ * np.random.randn(num_firms))
        tax_raised += β**t * np.sum(π * tax_rate)
    return tax_raised

Now let’s generate the violin plot.

num_reps = 100
np.random.seed(1234)

tax_rev_lognorm = np.empty(num_reps)
tax_rev_pareto = np.empty(num_reps)

for i in range(num_reps):
    tax_rev_pareto[i] = tax_rev('pareto')
    tax_rev_lognorm[i] = tax_rev('lognorm')

fig, ax = plt.subplots()

data = tax_rev_pareto, tax_rev_lognorm

ax.violinplot(data)

plt.show()

Finally, let’s print the means and standard deviations.

tax_rev_pareto.mean(), tax_rev_pareto.std()

(1458729.0546623734, 406089.3613661567)tax_rev_lognorm.mean(), tax_rev_lognorm.std()(2556174.8615230713, 25586.44456513965)Looking at the output of the code, our main conclusion is that the Pareto assumption leads to a
lower mean and greater dispersion.



Exercise 6.33.

The characteristic function of the Cauchy distribution is

𝜙(𝑡) = 𝔼𝑒𝑖𝑡𝑋 = ∫ 𝑒𝑖𝑡𝑥𝑓(𝑥)𝑑𝑥 = 𝑒−| 𝑡 | (6.71)

Prove that the sample mean 𝑋̄𝑛 of 𝑛 independent draws 𝑋1, …, 𝑋𝑛 from the Cauchy
distribution has the same characteristic function as 𝑋1.

(This means that the sample mean never converges.)

Solution 6.27. Solution to Exercise 5

By independence, the characteristic function of the sample mean becomes

𝔼𝑒𝑖𝑡 ̄𝑋𝑛 = 𝔼 exp{𝑖 𝑡
𝑛

∑
𝑛

𝑗=1
𝑋𝑗}

= 𝔼 ∏
𝑛

𝑗=1
exp{𝑖 𝑡

𝑛
𝑋𝑗}

= ∏
𝑛

𝑗=1
𝔼 exp{𝑖 𝑡

𝑛
𝑋𝑗} = [𝜙(𝑡/𝑛)]𝑛

(6.72)

In view of (19), this is just 𝑒−| 𝑡 |.

Thus, in the case of the Cauchy distribution, the sample mean itself has the very same Cauchy
distribution, regardless of 𝑛!

https://en.wikipedia.org/wiki/Characteristic\_function\_%28probability\_theory%29


6.5 Racial Segregation

6.5.1 Outline
In 1969, Thomas C. Schelling developed a simple but striking model of racial segregation Schelling
(1969).

His model studies the dynamics of racially mixed neighborhoods.

Like much of Schelling’s work, the model shows how local interactions can lead to surprising
aggregate outcomes.

It studies a setting where agents (think of households) have relatively mild preference for neighbors
of the same race.

For example, these agents might be comfortable with a mixed race neighborhood but uncomfortable
when they feel “surrounded” by people from a different race.

Schelling illustrated the follow surprising result: in such a setting, mixed race neighborhoods are
likely to be unstable, tending to collapse over time.

In fact the model predicts strongly divided neighborhoods, with high levels of segregation.

In other words, extreme segregation outcomes arise even though people’s preferences are not
particularly extreme.

These extreme outcomes happen because of interactions between agents in the model (e.g.,
households in a city) that drive self-reinforcing dynamics in the model.

These ideas will become clearer as the lecture unfolds.

In recognition of his work on segregation and other research, Schelling was awarded the 2005 Nobel
Prize in Economic Sciences (joint with Robert Aumann).

Let’s start with some imports:

import matplotlib.pyplot as plt
from random import uniform, seed
from math import sqrt
import numpy as np

6.5.2 The model
In this section we will build a version of Schelling’s model.

6.5.2.1 Set-Up
We will cover a variation of Schelling’s model that is different from the original but also easy to
program and, at the same time, captures his main idea.

Suppose we have two types of people: orange people and green people.

Assume there are 𝑛 of each type.

These agents all live on a single unit square.

Thus, the location (e.g, address) of an agent is just a point (𝑥, 𝑦), where 0 < 𝑥, 𝑦 < 1.

• The set of all points (𝑥, 𝑦) satisfying 0 < 𝑥, 𝑦 < 1 is called the unit square
• Below we denote the unit square by 𝑆

6.5.2.2 Preferences
We will say that an agent is happy if 5 or more of her 10 nearest neighbors are of the same type.



Algorithm 6.1. Jump Chain Algorithm

1. Draw a random location in 𝑆
2. If happy at new location, move there
3. Otherwise, go to step 1

An agent who is not happy is called unhappy.

For example,

• if an agent is orange and 5 of her 10 nearest neighbors are orange, then she is happy.
• if an agent is green and 8 of her 10 nearest neighbors are orange, then she is unhappy.

‘Nearest’ is in terms of Euclidean distance.

An important point to note is that agents are not averse to living in mixed areas.

They are perfectly happy if half of their neighbors are of the other color.

6.5.2.3 Behavior
Initially, agents are mixed together (integrated).

In particular, we assume that the initial location of each agent is an independent draw from a
bivariate uniform distribution on the unit square 𝑆.

• First their 𝑥 coordinate is drawn from a uniform distribution on (0, 1)
• Then, independently, their 𝑦 coordinate is drawn from the same distribution.

Now, cycling through the set of all agents, each agent is now given the chance to stay or move.

Each agent stays if they are happy and moves if they are unhappy.

The algorithm for moving is as follows

We cycle continuously through the agents, each time allowing an unhappy agent to move.

We continue to cycle until no one wishes to move.

6.5.3 Results
Let’s now implement and run this simulation.

In what follows, agents are modeled as objects.

Here’s an indication of their structure:

* Data:

    * type (green or orange)
    * location

* Methods:

    * determine whether happy or not given locations of other agents
    * If not happy, move
        * find a new location where happy

Let’s build them.

class Agent:

https://en.wikipedia.org/wiki/Euclidean\_distance
https://python-programming.quantecon.org/python\_oop.html


    def __init__(self, type):
        self.type = type
        self.draw_location()

    def draw_location(self):
        self.location = uniform(0, 1), uniform(0, 1)

    def get_distance(self, other):
        "Computes the euclidean distance between self and other agent."
        a = (self.location[0] - other.location[0])**2
        b = (self.location[1] - other.location[1])**2
        return sqrt(a + b)

    def happy(self,
                agents,                # List of other agents
                num_neighbors=10,      # No. of agents viewed as neighbors
                require_same_type=5):  # How many neighbors must be same type
        """
            True if a sufficient number of nearest neighbors are of the same
            type.
        """

        distances = []

        # Distances is a list of pairs (d, agent), where d is distance from
        # agent to self
        for agent in agents:
            if self != agent:
                distance = self.get_distance(agent)
                distances.append((distance, agent))

        # Sort from smallest to largest, according to distance
        distances.sort()

        # Extract the neighboring agents
        neighbors = [agent for d, agent in distances[:num_neighbors]]

        # Count how many neighbors have the same type as self
        num_same_type = sum(self.type == agent.type for agent in neighbors)
        return num_same_type >= require_same_type

    def update(self, agents):
        "If not happy, then randomly choose new locations until happy."
        while not self.happy(agents):
            self.draw_location()

Here’s some code that takes a list of agents and produces a plot showing their locations on the unit
square.

Orange agents are represented by orange dots and green ones are represented by green dots.

def plot_distribution(agents, cycle_num):
    "Plot the distribution of agents after cycle_num rounds of the loop."
    x_values_0, y_values_0 = [], []
    x_values_1, y_values_1 = [], []
    # == Obtain locations of each type == #
    for agent in agents:



        x, y = agent.location
        if agent.type == 0:
            x_values_0.append(x)
            y_values_0.append(y)
        else:
            x_values_1.append(x)
            y_values_1.append(y)
    fig, ax = plt.subplots()
    plot_args = {'markersize': 8, 'alpha': 0.8}
    ax.set_facecolor('azure')
    ax.plot(x_values_0, y_values_0,
        'o', markerfacecolor='orange', **plot_args)
    ax.plot(x_values_1, y_values_1,
        'o', markerfacecolor='green', **plot_args)
    ax.set_title(f'Cycle {cycle_num-1}')
    plt.show()

And here’s some pseudocode for the main loop, where we cycle through the agents until no one
wishes to move.

The pseudocode is

plot the distribution
while agents are still moving
    for agent in agents
        give agent the opportunity to move
plot the distribution

The real code is below

def run_simulation(num_of_type_0=600,
                   num_of_type_1=600,
                   max_iter=100_000,       # Maximum number of iterations
                   set_seed=1234):

    # Set the seed for reproducibility
    seed(set_seed)

    # Create a list of agents of type 0
    agents = [Agent(0) for i in range(num_of_type_0)]
    # Append a list of agents of type 1
    agents.extend(Agent(1) for i in range(num_of_type_1))

    # Initialize a counter
    count = 1

    # Plot the initial distribution
    plot_distribution(agents, count)

    # Loop until no agent wishes to move
    while count < max_iter:
        print('Entering loop ', count)
        count += 1
        no_one_moved = True
        for agent in agents:
            old_location = agent.location
            agent.update(agents)
            if agent.location != old_location:



                no_one_moved = False
        if no_one_moved:
            break

    # Plot final distribution
    plot_distribution(agents, count)

    if count < max_iter:
        print(f'Converged after {count} iterations.')
    else:
        print('Hit iteration bound and terminated.')

Let’s have a look at the results.

run_simulation()

Entering loop  1

Entering loop  2

Entering loop  3

Entering loop  4

Entering loop  5

Entering loop  6

Entering loop  7



Converged after 8 iterations.

As discussed above, agents are initially mixed randomly together.

But after several cycles, they become segregated into distinct regions.

In this instance, the program terminated after a small number of cycles through the set of agents,
indicating that all agents had reached a state of happiness.

What is striking about the pictures is how rapidly racial integration breaks down.

This is despite the fact that people in the model don’t actually mind living mixed with the other
type.

Even with these preferences, the outcome is a high degree of segregation.

6.5.4 Exercises
When we run this we again find that mixed neighborhoods break down and segregation emerges.

Here’s a sample run.

sim_random_select(max_iter=50_000, flip_prob=0.01, test_freq=10_000)



Exercise 6.34.

The object oriented style that we used for coding above is neat but harder to optimize than
procedural code (i.e., code based around functions rather than objects and methods).

Try writing a new version of the model that stores

• the locations of all agents as a 2D NumPy array of floats.
• the types of all agents as a flat NumPy array of integers.

Write functions that act on this data to update the model using the logic similar to that described
above.

However, implement the following two changes:

1. Agents are offered a move at random (i.e., selected randomly and given the opportunity to
move).

2. After an agent has moved, flip their type with probability 0.01

The second change introduces extra randomness into the model.

(We can imagine that, every so often, an agent moves to a different city and, with small
probability, is replaced by an agent of the other type.)



Solution 6.28. Solution to Exercise 1

solution here

from numpy.random import uniform, randint

n = 1000                # number of agents (agents = 0, ..., n-1)
k = 10                  # number of agents regarded as neighbors
require_same_type = 5   # want >= require_same_type neighbors of the same type

def initialize_state():
    locations = uniform(size=(n, 2))
    types = randint(0, high=2, size=n)   # label zero or one
    return locations, types

def compute_distances_from_loc(loc, locations):
    """ Compute distance from location loc to all other points. """
    return np.linalg.norm(loc - locations, axis=1)

def get_neighbors(loc, locations):
    " Get all neighbors of a given location. "
    all_distances = compute_distances_from_loc(loc, locations)
    indices = np.argsort(all_distances)   # sort agents by distance to loc
    neighbors = indices[:k]               # keep the k closest ones
    return neighbors

def is_happy(i, locations, types):
    happy = True
    agent_loc = locations[i, :]
    agent_type = types[i]
    neighbors = get_neighbors(agent_loc, locations)
    neighbor_types = types[neighbors]
    if sum(neighbor_types == agent_type) < require_same_type:
        happy = False
    return happy

def count_happy(locations, types):
    " Count the number of happy agents. "
    happy_sum = 0
    for i in range(n):
        happy_sum += is_happy(i, locations, types)
    return happy_sum

def update_agent(i, locations, types):
    " Move agent if unhappy. "
    moved = False
    while not is_happy(i, locations, types):
        moved = True
        locations[i, :] = uniform(), uniform()
    return moved

def plot_distribution(locations, types, title, savepdf=False):
    " Plot the distribution of agents after cycle_num rounds of the loop."
    fig, ax = plt.subplots()
    colors = 'orange', 'green'
    for agent_type, color in zip((0, 1), colors):
        idx = (types == agent_type)
        ax.plot(locations[idx, 0],
                locations[idx, 1],
                'o',
                markersize=8,
                markerfacecolor=color,
                alpha=0.8)
    ax.set_title(title)
    plt.show()

def sim_random_select(max_iter=100_000, flip_prob=0.01, test_freq=10_000):
    """
    Simulate by randomly selecting one household at each update.

    Flip the color of the household with probability `flip_prob`.

    """

    locations, types = initialize_state()
    current_iter = 0

    while current_iter <= max_iter:

        # Choose a random agent and update them
        i = randint(0, n)
        moved = update_agent(i, locations, types)

        if flip_prob > 0:
            # flip agent i's type with probability epsilon
            U = uniform()
            if U < flip_prob:
                current_type = types[i]
                types[i] = 0 if current_type == 1 else 1

        # Every so many updates, plot and test for convergence
        if current_iter % test_freq == 0:
            cycle = current_iter / n
            plot_distribution(locations, types, f'iteration {current_iter}')
            if count_happy(locations, types) == n:
                print(f"Converged at iteration {current_iter}")
                break

        current_iter += 1

    if current_iter > max_iter:
        print(f"Terminating at iteration {current_iter}")







Terminating at iteration 50001





Chapter 7

7. Nonlinear Dynamics
7.1 Dynamics in One Dimension

7.1.1 Overview
In economics many variables depend on their past values

For example, it seems reasonable to believe that inflation last year with affects inflation this year.

(Perhaps high inflation last year will lead people to demand higher wages to compensate, which will
feed into higher prices this year.)

Letting 𝜋𝑡 be inflation this year and 𝜋𝑡−1 be inflation last year, we can write this relationship in a
general form as

𝜋𝑡 = 𝑓(𝜋𝑡−1) (7.1)

where 𝑓  is some function describing the relationship between the variables.

This equation is an example of one-dimensional discrete time dynamic system.

In this lecture we cover the foundations of one-dimensional discrete time dynamics.

(While most quantitative models have two or more state variables, the one-dimensional setting is a
good place to learn foundations and understand key concepts.)

Let’s start with some standard imports:

import matplotlib.pyplot as plt
import numpy as np

7.1.2 Some definitions
This section sets out the objects of interest and the kinds of properties we study.

7.1.2.1 Composition of functions
For this lecture you should know the following.

If

• 𝑔 is a function from 𝐴 to 𝐵 and
• 𝑓  is a function from 𝐵 to 𝐶 ,

then the composition 𝑓 ∘ 𝑔 of 𝑓  and 𝑔 is defined by

(𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)) (7.2)

For example, if

• 𝐴 = 𝐵 = 𝐶 = ℝ, the set of real numbers,
• 𝑔(𝑥) = 𝑥2 and 𝑓(𝑥) =

√
𝑥, then (𝑓 ∘ 𝑔)(𝑥) =

√
𝑥2 = | 𝑥 |.

If 𝑓  is a function from 𝐴 to itself, then 𝑓2 is the composition of 𝑓  with itself.

For example, if 𝐴 = (0, ∞), the set of positive numbers, and 𝑓(𝑥) =
√

𝑥, then

𝑓2(𝑥) = √√
𝑥 = 𝑥1/4 (7.3)

Similarly, if 𝑛 is a positive integer, then 𝑓𝑛 is 𝑛 compositions of 𝑓  with itself.

In the example above, 𝑓𝑛(𝑥) = 𝑥1/(2𝑛).



7.1.2.2 Dynamic systems
A (discrete time) dynamic system is a set 𝑆 and a function 𝑔 that sends set 𝑆 back into to itself.

Examples of dynamic systems include

• 𝑆 = (0, 1) and 𝑔(𝑥) =
√

𝑥
• 𝑆 = (0, 1) and 𝑔(𝑥) = 𝑥2

• 𝑆 = ℤ (the integers) and 𝑔(𝑥) = 2𝑥

On the other hand, if 𝑆 = (−1, 1) and 𝑔(𝑥) = 𝑥 + 1, then 𝑆 and 𝑔 do not form a dynamic system,
since 𝑔(1) = 2.

• 𝑔 does not always send points in 𝑆 back into 𝑆.

We care about dynamic systems because we can use them to study dynamics!

Given a dynamic system consisting of set 𝑆 and function 𝑔, we can create a sequence {𝑥𝑡} of points
in 𝑆 by setting

𝑥𝑡+1 = 𝑔(𝑥𝑡) with𝑥0 given. (7.4)

This means that we choose some number 𝑥0 in 𝑆 and then take

𝑥0, 𝑥1 = 𝑔(𝑥0), 𝑥2 = 𝑔(𝑥1) = 𝑔(𝑔(𝑥0)), etc. (7.5)

This sequence {𝑥𝑡} is called the trajectory of 𝑥0 under 𝑔.

In this setting, 𝑆 is called the state space and 𝑥𝑡 is called the state variable.

Recalling that 𝑔𝑛 is the 𝑛 compositions of 𝑔 with itself, we can write the trajectory more simply as

𝑥𝑡 = 𝑔𝑡(𝑥0) for𝑡 = 0, 1, 2, … (7.6)

In all of what follows, we are going to assume that 𝑆 is a subset of ℝ, the real numbers.

Equation (4) is sometimes called a first order difference equation

• first order means dependence on only one lag (i.e., earlier states such as 𝑥𝑡−1 do not enter into
(4)).

7.1.2.3 Example: a linear model
One simple example of a dynamic system is when 𝑆 = ℝ and 𝑔(𝑥) = 𝑎𝑥 + 𝑏, where 𝑎, 𝑏 are
constants (sometimes called ``parameters’‘).

This leads to the linear difference equation

𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏 with𝑥0 given. (7.7)

The trajectory of 𝑥0 is

𝑥0, 𝑎𝑥0 + 𝑏, 𝑎2𝑥0 + 𝑎𝑏 + 𝑏, etc. (7.8)

Continuing in this way, and using our knowledge of geometric series, we find that, for any 𝑡 =
0, 1, 2, …,

𝑥𝑡 = 𝑎𝑡𝑥0 + 𝑏1 − 𝑎𝑡

1 − 𝑎
(7.9)

We have an exact expression for 𝑥𝑡 for all non-negative integer 𝑡 and hence a full understanding of
the dynamics.

Notice in particular that | 𝑎 | < 1, then, by (9), we have
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𝑥𝑡 → 𝑏
1 − 𝑎

as𝑡 → ∞ (7.10)

regardless of 𝑥0.

This is an example of what is called global stability, a topic we return to below.

7.1.2.4 Example: a nonlinear model
In the linear example above, we obtained an exact analytical expression for 𝑥𝑡 in terms of arbitrary
non-negative integer 𝑡 and 𝑥0.

This made analysis of dynamics very easy.

When models are nonlinear, however, the situation can be quite different.

For example, in a later lecture The Solow-Swan Growth Model, we will study the Solow-Swan
growth model, which has dynamics

𝑘𝑡+1 = 𝑠𝐴𝑘𝛼
𝑡 + (1 − 𝛿)𝑘𝑡 (7.11)

Here 𝑘 = 𝐾/𝐿 is the per capita capital stock, 𝑠 is the saving rate, 𝐴 is the total factor productivity,
𝛼 is the capital share, and 𝛿 is the depreciation rate.

All these parameter are positive and 0 < 𝛼, 𝛿 < 1.

If you try to iterate like we did in (8), you will find that the algebra gets messy quickly.

Analyzing the dynamics of this model requires a different method (see below).

7.1.3 Stability
Consider a dynamic system consisting of set 𝑆 ⊂ ℝ and 𝑔 mapping 𝑆 to 𝑆.

7.1.3.1 Steady states
A steady state of this system is a point 𝑥∗ in 𝑆 such that 𝑥∗ = 𝑔(𝑥∗).

In other words, 𝑥∗ is a fixed point of the function 𝑔 in 𝑆.

For example, for the linear model 𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏, you can use the definition to check that

• 𝑥∗ := 𝑏/(1 − 𝑎) is a steady state whenever 𝑎¬ = 1,
• if 𝑎 = 1 and 𝑏 = 0, then every 𝑥 ∈ ℝ is a steady state,
• if 𝑎 = 1 and 𝑏¬ = 0, then the linear model has no steady state in ℝ.

7.1.3.2 Global stability
A steady state 𝑥∗ of the dynamic system is called globally stable if, for all 𝑥0 ∈ 𝑆,

𝑥𝑡 = 𝑔𝑡(𝑥0) → 𝑥∗ as𝑡 → ∞ (7.12)

For example, in the linear model 𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏 with 𝑎¬ = 1, the steady state 𝑥∗

• is globally stable if | 𝑎 | < 1 and
• fails to be globally stable otherwise.

This follows directly from (9).

7.1.3.3 Local stability
A steady state 𝑥∗ of the dynamic system is called locally stable if there exists an 𝜀 > 0 such that

| 𝑥0 − 𝑥∗ | < 𝜀 ⟹ 𝑥𝑡 = 𝑔𝑡(𝑥0) → 𝑥∗ as𝑡 → ∞ (7.13)

Obviously every globally stable steady state is also locally stable.
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Example 7.17.

Consider the self-map 𝑔 on ℝ defined by 𝑔(𝑥) = 𝑥2. The fixed point 1 is not stable.

For example, 𝑔𝑡(𝑥) → ∞ for any 𝑥 > 1.

However, 0 is locally stable, because −1 < 𝑥 < 1 implies that 𝑔𝑡(𝑥) → 0 as 𝑡 → ∞.

Since we have more than one fixed point, 0 is not globally stable.

Here is an example where the converse is not true.

7.1.4 Graphical analysis
As we saw above, analyzing the dynamics for nonlinear models is nontrivial.

There is no single way to tackle all nonlinear models.

However, there is one technique for one-dimensional models that provides a great deal of intuition.

This is a graphical approach based on 45-degree diagrams.

Let’s look at an example: the Solow-Swan model with dynamics given in (11).

We begin with some plotting code that you can ignore at first reading.

The function of the code is to produce 45-degree diagrams and time series plots.

Let’s create a 45-degree diagram for the Solow-Swan model with a fixed set of parameters. Here’s
the update function corresponding to the model.

def g(k, A = 2, s = 0.3, alpha = 0.3, delta = 0.4):
    return A * s * k**alpha + (1 - delta) * k

Here is the 45-degree plot.

xmin, xmax = 0, 4  # Suitable plotting region.

plot45(g, xmin, xmax, 0, num_arrows=0)



The plot shows the function 𝑔 and the 45-degree line.

Think of 𝑘𝑡 as a value on the horizontal axis.

To calculate 𝑘𝑡+1, we can use the graph of 𝑔 to see its value on the vertical axis.

Clearly,

• If 𝑔 lies above the 45-degree line at this point, then we have 𝑘𝑡+1 > 𝑘𝑡.
• If 𝑔 lies below the 45-degree line at this point, then we have 𝑘𝑡+1 < 𝑘𝑡.
• If 𝑔 hits the 45-degree line at this point, then we have 𝑘𝑡+1 = 𝑘𝑡, so 𝑘𝑡 is a steady state.

For the Solow-Swan model, there are two steady states when 𝑆 = ℝ+ = [0, ∞).

• the origin 𝑘 = 0
• the unique positive number such that 𝑘 = 𝑠𝑧𝑘𝛼 + (1 − 𝛿)𝑘.

By using some algebra, we can show that in the second case, the steady state is

𝑘∗ = (𝑠𝑧
𝛿

)
1/(1−𝛼)

(7.14)

7.1.4.1 Trajectories
By the preceding discussion, in regions where 𝑔 lies above the 45-degree line, we know that the
trajectory is increasing.

The next figure traces out a trajectory in such a region so we can see this more clearly.

The initial condition is 𝑘0 = 0.25.



k0 = 0.25

plot45(g, xmin, xmax, k0, num_arrows=5, var='k')

We can plot the time series of per capita capital corresponding to the figure above as follows:

ts_plot(g, xmin, xmax, k0, var='k')



Here’s a somewhat longer view:

ts_plot(g, xmin, xmax, k0, ts_length=20, var='k')



When per capita capital stock is higher than the unique positive steady state, we see that it declines:

k0 = 2.95

plot45(g, xmin, xmax, k0, num_arrows=5, var='k')



Here is the time series:

ts_plot(g, xmin, xmax, k0, var='k')



7.1.4.2 Complex dynamics
The Solow-Swan model is nonlinear but still generates very regular dynamics.

One model that generates irregular dynamics is the quadratic map

𝑔(𝑥) = 4𝑥(1 − 𝑥), 𝑥 ∈ [0, 1] (7.15)

Let’s have a look at the 45-degree diagram.

xmin, xmax = 0, 1
g = lambda x: 4 * x * (1 - x)

x0 = 0.3
plot45(g, xmin, xmax, x0, num_arrows=0)



Now let’s look at a typical trajectory.

plot45(g, xmin, xmax, x0, num_arrows=6)



Notice how irregular it is.

Here is the corresponding time series plot.

ts_plot(g, xmin, xmax, x0, ts_length=6)



The irregularity is even clearer over a longer time horizon:

ts_plot(g, xmin, xmax, x0, ts_length=20)



Exercise 7.35.

Consider again the linear model 𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏 with 𝑎¬ = 1.

The unique steady state is 𝑏/(1 − 𝑎).

The steady state is globally stable if | 𝑎 | < 1.

Try to illustrate this graphically by looking at a range of initial conditions.

What differences do you notice in the cases 𝑎 ∈ (−1, 0) and 𝑎 ∈ (0, 1)?

Use 𝑎 = 0.5 and then 𝑎 = −0.5 and study the trajectories.

Set 𝑏 = 1 throughout.



7.1.5 Exercises



Solution 7.29. Solution to Exercise 1

We will start with the case 𝑎 = 0.5.

Let’s set up the model and plotting region:

a, b = 0.5, 1
xmin, xmax = -1, 3
g = lambda x: a * x + b

Now let’s plot a trajectory:

x0 = -0.5
plot45(g, xmin, xmax, x0, num_arrows=5)

Here is the corresponding time series, which converges towards the steady state.

ts_plot(g, xmin, xmax, x0, ts_length=10)

Now let’s try 𝑎 = −0.5 and see what differences we observe.

Let’s set up the model and plotting region:

a, b = -0.5, 1
xmin, xmax = -1, 3
g = lambda x: a * x + b

Now let’s plot a trajectory:

x0 = -0.5
plot45(g, xmin, xmax, x0, num_arrows=5)

Here is the corresponding time series, which converges towards the steady state.

ts_plot(g, xmin, xmax, x0, ts_length=10)

Once again, we have convergence to the steady state but the nature of convergence differs.

In particular, the time series jumps from above the steady state to below it and back again.

In the current context, the series is said to exhibit damped oscillations.



7.2 The Solow-Swan Growth Model
In this lecture we review a famous model due to Robert Solow (1925–2023) and Trevor Swan (1918–
1989).

The model is used to study growth over the long run.

Although the model is simple, it contains some interesting lessons.

We will use the following imports.

import matplotlib.pyplot as plt
import numpy as np

7.2.1 The model
In a Solow–Swan economy, agents save a fixed fraction of their current incomes.

Savings sustain or increase the stock of capital.

Capital is combined with labor to produce output, which in turn is paid out to workers and owners
of capital.

To keep things simple, we ignore population and productivity growth.

For each integer 𝑡 ≥ 0, output 𝑌𝑡 in period 𝑡 is given by 𝑌𝑡 = 𝐹(𝐾𝑡, 𝐿𝑡), where 𝐾𝑡 is capital, 𝐿𝑡 is
labor and 𝐹  is an aggregate production function.

The function 𝐹  is assumed to be nonnegative and homogeneous of degree one, meaning that

𝐹(𝜆𝐾, 𝜆𝐿) = 𝜆𝐹(𝐾, 𝐿) for all𝜆 ≥ 0 (7.16)

Production functions with this property include

• the Cobb-Douglas function 𝐹(𝐾, 𝐿) = 𝐴𝐾𝛼𝐿1−𝛼 with 0 ≤ 𝛼 ≤ 1.
• the CES function 𝐹(𝐾, 𝐿) = {𝑎𝐾𝜌 + 𝑏𝐿𝜌}1/𝜌 with 𝑎, 𝑏, 𝜌 > 0.

Here, 𝛼 is the output elasticity of capital and 𝜌 is a parameter that determines the elasticity of
substitution between capital and labor.

We assume a closed economy, so aggregate domestic investment equals aggregate domestic saving.

The saving rate is a constant 𝑠 satisfying 0 ≤ 𝑠 ≤ 1, so that aggregate investment and saving both
equal 𝑠𝑌𝑡.

Capital depreciates: without replenishing through investment, one unit of capital today becomes 1 −
𝛿 units tomorrow.

Thus,

𝐾𝑡+1 = 𝑠𝐹(𝐾𝑡, 𝐿𝑡) + (1 − 𝛿)𝐾𝑡 (7.17)

Without population growth, 𝐿𝑡 equals some constant 𝐿.

Setting 𝑘𝑡 := 𝐾𝑡/𝐿 and using homogeneity of degree one now yields

𝑘𝑡+1 = 𝑠𝐹(𝐾𝑡, 𝐿)
𝐿

+ (1 − 𝛿)𝐾𝑡
𝐿

= 𝑠𝐹(𝐾𝑡, 𝐿)
𝐿

+ (1 − 𝛿)𝑘𝑡 = 𝑠𝐹(𝑘𝑡, 1) + (1 − 𝛿)𝑘𝑡 (7.18)

With 𝑓(𝑘) := 𝐹(𝑘, 1), the final expression for capital dynamics is

𝑘𝑡+1 = 𝑔(𝑘𝑡) where𝑔(𝑘) := 𝑠𝑓(𝑘) + (1 − 𝛿)𝑘 (7.19)

Our aim is to learn about the evolution of 𝑘𝑡 over time, given an exogenous initial capital stock 𝑘0.

https://en.wikipedia.org/wiki/Robert\_Solow
https://en.wikipedia.org/wiki/Trevor\_Swan
https://en.wikipedia.org/wiki/Trevor\_Swan


7.2.2 A graphical perspective
To understand the dynamics of the sequence (𝑘𝑡)𝑡≥0 we use a 45-degree diagram.

To do so, we first need to specify the functional form for 𝑓  and assign values to the parameters.

We choose the Cobb–Douglas specification 𝑓(𝑘) = 𝐴𝑘𝛼 and set 𝐴 = 2.0, 𝛼 = 0.3, 𝑠 = 0.3 and 𝛿 =
0.4.

The function 𝑔 from (4) is then plotted, along with the 45-degree line.

Let’s define the constants.

A, s, alpha, delta = 2, 0.3, 0.3, 0.4
x0 = 0.25
xmin, xmax = 0, 3

Now, we define the function 𝑔.

def g(A, s, alpha, delta, k):
    return A * s * k**alpha + (1 - delta) * k

Let’s plot the 45-degree diagram of 𝑔.

def plot45(kstar=None):
    xgrid = np.linspace(xmin, xmax, 12000)

    fig, ax = plt.subplots()

    ax.set_xlim(xmin, xmax)

    g_values = g(A, s, alpha, delta, xgrid)

    ymin, ymax = np.min(g_values), np.max(g_values)
    ax.set_ylim(ymin, ymax)

    lb = r'$g(k) = sAk^{\alpha} + (1 - \delta)k$'
    ax.plot(xgrid, g_values,  lw=2, alpha=0.6, label=lb)
    ax.plot(xgrid, xgrid, 'k-', lw=1, alpha=0.7, label=r'$45^{\circ}$')

    if kstar:
        fps = (kstar,)

        ax.plot(fps, fps, 'go', ms=10, alpha=0.6)

        ax.annotate(r'$k^* = (sA / \delta)^{(1/(1-\alpha))}$',
                 xy=(kstar, kstar),
                 xycoords='data',
                 xytext=(-40, -60),
                 textcoords='offset points',
                 fontsize=14,
                 arrowprops=dict(arrowstyle="->"))

    ax.legend(loc='upper left', frameon=False, fontsize=12)

    ax.set_xticks((0, 1, 2, 3))
    ax.set_yticks((0, 1, 2, 3))

    ax.set_xlabel('$k_t$', fontsize=12)
    ax.set_ylabel('$k_{t+1}$', fontsize=12)



    plt.show()

plot45()

Suppose, at some 𝑘𝑡, the value 𝑔(𝑘𝑡) lies strictly above the 45-degree line.

Then we have 𝑘𝑡+1 = 𝑔(𝑘𝑡) > 𝑘𝑡 and capital per worker rises.

If 𝑔(𝑘𝑡) < 𝑘𝑡 then capital per worker falls.

If 𝑔(𝑘𝑡) = 𝑘𝑡, then we are at a steady state and 𝑘𝑡 remains constant.

(A steady state of the model is a fixed point of the mapping 𝑔.)

From the shape of the function 𝑔 in the figure, we see that there is a unique steady state in (0, ∞).

It solves 𝑘 = 𝑠𝐴𝑘𝛼 + (1 − 𝛿)𝑘 and hence is given by

𝑘∗ := (𝑠𝐴
𝛿

)
1/(1−𝛼)

(7.20)

If initial capital is below 𝑘∗, then capital increases over time.

If initial capital is above this level, then the reverse is true.

Let’s plot the 45-degree diagram to show the 𝑘∗ in the plot.

kstar = ((s * A) / delta)**(1/(1 - alpha))
plot45(kstar)

https://en.wikipedia.org/wiki/Fixed\_point\_(mathematics)


From our graphical analysis, it appears that (𝑘𝑡) converges to 𝑘∗, regardless of initial capital 𝑘0.

This is a form of global stability.

The next figure shows three time paths for capital, from three distinct initial conditions, under the
parameterization listed above.

At this parameterization, 𝑘∗ ≈ 1.78.

Let’s define the constants and three distinct initial conditions

A, s, alpha, delta = 2, 0.3, 0.3, 0.4
x0 = np.array([.25, 1.25, 3.25])

ts_length = 20
xmin, xmax = 0, ts_length
ymin, ymax = 0, 3.5

def simulate_ts(x0_values, ts_length):

    k_star = (s * A / delta)**(1/(1-alpha))
    fig, ax = plt.subplots(figsize=[11, 5])
    ax.set_xlim(xmin, xmax)
    ax.set_ylim(ymin, ymax)

    ts = np.zeros(ts_length)

    # simulate and plot time series
    for x_init in x0_values:
        ts[0] = x_init
        for t in range(1, ts_length):
            ts[t] = g(A, s, alpha, delta, ts[t-1])



        ax.plot(np.arange(ts_length), ts, '-o', ms=4, alpha=0.6,
                label=r'$k_0=%g$' %x_init)
    ax.plot(np.arange(ts_length), np.full(ts_length,k_star),
            alpha=0.6, color='red', label=r'$k^*$')
    ax.legend(fontsize=10)

    ax.set_xlabel(r'$t$', fontsize=14)
    ax.set_ylabel(r'$k_t$', fontsize=14)

    plt.show()

simulate_ts(x0, ts_length)

As expected, the time paths in the figure all converge to 𝑘∗.

7.2.3 Growth in continuous time
In this section, we investigate a continuous time version of the Solow–Swan growth model.

We will see how the smoothing provided by continuous time can simplify our analysis.

Recall that the discrete time dynamics for capital are given by 𝑘𝑡+1 = 𝑠𝑓(𝑘𝑡) + (1 − 𝛿)𝑘𝑡.

A simple rearrangement gives the rate of change per unit of time:

Δ𝑘𝑡 = 𝑠𝑓(𝑘𝑡) − 𝛿𝑘𝑡 where Δ𝑘𝑡 := 𝑘𝑡+1 − 𝑘𝑡 (7.21)

Taking the time step to zero gives the continuous time limit

𝑘′𝑡 = 𝑠𝑓(𝑘𝑡) − 𝛿𝑘𝑡 with 𝑘′𝑡 := 𝑑
𝑑𝑡

𝑘𝑡 (7.22)

Our aim is to learn about the evolution of 𝑘𝑡 over time, given an initial stock 𝑘0.

A steady state for (7) is a value 𝑘∗ at which capital is unchanging, meaning 𝑘′𝑡 = 0 or, equivalently,
𝑠𝑓(𝑘∗) = 𝛿𝑘∗.

We assume 𝑓(𝑘) = 𝐴𝑘𝛼, so 𝑘∗ solves 𝑠𝐴𝑘𝛼 = 𝛿𝑘.

The solution is the same as the discrete time case—see (5).

The dynamics are represented in the next figure, maintaining the parameterization we used above.

Writing 𝑘′𝑡 = 𝑔(𝑘𝑡) with 𝑔(𝑘) = 𝑠𝐴𝑘𝛼 − 𝛿𝑘, values of 𝑘 with 𝑔(𝑘) > 0 imply 𝑘′𝑡 > 0, so capital is
increasing.



When 𝑔(𝑘) < 0, the opposite occurs. Once again, high marginal returns to savings at low levels of
capital combined with low rates of return at high levels of capital combine to yield global stability.

To see this in a figure, let’s define the constants

A, s, alpha, delta = 2, 0.3, 0.3, 0.4

Next we define the function 𝑔 for growth in continuous time

def g_con(A, s, alpha, delta, k):
    return A * s * k**alpha - delta * k

def plot_gcon(kstar=None):

    k_grid = np.linspace(0, 2.8, 10000)

    fig, ax = plt.subplots(figsize=[11, 5])
    ax.plot(k_grid, g_con(A, s, alpha, delta, k_grid), label='$g(k)$')
    ax.plot(k_grid, 0 * k_grid, label="$k'=0$")

    if kstar:
        fps = (kstar,)

        ax.plot(fps, 0, 'go', ms=10, alpha=0.6)

        ax.annotate(r'$k^* = (sA / \delta)^{(1/(1-\alpha))}$',
                 xy=(kstar, 0),
                 xycoords='data',
                 xytext=(0, 60),
                 textcoords='offset points',
                 fontsize=12,
                 arrowprops=dict(arrowstyle="->"))

    ax.legend(loc='lower left', fontsize=12)

    ax.set_xlabel("$k$",fontsize=10)
    ax.set_ylabel("$k'$", fontsize=10)

    ax.set_xticks((0, 1, 2, 3))
    ax.set_yticks((-0.3, 0, 0.3))

    plt.show()

kstar = ((s * A) / delta)**(1/(1 - alpha))
plot_gcon(kstar)



This shows global stability heuristically for a fixed parameterization, but how would we show the
same thing formally for a continuum of plausible parameters?

In the discrete time case, a neat expression for 𝑘𝑡 is hard to obtain.

In continuous time the process is easier: we can obtain a relatively simple expression for 𝑘𝑡 that
specifies the entire path.

The first step is to set 𝑥𝑡 := 𝑘1−𝛼
𝑡 , so that 𝑥′𝑡 = (1 − 𝛼)𝑘−𝛼

𝑡 𝑘′𝑡.

Substituting into 𝑘′𝑡 = 𝑠𝐴𝑘𝛼
𝑡 − 𝛿𝑘𝑡 leads to the linear differential equation

𝑥′𝑡 = (1 − 𝛼)(𝑠𝐴 − 𝛿𝑥𝑡) (7.23)

This equation, which is a linear ordinary differential equation, has the solution

𝑥𝑡 = (𝑘1−𝛼
0 − 𝑠𝐴

𝛿
)e−𝛿(1−𝛼)𝑡 + 𝑠𝐴

𝛿
(7.24)

(You can confirm that this function 𝑥𝑡 satisfies (8) by differentiating it with respect to 𝑡.)

Converting back to 𝑘𝑡 yields

𝑘𝑡 = [(𝑘1−𝛼
0 − 𝑠𝐴

𝛿
)e−𝛿(1−𝛼)𝑡 + 𝑠𝐴

𝛿
]

1/(1−𝛼)

(7.25)

Since 𝛿 > 0 and 𝛼 ∈ (0, 1), we see immediately that 𝑘𝑡 → 𝑘∗ as 𝑡 → ∞ independent of 𝑘0.

Thus, global stability holds.

Exercise 7.36.

Plot per capita consumption 𝑐 at the steady state, as a function of the savings rate 𝑠, where 0 ≤
𝑠 ≤ 1.

Use the Cobb–Douglas specification 𝑓(𝑘) = 𝐴𝑘𝛼.

Set 𝐴 = 2.0, 𝛼 = 0.3, and 𝛿 = 0.5

Also, find the approximate value of 𝑠 that maximizes the 𝑐∗(𝑠) and show it in the plot.

https://math.libretexts.org/Bookshelves/Calculus/Calculus\_(Guichard)/17%3A\_Differential\_Equations/17.01%3A\_First\_Order\_Differential\_Equations


7.2.4 Exercises



Solution 7.30. Solution to Exercise 1

Steady state consumption at savings rate 𝑠 is given by

𝑐∗(𝑠) = (1 − 𝑠)𝑓(𝑘∗) = (1 − 𝑠)𝐴(𝑘∗)𝛼 (7.26)

A = 2.0
alpha = 0.3
delta = 0.5

s_grid = np.linspace(0, 1, 1000)
k_star = ((s_grid * A) / delta)**(1/(1 - alpha))
c_star = (1 - s_grid) * A * k_star ** alpha

Let’s find the value of 𝑠 that maximizes 𝑐∗ using scipy.optimize.minimize_scalar. We will use
−𝑐∗(𝑠) since minimize_scalar finds the minimum value.

from scipy.optimize import minimize_scalar

def calc_c_star(s):
    k = ((s * A) / delta)**(1/(1 - alpha))
    return - (1 - s) * A * k ** alpha

return_values = minimize_scalar(calc_c_star, bounds=(0, 1))
s_star_max = return_values.x
c_star_max = -return_values.fun
print(f"Function is maximized at s = {round(s_star_max, 4)}")

Function is maximized at s = 0.3

x_s_max = np.array([s_star_max, s_star_max])
y_s_max = np.array([0, c_star_max])

fig, ax = plt.subplots(figsize=[11, 5])

fps = (c_star_max,)

# Highlight the maximum point with a marker
ax.plot((s_star_max, ), (c_star_max,), 'go', ms=8, alpha=0.6)

ax.annotate(r'$s^*$',
         xy=(s_star_max, c_star_max),
         xycoords='data',
         xytext=(20, -50),
         textcoords='offset points',
         fontsize=12,
         arrowprops=dict(arrowstyle="->"))
ax.plot(s_grid, c_star, label=r'$c*(s)$')
ax.plot(x_s_max, y_s_max, alpha=0.5, ls='dotted')
ax.set_xlabel(r'$s$')
ax.set_ylabel(r'$c^*(s)$')
ax.legend()

plt.show()

One can also try to solve this mathematically by differentiating 𝑐∗(𝑠) and solve for 𝑑
𝑑𝑠𝑐∗(𝑠) = 0

using sympy.

from sympy import solve, Symbol

s_symbol = Symbol('s', real=True)
k = ((s_symbol * A) / delta)**(1/(1 - alpha))
c = (1 - s_symbol) * A * k ** alpha

Let’s differentiate 𝑐 and solve using sympy.solve

# Solve using sympy
s_star = solve(c.diff())[0]
print(f"s_star = {s_star}")

s_star = 0.300000000000000

Incidentally, the rate of savings which maximizes steady state level of per capita consumption is
called the Golden Rule savings rate.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize\_scalar.html\#scipy.optimize.minimize\_scalar
https://www.sympy.org/en/index.html
https://docs.sympy.org/latest/modules/solvers/solvers.html\#sympy.solvers.solvers.solve
https://en.wikipedia.org/wiki/Golden\_Rule\_savings\_rate


Exercise 7.37.

Stochastic Productivity

To bring the Solow–Swan model closer to data, we need to think about handling random
fluctuations in aggregate quantities.

Among other things, this will eliminate the unrealistic prediction that per-capita output 𝑦𝑡 =
𝐴𝑘𝛼

𝑡  converges to a constant 𝑦∗ := 𝐴(𝑘∗)𝛼.

We shift to discrete time for the following discussion.

One approach is to replace constant productivity with some stochastic sequence (𝐴𝑡)𝑡≥1.

Dynamics are now

𝑘𝑡+1 = 𝑠𝐴𝑡+1𝑓(𝑘𝑡) + (1 − 𝛿)𝑘𝑡 (7.27)

We suppose 𝑓  is Cobb–Douglas and (𝐴𝑡) is IID and lognormal.

Now the long run convergence obtained in the deterministic case breaks down, since the system
is hit with new shocks at each point in time.

Consider 𝐴 = 2.0, 𝑠 = 0.6, 𝛼 = 0.3, and 𝛿 = 0.5

Generate and plot the time series 𝑘𝑡.



Solution 7.31. Solution to Exercise 2

Let’s define the constants for lognormal distribution and initial values used for simulation

# Define the constants
sig = 0.2
mu = np.log(2) - sig**2 / 2
A = 2.0
s = 0.6
alpha = 0.3
delta = 0.5
x0 = [.25, 3.25] # list of initial values used for simulation

Let’s define the function k_next to find the next value of 𝑘

def lgnorm():
    return np.exp(mu + sig * np.random.randn())

def k_next(s, alpha, delta, k):
    return lgnorm() * s * k**alpha + (1 - delta) * k

def ts_plot(x_values, ts_length):
    fig, ax = plt.subplots(figsize=[11, 5])
    ts = np.zeros(ts_length)

    # simulate and plot time series
    for x_init in x_values:
        ts[0] = x_init
        for t in range(1, ts_length):
            ts[t] = k_next(s, alpha, delta, ts[t-1])
        ax.plot(np.arange(ts_length), ts, '-o', ms=4,
                alpha=0.6, label=r'$k_0=%g$' %x_init)

    ax.legend(loc='best', fontsize=10)

    ax.set_xlabel(r'$t$', fontsize=12)
    ax.set_ylabel(r'$k_t$', fontsize=12)

    plt.show()

ts_plot(x0, 50)



7.3 The Cobweb Model
The cobweb model is a model of prices and quantities in a given market, and how they evolve over
time.

7.3.1 Overview
The cobweb model dates back to the 1930s and, while simple, it remains significant because it shows
the fundamental importance of expectations.

To give some idea of how the model operates, and why expectations matter, imagine the following
scenario.

There is a market for soybeans, say, where prices and traded quantities depend on the choices of
buyers and sellers.

The buyers are represented by a demand curve — they buy more at low prices and less at high
prices.

The sellers have a supply curve — they wish to sell more at high prices and less at low prices.

However, the sellers (who are farmers) need time to grow their crops.

Suppose now that the price is currently high.

Seeing this high price, and perhaps expecting that the high price will remain for some time, the
farmers plant many fields with soybeans.

Next period the resulting high supply floods the market, causing the price to drop.

Seeing this low price, the farmers now shift out of soybeans, restricting supply and causing the price
to climb again.

You can imagine how these dynamics could cause cycles in prices and quantities that persist over
time.

The cobweb model puts these ideas into equations so we can try to quantify them, and to study
conditions under which cycles persist (or disappear).

In this lecture, we investigate and simulate the basic model under different assumptions regarding
the way that producers form expectations.

Our discussion and simulations draw on high quality lectures by Cars Hommes.

We will use the following imports.

import numpy as np
import matplotlib.pyplot as plt

7.3.2 History
Early papers on the cobweb cycle include Waugh (1964) and Harlow (1960).

The paper Harlow (1960) uses the cobweb theorem to explain the prices of hog in the US over 1920–
1950.

The next plot replicates part of Figure 2 from that paper, which plots the price of hogs at yearly
frequency.

Notice the cyclical price dynamics, which match the kind of cyclical soybean price dynamics
discussed above.

hog_prices = [55, 57, 80, 70, 60, 65, 72, 65, 51, 49, 45, 80, 85,
              78, 80, 68, 52, 65, 83, 78, 60, 62, 80, 87, 81, 70,

https://comp-econ.org/CEF\_2013/downloads/Complex%20Econ%20Systems%20Lecture%20II.pdf
https://www.uva.nl/en/profile/h/o/c.h.hommes/c.h.hommes.html


              69, 65, 62, 85, 87, 65, 63, 75, 80, 62]
years = np.arange(1924, 1960)
fig, ax = plt.subplots()
ax.plot(years, hog_prices, '-o', ms=4, label='hog price')
ax.set_xlabel('year')
ax.set_ylabel('dollars')
ax.legend()
ax.grid()
plt.show()

7.3.3 The model
Let’s return to our discussion of a hypothetical soybean market, where price is determined by supply
and demand.

We suppose that demand for soybeans is given by

𝐷(𝑝𝑡) = 𝑎 − 𝑏𝑝𝑡 (7.28)

where 𝑎, 𝑏 are nonnegative constants and 𝑝𝑡 is the spot (i.e, current market) price at time 𝑡.

(𝐷(𝑝𝑡) is the quantity demanded in some fixed unit, such as thousands of tons.)

Because the crop of soybeans for time 𝑡 is planted at 𝑡 − 1, supply of soybeans at time 𝑡 depends on
expected prices at time 𝑡, which we denote 𝑝𝑒

𝑡 .

We suppose that supply is nonlinear in expected prices, and takes the form

𝑆(𝑝𝑒
𝑡 ) = tanh(𝜆(𝑝𝑒

𝑡 − 𝑐)) + 𝑑 (7.29)

where 𝜆 is a positive constant, 𝑐, 𝑑 are nonnegative constants and tanh is a type of hyperbolic
function.

Let’s make a plot of supply and demand for particular choices of the parameter values.

https://en.wikipedia.org/wiki/Hyperbolic\_functions
https://en.wikipedia.org/wiki/Hyperbolic\_functions


First we store the parameters in a class and define the functions above as methods.

class Market:

    def __init__(self,
                 a=8,      # demand parameter
                 b=1,      # demand parameter
                 c=6,      # supply parameter
                 d=1,      # supply parameter
                 λ=2.0):   # supply parameter
        self.a, self.b, self.c, self.d = a, b, c, d
        self.λ = λ

    def demand(self, p):
        a, b = self.a, self.b
        return a - b * p

    def supply(self, p):
        c, d, λ = self.c, self.d, self.λ
        return np.tanh(λ * (p - c)) + d

Now let’s plot.

p_grid = np.linspace(5, 8, 200)
m = Market()
fig, ax = plt.subplots()

ax.plot(p_grid, m.demand(p_grid), label="$D$")
ax.plot(p_grid, m.supply(p_grid), label="$S$")
ax.set_xlabel("price")
ax.set_ylabel("quantity")
ax.legend()

plt.show()



Market equilibrium requires that supply equals demand, or

𝑎 − 𝑏𝑝𝑡 = 𝑆(𝑝𝑒
𝑡 ) (7.30)

Rewriting in terms of 𝑝𝑡 gives

𝑝𝑡 = −1
𝑏
[𝑆(𝑝𝑒

𝑡 ) − 𝑎] (7.31)

Finally, to complete the model, we need to describe how price expectations are formed.

We will assume that expected prices at time 𝑡 depend on past prices.

In particular, we suppose that

𝑝𝑒
𝑡 = 𝑓(𝑝𝑡−1, 𝑝𝑡−2) (7.32)

where 𝑓  is some function.

Thus, we are assuming that producers expect the time-𝑡 price to be some function of lagged prices,
up to 2 lags.

(We could of course add additional lags and readers are encouraged to experiment with such cases.)

Combining the last two equations gives the dynamics for prices:

𝑝𝑡 = −1
𝑏
[𝑆(𝑓(𝑝𝑡−1, 𝑝𝑡−2)) − 𝑎] (7.33)

The price dynamics depend on the parameter values and also on the function 𝑓  that determines how
producers form expectations.

7.3.4 Naive expectations
To go further in our analysis we need to specify the function 𝑓 ; that is, how expectations are formed.



Let’s start with naive expectations, which refers to the case where producers expect the next period
spot price to be whatever the price is in the current period.

In other words,

𝑝𝑒
𝑡 = 𝑝𝑡−1 (7.34)

Using (6), we then have

𝑝𝑡 = −1
𝑏
[𝑆(𝑝𝑡−1) − 𝑎] (7.35)

We can write this as

𝑝𝑡 = 𝑔(𝑝𝑡−1) (7.36)

where 𝑔 is the function defined by

𝑔(𝑝) = −1
𝑏
[𝑆(𝑝) − 𝑎] (7.37)

Here we represent the function 𝑔

def g(model, current_price):
    """
    Function to find the next price given the current price
    and Market model
    """
    a, b = model.a, model.b
    next_price = - (model.supply(current_price) - a) / b
    return next_price

Let’s try to understand how prices will evolve using a 45-degree diagram, which is a tool for
studying one-dimensional dynamics.

The function plot45 defined below helps us draw the 45-degree diagram.

Now we can set up a market and plot the 45-degree diagram.

m = Market()

plot45(m, 0, 9, 2, num_arrows=3)



The plot shows the function 𝑔 defined in (10) and the 45-degree line.

Think of 𝑝𝑡 as a value on the horizontal axis.

Since 𝑝𝑡+1 = 𝑔(𝑝𝑡), we use the graph of 𝑔 to see 𝑝𝑡+1 on the vertical axis.

Clearly,

• If 𝑔 lies above the 45-degree line at 𝑝𝑡, then we have 𝑝𝑡+1 > 𝑝𝑡.
• If 𝑔 lies below the 45-degree line at 𝑝𝑡, then we have 𝑝𝑡+1 < 𝑝𝑡.
• If 𝑔 hits the 45-degree line at 𝑝𝑡, then we have 𝑝𝑡+1 = 𝑝𝑡, so 𝑝𝑡 is a steady state.

Consider the sequence of prices starting at 𝑝0, as shown in the figure.

We find 𝑝1 on the vertical axis and then shift it to the horizontal axis using the 45-degree line (where
values on the two axes are equal).

Then from 𝑝1 we obtain 𝑝2 and continue.

We can see the start of a cycle.

To confirm this, let’s plot a time series.

def ts_plot_price(model,             # Market model
                  p0,                # Initial price
                  y_a=3, y_b= 12,    # Controls y-axis
                  ts_length=10):     # Length of time series
    """
    Function to simulate and plot the time series of price.



    """
    fig, ax = plt.subplots()
    ax.set_xlabel(r'$t$', fontsize=12)
    ax.set_ylabel(r'$p_t$', fontsize=12)
    p = np.empty(ts_length)
    p[0] = p0
    for t in range(1, ts_length):
        p[t] = g(model, p[t-1])
    ax.plot(np.arange(ts_length),
            p,
            'bo-',
            alpha=0.6,
            lw=2,
            label=r'$p_t$')
    ax.legend(loc='best', fontsize=10)
    ax.set_ylim(y_a, y_b)
    ax.set_xticks(np.arange(ts_length))
    plt.show()

ts_plot_price(m, 4, ts_length=15)

We see that a cycle has formed and the cycle is persistent.

(You can confirm this by plotting over a longer time horizon.)

The cycle is “stable”, in the sense that prices converge to it from most starting conditions.

For example,

ts_plot_price(m, 10, ts_length=15)



7.3.5 Adaptive expectations
Naive expectations are quite simple and also important in driving the cycle that we found.

What if expectations are formed in a different way?

Next we consider adaptive expectations.

This refers to the case where producers form expectations for the next period price as a weighted
average of their last guess and the current spot price.

That is,

𝑝𝑒
𝑡 = 𝛼𝑝𝑡−1 + (1 − 𝛼)𝑝𝑒

𝑡−1 (0 ≤ 𝛼 ≤ 1) (7.38)

Another way to write this is

𝑝𝑒
𝑡 = 𝑝𝑒

𝑡−1 + 𝛼(𝑝𝑡−1 − 𝑝𝑒
𝑡−1) (7.39)

This equation helps to show that expectations shift

1. up when prices last period were above expectations
2. down when prices last period were below expectations

Using (11), we obtain the dynamics

𝑝𝑡 = −1
𝑏
[𝑆(𝛼𝑝𝑡−1 + (1 − 𝛼)𝑝𝑒

𝑡−1) − 𝑎] (7.40)

Let’s try to simulate the price and observe the dynamics using different values of 𝛼.

def find_next_price_adaptive(model, curr_price_exp):
    """
    Function to find the next price given the current price expectation
    and Market model



    """
    return - (model.supply(curr_price_exp) - model.a) / model.b

The function below plots price dynamics under adaptive expectations for different values of 𝛼.

def ts_price_plot_adaptive(model, p0, ts_length=10, α=[1.0, 0.9, 0.75]):
    fig, axs = plt.subplots(1, len(α), figsize=(12, 5))
    for i_plot, a in enumerate(α):
        pe_last = p0
        p_values = np.empty(ts_length)
        p_values[0] = p0
        for i in range(1, ts_length):
            p_values[i] = find_next_price_adaptive(model, pe_last)
            pe_last = a*p_values[i] + (1 - a)*pe_last

        axs[i_plot].plot(np.arange(ts_length), p_values)
        axs[i_plot].set_title(r'$\alpha={}$'.format(a))
        axs[i_plot].set_xlabel('t')
        axs[i_plot].set_ylabel('price')
    plt.show()

Let’s call the function with prices starting at 𝑝0 = 5.

ts_price_plot_adaptive(m, 5, ts_length=30)

Note that if 𝛼 = 1, then adaptive expectations are just naive expectation.

Decreasing the value of 𝛼 shifts more weight to the previous expectations, which stabilizes expected
prices.

This increased stability can be seen in the figures.

Exercise 7.38.

Using the default Market class and naive expectations, plot a time series simulation of supply
(rather than the price).

Show, in particular, that supply also cycles.



7.3.6 Exercises



Solution 7.32. Solution to Exercise 1

def ts_plot_supply(model, p0, ts_length=10):
    """
    Function to simulate and plot the supply function
    given the initial price.
    """
    pe_last = p0
    s_values = np.empty(ts_length)
    for i in range(ts_length):
        # store quantity
        s_values[i] = model.supply(pe_last)
        # update price
        pe_last = - (s_values[i] - model.a) / model.b

    fig, ax = plt.subplots()
    ax.plot(np.arange(ts_length),
            s_values,
            'bo-',
            alpha=0.6,
            lw=2,
            label=r'supply')

    ax.legend(loc='best', fontsize=10)
    ax.set_xticks(np.arange(ts_length))
    ax.set_xlabel("time")
    ax.set_ylabel("quantity")
    plt.show()

m = Market()
ts_plot_supply(m, 5, 15)



Exercise 7.39.

Backward looking average expectations

Backward looking average expectations refers to the case where producers form expectations for
the next period price as a linear combination of their last guess and the second last guess.

That is,

𝑝𝑒
𝑡 = 𝛼𝑝𝑡−1 + (1 − 𝛼)𝑝𝑡−2 (7.41)

Simulate and plot the price dynamics for 𝛼 ∈ {0.1, 0.3, 0.5, 0.8} where 𝑝0 = 1 and 𝑝1 = 2.5.



Solution 7.33. Solution to Exercise 2

def find_next_price_blae(model, curr_price_exp):
    """
    Function to find the next price given the current price expectation
    and Market model
    """
    return - (model.supply(curr_price_exp) - model.a) / model.b

def ts_plot_price_blae(model, p0, p1, alphas, ts_length=15):
    """
    Function to simulate and plot the time series of price
    using backward looking average expectations.
    """
    fig, axes = plt.subplots(len(alphas), 1, figsize=(8, 16))

    for ax, a in zip(axes.flatten(), alphas):
        p = np.empty(ts_length)
        p[0] = p0
        p[1] = p1
        for t in range(2, ts_length):
            pe = a*p[t-1] + (1 - a)*p[t-2]
            p[t] = -(model.supply(pe) - model.a) / model.b
        ax.plot(np.arange(ts_length),
                p,
                'o-',
                alpha=0.6,
                label=r'$\alpha={}$'.format(a))
        ax.legend(loc='best', fontsize=10)
        ax.set_xlabel(r'$t$', fontsize=12)
        ax.set_ylabel(r'$p_t$', fontsize=12)
    plt.show()

m = Market()
ts_plot_price_blae(m, 
                   p0=5, 
                   p1=6, 
                   alphas=[0.1, 0.3, 0.5, 0.8], 
                   ts_length=20)



7.4 The Overlapping Generations Model
In this lecture we study the famous overlapping generations (OLG) model, which is used by policy
makers and researchers to examine

• fiscal policy
• monetary policy
• long-run growth

and many other topics.

The first rigorous version of the OLG model was developed by Paul Samuelson Samuelson (1958).

Our aim is to gain a good understanding of a simple version of the OLG model.

7.4.1 Overview
The dynamics of the OLG model are quite similar to those of the Solow-Swan growth model.

At the same time, the OLG model adds an important new feature: the choice of how much to save is
endogenous.

To see why this is important, suppose, for example, that we are interested in predicting the effect of
a new tax on long-run growth.

We could add a tax to the Solow-Swan model and look at the change in the steady state.

But this ignores the fact that households will change their savings and consumption behavior when
they face the new tax rate.

Such changes can substantially alter the predictions of the model.

Hence, if we care about accurate predictions, we should model the decision problems of the agents.

In particular, households in the model should decide how much to save and how much to consume,
given the environment that they face (technology, taxes, prices, etc.)

The OLG model takes up this challenge.

We will present a simple version of the OLG model that clarifies the decision problem of households
and studies the implications for long-run growth.

Let’s start with some imports.

import numpy as np
from scipy import optimize
from collections import namedtuple
import matplotlib.pyplot as plt

7.4.2 Environment
We assume that time is discrete, so that 𝑡 = 0, 1, ….

An individual born at time 𝑡 lives for two periods, 𝑡 and 𝑡 + 1.

We call an agent

• “young” during the first period of their lives and
• “old” during the second period of their lives.

Young agents work, supplying labor and earning labor income.

They also decide how much to save.

Old agents do not work, so all income is financial.

https://intro.quantecon.org/solow.html


Their financial income is from interest on their savings from wage income, which is then combined
with the labor of the new young generation at 𝑡 + 1.

The wage and interest rates are determined in equilibrium by supply and demand.

To make the algebra slightly easier, we are going to assume a constant population size.

We normalize the constant population size in each period to 1.

We also suppose that each agent supplies one “unit” of labor hours, so total labor supply is 1.

7.4.3 Supply of capital
First let’s consider the household side.

7.4.3.1 Consumer’s problem
Suppose that utility for individuals born at time 𝑡 takes the form

𝑈𝑡 = 𝑢(𝑐𝑡) + 𝛽𝑢(𝑐𝑡+1) (7.42)

Here

• 𝑢 : ℝ+ → ℝ is called the “flow” utility function
• 𝛽 ∈ (0, 1) is the discount factor
• 𝑐𝑡 is time 𝑡 consumption of the individual born at time 𝑡
• 𝑐𝑡+1 is time 𝑡 + 1 consumption of the same individual

We assume that 𝑢 is strictly increasing.

Savings behavior is determined by the optimization problem

max
𝑐𝑡,𝑐𝑡+1

{𝑢(𝑐𝑡) + 𝛽𝑢(𝑐𝑡+1)} (7.43)

subject to

𝑐𝑡 + 𝑠𝑡 ≤ 𝑤𝑡 and 𝑐𝑡+1 ≤ 𝑅𝑡+1𝑠𝑡 (7.44)

Here

• 𝑠𝑡 is savings by an individual born at time 𝑡
• 𝑤𝑡 is the wage rate at time 𝑡
• 𝑅𝑡+1 is the gross interest rate on savings invested at time 𝑡, paid at time 𝑡 + 1

Since 𝑢 is strictly increasing, both of these constraints will hold as equalities at the maximum.

Using this fact and substituting 𝑠𝑡 from the first constraint into the second we get 𝑐𝑡+1 = 𝑅𝑡+1(𝑤𝑡 −
𝑐𝑡).

The first-order condition for a maximum can be obtained by plugging 𝑐𝑡+1 into the objective
function, taking the derivative with respect to 𝑐𝑡, and setting it to zero.

This leads to the Euler equation of the OLG model, which describes the optimal intertemporal
consumption dynamics:

𝑢′(𝑐𝑡) = 𝛽𝑅𝑡+1𝑢′(𝑅𝑡+1(𝑤𝑡 − 𝑐𝑡)) (7.45)

From the first constraint we get 𝑐𝑡 = 𝑤𝑡 − 𝑠𝑡, so the Euler equation can also be expressed as

𝑢′(𝑤𝑡 − 𝑠𝑡) = 𝛽𝑅𝑡+1𝑢′(𝑅𝑡+1𝑠𝑡) (7.46)

Suppose that, for each 𝑤𝑡 and 𝑅𝑡+1, there is exactly one 𝑠𝑡 that solves (5).

Then savings can be written as a fixed function of 𝑤𝑡 and 𝑅𝑡+1.



We write this as

𝑠𝑡 = 𝑠(𝑤𝑡, 𝑅𝑡+1) (7.47)

The precise form of the function 𝑠 will depend on the choice of flow utility function 𝑢.

Together, 𝑤𝑡 and 𝑅𝑡+1 represent the prices in the economy (price of labor and rental rate of capital).

Thus, (6) states the quantity of savings given prices.

7.4.3.2 Example: log preferences
In the special case 𝑢(𝑐) = log 𝑐, the Euler equation simplifies to 𝑠𝑡 = 𝛽(𝑤𝑡 − 𝑠𝑡).

Solving for saving, we get

𝑠𝑡 = 𝑠(𝑤𝑡, 𝑅𝑡+1) = 𝛽
1 + 𝛽

𝑤𝑡 (7.48)

In this special case, savings does not depend on the interest rate.

7.4.3.3 Savings and investment
Since the population size is normalized to 1, 𝑠𝑡 is also total savings in the economy at time 𝑡.

In our closed economy, there is no foreign investment, so net savings equals total investment, which
can be understood as supply of capital to firms.

In the next section we investigate demand for capital.

Equating supply and demand will allow us to determine equilibrium in the OLG economy.

7.4.4 Demand for capital
First we describe the firm’s problem and then we write down an equation describing demand for
capital given prices.

7.4.4.1 Firm’s problem
For each integer 𝑡 ≥ 0, output 𝑦𝑡 in period 𝑡 is given by the Cobb-Douglas production function

𝑦𝑡 = 𝑘𝛼
𝑡 ℓ1−𝛼

𝑡 (7.49)

Here 𝑘𝑡 is capital, ℓ𝑡 is labor, and 𝛼 is a parameter (sometimes called the “output elasticity of
capital”).

The profit maximization problem of the firm is

max
𝑘𝑡,ℓ𝑡

{𝑘𝛼
𝑡 ℓ1−𝛼

𝑡 − 𝑅𝑡𝑘𝑡 − 𝑤𝑡ℓ𝑡} (7.50)

The first-order conditions are obtained by taking the derivative of the objective function with
respect to capital and labor respectively and setting them to zero:

(1 − 𝛼)(𝑘𝑡/ℓ𝑡)
𝛼 = 𝑤𝑡 and 𝛼(𝑘𝑡/ℓ𝑡)

𝛼−1 = 𝑅𝑡 (7.51)

7.4.4.2 Demand
Using our assumption ℓ𝑡 = 1 allows us to write

𝑤𝑡 = (1 − 𝛼)𝑘𝛼
𝑡 (7.52)

and

𝑅𝑡 = 𝛼𝑘𝛼−1
𝑡 (7.53)

Rearranging (12) gives the aggregate demand for capital at time 𝑡 + 1

https://en.wikipedia.org/wiki/Cobb%E2%80%93Douglas\_production\_function


𝑘𝑑(𝑅𝑡+1) := ( 𝛼
𝑅𝑡+1

)
1/(1−𝛼)

(7.54)

In Python code this is

def capital_demand(R, α):
    return (α/R)**(1/(1-α))

def capital_supply(R, β, w):
    R = np.ones_like(R)
    return R * (β / (1 + β)) * w

The next figure plots the supply of capital, as in (7), as well as the demand for capital, as in (13), as
functions of the interest rate 𝑅𝑡+1.

(For the special case of log utility, supply does not depend on the interest rate, so we have a constant
function.)

7.4.5 Equilibrium
In this section we derive equilibrium conditions and investigate an example.

7.4.5.1 Equilibrium conditions
In equilibrium, savings at time 𝑡 equals investment at time 𝑡, which equals capital supply at time 𝑡 +
1.

Equilibrium is computed by equating these quantities, setting

𝑠(𝑤𝑡, 𝑅𝑡+1) = 𝑘𝑑(𝑅𝑡+1) = ( 𝛼
𝑅𝑡+1

)
1/(1−𝛼)

(7.55)

In principle, we can now solve for the equilibrium price 𝑅𝑡+1 given 𝑤𝑡.

(In practice, we first need to specify the function 𝑢 and hence 𝑠.)

When we solve this equation, which concerns time 𝑡 + 1 outcomes, time 𝑡 quantities are already
determined, so we can treat 𝑤𝑡 as a constant.

From equilibrium 𝑅𝑡+1 and (13), we can obtain the equilibrium quantity 𝑘𝑡+1.

7.4.5.2 Example: log utility
In the case of log utility, we can use (14) and (7) to obtain

𝛽
1 + 𝛽

𝑤𝑡 = ( 𝛼
𝑅𝑡+1

)
1/(1−𝛼)

(7.56)

Solving for the equilibrium interest rate gives

𝑅𝑡+1 = 𝛼( 𝛽
1 + 𝛽

𝑤𝑡)
𝛼−1

(7.57)

In Python we can compute this via

def equilibrium_R_log_utility(α, β, w):
    R = α * ( (β * w) / (1 + β))**(α - 1)
    return R

In the case of log utility, since capital supply does not depend on the interest rate, the equilibrium
quantity is fixed by supply.

That is,



𝑘𝑡+1 = 𝑠(𝑤𝑡, 𝑅𝑡+1) = 𝛽
1 + 𝛽

𝑤𝑡 (7.58)

Let’s redo our plot above but now inserting the equilibrium quantity and price.

R_vals = np.linspace(0.3, 1)
α, β = 0.5, 0.9
w = 2.0

fig, ax = plt.subplots()

ax.plot(R_vals, capital_demand(R_vals, α), 
        label="aggregate demand")
ax.plot(R_vals, capital_supply(R_vals, β, w), 
        label="aggregate supply")

R_e = equilibrium_R_log_utility(α, β, w)
k_e = (β / (1 + β)) * w

ax.plot(R_e, k_e, 'o',label='equilibrium')

ax.set_xlabel("$R_{t+1}$")
ax.set_ylabel("$k_{t+1}$")
ax.legend()
plt.show()

7.4.6 Dynamics
In this section we discuss dynamics.

For now we will focus on the case of log utility, so that the equilibrium is determined by (17).



7.4.6.1 Evolution of capital
The discussion above shows how equilibrium 𝑘𝑡+1 is obtained given 𝑤𝑡.

From (11) we can translate this into 𝑘𝑡+1 as a function of 𝑘𝑡

In particular, since 𝑤𝑡 = (1 − 𝛼)𝑘𝛼
𝑡 , we have

𝑘𝑡+1 = 𝛽
1 + 𝛽

(1 − 𝛼)(𝑘𝑡)
𝛼 (7.59)

If we iterate on this equation, we get a sequence for capital stock.

Let’s plot the 45-degree diagram of these dynamics, which we write as

𝑘𝑡+1 = 𝑔(𝑘𝑡) where𝑔(𝑘) := 𝛽
1 + 𝛽

(1 − 𝛼)(𝑘)𝛼 (7.60)

def k_update(k, α, β):
    return β * (1 - α) * k**α /  (1 + β)

α, β = 0.5, 0.9
kmin, kmax = 0, 0.1
n = 1000
k_grid = np.linspace(kmin, kmax, n)
k_grid_next = k_update(k_grid,α,β)

fig, ax = plt.subplots(figsize=(6, 6))

ymin, ymax = np.min(k_grid_next), np.max(k_grid_next)

ax.plot(k_grid, k_grid_next,  lw=2, alpha=0.6, label='$g$')
ax.plot(k_grid, k_grid, 'k-', lw=1, alpha=0.7, label=r'$45^{\circ}$')

ax.legend(loc='upper left', frameon=False, fontsize=12)
ax.set_xlabel('$k_t$', fontsize=12)
ax.set_ylabel('$k_{t+1}$', fontsize=12)

plt.show()



7.4.6.2 Steady state (log case)
The diagram shows that the model has a unique positive steady state, which we denote by 𝑘∗.

We can solve for 𝑘∗ by setting 𝑘∗ = 𝑔(𝑘∗), or

𝑘∗ = 𝛽(1 − 𝛼)(𝑘∗)𝛼

(1 + 𝛽)
(7.61)

Solving this equation yields

𝑘∗ = (𝛽(1 − 𝛼)
1 + 𝛽

)
1/(1−𝛼)

(7.62)

We can get the steady state interest rate from (12), which yields

𝑅∗ = 𝛼(𝑘∗)𝛼−1 = 𝛼
1 − 𝛼

1 + 𝛽
𝛽

(7.63)

In Python we have

k_star = ((β * (1 - α))/(1 + β))**(1/(1-α))
R_star = (α/(1 - α)) * ((1 + β) / β)



7.4.6.3 Time series
The 45-degree diagram above shows that time series of capital with positive initial conditions
converge to this steady state.

Let’s plot some time series that visualize this.

ts_length = 25
k_series = np.empty(ts_length)
k_series[0] = 0.02
for t in range(ts_length - 1):
    k_series[t+1] = k_update(k_series[t], α, β)

fig, ax = plt.subplots()
ax.plot(k_series, label="capital series")
ax.plot(range(ts_length), np.full(ts_length, k_star), 'k--', label="$k^*$")
ax.set_ylim(0, 0.1)
ax.set_ylabel("capital")
ax.set_xlabel("$t$")
ax.legend()
plt.show()

If you experiment with different positive initial conditions, you will see that the series always
converges to 𝑘∗.

Below we also plot the gross interest rate over time.

R_series = α * k_series**(α - 1)

fig, ax = plt.subplots()
ax.plot(R_series, label="gross interest rate")
ax.plot(range(ts_length), np.full(ts_length, R_star), 'k--', label="$R^*$")
ax.set_ylim(0, 4)



ax.set_ylabel("gross interest rate")
ax.set_xlabel("$t$")
ax.legend()
plt.show()

The interest rate reflects the marginal product of capital, which is high when capital stock is low.

7.4.7 CRRA preferences
Previously, in our examples, we looked at the case of log utility.

Log utility is a rather special case of CRRA utility with 𝛾 → 1.

In this section, we are going to assume that 𝑢(𝑐) = 𝑐1−𝛾−1
1−𝛾 , where 𝛾 > 0, 𝛾 ≠ 1.

This function is called the CRRA utility function.

In other respects, the model is the same.

Below we define the utility function in Python and construct a namedtuple to store the parameters.

def crra(c, γ):
    return c**(1 - γ) / (1 - γ)

Model = namedtuple('Model', ['α',        # Cobb-Douglas parameter
                             'β',        # discount factor
                             'γ']        # parameter in CRRA utility
                   )

def create_olg_model(α=0.4, β=0.9, γ=0.5):
    return Model(α=α, β=β, γ=γ)

Let’s also redefine the capital demand function to work with this namedtuple.



def capital_demand(R, model):
    return (α/R)**(1/(1-model.α))

7.4.7.1 Supply
For households, the Euler equation becomes

(𝑤𝑡 − 𝑠𝑡)
−𝛾 = 𝛽𝑅1−𝛾

𝑡+1 (𝑠𝑡)
−𝛾 (7.64)

Solving for savings, we have

𝑠𝑡 = 𝑠(𝑤𝑡, 𝑅𝑡+1) = 𝑤𝑡[1 + 𝛽−1/𝛾𝑅(𝛾−1)/𝛾
𝑡+1 ]

−1
(7.65)

Notice how, unlike the log case, savings now depends on the interest rate.

def savings_crra(w, R, model):
    α, β, γ = model
    return w / (1 + β**(-1/γ) * R**((γ-1)/γ))

model = create_olg_model()
w = 2.0

fig, ax = plt.subplots()

ax.plot(R_vals, capital_demand(R_vals, model), 
        label="aggregate demand")
ax.plot(R_vals, savings_crra(w, R_vals, model), 
        label="aggregate supply")

ax.set_xlabel("$R_{t+1}$")
ax.set_ylabel("$k_{t+1}$")
ax.legend()
plt.show()



Exercise 7.40.

Solve for the dynamics of equilibrium capital stock in the CRRA case numerically using (26).

Visualize the dynamics using a 45-degree diagram.

7.4.7.2 Equilibrium
Equating aggregate demand for capital (see (13)) with our new aggregate supply function yields
equilibrium capital.

Thus, we set

𝑤𝑡[1 + 𝛽−1/𝛾𝑅(𝛾−1)/𝛾
𝑡+1 ]

−1
= (

𝑅𝑡+1
𝛼

)
1/(𝛼−1)

(7.66)

This expression is quite complex and we cannot solve for 𝑅𝑡+1 analytically.

Combining (12) and (25) yields

𝑘𝑡+1 = [1 + 𝛽−1/𝛾(𝛼𝑘𝛼−1
𝑡+1 )(𝛾−1)/𝛾]

−1
(1 − 𝛼)(𝑘𝑡)

𝛼 (7.67)

Again, with this equation and 𝑘𝑡 as given, we cannot solve for 𝑘𝑡+1 by pencil and paper.

In the exercise below, you will be asked to solve these equations numerically.



7.4.8 Exercises



Solution 7.34. Solution to Exercise 1

To solve for 𝑘𝑡+1 given 𝑘𝑡 we use Newton’s method.

Let

𝑓(𝑘𝑡+1, 𝑘𝑡) = 𝑘𝑡+1[1 + 𝛽−1/𝛾(𝛼𝑘𝛼−1
𝑡+1 )(𝛾−1)/𝛾] − (1 − 𝛼)𝑘𝛼

𝑡 = 0 (7.68)

If 𝑘𝑡 is given then 𝑓  is a function of unknown 𝑘𝑡+1.

Then we can use scipy.optimize.newton to solve 𝑓(𝑘𝑡+1, 𝑘𝑡) = 0 for 𝑘𝑡+1.

First let’s define 𝑓 .

def f(k_prime, k, model):
    α, β, γ = model.α, model.β, model.γ
    z = (1 - α) * k**α
    a = α**(1-1/γ)
    b = k_prime**((α * γ - α + 1) / γ)
    p = k_prime + k_prime * β**(-1/γ) * a * b
    return p - z

Now let’s define a function that finds the value of 𝑘𝑡+1.

def k_update(k, model):
    return optimize.newton(lambda k_prime: f(k_prime, k, model), 0.1)

Finally, here is the 45-degree diagram.

kmin, kmax = 0, 0.5
n = 1000
k_grid = np.linspace(kmin, kmax, n)
k_grid_next = np.empty_like(k_grid)

for i in range(n):
    k_grid_next[i] = k_update(k_grid[i], model)

fig, ax = plt.subplots(figsize=(6, 6))

ymin, ymax = np.min(k_grid_next), np.max(k_grid_next)

ax.plot(k_grid, k_grid_next,  lw=2, alpha=0.6, label='$g$')
ax.plot(k_grid, k_grid, 'k-', lw=1, alpha=0.7, label=r'$45^{\circ}$')

ax.legend(loc='upper left', frameon=False, fontsize=12)
ax.set_xlabel('$k_t$', fontsize=12)
ax.set_ylabel('$k_{t+1}$', fontsize=12)

plt.show()

https://python.quantecon.org/newton\_method.html


Exercise 7.41.

The 45-degree diagram from the last exercise shows that there is a unique positive steady state.

The positive steady state can be obtained by setting 𝑘𝑡+1 = 𝑘𝑡 = 𝑘∗ in (26), which yields

𝑘∗ = (1 − 𝛼)(𝑘∗)𝛼

1 + 𝛽−1/𝛾(𝛼(𝑘∗)𝛼−1)
(𝛾−1)/𝛾 (7.69)

Unlike the log preference case, the CRRA utility steady state 𝑘∗ cannot be obtained analytically.

Instead, we solve for 𝑘∗ using Newton’s method.

Solution 7.35. Solution to Exercise 2

We introduce a function ℎ such that positive steady state is the root of ℎ.

ℎ(𝑘∗) = 𝑘∗[1 + 𝛽−1/𝛾(𝛼(𝑘∗)𝛼−1)
(𝛾−1)/𝛾

] − (1 − 𝛼)(𝑘∗)𝛼 (7.70)

Here it is in Python

def h(k_star, model):
    α, β, γ = model.α, model.β, model.γ
    z = (1 - α) * k_star**α
    R1 = α ** (1-1/γ)
    R2 = k_star**((α * γ - α + 1) / γ)
    p = k_star + k_star * β**(-1/γ) * R1 * R2
    return p - z

Let’s apply Newton’s method to find the root:

k_star = optimize.newton(h, 0.2, args=(model,))
print(f"k_star = {k_star}")

k_star = 0.25788950250843484

Exercise 7.42.

Generate three time paths for capital, from three distinct initial conditions, under the
parameterization listed above.

Use initial conditions for 𝑘0 of 0.001, 1.2, 2.6 and time series length 10.



Solution 7.36. Solution to Exercise 3

Let’s define the constants and three distinct intital conditions

ts_length = 10
k0 = np.array([0.001, 1.2, 2.6])

def simulate_ts(model, k0_values, ts_length):

    fig, ax = plt.subplots()

    ts = np.zeros(ts_length)

    # simulate and plot time series
    for k_init in k0_values:
        ts[0] = k_init
        for t in range(1, ts_length):
            ts[t] = k_update(ts[t-1], model)
        ax.plot(np.arange(ts_length), ts, '-o', ms=4, alpha=0.6,
                label=r'$k_0=%g$' %k_init)
    ax.plot(np.arange(ts_length), np.full(ts_length, k_star),
            alpha=0.6, color='red', label=r'$k^*$')
    ax.legend(fontsize=10)

    ax.set_xlabel(r'$t$', fontsize=14)
    ax.set_ylabel(r'$k_t$', fontsize=14)

    plt.show()

simulate_ts(model, k0, ts_length)



7.5 Commodity Prices

7.5.1 Outline
For more than half of all countries around the globe, commodities account for the majority of total
exports.

Examples of commodities include copper, diamonds, iron ore, lithium, cotton and coffee beans.

In this lecture we give an introduction to the theory of commodity prices.

The lecture is quite advanced relative to other lectures in this series.

We need to compute an equilibrium, and that equilibrium is described by a price function.

We will solve an equation where the price function is the unknown.

This is harder than solving an equation for an unknown number, or vector.

The lecture will discuss one way to solve a functional equation (an equation where the unknown
object is a function).

For this lecture we need the yfinance library.

!pip install yfinance

We will use the following imports

import numpy as np
import yfinance as yf
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
from scipy.optimize import brentq
from scipy.stats import beta

7.5.2 Data
The figure below shows the price of cotton in USD since the start of 2016.

https://en.wikipedia.org/wiki/Commodity
https://unctad.org/publication/commodities-and-development-report-2019
https://unctad.org/publication/commodities-and-development-report-2019
https://en.wikipedia.org/wiki/Functional\_equation


The figure shows surprisingly large movements in the price of cotton.

What causes these movements?

In general, prices depend on the choices and actions of

1. suppliers,
2. consumers, and
3. speculators.

Our focus will be on the interaction between these parties.

We will connect them together in a dynamic model of supply and demand, called the competitive
storage model.

This model was developed by Samuelson (1971), Wright & Williams (1982), Scheinkman &
Schechtman (1983), Deaton & Laroque (1992), Deaton & Laroque (1996), and Chambers & Bailey
(1996).

7.5.3 The competitive storage model
In the competitive storage model, commodities are assets that

1. can be traded by speculators and
2. have intrinsic value to consumers.

Total demand is the sum of consumer demand and demand by speculators.

Supply is exogenous, depending on “harvests”.

Note



These days, goods such as basic computer chips and integrated circuits are often treated as
commodities in financial markets, being highly standardized, and, for these kinds of
commodities, the word “harvest” is not appropriate.

Nonetheless, we maintain it for simplicity.

The equilibrium price is determined competitively.

It is a function of the current state (which determines current harvests and predicts future harvests).

7.5.4 The model
Consider a market for a single commodity, whose price is given at 𝑡 by 𝑝𝑡.

The harvest of the commodity at time 𝑡 is 𝑍𝑡.

We assume that the sequence {𝑍𝑡}𝑡≥1 is IID with common density function 𝜙, where 𝜙 is
nonnegative.

Speculators can store the commodity between periods, with 𝐼𝑡 units purchased in the current period
yielding 𝛼𝐼𝑡 units in the next.

Here the parameter 𝛼 ∈ (0, 1) is a depreciation rate for the commodity.

For simplicity, the risk free interest rate is taken to be zero, so expected profit on purchasing 𝐼𝑡 units
is

𝔼𝑡 𝑝𝑡+1 ⋅ 𝛼𝐼𝑡 − 𝑝𝑡𝐼𝑡 = (𝛼𝔼𝑡 𝑝𝑡+1 − 𝑝𝑡)𝐼𝑡 (7.71)

Here 𝔼𝑡 𝑝𝑡+1 is the expectation of 𝑝𝑡+1 taken at time 𝑡.

7.5.5 Equilibrium
In this section we define the equilibrium and discuss how to compute it.

7.5.5.1 Equilibrium conditions
Speculators are assumed to be risk neutral, which means that they buy the commodity whenever
expected profits are positive.

As a consequence, if expected profits are positive, then the market is not in equilibrium.

Hence, to be in equilibrium, prices must satisfy the “no-arbitrage” condition

𝛼𝔼𝑡 𝑝𝑡+1 − 𝑝𝑡 ≤ 0 (7.72)

This means that if the expected price is lower than the current price, there is no room for arbitrage.

Profit maximization gives the additional condition

𝛼𝔼𝑡 𝑝𝑡+1 − 𝑝𝑡 < 0 implies𝐼𝑡 = 0 (7.73)

We also require that the market clears, with supply equaling demand in each period.

We assume that consumers generate demand quantity 𝐷(𝑝) corresponding to price 𝑝.

Let 𝑃 := 𝐷−1 be the inverse demand function.

Regarding quantities,

• supply is the sum of carryover by speculators and the current harvest, and
• demand is the sum of purchases by consumers and purchases by speculators.

Mathematically,



• supply is given by 𝑋𝑡 = 𝛼𝐼𝑡−1 + 𝑍𝑡, which takes values in 𝑆 := ℝ+, while
• demand = 𝐷(𝑝𝑡) + 𝐼𝑡

Thus, the market equilibrium condition is

𝛼𝐼𝑡−1 + 𝑍𝑡 = 𝐷(𝑝𝑡) + 𝐼𝑡 (7.74)

The initial condition 𝑋0 ∈ 𝑆 is treated as given.

7.5.5.2 An equilibrium function
How can we find an equilibrium?

Our path of attack will be to seek a system of prices that depend only on the current state.

(Our solution method involves using an ansatz, which is an educated guess — in this case for the
price function.)

In other words, we take a function 𝑝 on 𝑆 and set 𝑝𝑡 = 𝑝(𝑋𝑡) for every 𝑡.

Prices and quantities then follow

𝑝𝑡 = 𝑝(𝑋𝑡), 𝐼𝑡 = 𝑋𝑡 − 𝐷(𝑝𝑡), 𝑋𝑡+1 = 𝛼𝐼𝑡 + 𝑍𝑡+1 (7.75)

We choose 𝑝 so that these prices and quantities satisfy the equilibrium conditions above.

More precisely, we seek a 𝑝 such that (2) and (3) hold for the corresponding system (5).

𝑝∗(𝑥) = max{𝛼 ∫
∞

0
𝑝∗(𝛼𝐼(𝑥) + 𝑧)𝜙(𝑧)𝑑𝑧, 𝑃 (𝑥)} (𝑥 ∈ 𝑆) (7.76)

where

𝐼(𝑥) := 𝑥 − 𝐷(𝑝∗(𝑥)) (𝑥 ∈ 𝑆) (7.77)

It turns out that such a 𝑝∗ will suffice, in the sense that (2) and (3) hold for the corresponding system
(5).

To see this, observe first that

𝔼𝑡 𝑝𝑡+1 = 𝔼𝑡 𝑝∗(𝑋𝑡+1) = 𝔼𝑡 𝑝∗(𝛼𝐼(𝑋𝑡) + 𝑍𝑡+1) = ∫
∞

0
𝑝∗(𝛼𝐼(𝑋𝑡) + 𝑧)𝜙(𝑧)𝑑𝑧 (7.78)

Thus (2) requires that

𝛼 ∫
∞

0
𝑝∗(𝛼𝐼(𝑋𝑡) + 𝑧)𝜙(𝑧)𝑑𝑧 ≤ 𝑝∗(𝑋𝑡) (7.79)

This inequality is immediate from (6).

Second, regarding (3), suppose that

𝛼 ∫
∞

0
𝑝∗(𝛼𝐼(𝑋𝑡) + 𝑧)𝜙(𝑧)𝑑𝑧 < 𝑝∗(𝑋𝑡) (7.80)

Then by (6) we have 𝑝∗(𝑋𝑡) = 𝑃(𝑋𝑡)

But then 𝐷(𝑝∗(𝑋𝑡)) = 𝑋𝑡 and 𝐼𝑡 = 𝐼(𝑋𝑡) = 0.

As a consequence, both (2) and (3) hold.

We have found an equilibrium, which verifies the ansatz.

https://en.wikipedia.org/wiki/Ansatz


7.5.5.3 Computing the equilibrium
We now know that an equilibrium can be obtained by finding a function 𝑝∗ that satisfies (6).

It can be shown that, under mild conditions there is exactly one function on 𝑆 satisfying (6).

Moreover, we can compute this function using successive approximation.

This means that we start with a guess of the function and then update it using (6).

This generates a sequence of functions 𝑝1, 𝑝2, …

We continue until this process converges, in the sense that 𝑝𝑘 and 𝑝𝑘+1 are very close together.

Then we take the final 𝑝𝑘 that we computed as our approximation of 𝑝∗.

To implement our update step, it is helpful if we put (6) and (7) together.

This leads us to the update rule

𝑝𝑘+1(𝑥) = max{𝛼 ∫
∞

0
𝑝𝑘(𝛼(𝑥 − 𝐷(𝑝𝑘+1(𝑥))) + 𝑧)𝜙(𝑧)𝑑𝑧, 𝑃 (𝑥)} (7.81)

In other words, we take 𝑝𝑘 as given and, at each 𝑥, solve for 𝑞 in

𝑞 = max{𝛼 ∫
∞

0
𝑝𝑘(𝛼(𝑥 − 𝐷(𝑞)) + 𝑧)𝜙(𝑧)𝑑𝑧, 𝑃 (𝑥)} (7.82)

Actually we can’t do this at every 𝑥, so instead we do it on a grid of points 𝑥1, …, 𝑥𝑛.

Then we get the corresponding values 𝑞1, …, 𝑞𝑛.

Then we compute 𝑝𝑘+1 as the linear interpolation of the values 𝑞1, …, 𝑞𝑛 over the grid 𝑥1, …, 𝑥𝑛.

Then we repeat, seeking convergence.

7.5.6 Code
The code below implements this iterative process, starting from 𝑝0 = 𝑃 .

The distribution 𝜙 is set to a shifted Beta distribution (although many other choices are possible).

The integral in (12) is computed via Monte Carlo.

α, a, c = 0.8, 1.0, 2.0
beta_a, beta_b = 5, 5
mc_draw_size = 250
gridsize = 150
grid_max = 35
grid = np.linspace(a, grid_max, gridsize)

beta_dist = beta(5, 5)
Z = a + beta_dist.rvs(mc_draw_size) * c    # Shock observations
D = P = lambda x: 1.0 / x
tol = 1e-4

def T(p_array):

    new_p = np.empty_like(p_array)

    # Interpolate to obtain p as a function.
    p = interp1d(grid,

/monte-carlo


                 p_array,
                 fill_value=(p_array[0], p_array[-1]),
                 bounds_error=False)

    # Update
    for i, x in enumerate(grid):

        h = lambda q: q - max(α * np.mean(p(α * (x - D(q)) + Z)), P(x))
        new_p[i] = brentq(h, 1e-8, 100)

    return new_p

fig, ax = plt.subplots()

price = P(grid)
ax.plot(grid, price, alpha=0.5, lw=1, label="inverse demand curve")
error = tol + 1
while error > tol:
    new_price = T(price)
    error = max(np.abs(new_price - price))
    price = new_price

ax.plot(grid, price, 'k-', alpha=0.5, lw=2, label=r'$p^*$')
ax.legend()
ax.set_xlabel('$x$')
ax.set_ylabel("prices")

plt.show()



The figure above shows the inverse demand curve 𝑃 , which is also 𝑝0, as well as our approximation
of 𝑝∗.

Once we have an approximation of 𝑝∗, we can simulate a time series of prices.

# Turn the price array into a price function
p_star = interp1d(grid,
                  price,
                  fill_value=(price[0], price[-1]),
                  bounds_error=False)

def carry_over(x):
    return α * (x - D(p_star(x)))

def generate_cp_ts(init=1, n=50):
    X = np.empty(n)
    X[0] = init
    for t in range(n-1):
            Z = a + c * beta_dist.rvs()
            X[t+1] = carry_over(X[t]) + Z
    return p_star(X)

fig, ax = plt.subplots()
ax.plot(generate_cp_ts(), label="price")
ax.set_xlabel("time")
ax.legend()
plt.show()





Chapter 8

8. Monetary-Fiscal Policy Interactions
8.1 Money Financed Government Deficits and Price Levels

8.1.1 Overview
This lecture extends and modifies the model in this lecture A Monetarist Theory of Price Levels by
modifying the law of motion that governed the supply of money.

The model in this lecture consists of two components

• a demand function for money
• a law of motion for the supply of money

The demand function describes the public’s demand for “real balances”, defined as the ratio of
nominal money balances to the price level

• it assumes that the demand for real balance today varies inversely with the rate of inflation that
the public forecasts to prevail between today and tomorrow

• it assumes that the public’s forecast of that rate of inflation is perfect

The law of motion for the supply of money assumes that the government prints money to finance
government expenditures

Our model equates the demand for money to the supply at each time 𝑡 ≥ 0.

Equality between those demands and supply gives a dynamic model in which money supply and
price level sequences are simultaneously determined by a set of simultaneous linear equations.

These equations take the form of what is often called vector linear difference equations.

In this lecture, we’ll roll up our sleeves and solve those equations in two different ways.

(One of the methods for solving vector linear difference equations will take advantage of a
decomposition of a matrix that is studied in this lecture Eigenvalues and Eigenvectors.)

In this lecture we will encounter these concepts from macroeconomics:

• an inflation tax that a government gathers by printing paper or electronic money
• a dynamic Laffer curve in the inflation tax rate that has two stationary equilibria
• perverse dynamics under rational expectations in which the system converges to the higher

stationary inflation tax rate
• a peculiar comparative stationary-state outcome connected with that stationary inflation rate:

it asserts that inflation can be reduced by running higher government deficits, i.e., by raising
more resources by printing money.

The same qualitative outcomes prevail in this lecture Inflation Rate Laffer Curves that studies a
nonlinear version of the model in this lecture.

These outcomes set the stage for the analysis to be presented in this lecture Laffer Curves with
Adaptive Expectations that studies a nonlinear version of the present model; it assumes a version of
“adaptive expectations” instead of rational expectations.

That lecture will show that

• replacing rational expectations with adaptive expectations leaves the two stationary inflation
rates unchanged, but that …

/cagan-ree
/eigen-i
/money-inflation-nonlinear
/laffer-adaptive
/laffer-adaptive


• it reverses the perverse dynamics by making the lower stationary inflation rate the one to
which the system typically converges

• a more plausible comparative dynamic outcome emerges in which now inflation can be reduced
by running lower government deficits

This outcome will be used to justify a selection of a stationary inflation rate that underlies the
analysis of unpleasant monetarist arithmetic to be studied in this lecture Some Unpleasant
Monetarist Arithmetic.

We’ll use these tools from linear algebra:

• matrix multiplication
• matrix inversion
• eigenvalues and eigenvectors of a matrix

8.1.2 Demand for and supply of money
We say demands and supplies (plurals) because there is one of each for each 𝑡 ≥ 0.

Let

• 𝑚𝑡+1 be the supply of currency at the end of time 𝑡 ≥ 0
• 𝑚𝑡 be the supply of currency brought into time 𝑡 from time 𝑡 − 1
• 𝑔 be the government deficit that is financed by printing currency at 𝑡 ≥ 1
• 𝑚𝑑

𝑡+1 be the demand at time 𝑡 for currency to bring into time 𝑡 + 1
• 𝑝𝑡 be the price level at time 𝑡
• 𝑏𝑡 = 𝑚𝑡+1

𝑝𝑡
 is real balances at the end of time 𝑡

• 𝑅𝑡 = 𝑝𝑡
𝑝𝑡+1

 be the gross rate of return on currency held from time 𝑡 to time 𝑡 + 1

It is often helpful to state units in which quantities are measured:

• 𝑚𝑡 and 𝑚𝑑
𝑡  are measured in dollars

• 𝑔 is measured in time 𝑡 goods
• 𝑝𝑡 is measured in dollars per time 𝑡 goods
• 𝑅𝑡 is measured in time 𝑡 + 1 goods per unit of time 𝑡 goods
• 𝑏𝑡 is measured in time 𝑡 goods

Our job now is to specify demand and supply functions for money.

We assume that the demand for currency satisfies the Cagan-like demand function

𝑚𝑑
𝑡+1
𝑝𝑡

= 𝛾1 − 𝛾2
𝑝𝑡+1
𝑝𝑡

, 𝑡 ≥ 0 (8.1)

where 𝛾1, 𝛾2 are positive parameters.

Now we turn to the supply of money.

We assume that 𝑚0 > 0 is an “initial condition” determined outside the model.

We set 𝑚0 at some arbitrary positive value, say $100.

For 𝑡 ≥ 1, we assume that the supply of money is determined by the government’s budget constraint

𝑚𝑡+1 − 𝑚𝑡 = 𝑝𝑡𝑔, 𝑡 ≥ 0 (8.2)

According to this equation, each period, the government prints money to pay for quantity 𝑔 of
goods.

In an equilibrium, the demand for currency equals the supply:

/unpleasant
/unpleasant


𝑚𝑑
𝑡+1 = 𝑚𝑡+1, 𝑡 ≥ 0 (8.3)

Let’s take a moment to think about what equation (3) tells us.

The demand for money at any time 𝑡 depends on the price level at time 𝑡 and the price level at time
𝑡 + 1.

The supply of money at time 𝑡 + 1 depends on the money supply at time 𝑡 and the price level at time
𝑡.

So the infinite sequence of equations (3) for 𝑡 ≥ 0 imply that the sequences {𝑝𝑡}
∞
𝑡=0 and {𝑚𝑡}

∞
𝑡=0 are

tied together and ultimately simulataneously determined.

8.1.3 Equilibrium price and money supply sequences
The preceding specifications imply that for 𝑡 ≥ 1, real balances evolve according to

𝑚𝑡+1
𝑝𝑡

− 𝑚𝑡
𝑝𝑡−1

𝑝𝑡−1
𝑝𝑡

= 𝑔 (8.4)

or

𝑏𝑡 − 𝑏𝑡−1𝑅𝑡−1 = 𝑔 (8.5)

The demand for real balances is

𝑏𝑡 = 𝛾1 − 𝛾2𝑅−1
𝑡 . (8.6)

We’ll restrict our attention to parameter values and associated gross real rates of return on real
balances that assure that the demand for real balances is positive, which according to (6) means that

𝑏𝑡 = 𝛾1 − 𝛾2𝑅−1
𝑡 > 0 (8.7)

which implies that

𝑅𝑡 ≥ (𝛾2
𝛾1

) ≡ 𝑅 (8.8)

Gross real rate of return 𝑅 is the smallest rate of return on currency that is consistent with a
nonnegative demand for real balances.

We shall describe two distinct but closely related ways of computing a pair {𝑝𝑡, 𝑚𝑡}
∞
𝑡=0 of sequences

for the price level and money supply.

But first it is instructive to describe a special type of equilibrium known as a steady state.

In a steady-state equilibrium, a subset of key variables remain constant or invariant over time,
while remaining variables can be expressed as functions of those constant variables.

Finding such state variables is something of an art.

In many models, a good source of candidates for such invariant variables is a set of ratios.

This is true in the present model.

8.1.3.1 Steady states
In a steady-state equilibrium of the model we are studying,

𝑅𝑡 = 𝑅̄

𝑏𝑡 = ̄𝑏
(8.9)

for 𝑡 ≥ 0.



Notice that both 𝑅𝑡 = 𝑝𝑡
𝑝𝑡+1

 and 𝑏𝑡 = 𝑚𝑡+1
𝑝𝑡

 are ratios.

To compute a steady state, we seek gross rates of return on currency and real balances 𝑅̄, ̄𝑏 that
satisfy steady-state versions of both the government budget constraint and the demand function for
real balances:

𝑔 = ̄𝑏(1 − 𝑅̄)
̄𝑏 = 𝛾1 − 𝛾2𝑅̄−1

(8.10)

Together these equations imply

(𝛾1 + 𝛾2) − 𝛾2

𝑅̄
− 𝛾1𝑅̄ = 𝑔 (8.11)

The left side is the steady-state amount of seigniorage or government revenues that the
government gathers by paying a gross rate of return 𝑅̄ ≤ 1 on currency.

The right side is government expenditures.

Define steady-state seigniorage as

𝑆(𝑅̄) = (𝛾1 + 𝛾2) − 𝛾2

𝑅̄
− 𝛾1𝑅̄ (8.12)

Notice that 𝑆(𝑅̄) ≥ 0 only when 𝑅̄ ∈ [𝛾2
𝛾1

, 1] ≡ [𝑅, 𝑅] and that 𝑆(𝑅̄) = 0 if 𝑅̄ = 𝑅 or if 𝑅̄ = 𝑅.

We shall study equilibrium sequences that satisfy

𝑅𝑡 ∈ [𝑅, 𝑅], 𝑡 ≥ 0. (8.13)

Maximizing steady-state seigniorage (12) with respect to 𝑅̄, we find that the maximizing rate of
return on currency is

𝑅̄upright 𝑚𝑎𝑥 = √
𝛾2
𝛾1

(8.14)

and that the associated maximum seigniorage revenue that the government can gather from printing
money is

(𝛾1 + 𝛾2) − 𝛾2

𝑅̄upright 𝑚𝑎𝑥
− 𝛾1𝑅̄upright 𝑚𝑎𝑥 (8.15)

It is useful to rewrite equation (11) as

−𝛾2 + (𝛾1 + 𝛾2 − 𝑔)𝑅̄ − 𝛾1𝑅̄2 = 0 (8.16)

A steady state gross rate of return 𝑅̄ solves quadratic equation (16).

So two steady states typically exist.

8.1.4 Some code
Let’s start with some imports:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
plt.rcParams['figure.dpi'] = 300
from collections import namedtuple

Let’s set some parameter values and compute possible steady-state rates of return on currency 𝑅̄,
the seigniorage maximizing rate of return on currency, and an object that we’ll discuss later, namely,
an initial price level 𝑝0 associated with the maximum steady-state rate of return on currency.



First, we create a namedtuple to store parameters so that we can reuse this namedtuple in our
functions throughout this lecture

# Create a namedtuple that contains parameters
MoneySupplyModel = namedtuple("MoneySupplyModel", 
                        ["γ1", "γ2", "g", 
                         "M0", "R_u", "R_l"])

def create_model(γ1=100, γ2=50, g=3.0, M0=100):
    
    # Calculate the steady states for R
    R_steady = np.roots((-γ1, γ1 + γ2 - g, -γ2))
    R_u, R_l = R_steady
    print("[R_u, R_l] =", R_steady)
    
    return MoneySupplyModel(γ1=γ1, γ2=γ2, g=g, M0=M0, R_u=R_u, R_l=R_l)

Now we compute the 𝑅̄upright 𝑚𝑎𝑥 and corresponding revenue

def seign(R, model):
    γ1, γ2, g = model.γ1, model.γ2, model.g
    return -γ2/R + (γ1 + γ2)  - γ1 * R

msm = create_model()

# Calculate initial guess for p0
p0_guess = msm.M0 / (msm.γ1 - msm.g - msm.γ2 / msm.R_u)
print(f'p0 guess = {p0_guess:.4f}')

# Calculate seigniorage maximizing rate of return
R_max = np.sqrt(msm.γ2/msm.γ1)
g_max = seign(R_max, msm)
print(f'R_max, g_max = {R_max:.4f}, {g_max:.4f}')

[R_u, R_l] = [0.93556171 0.53443829]
p0 guess = 2.2959
R_max, g_max = 0.7071, 8.5786

Now let’s plot seigniorage as a function of alternative potential steady-state values of 𝑅.

We’ll see that there are two steady-state values of 𝑅 that attain seigniorage levels equal to 𝑔, one
that we’ll denote 𝑅ℓ, another that we’ll denote 𝑅𝑢.

They satisfy 𝑅ℓ < 𝑅𝑢 and are affiliated with a higher inflation tax rate (1 − 𝑅ℓ) and a lower
inflation tax rate 1 − 𝑅𝑢.

# Generate values for R
R_values = np.linspace(msm.γ2/msm.γ1, 1, 250)

# Calculate the function values
seign_values = seign(R_values, msm)

# Visualize seign_values against R values
fig, ax = plt.subplots(figsize=(11, 5))
plt.plot(R_values, seign_values, label='inflation tax revenue')
plt.axhline(y=msm.g, color='red', linestyle='--', label='government deficit')
plt.xlabel('$R$')
plt.ylabel('seigniorage')



plt.legend()
plt.show()

Figure 101.  Steady state revenue from inflation tax as function of steady state gross return on currency (solid blue curve) and real government
expenditures (dotted red line) plotted against steady-state rate of return currency

Let’s print the two steady-state rates of return 𝑅̄ and the associated seigniorage revenues that the
government collects.

(By construction, both steady-state rates of return should raise the same amounts real revenue.)

We hope that the following code will confirm this.

g1 = seign(msm.R_u, msm)
print(f'R_u, g_u = {msm.R_u:.4f}, {g1:.4f}')

g2 = seign(msm.R_l, msm)
print(f'R_l, g_l = {msm.R_l:.4f}, {g2:.4f}')

R_u, g_u = 0.9356, 3.0000
R_l, g_l = 0.5344, 3.0000

Now let’s compute the maximum steady-state amount of seigniorage that could be gathered by
printing money and the state-state rate of return on money that attains it.

8.1.5 Two computation strategies
We now proceed to compute equilibria, not necessarily steady states.

We shall deploy two distinct computation strategies.

8.1.5.1 Method 1
• set 𝑅0 ∈ [𝛾2

𝛾1
, 𝑅𝑢] and compute 𝑏0 = 𝛾1 − 𝛾2/𝑅0.

• compute sequences {𝑅𝑡, 𝑏𝑡}
∞
𝑡=1 of rates of return and real balances that are associated with an

equilibrium by solving equation (5) and (6) sequentially for 𝑡 ≥ 1:

𝑏𝑡 = 𝑏𝑡−1𝑅𝑡−1 + 𝑔

𝑅−1
𝑡 = 𝛾1

𝛾2
− 𝛾−1

2 𝑏𝑡
(8.17)

• Construct the associated equilibrium 𝑝0 from

𝑝0 = 𝑚0
𝛾1 − 𝑔 − 𝛾2/𝑅0

(8.18)

• compute {𝑝𝑡, 𝑚𝑡}
∞
𝑡=1 by solving the following equations sequentially



Remark 8.2.

Method 1 uses an indirect approach to computing an equilibrium by first computing an
equilibrium {𝑅𝑡, 𝑏𝑡}

∞
𝑡=0 sequence and then using it to back out an equilibrium {𝑝𝑡, 𝑚𝑡}

∞
𝑡=0

sequence.

Remark 8.3.

Notice that method 1 starts by picking an initial condition 𝑅0 from a set [𝛾2
𝛾1

, 𝑅𝑢]. Equilibrium
{𝑝𝑡, 𝑚𝑡}

∞
𝑡=0 sequences are not unique. There is actually a continuum of equilibria indexed by a

choice of 𝑅0 from the set [𝛾2
𝛾1

, 𝑅𝑢].

Remark 8.4.

Associated with each selection of 𝑅0 there is a unique 𝑝0 described by equation (18).

𝑝𝑡 = 𝑅𝑡𝑝𝑡−1

𝑚𝑡 = 𝑏𝑡−1𝑝𝑡
(8.19)

8.1.5.2 Method 2
This method deploys a direct approach. It defines a “state vector” 𝑦𝑡 = [𝑚𝑡

𝑝𝑡
] and formulates

equilibrium conditions (1), (2), and (3) in terms of a first-order vector difference equation

𝑦𝑡+1 = 𝑀𝑦𝑡, 𝑡 ≥ 0, (8.20)

where we temporarily take 𝑦0 = [𝑚0
𝑝0

] as an initial condition.

The solution is

𝑦𝑡 = 𝑀 𝑡𝑦0. (8.21)

Now let’s think about the initial condition 𝑦0.

It is natural to take the initial stock of money 𝑚0 > 0 as an initial condition.

But what about 𝑝0?

Isn’t it something that we want to be determined by our model?

Yes, but sometimes we want too much, because there is actually a continuum of initial 𝑝0 levels that
are compatible with the existence of an equilibrium.

As we shall see soon, selecting an initial 𝑝0 in method 2 is intimately tied to selecting an initial rate
of return on currency 𝑅0 in method 1.

8.1.6 Computation method 1
Remember that there exist two steady-state equilibrium values 𝑅ℓ < 𝑅𝑢 of the rate of return on
currency 𝑅𝑡.

We proceed as follows.

Start at 𝑡 = 0

• select a 𝑅0 ∈ [𝛾2
𝛾1

, 𝑅𝑢]
• compute 𝑏0 = 𝛾1 − 𝛾0𝑅−1

0



Then for 𝑡 ≥ 1 construct 𝑏𝑡, 𝑅𝑡 by iterating on equation (17).

When we implement this part of method 1, we shall discover the following striking outcome:

• starting from an 𝑅0 in [𝛾2
𝛾1

, 𝑅𝑢], we shall find that {𝑅𝑡} always converges to a limiting “steady
state” value 𝑅̄ that depends on the initial condition 𝑅0.

• there are only two possible limit points {𝑅ℓ, 𝑅𝑢}.
• for almost every initial condition 𝑅0, lim𝑡→+∞ 𝑅𝑡 = 𝑅ℓ.
• if and only if 𝑅0 = 𝑅𝑢, lim𝑡→+∞ 𝑅𝑡 = 𝑅𝑢.

The quantity 1 − 𝑅𝑡 can be interpreted as an inflation tax rate that the government imposes on
holders of its currency.

We shall soon see that the existence of two steady-state rates of return on currency that serve to
finance the government deficit of 𝑔 indicates the presence of a Laffer curve in the inflation tax rate.

Note

Arthur Laffer’s curve plots a hump shaped curve of revenue raised from a tax against the tax
rate.
Its hump shape indicates that there are typically two tax rates that yield the same amount of
revenue. This is due to two countervailing courses, one being that raising a tax rate typically
decreases the base of the tax as people take decisions to reduce their exposure to the tax.

def simulate_system(R0, model, num_steps):
    γ1, γ2, g = model.γ1, model.γ2, model.g

    # Initialize arrays to store results
    b_values = np.empty(num_steps)
    R_values = np.empty(num_steps)

    # Initial values
    b_values[0] = γ1 - γ2/R0
    R_values[0] = 1 / (γ1/γ2 - (1 / γ2) * b_values[0])

    # Iterate over time steps
    for t in range(1, num_steps):
        b_t = b_values[t - 1] * R_values[t - 1] + g
        R_values[t] = 1 / (γ1/γ2 - (1/γ2) * b_t)
        b_values[t] = b_t

    return b_values, R_values

Let’s write some code to plot outcomes for several possible initial values 𝑅0.

Let’s plot distinct outcomes associated with several 𝑅0 ∈ [𝛾2
𝛾1

, 𝑅𝑢].

Each line below shows a path associated with a different 𝑅0.

# Create a grid of R_0s
R0s = np.linspace(msm.γ2/msm.γ1, msm.R_u, 9)
R0s = np.append(msm.R_l, R0s)
draw_paths(R0s, msm, line_params, num_steps=20)



Figure 102.  Paths of 𝑅𝑡 (top panel) and 𝑏𝑡 (bottom panel) starting from different initial condition 𝑅0

Notice how sequences that start from 𝑅0 in the half-open interval [𝑅ℓ, 𝑅𝑢) converge to the steady
state associated with to 𝑅ℓ.

8.1.7 Computation method 2
Set 𝑚𝑡 = 𝑚𝑑

𝑡  for all 𝑡 ≥ −1.

Let

𝑦𝑡 = [𝑚𝑡
𝑝𝑡

]. (8.22)

Represent equilibrium conditions (1), (2), and (3) as

[1
1

𝛾2
0 ][𝑚𝑡+1

𝑝𝑡+1
] = [0

1
𝛾1
𝑔 ][𝑚𝑡

𝑝𝑡
] (8.23)

or

𝐻1𝑦𝑡 = 𝐻2𝑦𝑡−1 (8.24)

where



𝐻1 = [1
1

𝛾2
0 ]

𝐻2 = [0
1

𝛾1
𝑔 ]

(8.25)

H1 = np.array([[1, msm.γ2], 
               [1, 0]])
H2 = np.array([[0, msm.γ1], 
               [1, msm.g]])

Define

𝐻 = 𝐻−1
1 𝐻2 (8.26)

H = np.linalg.solve(H1, H2)
print('H = \n', H)

H = 
 [[ 1.    3.  ]
 [-0.02  1.94]]

and write the system (23) as

𝑦𝑡+1 = 𝐻𝑦𝑡, 𝑡 ≥ 0 (8.27)

so that {𝑦𝑡}𝑡=0 can be computed from

𝑦𝑡 = 𝐻𝑡𝑦0, 𝑡 ≥ 0 (8.28)

where

𝑦0 = [𝑚0
𝑝0

]. (8.29)

It is natural to take 𝑚0 as an initial condition determined outside the model.

The mathematics seems to tell us that 𝑝0 must also be determined outside the model, even though it
is something that we actually wanted to be determined by the model.

(As usual, we should listen when mathematics talks to us.)

For now, let’s just proceed mechanically on faith.

Compute the eigenvector decomposition

𝐻 = 𝑄Λ𝑄−1 (8.30)

where Λ is a diagonal matrix of eigenvalues and the columns of 𝑄 are eigenvectors corresponding to
those eigenvalues.

It turns out that

Λ = [𝑅−1
ℓ
0

0
𝑅−1

𝑢
] (8.31)

where 𝑅ℓ and 𝑅𝑢 are the lower and higher steady-state rates of return on currency that we
computed above.

Λ, Q = np.linalg.eig(H)
print('Λ = \n', Λ)
print('Q = \n', Q)



Λ = 
 [1.06887658 1.87112342]
Q = 
 [[-0.99973655 -0.96033288]
 [-0.02295281 -0.27885616]]

R_l = 1 / Λ[0]
R_u = 1 / Λ[1]

print(f'R_l = {R_l:.4f}')
print(f'R_u = {R_u:.4f}')

R_l = 0.9356
R_u = 0.5344

Partition 𝑄 as

𝑄 = [𝑄11
𝑄21

𝑄12
𝑄22

] (8.32)

Below we shall verify the following claims:

Claims: If we set

𝑝0 = 𝑝0 ≡ 𝑄21𝑄−1
11 𝑚0, (8.33)

it turns out that
𝑝𝑡+1
𝑝𝑡

= 𝑅−1
𝑢 , 𝑡 ≥ 0 (8.34)

However, if we set

𝑝0 > ̄𝑝0 (8.35)

then

lim
𝑡→+∞

𝑝𝑡+1
𝑝𝑡

= 𝑅−1
ℓ . (8.36)

Let’s verify these claims step by step.

Note that

𝐻𝑡 = 𝑄Λ𝑡𝑄−1 (8.37)

so that

𝑦𝑡 = 𝑄Λ𝑡𝑄−1𝑦0 (8.38)

def iterate_H(y_0, H, num_steps):
    Λ, Q = np.linalg.eig(H)
    Q_inv = np.linalg.inv(Q)
    y = np.stack(
        [Q @ np.diag(Λ**t) @ Q_inv @ y_0 for t in range(num_steps)], 1)
    
    return y

For almost all initial vectors 𝑦0, the gross rate of inflation 𝑝𝑡+1
𝑝𝑡

 eventually converges to the larger
eigenvalue 𝑅−1

ℓ .

The only way to avoid this outcome is for 𝑝0 to take the specific value described by (33).

To understand this situation, we use the following transformation



𝑦∗
𝑡 = 𝑄−1𝑦𝑡. (8.39)

Dynamics of 𝑦∗
𝑡  are evidently governed by

𝑦∗
𝑡+1 = Λ𝑡𝑦∗

𝑡 . (8.40)

This equation represents the dynamics of our system in a way that lets us isolate the force that
causes gross inflation to converge to the inverse of the lower steady-state rate of inflation 𝑅ℓ that
we discovered earlier.

Staring at equation (40) indicates that unless

𝑦∗
0 = [𝑦∗

1,0
0 ] (8.41)

the path of 𝑦∗
𝑡 , and therefore the paths of both 𝑚𝑡 and 𝑝𝑡 given by 𝑦𝑡 = 𝑄𝑦∗

𝑡  will eventually grow at
gross rates 𝑅−1

ℓ  as 𝑡 → +∞.

Equation (41) also leads us to conclude that there is a unique setting for the initial vector 𝑦0 for
which both components forever grow at the lower rate 𝑅−1

𝑢 .

For this to occur, the required setting of 𝑦0 must evidently have the property that

𝑄−1𝑦0 = 𝑦∗
0 = [𝑦∗

1,0
0 ]. (8.42)

But note that since 𝑦0 = [𝑚0
𝑝0

] and 𝑚0 is given to us an initial condition, 𝑝0 has to do all the
adjusting to satisfy this equation.

Sometimes this situation is described informally by saying that while 𝑚0 is truly a state variable, 𝑝0
is a jump variable that must adjust at 𝑡 = 0 in order to satisfy the equation.

Thus, in a nutshell the unique value of the vector 𝑦0 for which the paths of 𝑦𝑡 don’t eventually grow
at rate 𝑅−1

ℓ  requires setting the second component of 𝑦∗
0 equal to zero.

The component 𝑝0 of the initial vector 𝑦0 = [𝑚0
𝑝0

] must evidently satisfy

𝑄{2}𝑦0 = 0 (8.43)

where 𝑄{2} denotes the second row of 𝑄−1, a restriction that is equivalent to

𝑄21𝑚0 + 𝑄22𝑝0 = 0 (8.44)

where 𝑄𝑖𝑗 denotes the (𝑖, 𝑗) component of 𝑄−1.

Solving this equation for 𝑝0, we find

𝑝0 = −(𝑄22)−1𝑄21𝑚0. (8.45)

8.1.7.1 More convenient formula
We can get the equivalent but perhaps more convenient formula (33) for 𝑝0 that is cast in terms of
components of 𝑄 instead of components of 𝑄−1.

To get this formula, first note that because (𝑄21 𝑄22) is the second row of the inverse of 𝑄 and
because 𝑄−1𝑄 = 𝐼 , it follows that

[𝑄21 𝑄22][𝑄11
𝑄21

] = 0 (8.46)



which implies that

𝑄21𝑄11 + 𝑄22𝑄21 = 0. (8.47)

Therefore,

−(𝑄22)−1𝑄21 = 𝑄21𝑄−1
11 . (8.48)

So we can write

𝑝0 = 𝑄21𝑄−1
11 𝑚0. (8.49)

which is our formula (33).

p0_bar = (Q[1, 0]/Q[0, 0]) * msm.M0

print(f'p0_bar = {p0_bar:.4f}')

p0_bar = 2.2959

It can be verified that this formula replicates itself over time in the sense that

𝑝𝑡 = 𝑄21𝑄−1
11 𝑚𝑡. (8.50)

Now let’s visualize the dynamics of 𝑚𝑡, 𝑝𝑡, and 𝑅𝑡 starting from different 𝑝0 values to verify our
claims above.

We create a function draw_iterations to generate the plot

p0s = [p0_bar, 2.34, 2.5, 3, 4, 7, 30, 100_000]

draw_iterations(p0s, msm, line_params, num_steps=20)



Figure 103.  Starting from different initial values of 𝑝0, paths of 𝑚𝑡 (top panel, log scale for 𝑚), 𝑝𝑡 (middle panel, log scale for 𝑚), 𝑅𝑡 (bottom
panel)

Please notice that for 𝑚𝑡 and 𝑝𝑡, we have used log scales for the coordinate (i.e., vertical) axes.

Using log scales allows us to spot distinct constant limiting gross rates of growth 𝑅−1
𝑢  and 𝑅−1

ℓ  by
eye.

8.1.8 Peculiar stationary outcomes
As promised at the start of this lecture, we have encountered these concepts from macroeconomics:

• an inflation tax that a government gathers by printing paper or electronic money
• a dynamic Laffer curve in the inflation tax rate that has two stationary equilibria

Staring at the paths of rates of return on the price level in figure Fig. 2 and price levels in Fig. 3 show
indicate that almost all paths converge to the higher inflation tax rate displayed in the stationary
state Laffer curve displayed in figure Fig. 1.



Thus, we have indeed discovered what we earlier called “perverse” dynamics under rational
expectations in which the system converges to the higher of two possible stationary inflation tax
rates.

Those dynamics are “perverse” not only in the sense that they imply that the monetary and fiscal
authorities that have chosen to finance government expenditures eventually impose a higher
inflation tax than required to finance government expenditures, but because of the following
“counterintuitive” situation that we can deduce by staring at the stationary state Laffer curve
displayed in figure Fig. 1:

• the figure indicates that inflation can be reduced by running higher government deficits, i.e., by
raising more resources through printing money.

Note

The same qualitative outcomes prevail in this lecture Inflation Rate Laffer Curves that studies a
nonlinear version of the model in this lecture.

8.1.9 Equilibrium selection
We have discovered that as a model of price level paths or model is incomplete because there is a
continuum of “equilibrium” paths for {𝑚𝑡+1, 𝑝𝑡}

∞
𝑡=0

 that are consistent with the demand for real
balances always equaling the supply.

Through application of our computational methods 1 and 2, we have learned that this continuum
can be indexed by choice of one of two scalars:

• for computational method 1, 𝑅0
• for computational method 2, 𝑝0

To apply our model, we have somehow to complete it by selecting an equilibrium path from among
the continuum of possible paths.

We discovered that

• all but one of the equilibrium paths converge to limits in which the higher of two possible
stationary inflation tax prevails

• there is a unique equilibrium path associated with “plausible” statements about how reductions
in government deficits affect a stationary inflation rate

On grounds of plausibility, we recommend following many macroeconomists in selecting the unique
equilibrium that converges to the lower stationary inflation tax rate.

As we shall see, we shall accept this recommendation in lecture Some Unpleasant Monetarist
Arithmetic.

In lecture, Laffer Curves with Adaptive Expectations, we shall explore how Bruno & Fischer (1990)
and others justified this in other ways.
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8.2 Some Unpleasant Monetarist Arithmetic

8.2.1 Overview
This lecture builds on concepts and issues introduced in Money Financed Government Deficits and
Price Levels.

That lecture describes stationary equilibria that reveal a Laffer curve in the inflation tax rate and the
associated stationary rate of return on currency.

In this lecture we study a situation in which a stationary equilibrium prevails after date 𝑇 > 0, but
not before then.

For 𝑡 = 0, …, 𝑇 − 1, the money supply, price level, and interest-bearing government debt vary along
a transition path that ends at 𝑡 = 𝑇 .

During this transition, the ratio of the real balances 𝑚𝑡+1
𝑝𝑡

 to indexed one-period government bonds
𝑅̃𝐵𝑡−1 maturing at time 𝑡 decreases each period.

This has consequences for the gross-of-interest government deficit that must be financed by
printing money for times 𝑡 ≥ 𝑇 .

The critical money-to-bonds ratio stabilizes only at time 𝑇  and afterwards.

And the larger is 𝑇 , the higher is the gross-of-interest government deficit that must be financed by
printing money at times 𝑡 ≥ 𝑇 .

These outcomes are the essential finding of Sargent and Wallace’s “unpleasant monetarist
arithmetic” Sargent & Wallace (1981).

That lecture described supplies and demands for money that appear in lecture.

It also characterized the steady state equilibrium from which we work backwards in this lecture.

In addition to learning about “unpleasant monetarist arithmetic”, in this lecture we’ll learn how to
implement a fixed point algorithm for computing an initial price level.

8.2.2 Setup
Let’s start with quick reminders of the model’s components set out in Money Financed Government
Deficits and Price Levels.

Please consult that lecture for more details and Python code that we’ll also use in this lecture.

For 𝑡 ≥ 1, real balances evolve according to
𝑚𝑡+1
𝑝𝑡

− 𝑚𝑡
𝑝𝑡−1

𝑝𝑡−1
𝑝𝑡

= 𝑔 (8.51)

or

𝑏𝑡 − 𝑏𝑡−1𝑅𝑡−1 = 𝑔 (8.52)

where

• 𝑏𝑡 = 𝑚𝑡+1
𝑝𝑡

 is real balances at the end of period 𝑡
• 𝑅𝑡−1 = 𝑝𝑡−1

𝑝𝑡
 is the gross rate of return on real balances held from 𝑡 − 1 to 𝑡

The demand for real balances is

𝑏𝑡 = 𝛾1 − 𝛾2𝑅−1
𝑡 . (8.53)

where 𝛾1 > 𝛾2 > 0.
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8.2.3 Monetary-Fiscal Policy
To the basic model of Money Financed Government Deficits and Price Levels, we add inflation-
indexed one-period government bonds as an additional way for the government to finance
government expenditures.

Let 𝑅̃ > 1 be a time-invariant gross real rate of return on government one-period inflation-indexed
bonds.

With this additional source of funds, the government’s budget constraint at time 𝑡 ≥ 0 is now

𝐵𝑡 +
𝑚𝑡+1
𝑝𝑡

= 𝑅̃𝐵𝑡−1 + 𝑚𝑡
𝑝𝑡

+ 𝑔 (8.54)

Just before the beginning of time 0, the public owns 𝑚̌0 units of currency (measured in dollars) and
𝑅̃𝐵̌−1 units of one-period indexed bonds (measured in time 0 goods); these two quantities are initial
conditions set outside the model.

Notice that 𝑚̌0 is a nominal quantity, being measured in dollars, while 𝑅̃𝐵̌−1 is a real quantity, being
measured in time 0 goods.

8.2.3.1 Open market operations
At time 0, government can rearrange its portfolio of debts subject to the following constraint (on
open-market operations):

𝑅̃𝐵−1 + 𝑚0
𝑝0

= 𝑅̃𝐵̌−1 + 𝑚̌0
𝑝0

(8.55)

or

𝐵−1 − 𝐵̌−1 = 1
𝑝0𝑅̃

(𝑚̌0 − 𝑚0) (8.56)

This equation says that the government (e.g., the central bank) can decrease 𝑚0 relative to 𝑚̌0 by
increasing 𝐵−1 relative to 𝐵̌−1.

This is a version of a standard constraint on a central bank’s open market operations in which it
expands the stock of money by buying government bonds from the public.

8.2.4 An open market operation at 𝑡 = 0
Following Sargent and Wallace Sargent & Wallace (1981), we analyze consequences of a central bank
policy that uses an open market operation to lower the price level in the face of a persistent fiscal
deficit that takes the form of a positive 𝑔.

Just before time 0, the government chooses (𝑚0, 𝐵−1) subject to constraint (6).

For 𝑡 = 0, 1, …, 𝑇 − 1,

𝐵𝑡 = 𝑅̃𝐵𝑡−1 + 𝑔
𝑚𝑡+1 = 𝑚0

(8.57)

while for 𝑡 ≥ 𝑇 ,

𝐵𝑡 = 𝐵𝑇−1

𝑚𝑡+1 = 𝑚𝑡 + 𝑝𝑡𝑔
(8.58)

where

𝑔 = [(𝑅̃ − 1)𝐵𝑇−1 + 𝑔] (8.59)
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We want to compute an equilibrium {𝑝𝑡, 𝑚𝑡, 𝑏𝑡, 𝑅𝑡}𝑡=0 sequence under this scheme for running
monetary and fiscal policies.

Here, by fiscal policy we mean the collection of actions that determine a sequence of net-of-interest
government deficits {𝑔𝑡}

∞
𝑡=0 that must be financed by issuing to the public either money or interest

bearing bonds.

By monetary policy or debt-management policy, we mean the collection of actions that
determine how the government divides its portfolio of debts to the public between interest-bearing
parts (government bonds) and non-interest-bearing parts (money).

By an open market operation, we mean a government monetary policy action in which the
government (or its delegate, say, a central bank) either buys government bonds from the public for
newly issued money, or sells bonds to the public and withdraws the money it receives from public
circulation.

8.2.5 Algorithm (basic idea)
We work backwards from 𝑡 = 𝑇  and first compute 𝑝𝑇 , 𝑅𝑢 associated with the low-inflation, low-
inflation-tax-rate stationary equilibrium in Inflation Rate Laffer Curves.

To start our description of our algorithm, it is useful to recall that a stationary rate of return on
currency 𝑅̄ solves the quadratic equation

−𝛾2 + (𝛾1 + 𝛾2 − 𝑔)𝑅̄ − 𝛾1𝑅̄2 = 0 (8.60)

Quadratic equation (10) has two roots, 𝑅𝑙 < 𝑅𝑢 < 1.

For reasons described at the end of Money Financed Government Deficits and Price Levels, we select
the larger root 𝑅𝑢.

Next, we compute

𝑅𝑇 = 𝑅𝑢

𝑏𝑇 = 𝛾1 − 𝛾2𝑅−1
𝑢

𝑝𝑇 = 𝑚0
𝛾1 − 𝑔 − 𝛾2𝑅−1

𝑢

(8.61)

We can compute continuation sequences {𝑅𝑡, 𝑏𝑡}
∞
𝑡=𝑇+1 of rates of return and real balances that are

associated with an equilibrium by solving equation (2) and (3) sequentially for 𝑡 ≥ 1:

𝑏𝑡 = 𝑏𝑡−1𝑅𝑡−1 + 𝑔

𝑅−1
𝑡 = 𝛾1

𝛾2
− 𝛾−1

2 𝑏𝑡

𝑝𝑡 = 𝑅𝑡𝑝𝑡−1

𝑚𝑡 = 𝑏𝑡−1𝑝𝑡

(8.62)

8.2.6 Before time 𝑇
Define

𝜆 ≡ 𝛾2
𝛾1

. (8.63)

Our restrictions that 𝛾1 > 𝛾2 > 0 imply that 𝜆 ∈ [0, 1).

We want to compute
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𝑝0 = 𝛾−1
1 [∑

∞

𝑗=0
𝜆𝑗𝑚𝑗]

= 𝛾−1
1 [∑

𝑇−1

𝑗=0
𝜆𝑗𝑚0 + ∑

∞

𝑗=𝑇
𝜆𝑗𝑚1+𝑗]

(8.64)

Thus,

𝑝0 = 𝛾−1
1 𝑚0{

1 − 𝜆𝑇

1 − 𝜆
+ 𝜆𝑇

𝑅𝑢 − 𝜆
}

𝑝1 = 𝛾−1
1 𝑚0{

1 − 𝜆𝑇−1

1 − 𝜆
+ 𝜆𝑇−1

𝑅𝑢 − 𝜆
}

⋮ ⋮

𝑝𝑇−1 = 𝛾−1
1 𝑚0{

1 − 𝜆
1 − 𝜆

+ 𝜆
𝑅𝑢 − 𝜆

}

𝑝𝑇 = 𝛾−1
1 𝑚0{

1
𝑅𝑢 − 𝜆

}

(8.65)

We can implement the preceding formulas by iterating on

𝑝𝑡 = 𝛾−1
1 𝑚0 + 𝜆𝑝𝑡+1, 𝑡 = 𝑇 − 1, 𝑇 − 2, …, 0 (8.66)

starting from

𝑝𝑇 = 𝑚0
𝛾1 − 𝑔 − 𝛾2𝑅−1

𝑢
= 𝛾−1

1 𝑚0{
1

𝑅𝑢 − 𝜆
} (8.67)

8.2.7 Algorithm (pseudo code)
Now let’s describe a computational algorithm in more detail in the form of a description that
constitutes pseudo code because it approaches a set of instructions we could provide to a Python
coder.

To compute an equilibrium, we deploy the following algorithm.

8.2.8 Example Calculations
We’ll set parameters of the model so that the steady state after time 𝑇  is initially the same as in
Inflation Rate Laffer Curves

In particular, we set 𝛾1 = 100, 𝛾2 = 50, 𝑔 = 3.0. We set 𝑚0 = 100 in that lecture, but now the
counterpart will be 𝑀𝑇 , which is endogenous.

As for new parameters, we’ll set 𝑅̃ = 1.01, 𝐵̌−1 = 0, 𝑚̌0 = 105, 𝑇 = 5.

We’ll study a “small” open market operation by setting 𝑚0 = 100.

These parameter settings mean that just before time 0, the “central bank” sells the public bonds in
exchange for 𝑚̌0 − 𝑚0 = 5 units of currency.

Remark 8.5.

We can verify the equivalence of the two formulas on the right sides of (17) by recalling that 𝑅𝑢
is a root of the quadratic equation (10) that determines steady state rates of return on currency.
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Algorithm 8.2.

Given parameters include 𝑔, 𝑚̌0, 𝐵̌−1, 𝑅̃ > 1, 𝑇 .

We define a mapping from 𝑝0 to 𝑝0 as follows.

• Set 𝑚0 and then compute 𝐵−1 to satisfy the constraint on time 0 open market operations

𝐵−1 − 𝐵̌−1 = 𝑅̃
𝑝0

(𝑚̌0 − 𝑚0) (8.68)

• Compute 𝐵𝑇−1 from

𝐵𝑇−1 = 𝑅̃𝑇 𝐵−1 + (1 − 𝑅̃𝑇

1 − 𝑅̃
)𝑔 (8.69)

• Compute

𝑔 = 𝑔 + [𝑅̃ − 1]𝐵𝑇−1 (8.70)

• Compute 𝑅𝑢, 𝑝𝑇  from formulas (10) and (11) above
• Compute a new estimate of 𝑝0, call it 𝑝0, from equation (15) above
• Note that the preceding steps define a mapping

𝑝0 = 𝒮(𝑝0) (8.71)

• We seek a fixed point of 𝒮, i.e., a solution of 𝑝0 = 𝒮(𝑝0).
• Compute a fixed point by iterating to convergence on the relaxation algorithm

𝑝0,𝑗+1 = (1 − 𝜃)𝒮(𝑝0,𝑗) + 𝜃𝑝0,𝑗, (8.72)

where 𝜃 ∈ [0, 1) is a relaxation parameter.

That leaves the public with less currency but more government interest-bearing bonds.

Since the public has less currency (its supply has diminished) it is plausible to anticipate that the
price level at time 0 will be driven downward.

But that is not the end of the story, because this open market operation at time 0 has
consequences for future settings of 𝑚𝑡+1 and the gross-of-interest government deficit ̄𝑔𝑡.

Let’s start with some imports:

import numpy as np
import matplotlib.pyplot as plt
from collections import namedtuple

Now let’s dive in and implement our pseudo code in Python.

# Create a namedtuple that contains parameters
MoneySupplyModel = namedtuple("MoneySupplyModel", 
                              ["γ1", "γ2", "g",
                               "R_tilde", "m0_check", "Bm1_check",
                               "T"])

def create_model(γ1=100, γ2=50, g=3.0,
                 R_tilde=1.01,
                 Bm1_check=0, m0_check=105,
                 T=5):
    



    return MoneySupplyModel(γ1=γ1, γ2=γ2, g=g,
                            R_tilde=R_tilde,
                            m0_check=m0_check, Bm1_check=Bm1_check,
                            T=T)

msm = create_model()

def S(p0, m0, model):

    # unpack parameters
    γ1, γ2, g = model.γ1, model.γ2, model.g
    R_tilde = model.R_tilde
    m0_check, Bm1_check = model.m0_check, model.Bm1_check
    T = model.T

    # open market operation
    Bm1 = 1 / (p0 * R_tilde) * (m0_check - m0) + Bm1_check

    # compute B_{T-1}
    BTm1 = R_tilde ** T * Bm1 + ((1 - R_tilde ** T) / (1 - R_tilde)) * g

    # compute g bar
    g_bar = g + (R_tilde - 1) * BTm1

    # solve the quadratic equation
    Ru = np.roots((-γ1, γ1 + γ2 - g_bar, -γ2)).max()

    # compute p0
    λ = γ2 / γ1
    p0_new = (1 / γ1) * m0 * ((1 - λ ** T) / (1 - λ) + λ ** T / (Ru - λ))

    return p0_new

def compute_fixed_point(m0, p0_guess, model, θ=0.5, tol=1e-6):

    p0 = p0_guess
    error = tol + 1

    while error > tol:
        p0_next = (1 - θ) * S(p0, m0, model) + θ * p0

        error = np.abs(p0_next - p0)
        p0 = p0_next

    return p0

Let’s look at how price level 𝑝0 in the stationary 𝑅𝑢 equilibrium depends on the initial money
supply 𝑚0.

Notice that the slope of 𝑝0 as a function of 𝑚0 is constant.

This outcome indicates that our model verifies a quantity theory of money outcome, something that
Sargent and Wallace Sargent & Wallace (1981) purposefully built into their model to justify the
adjective monetarist in their title.

m0_arr = np.arange(10, 110, 10)

plt.plot(m0_arr, [compute_fixed_point(m0, 1, msm) for m0 in m0_arr])

plt.ylabel('$p_0$')



plt.xlabel('$m_0$')

plt.show()

Now let’s write and implement code that lets us experiment with the time 0 open market operation
described earlier.

def simulate(m0, model, length=15, p0_guess=1):

    # unpack parameters
    γ1, γ2, g = model.γ1, model.γ2, model.g
    R_tilde = model.R_tilde
    m0_check, Bm1_check = model.m0_check, model.Bm1_check
    T = model.T

    # (pt, mt, bt, Rt)
    paths = np.empty((4, length))

    # open market operation
    p0 = compute_fixed_point(m0, 1, model)
    Bm1 = 1 / (p0 * R_tilde) * (m0_check - m0) + Bm1_check
    BTm1 = R_tilde ** T * Bm1 + ((1 - R_tilde ** T) / (1 - R_tilde)) * g
    g_bar = g + (R_tilde - 1) * BTm1
    Ru = np.roots((-γ1, γ1 + γ2 - g_bar, -γ2)).max()

    λ = γ2 / γ1

    # t = 0
    paths[0, 0] = p0
    paths[1, 0] = m0



    # 1 <= t <= T
    for t in range(1, T+1, 1):
        paths[0, t] = (1 / γ1) * m0 * \
                      ((1 - λ ** (T - t)) / (1 - λ)
                       + (λ ** (T - t) / (Ru - λ)))
        paths[1, t] = m0

    # t > T
    for t in range(T+1, length):
        paths[0, t] = paths[0, t-1] / Ru
        paths[1, t] = paths[1, t-1] + paths[0, t] * g_bar

    # Rt = pt / pt+1
    paths[3, :T] = paths[0, :T] / paths[0, 1:T+1]
    paths[3, T:] = Ru

    # bt = γ1 - γ2 / Rt
    paths[2, :] = γ1 - γ2 / paths[3, :]

    return paths

def plot_path(m0_arr, model, length=15):

    fig, axs = plt.subplots(2, 2, figsize=(8, 5))
    titles = ['$p_t$', '$m_t$', '$b_t$', '$R_t$']
    
    for m0 in m0_arr:
        paths = simulate(m0, model, length=length)
        for i, ax in enumerate(axs.flat):
            ax.plot(paths[i])
            ax.set_title(titles[i])
    
    axs[0, 1].hlines(model.m0_check, 0, length, color='r', linestyle='--')
    axs[0, 1].text(length * 0.8, model.m0_check * 0.9, r'$\check{m}_0$')
    plt.show()

plot_path([80, 100], msm)

Figure 104.  Unpleasant Arithmetic



Fig. 1 summarizes outcomes of two experiments that convey messages of Sargent and Wallace
Sargent & Wallace (1981).

• An open market operation that reduces the supply of money at time 𝑡 = 0 reduces the price
level at time 𝑡 = 0

• The lower is the post-open-market-operation money supply at time 0, lower is the price level at
time 0.

• An open market operation that reduces the post open market operation money supply at time 0
also lowers the rate of return on money 𝑅𝑢 at times 𝑡 ≥ 𝑇  because it brings a higher gross of
interest government deficit that must be financed by printing money (i.e., levying an inflation
tax) at time 𝑡 ≥ 𝑇 .

• 𝑅 is important in the context of maintaining monetary stability and addressing the
consequences of increased inflation due to government deficits. Thus, a larger 𝑅 might be
chosen to mitigate the negative impacts on the real rate of return caused by inflation.



8.3 Inflation Rate Laffer Curves

8.3.1 Overview
We study stationary and dynamic Laffer curves in the inflation tax rate in a non-linear version of the
model studied in Money Financed Government Deficits and Price Levels.

We use the log-linear version of the demand function for money that Cagan (1956) used in his classic
paper in place of the linear demand function used in Money Financed Government Deficits and Price
Levels.

That change requires that we modify parts of our analysis.

In particular, our dynamic system is no longer linear in state variables.

Nevertheless, the economic logic underlying an analysis based on what we called ‘’method 2′‘
remains unchanged.

We shall discover qualitatively similar outcomes to those that we studied in Money Financed
Government Deficits and Price Levels.

That lecture presented a linear version of the model in this lecture.

As in that lecture, we discussed these topics:

• an inflation tax that a government gathers by printing paper or electronic money
• a dynamic Laffer curve in the inflation tax rate that has two stationary equilibria
• perverse dynamics under rational expectations in which the system converges to the higher

stationary inflation tax rate
• a peculiar comparative stationary-state analysis connected with that stationary inflation rate

that asserts that inflation can be reduced by running higher government deficits

These outcomes will set the stage for the analysis of Laffer Curves with Adaptive Expectations that
studies a version of the present model that uses a version of “adaptive expectations” instead of
rational expectations.

That lecture will show that

• replacing rational expectations with adaptive expectations leaves the two stationary inflation
rates unchanged, but that …

• it reverses the perverse dynamics by making the lower stationary inflation rate the one to
which the system typically converges

• a more plausible comparative dynamic outcome emerges in which now inflation can be reduced
by running lower government deficits

8.3.2 The Model
Let

• 𝑚𝑡 be the log of the money supply at the beginning of time 𝑡
• 𝑝𝑡 be the log of the price level at time 𝑡

The demand function for money is

𝑚𝑡+1 − 𝑝𝑡 = −𝛼(𝑝𝑡+1 − 𝑝𝑡) (8.73)

where 𝛼 ≥ 0.

The law of motion of the money supply is

exp(𝑚𝑡+1) − exp(𝑚𝑡) = 𝑔 exp(𝑝𝑡) (8.74)
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Remark 8.6.

Please notice that while equation (1) is linear in logs of the money supply and price level,
equation (2) is linear in levels. This will require adapting the equilibrium computation methods
that we deployed in Money Financed Government Deficits and Price Levels.

where 𝑔 is the part of government expenditures financed by printing money.

8.3.3 Limiting Values of Inflation Rate
We can compute the two prospective limiting values for 𝜋 by studying the steady-state Laffer curve.

Thus, in a steady state

𝑚𝑡+1 − 𝑚𝑡 = 𝑝𝑡+1 − 𝑝𝑡 = 𝑥 ∀𝑡, (8.75)

where 𝑥 > 0 is a common rate of growth of logarithms of the money supply and price level.

A few lines of algebra yields the following equation that 𝑥 satisfies

exp(−𝛼𝑥) − exp(−(1 + 𝛼)𝑥) = 𝑔 (8.76)

where we require that

𝑔 ≤ max
𝑥≥0

{exp(−𝛼𝑥) − exp(−(1 + 𝛼)𝑥)}, (8.77)

so that it is feasible to finance 𝑔 by printing money.

The left side of (4) is steady state revenue raised by printing money.

The right side of (4) is the quantity of time 𝑡 goods that the government raises by printing money.

Soon we’ll plot the left and right sides of equation (4).

But first we’ll write code that computes a steady-state 𝜋.

Let’s start by importing some libraries

from collections import namedtuple
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
from scipy.optimize import fsolve

Let’s create a namedtuple to store the parameters of the model

CaganLaffer = namedtuple('CaganLaffer', 
                        ["m0",  # log of the money supply at t=0
                         "α",   # sensitivity of money demand
                         "λ",
                         "g" ])

# Create a Cagan Laffer model
def create_model(α=0.5, m0=np.log(100), g=0.35):
    return CaganLaffer(α=α, m0=m0, λ=α/(1+α), g=g)

model = create_model()

Now we write code that computes steady-state 𝜋s.

# Define formula for π_bar
def solve_π(x, α, g):
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    return np.exp(-α * x) - np.exp(-(1 + α) * x) - g

def solve_π_bar(model, x0):
    π_bar = fsolve(solve_π, x0=x0, xtol=1e-10, args=(model.α, model.g))[0]
    return π_bar

# Solve for the two steady state of π
π_l = solve_π_bar(model, x0=0.6)
π_u = solve_π_bar(model, x0=3.0)
print(f'The two steady state of π are: {π_l, π_u}')

The two steady state of π are: (0.6737147075333032, 1.6930797322614812)

We find two steady state 𝜋 values.

8.3.4 Steady State Laffer curve
The following figure plots the steady state Laffer curve together with the two stationary inflation
rates.

def compute_seign(x, α):
    return np.exp(-α * x) - np.exp(-(1 + α) * x) 

def plot_laffer(model, πs):
    α, g = model.α, model.g
    
    # Generate π values
    x_values = np.linspace(0, 5, 1000)

    # Compute corresponding seigniorage values for the function
    y_values = compute_seign(x_values, α)

    # Plot the function
    plt.plot(x_values, y_values, 
            label=f'Laffer curve')
    for π, label in zip(πs, [r'$\pi_l$', r'$\pi_u$']):
        plt.text(π, plt.gca().get_ylim()[0]*2, 
                 label, horizontalalignment='center',
                 color='brown', size=10)
        plt.axvline(π, color='brown', linestyle='--')
    plt.axhline(g, color='red', linewidth=0.5, 
                linestyle='--', label='g')
    plt.xlabel(r'$\pi$')
    plt.ylabel('seigniorage')
    plt.legend()
    plt.show()

# Steady state Laffer curve
plot_laffer(model, (π_l, π_u))



Figure 105.  Seigniorage as function of steady state inflation. The dashed brown lines indicate 𝜋𝑙 and 𝜋𝑢.

8.3.5 Initial Price Levels
Now that we have our hands on the two possible steady states, we can compute two functions
𝑝(𝑚0) and 𝑝(𝑚0), which as initial conditions for 𝑝𝑡 at time 𝑡, imply that 𝜋𝑡 = 𝜋 for all 𝑡 ≥ 0.

The function 𝑝(𝑚0) will be associated with 𝜋𝑙 the lower steady-state inflation rate.

The function 𝑝(𝑚0) will be associated with 𝜋𝑢 the lower steady-state inflation rate.

def solve_p0(p0, m0, α, g, π):
    return np.log(np.exp(m0) + g * np.exp(p0)) + α * π - p0

def solve_p0_bar(model, x0, π_bar):
    p0_bar = fsolve(solve_p0, x0=x0, xtol=1e-20, args=(model.m0, 
                                                       model.α, 
                                                       model.g, 
                                                       π_bar))[0]
    return p0_bar

# Compute two initial price levels associated with π_l and π_u
p0_l = solve_p0_bar(model, 
                    x0=np.log(220), 
                    π_bar=π_l)
p0_u = solve_p0_bar(model, 
                    x0=np.log(220), 
                    π_bar=π_u)
print(f'Associated initial  p_0s  are: {p0_l, p0_u}')

Associated initial  p_0s  are: (5.615742247288047, 7.144789784380314)

8.3.5.1 Verification
To start, let’s write some code to verify that if the initial log price level 𝑝0 takes one of the two
values we just calculated, the inflation rate 𝜋𝑡 will be constant for all 𝑡 ≥ 0.



The following code verifies this.

# Implement pseudo-code above
def simulate_seq(p0, model, num_steps):
    λ, g = model.λ, model.g
    π_seq, μ_seq, m_seq, p_seq = [], [], [model.m0], [p0]

    for t in range(num_steps):
        
        m_seq.append(np.log(np.exp(m_seq[t]) + g * np.exp(p_seq[t])))
        p_seq.append(1/λ * p_seq[t] + (1 - 1/λ) * m_seq[t+1])

        μ_seq.append(m_seq[t+1]-m_seq[t])
        π_seq.append(p_seq[t+1]-p_seq[t])

    return π_seq, μ_seq, m_seq, p_seq

π_seq, μ_seq, m_seq, p_seq = simulate_seq(p0_l, model, 150)

# Check π and μ at steady state
print('π_bar == μ_bar:', π_seq[-1] == μ_seq[-1])

# Check steady state m_{t+1} - m_t and p_{t+1} - p_t 
print('m_{t+1} - m_t:', m_seq[-1] - m_seq[-2])
print('p_{t+1} - p_t:', p_seq[-1] - p_seq[-2])

# Check if exp(-αx) - exp(-(1 + α)x) = g
eq_g = lambda x: np.exp(-model.α * x) - np.exp(-(1 + model.α) * x)

print('eq_g == g:', np.isclose(eq_g(m_seq[-1] - m_seq[-2]), model.g))

π_bar == μ_bar: True
m_{t+1} - m_t: 1.693079732261424
p_{t+1} - p_t: 1.693079732261424
eq_g == g: True

8.3.6 Computing an Equilibrium Sequence
We’ll deploy a method similar to Method 2 used in Money Financed Government Deficits and Price
Levels.

We’ll take the time 𝑡 state vector to be the pair (𝑚𝑡, 𝑝𝑡).

We’ll treat 𝑚𝑡 as a natural state variable and 𝑝𝑡 as a jump variable.

Let

𝜆 ≡ 𝛼
1 + 𝛼

(8.78)

Let’s rewrite equation (1) as

𝑝𝑡 = (1 − 𝜆)𝑚𝑡+1 + 𝜆𝑝𝑡+1 (8.79)

We’ll summarize our algorithm with the following pseudo-code.

Pseudo-code

The heart of the pseudo-code iterates on the following mapping from state vector (𝑚𝑡, 𝑝𝑡) at time 𝑡
to state vector (𝑚𝑡+1, 𝑝𝑡+1) at time 𝑡 + 1.

• starting from a given pair (𝑚𝑡, 𝑝𝑡) at time 𝑡 ≥ 0
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‣ solve (2) for 𝑚𝑡+1
‣ solve (7) for 𝑝𝑡+1 = 𝜆−1𝑝𝑡 + (1 − 𝜆−1)𝑚𝑡+1
‣ compute the inflation rate 𝜋𝑡 = 𝑝𝑡+1 − 𝑝𝑡 and growth of money supply 𝜇𝑡 = 𝑚𝑡+1 − 𝑚𝑡

Next, compute the two functions 𝑝(𝑚0) and 𝑝(𝑚0) described above

Now initiate the algorithm as follows.

• set 𝑚0 > 0
• set a value of 𝑝0 ∈ [𝑝(𝑚0), 𝑝(𝑚0)] and form the pair (𝑚0, 𝑝0) at time 𝑡 = 0

Starting from (𝑚0, 𝑝0) iterate on 𝑡 to convergence of 𝜋𝑡 → 𝜋 and 𝜇𝑡 → 𝜇

It will turn out that

• if they exist, limiting values 𝜋 and 𝜇 will be equal
• if limiting values exist, there are two possible limiting values, one high, one low
• for almost all initial log price levels 𝑝0, the limiting 𝜋 = 𝜇 is the higher value
• for each of the two possible limiting values 𝜋 ,there is a unique initial log price level 𝑝0 that

implies that 𝜋𝑡 = 𝜇𝑡 = 𝜇 for all 𝑡 ≥ 0

‣ this unique initial log price level solves log(exp(𝑚0) + 𝑔 exp(𝑝0)) − 𝑝0 = −𝛼𝜋
‣ the preceding equation for 𝑝0 comes from 𝑚1 − 𝑝0 = −𝛼𝜋

8.3.7 Slippery Side of Laffer Curve Dynamics
We are now equipped to compute time series starting from different 𝑝0 settings, like those in Money
Financed Government Deficits and Price Levels.

# Generate a sequence from p0_l to p0_u
p0s = np.arange(p0_l, p0_u, 0.1) 

line_params = {'lw': 1.5, 
              'marker': 'o',
              'markersize': 3}

p0_bars = (p0_l, p0_u)
              
draw_iterations(p0s, model, line_params, p0_bars, num_steps=20)
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Figure 106.  Starting from different initial values of 𝑝0, paths of 𝑚𝑡 (top panel, log scale for 𝑚), 𝑝𝑡 (second panel, log scale for 𝑝), 𝜋𝑡 (third
panel), and 𝜇𝑡 (bottom panel)

Staring at the paths of price levels in Fig. 2 reveals that almost all paths converge to the higher
inflation tax rate displayed in the stationary state Laffer curve. displayed in figure Fig. 1.

Thus, we have reconfirmed what we have called the “perverse” dynamics under rational
expectations in which the system converges to the higher of two possible stationary inflation tax
rates.

Those dynamics are “perverse” not only in the sense that they imply that the monetary and fiscal
authorities that have chosen to finance government expenditures eventually impose a higher
inflation tax than required to finance government expenditures, but because of the following
“counterintuitive” situation that we can deduce by staring at the stationary state Laffer curve
displayed in figure Fig. 1:

• the figure indicates that inflation can be reduced by running higher government deficits, i.e., by
raising more resources through printing money.

Note



The same qualitative outcomes prevail in Money Financed Government Deficits and Price Levels
that studies a linear version of the model in this lecture.

We discovered that

• all but one of the equilibrium paths converge to limits in which the higher of two possible
stationary inflation tax prevails

• there is a unique equilibrium path associated with “plausible” statements about how reductions
in government deficits affect a stationary inflation rate

As in Money Financed Government Deficits and Price Levels, on grounds of plausibility, we again
recommend selecting the unique equilibrium that converges to the lower stationary inflation tax
rate.

As we shall see, we accepting this recommendation is a key ingredient of outcomes of the
“unpleasant arithmetic” that we describe in Some Unpleasant Monetarist Arithmetic.

In Laffer Curves with Adaptive Expectations, we shall explore how Bruno & Fischer (1990) and
others justified our equilibrium selection in other ways.
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8.4 Laffer Curves with Adaptive Expectations

8.4.1 Overview
This lecture studies stationary and dynamic Laffer curves in the inflation tax rate in a non-linear
version of the model studied in this lecture Money Financed Government Deficits and Price Levels.

As in the lecture Money Financed Government Deficits and Price Levels, this lecture uses the log-
linear version of the demand function for money that Cagan (1956) used in his classic paper in place
of the linear demand function used in this lecture Money Financed Government Deficits and Price
Levels.

But now, instead of assuming ‘’rational expectations’‘ in the form of ‘’perfect foresight’‘, we’ll adopt
the ‘’adaptive expectations’‘ assumption used by Cagan (1956) and Friedman (1956).

This means that instead of assuming that expected inflation 𝜋∗
𝑡  is described by the “perfect foresight”

or “rational expectations” hypothesis

𝜋∗
𝑡 = 𝑝𝑡+1 − 𝑝𝑡 (8.80)

that we adopted in lectures Money Financed Government Deficits and Price Levels and lectures
Inflation Rate Laffer Curves, we’ll now assume that 𝜋∗

𝑡  is determined by the adaptive expectations
hypothesis described in equation (5) reported below.

We shall discover that changing our hypothesis about expectations formation in this way will
change some our findings and leave others intact. In particular, we shall discover that

• replacing rational expectations with adaptive expectations leaves the two stationary inflation
rates unchanged, but that …

• it reverses the perverse dynamics by making the lower stationary inflation rate the one to
which the system typically converges

• a more plausible comparative dynamic outcome emerges in which now inflation can be
reduced by running lower government deficits

These more plausible comparative dynamics underlie the “old time religion” that states that
“inflation is always and everywhere caused by government deficits”.

These issues were studied by Bruno & Fischer (1990).

Their purpose was to reverse what they thought were counter intuitive predictions of their model
under rational expectations (i.e., perfect foresight in this context) by dropping rational expectations
and instead assuming that people form expectations about future inflation rates according to the
“adaptive expectations” scheme (5) described below.

Note

Marcet & Sargent (1989) had studied another way of selecting stationary equilibrium that
involved replacing rational expectations with a model of learning via least squares regression.
Marcet & Nicolini (2003) and Sargent et al. (2009) extended that work and applied it to study
recurrent high-inflation episodes in Latin America.

8.4.2 The model
Let

• 𝑚𝑡 be the log of the money supply at the beginning of time 𝑡
• 𝑝𝑡 be the log of the price level at time 𝑡
• 𝜋∗

𝑡  be the public’s expectation of the rate of inflation between 𝑡 and 𝑡 + 1
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The law of motion of the money supply is

exp(𝑚𝑡+1) − exp(𝑚𝑡) = 𝑔 exp(𝑝𝑡) (8.81)

where 𝑔 is the part of government expenditures financed by printing money.

Notice that equation (2) implies that

𝑚𝑡+1 = log[exp(𝑚𝑡) + 𝑔 exp(𝑝𝑡)] (8.82)

The demand function for money is

𝑚𝑡+1 − 𝑝𝑡 = −𝛼𝜋∗
𝑡 (8.83)

where 𝛼 ≥ 0.

Expectations of inflation are governed by

𝜋∗
𝑡 = (1 − 𝛿)(𝑝𝑡 − 𝑝𝑡−1) + 𝛿𝜋∗

𝑡−1 (8.84)

where 𝛿 ∈ (0, 1)

8.4.3 Computing an equilibrium sequence
Equation the expressions for 𝑚𝑡+1 provided by (4) and (3) and use equation (5) to eliminate 𝜋∗

𝑡  to
obtain the following equation for 𝑝𝑡:

log[exp(𝑚𝑡) + 𝑔 exp(𝑝𝑡)] − 𝑝𝑡 = −𝛼[(1 − 𝛿)(𝑝𝑡 − 𝑝𝑡−1) + 𝛿𝜋∗
𝑡−1] (8.85)

Pseudo-code

Here is the pseudo-code for our algorithm.

Starting at time 0 with initial conditions (𝑚0, 𝜋∗
−1, 𝑝−1), for each 𝑡 ≥ 0 deploy the following steps in

order:

• solve (6) for 𝑝𝑡
• solve equation (5) for 𝜋∗

𝑡
• solve equation (3) for 𝑚𝑡+1

This completes the algorithm.

8.4.4 Claims or conjectures
It will turn out that

• if they exist, limiting values 𝜋 and 𝜇 will be equal
• if limiting values exist, there are two possible limiting values, one high, one low
• unlike the outcome in lecture Inflation Rate Laffer Curves, for almost all initial log price levels

and expected inflation rates 𝑝0, 𝜋∗
𝑡 , the limiting 𝜋 = 𝜇 is the lower steady state value

• for each of the two possible limiting values ̄𝜋 ,there is a unique initial log price level 𝑝0 that
implies that 𝜋𝑡 = 𝜇𝑡 = ̄𝜇 for all 𝑡 ≥ 0

‣ this unique initial log price level solves log(exp(𝑚0) + 𝑔 exp(𝑝0)) − 𝑝0 = −𝛼 ̄𝜋
‣ the preceding equation for 𝑝0 comes from 𝑚1 − 𝑝0 = −𝛼 ̄𝜋

8.4.5 Limiting values of inflation rate
As in our earlier lecture Inflation Rate Laffer Curves, we can compute the two prospective limiting
values for ̄𝜋 by studying the steady-state Laffer curve.

Thus, in a steady state

𝑚𝑡+1 − 𝑚𝑡 = 𝑝𝑡+1 − 𝑝𝑡 = 𝑥 ∀𝑡, (8.86)
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where 𝑥 > 0 is a common rate of growth of logarithms of the money supply and price level.

A few lines of algebra yields the following equation that 𝑥 satisfies

exp(−𝛼𝑥) − exp(−(1 + 𝛼)𝑥) = 𝑔 (8.87)

where we require that

𝑔 ≤ max
𝑥:𝑥≥0

exp(−𝛼𝑥) − exp(−(1 + 𝛼)𝑥), (8.88)

so that it is feasible to finance 𝑔 by printing money.

The left side of (8) is steady state revenue raised by printing money.

The right side of (8) is the quantity of time 𝑡 goods that the government raises by printing money.

Soon we’ll plot the left and right sides of equation (8).

But first we’ll write code that computes a steady-state ̄𝜋.

Let’s start by importing some libraries

from collections import namedtuple
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
from matplotlib.cm import get_cmap
from matplotlib.colors import to_rgba
import matplotlib
from scipy.optimize import root, fsolve

Let’s create a namedtuple to store the parameters of the model

LafferAdaptive = namedtuple('LafferAdaptive', 
                        ["m0",  # log of the money supply at t=0
                         "α",   # sensitivity of money demand
                         "g",   # government expenditure
                         "δ"])

# Create a Cagan Laffer model
def create_model(α=0.5, m0=np.log(100), g=0.35, δ=0.9):
    return LafferAdaptive(α=α, m0=m0, g=g, δ=δ)

model = create_model()

Now we write code that computes steady-state ̄𝜋s.

# Define formula for π_bar
def solve_π(x, α, g):
    return np.exp(-α * x) - np.exp(-(1 + α) * x) - g

def solve_π_bar(model, x0):
    π_bar = fsolve(solve_π, x0=x0, xtol=1e-10, args=(model.α, model.g))[0]
    return π_bar

# Solve for the two steady state of π
π_l = solve_π_bar(model, x0=0.6)
π_u = solve_π_bar(model, x0=3.0)
print(f'The two steady state of π are: {π_l, π_u}')

The two steady state of π are: (0.6737147075333032, 1.6930797322614812)



We find two steady state ̄𝜋 values

8.4.6 Steady-state Laffer curve
The following figure plots the steady-state Laffer curve together with the two stationary inflation
rates.

def compute_seign(x, α):
    return np.exp(-α * x) - np.exp(-(1 + α) * x) 

def plot_laffer(model, πs):
    α, g = model.α, model.g
    
    # Generate π values
    x_values = np.linspace(0, 5, 1000)

    # Compute corresponding seigniorage values for the function
    y_values = compute_seign(x_values, α)

    # Plot the function
    plt.plot(x_values, y_values, 
            label=f'$exp((-{α})x) - exp(- (1- {α}) x)$')
    for π, label in zip(πs, ['$\pi_l$', '$\pi_u$']):
        plt.text(π, plt.gca().get_ylim()[0]*2, 
                 label, horizontalalignment='center',
                 color='brown', size=10)
        plt.axvline(π, color='brown', linestyle='--')
    plt.axhline(g, color='red', linewidth=0.5, 
                linestyle='--', label='g')
    plt.xlabel('$\pi$')
    plt.ylabel('seigniorage')
    plt.legend()
    plt.grid(True)
    plt.show()

# Steady state Laffer curve
plot_laffer(model, (π_l, π_u))



Figure 107.  Seigniorage as function of steady-state inflation. The dashed brown lines indicate 𝜋𝑙 and 𝜋𝑢.

8.4.7 Associated initial price levels
Now that we have our hands on the two possible steady states, we can compute two initial log price
levels 𝑝−1, which as initial conditions, imply that 𝜋𝑡 = ̄𝜋 for all 𝑡 ≥ 0.

In particular, to initiate a fixed point of the dynamic Laffer curve dynamics, we set

𝑝−1 = 𝑚0 + 𝛼𝜋∗ (8.89)

def solve_p_init(model, π_star):
    m0, α = model.m0, model.α
    return m0 + α*π_star

# Compute two initial price levels associated with π_l and π_u
p_l, p_u = map(lambda π: solve_p_init(model, π), (π_l, π_u))
print('Associated initial p_{-1}s', f'are: {p_l, p_u}')

Associated initial p_{-1}s are: (4.9420275397547435, 5.451710052118832)

8.4.7.1 Verification
To start, let’s write some code to verify that if we initial 𝜋∗

−1, 𝑝−1 appropriately, the inflation rate 𝜋𝑡
will be constant for all 𝑡 ≥ 0 (at either 𝜋𝑢 or 𝜋𝑙 depending on the initial condition)

The following code verifies this.

def solve_laffer_adapt(p_init, π_init, model, num_steps):
    m0, α, δ, g = model.m0, model.α, model.δ, model.g
    
    m_seq = np.nan * np.ones(num_steps+1) 
    π_seq = np.nan * np.ones(num_steps) 
    p_seq = np.nan * np.ones(num_steps)
    μ_seq = np.nan * np.ones(num_steps) 
    
    m_seq[1] = m0



    π_seq[0] = π_init
    p_seq[0] = p_init
        
    for t in range(1, num_steps):
        # Solve p_t
        def p_t(pt):
            return np.log(np.exp(m_seq[t]) + g * np.exp(pt)) \
                          - pt + α * ((1-δ)*(pt - p_seq[t-1]) + δ*π_seq[t-1])
        
        p_seq[t] = root(fun=p_t, x0=p_seq[t-1]).x[0]
        
        # Solve π_t
        π_seq[t] = (1-δ) * (p_seq[t]-p_seq[t-1]) + δ*π_seq[t-1]
        
        # Solve m_t
        m_seq[t+1] = np.log(np.exp(m_seq[t]) + g*np.exp(p_seq[t]))
        
        # Solve μ_t
        μ_seq[t] = m_seq[t+1] - m_seq[t]
    
    return π_seq, μ_seq, m_seq, p_seq

Compute limiting values starting from 𝑝−1 associated with 𝜋𝑙

π_seq, μ_seq, m_seq, p_seq = solve_laffer_adapt(p_l, π_l, model, 50)

# Check steady state m_{t+1} - m_t and p_{t+1} - p_t 
print('m_{t+1} - m_t:', m_seq[-1] - m_seq[-2])
print('p_{t+1} - p_t:', p_seq[-1] - p_seq[-2])

# Check if exp(-αx) - exp(-(1 + α)x) = g
eq_g = lambda x: np.exp(-model.α * x) - np.exp(-(1 + model.α) * x)

print('eq_g == g:', np.isclose(eq_g(m_seq[-1] - m_seq[-2]), model.g))

m_{t+1} - m_t: 0.6737147075332999
p_{t+1} - p_t: 0.6737147075332928
eq_g == g: True

Compute limiting values starting from 𝑝−1 associated with 𝜋𝑢

π_seq, μ_seq, m_seq, p_seq = solve_laffer_adapt(p_u, π_u, model, 50)

# Check steady state m_{t+1} - m_t and p_{t+1} - p_t 
print('m_{t+1} - m_t:', m_seq[-1] - m_seq[-2])
print('p_{t+1} - p_t:', p_seq[-1] - p_seq[-2])

# Check if exp(-αx) - exp(-(1 + α)x) = g
eq_g = lambda x: np.exp(-model.α * x) - np.exp(-(1 + model.α) * x)

print('eq_g == g:', np.isclose(eq_g(m_seq[-1] - m_seq[-2]), model.g))

m_{t+1} - m_t: 1.69307973225105
p_{t+1} - p_t: 1.6930797322506947
eq_g == g: True



8.4.8 Slippery side of Laffer curve dynamics
We are now equipped to compute time series starting from different 𝑝−1, 𝜋∗

−1 settings, analogous to
those in this lecture Money Financed Government Deficits and Price Levels and this lecture Inflation
Rate Laffer Curves.

Now we’ll study how outcomes unfold when we start 𝑝−1, 𝜋∗
−1 away from a stationary point of the

dynamic Laffer curve, i.e., away from either 𝜋𝑢 or 𝜋𝑙.

To construct a perturbation pair ̌𝑝−1, ̌𝜋∗
−1we’ll implement the following pseudo code:

• set ̌𝜋∗
−1 not equal to one of the stationary points 𝜋𝑢 or 𝜋𝑙.

• set ̌𝑝−1 = 𝑚0 + 𝛼 ̌𝜋∗
−1

Let’s simulate the result generated by varying the initial 𝜋−1 and corresponding 𝑝−1

πs = np.linspace(π_l, π_u, 10)

line_params = {'lw': 1.5, 
              'marker': 'o',
              'markersize': 3}
              
π_bars = (π_l, π_u)
draw_iterations(πs, model, line_params, π_bars, num_steps=80)

/money-inflation
/money-inflation-nonlinear
/money-inflation-nonlinear


Figure 108.  Starting from different initial values of 𝜋0, paths of 𝑚𝑡 (top panel, log scale for 𝑚), 𝑝𝑡 (second panel, log scale for 𝑝), 𝜋𝑡 (third
panel), and 𝜇𝑡 (bottom panel)





Chapter 9

9. Stochastic Dynamics
9.1 AR(1) Processes

9.1.1 Overview
In this lecture we are going to study a very simple class of stochastic models called AR(1) processes.

These simple models are used again and again in economic research to represent the dynamics of
series such as

• labor income
• dividends
• productivity, etc.

We are going to study AR(1) processes partly because they are useful and partly because they help
us understand important concepts.

Let’s start with some imports:

import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  #set default figure size

9.1.2 The AR(1) model
The AR(1) model (autoregressive model of order 1) takes the form

𝑋𝑡+1 = 𝑎𝑋𝑡 + 𝑏 + 𝑐𝑊𝑡+1 (9.1)

where 𝑎, 𝑏, 𝑐 are scalar-valued parameters

(Equation (1) is sometimes called a stochastic difference equation.)

The specification (1) generates a time series {𝑋𝑡} as soon as we specify an initial condition 𝑋0.

To make things even simpler, we will assume that

• the process {𝑊𝑡} is IID and standard normal,
• the initial condition 𝑋0 is drawn from the normal distribution 𝑁(𝜇0, 𝑣0) and
• the initial condition 𝑋0 is independent of {𝑊𝑡}.

9.1.2.1 Moving average representation
Iterating backwards from time 𝑡, we obtain

𝑋𝑡 = 𝑎𝑋𝑡−1 + 𝑏 + 𝑐𝑊𝑡 = 𝑎2𝑋𝑡−2 + 𝑎𝑏 + 𝑎𝑐𝑊𝑡−1 + 𝑏 + 𝑐𝑊𝑡 = 𝑎3𝑋𝑡−3 + 𝑎2𝑏 + 𝑎2𝑐𝑊𝑡−2 + 𝑏 + 𝑐𝑊𝑡 = ⋯(9.2)

Example 9.18.

For example, 𝑋𝑡 might be

• the log of labor income for a given household, or
• the log of money demand in a given economy.

In either case, (1) shows that the current value evolves as a linear function of the previous value
and an IID shock 𝑊𝑡+1.

(We use 𝑡 + 1 for the subscript of 𝑊𝑡+1 because this random variable is not observed at time 𝑡.)



If we work all the way back to time zero, we get

𝑋𝑡 = 𝑎𝑡𝑋0 + 𝑏 ∑
𝑡−1

𝑗=0
𝑎𝑗 + 𝑐 ∑

𝑡−1

𝑗=0
𝑎𝑗𝑊𝑡−𝑗 (9.3)

Equation (3) shows that 𝑋𝑡 is a well defined random variable, the value of which depends on

• the parameters,
• the initial condition 𝑋0 and
• the shocks 𝑊1, …𝑊𝑡 from time 𝑡 = 1 to the present.

Throughout, the symbol 𝜓𝑡 will be used to refer to the density of this random variable 𝑋𝑡.

9.1.2.2 Distribution dynamics
One of the nice things about this model is that it’s so easy to trace out the sequence of distributions
{𝜓𝑡} corresponding to the time series {𝑋𝑡}.

To see this, we first note that 𝑋𝑡 is normally distributed for each 𝑡.

This is immediate from (3), since linear combinations of independent normal random variables are
normal.

Given that 𝑋𝑡 is normally distributed, we will know the full distribution 𝜓𝑡 if we can pin down its
first two moments.

Let 𝜇𝑡 and 𝑣𝑡 denote the mean and variance of 𝑋𝑡 respectively.

We can pin down these values from (3) or we can use the following recursive expressions:

𝜇𝑡+1 = 𝑎𝜇𝑡 + 𝑏 and 𝑣𝑡+1 = 𝑎2𝑣𝑡 + 𝑐2 (9.4)

These expressions are obtained from (1) by taking, respectively, the expectation and variance of both
sides of the equality.

In calculating the second expression, we are using the fact that 𝑋𝑡 and 𝑊𝑡+1 are independent.

(This follows from our assumptions and (3).)

Given the dynamics in (3) and initial conditions 𝜇0, 𝑣0, we obtain 𝜇𝑡, 𝑣𝑡 and hence

𝜓𝑡 = 𝑁(𝜇𝑡, 𝑣𝑡) (9.5)

The following code uses these facts to track the sequence of marginal distributions {𝜓𝑡}.

The parameters are

a, b, c = 0.9, 0.1, 0.5

mu, v = -3.0, 0.6  # initial conditions mu_0, v_0

Here’s the sequence of distributions:

from scipy.stats import norm

sim_length = 10
grid = np.linspace(-5, 7, 120)

fig, ax = plt.subplots()

for t in range(sim_length):
    mu = a * mu + b
    v = a**2 * v + c**2

https://en.wikipedia.org/wiki/Moment\_(mathematics)


    ax.plot(grid, norm.pdf(grid, loc=mu, scale=np.sqrt(v)),
            label=fr"$\psi_{t}$",
            alpha=0.7)

ax.legend(bbox_to_anchor=[1.05,1],loc=2,borderaxespad=1)

plt.show()

9.1.3 Stationarity and asymptotic stability
When we use models to study the real world, it is generally preferable that our models have clear,
sharp predictions.

For dynamic problems, sharp predictions are related to stability.

For example, if a dynamic model predicts that inflation always converges to some kind of steady
state, then the model gives a sharp prediction.

(The prediction might be wrong, but even this is helpful, because we can judge the quality of the
model.)

Notice that, in the figure above, the sequence {𝜓𝑡} seems to be converging to a limiting distribution,
suggesting some kind of stability.

This is even clearer if we project forward further into the future:

def plot_density_seq(ax, mu_0=-3.0, v_0=0.6, sim_length=40):
    mu, v = mu_0, v_0
    for t in range(sim_length):
        mu = a * mu + b
        v = a**2 * v + c**2
        ax.plot(grid,
                norm.pdf(grid, loc=mu, scale=np.sqrt(v)),
                alpha=0.5)

fig, ax = plt.subplots()
plot_density_seq(ax)
plt.show()



Moreover, the limit does not depend on the initial condition.

For example, this alternative density sequence also converges to the same limit.

fig, ax = plt.subplots()
plot_density_seq(ax, mu_0=4.0)
plt.show()

In fact it’s easy to show that such convergence will occur, regardless of the initial condition,
whenever | 𝑎 | < 1.

To see this, we just have to look at the dynamics of the first two moments, as given in (4).

When | 𝑎 | < 1, these sequences converge to the respective limits

𝜇∗ := 𝑏
1 − 𝑎

and 𝑣∗ = 𝑐2

1 − 𝑎2 (9.6)

(See our lecture on one dimensional dynamics for background on deterministic convergence.)

Hence

𝜓𝑡 → 𝜓∗ = 𝑁(𝜇∗, 𝑣∗) as𝑡 → ∞ (9.7)

We can confirm this is valid for the sequence above using the following code.

/scalar-dynam


fig, ax = plt.subplots()
plot_density_seq(ax, mu_0=4.0)

mu_star = b / (1 - a)
std_star = np.sqrt(c**2 / (1 - a**2))  # square root of v_star
psi_star = norm.pdf(grid, loc=mu_star, scale=std_star)
ax.plot(grid, psi_star, 'k-', lw=2, label=r"$\psi^*$")
ax.legend()

plt.show()

As claimed, the sequence {𝜓𝑡} converges to 𝜓∗.

We see that, at least for these parameters, the AR(1) model has strong stability properties.

9.1.3.1 Stationary distributions
Let’s try to better understand the limiting distribution 𝜓∗.

A stationary distribution is a distribution that is a “fixed point” of the update rule for the AR(1)
process.

In other words, if 𝜓𝑡 is stationary, then 𝜓𝑡+𝑗 = 𝜓𝑡 for all 𝑗 in ℕ.

A different way to put this, specialized to the current setting, is as follows: a density 𝜓 on ℝ is
stationary for the AR(1) process if

𝑋𝑡 ∼ 𝜓 ⟹ 𝑎𝑋𝑡 + 𝑏 + 𝑐𝑊𝑡+1 ∼ 𝜓 (9.8)

The distribution 𝜓∗ in (7) has this property — checking this is an exercise.

(Of course, we are assuming that | 𝑎 | < 1 so that 𝜓∗ is well defined.)

In fact, it can be shown that no other distribution on ℝ has this property.

Thus, when | 𝑎 | < 1, the AR(1) model has exactly one stationary density and that density is given
by 𝜓∗.

9.1.4 Ergodicity
The concept of ergodicity is used in different ways by different authors.

One way to understand it in the present setting is that a version of the law of large numbers is valid
for {𝑋𝑡}, even though it is not IID.



Example 9.19.

If we consider the identity function ℎ(𝑥) = 𝑥, we get

1
𝑚

∑
𝑚

𝑡=1
𝑋𝑡 → ∫ 𝑥𝜓∗(𝑥)𝑑𝑥 as𝑚 → ∞ (9.10)

In other words, the time series sample mean converges to the mean of the stationary
distribution.

In particular, averages over time series converge to expectations under the stationary distribution.

Indeed, it can be proved that, whenever | 𝑎 | < 1, we have

1
𝑚

∑
𝑚

𝑡=1
ℎ(𝑋𝑡) → ∫ ℎ(𝑥)𝜓∗(𝑥)𝑑𝑥 as𝑚 → ∞ (9.9)

whenever the integral on the right hand side is finite and well defined.

Notes:

• In (9), convergence holds with probability one.
• The textbook by Meyn & Tweedie (2009) is a classic reference on ergodicity.

Ergodicity is important for a range of reasons.

For example, (9) can be used to test theory.

In this equation, we can use observed data to evaluate the left hand side of (9).

And we can use a theoretical AR(1) model to calculate the right hand side.

If 1
𝑚 ∑𝑚

𝑡=1 𝑋𝑡 is not close to 𝜓()𝑥, even for many observations, then our theory seems to be incorrect
and we will need to revise it.

Exercise 9.43.

Let 𝑘 be a natural number.

The 𝑘-th central moment of a random variable is defined as

𝑀𝑘 := 𝔼[(𝑋 − 𝔼𝑋)𝑘] (9.11)

When that random variable is 𝑁(𝜇, 𝜎2), it is known that

𝑀𝑘 = (9.12)

Here 𝑛!! is the double factorial.

According to (9), we should have, for any 𝑘 ∈ ℕ,

1
𝑚

∑
𝑚

𝑡=1
(𝑋𝑡 − 𝜇∗)𝑘 ≈ 𝑀𝑘 (9.13)

when 𝑚 is large.

Confirm this by simulation at a range of 𝑘 using the default parameters from the lecture.

https://en.wikipedia.org/wiki/Double\_factorial


Solution 9.37. Solution to Exercise 1

Here is one solution:

from numba import njit
from scipy.special import factorial2

@njit
def sample_moments_ar1(k, m=100_000, mu_0=0.0, sigma_0=1.0, seed=1234):
    np.random.seed(seed)
    sample_sum = 0.0
    x = mu_0 + sigma_0 * np.random.randn()
    for t in range(m):
        sample_sum += (x - mu_star)**k
        x = a * x + b + c * np.random.randn()
    return sample_sum / m

def true_moments_ar1(k):
    if k % 2 == 0:
        return std_star**k * factorial2(k - 1)
    else:
        return 0

k_vals = np.arange(6) + 1
sample_moments = np.empty_like(k_vals)
true_moments = np.empty_like(k_vals)

for k_idx, k in enumerate(k_vals):
    sample_moments[k_idx] = sample_moments_ar1(k)
    true_moments[k_idx] = true_moments_ar1(k)

fig, ax = plt.subplots()
ax.plot(k_vals, true_moments, label="true moments")
ax.plot(k_vals, sample_moments, label="sample moments")
ax.legend()

plt.show()

9.1.5 Exercises



Exercise 9.44.

Write your own version of a one dimensional kernel density estimator, which estimates a density
from a sample.

Write it as a class that takes the data 𝑋 and bandwidth ℎ when initialized and provides a method
𝑓  such that

𝑓(𝑥) = 1
ℎ𝑛

∑
𝑛

𝑖=1
𝐾(𝑥 − 𝑋𝑖

ℎ
) (9.14)

For 𝐾 use the Gaussian kernel (𝐾 is the standard normal density).

Write the class so that the bandwidth defaults to Silverman’s rule (see the “rule of thumb”
discussion on this page). Test the class you have written by going through the steps

1. simulate data 𝑋1, …, 𝑋𝑛 from distribution 𝜙
2. plot the kernel density estimate over a suitable range
3. plot the density of 𝜙 on the same figure

for distributions 𝜙 of the following types

• beta distribution with 𝛼 = 𝛽 = 2
• beta distribution with 𝛼 = 2 and 𝛽 = 5
• beta distribution with 𝛼 = 𝛽 = 0.5

Use 𝑛 = 500.

Make a comment on your results. (Do you think this is a good estimator of these distributions?)

https://en.wikipedia.org/wiki/Kernel\_density\_estimation
https://en.wikipedia.org/wiki/Kernel\_density\_estimation
https://en.wikipedia.org/wiki/Beta\_distribution
https://en.wikipedia.org/wiki/Beta\_distribution
https://en.wikipedia.org/wiki/Beta\_distribution


Solution 9.38. Solution to Exercise 2

Here is one solution:

K = norm.pdf

class KDE:

    def __init__(self, x_data, h=None):

        if h is None:
            c = x_data.std()
            n = len(x_data)
            h = 1.06 * c * n**(-1/5)
        self.h = h
        self.x_data = x_data

    def f(self, x):
        if np.isscalar(x):
            return K((x - self.x_data) / self.h).mean() * (1/self.h)
        else:
            y = np.empty_like(x)
            for i, x_val in enumerate(x):
                y[i] = K((x_val - self.x_data) / self.h).mean() * (1/self.h)
            return y

def plot_kde(ϕ, x_min=-0.2, x_max=1.2):
    x_data = ϕ.rvs(n)
    kde = KDE(x_data)

    x_grid = np.linspace(-0.2, 1.2, 100)
    fig, ax = plt.subplots()
    ax.plot(x_grid, kde.f(x_grid), label="estimate")
    ax.plot(x_grid, ϕ.pdf(x_grid), label="true density")
    ax.legend()
    plt.show()

from scipy.stats import beta

n = 500
parameter_pairs= (2, 2), (2, 5), (0.5, 0.5)
for α, β in parameter_pairs:
    plot_kde(beta(α, β))

We see that the kernel density estimator is effective when the underlying distribution is smooth
but less so otherwise.



Exercise 9.45.

In the lecture we discussed the following fact: for the 𝐴𝑅(1) process

𝑋𝑡+1 = 𝑎𝑋𝑡 + 𝑏 + 𝑐𝑊𝑡+1 (9.15)

with {𝑊𝑡} iid and standard normal,

𝜓𝑡 = 𝑁(𝜇, 𝑠2) ⟹ 𝜓𝑡+1 = 𝑁(𝑎𝜇 + 𝑏, 𝑎2𝑠2 + 𝑐2) (9.16)

Confirm this, at least approximately, by simulation. Let

• 𝑎 = 0.9
• 𝑏 = 0.0
• 𝑐 = 0.1
• 𝜇 = −3
• 𝑠 = 0.2

First, plot 𝜓𝑡 and 𝜓𝑡+1 using the true distributions described above.

Second, plot 𝜓𝑡+1 on the same figure (in a different color) as follows:

1. Generate 𝑛 draws of 𝑋𝑡 from the 𝑁(𝜇, 𝑠2) distribution
2. Update them all using the rule 𝑋𝑡+1 = 𝑎𝑋𝑡 + 𝑏 + 𝑐𝑊𝑡+1
3. Use the resulting sample of 𝑋𝑡+1 values to produce a density estimate via kernel density

estimation.

Try this for 𝑛 = 2000 and confirm that the simulation based estimate of 𝜓𝑡+1 does converge to
the theoretical distribution.



Solution 9.39. Solution to Exercise 3

Here is our solution

a = 0.9
b = 0.0
c = 0.1
μ = -3
s = 0.2

μ_next = a * μ + b
s_next = np.sqrt(a**2 * s**2 + c**2)

ψ = lambda x: K((x - μ) / s)
ψ_next = lambda x: K((x - μ_next) / s_next)

ψ = norm(μ, s)
ψ_next = norm(μ_next, s_next)

n = 2000
x_draws = ψ.rvs(n)
x_draws_next = a * x_draws + b + c * np.random.randn(n)
kde = KDE(x_draws_next)

x_grid = np.linspace(μ - 1, μ + 1, 100)
fig, ax = plt.subplots()

ax.plot(x_grid, ψ.pdf(x_grid), label="$\psi_t$")
ax.plot(x_grid, ψ_next.pdf(x_grid), label="$\psi_{t+1}$")
ax.plot(x_grid, kde.f(x_grid), label="estimate of $\psi_{t+1}$")

ax.legend()
plt.show()

The simulated distribution approximately coincides with the theoretical distribution, as
predicted.



9.2 Markov Chains: Basic Concepts
In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

9.2.1 Overview
Markov chains provide a way to model situations in which the past casts shadows on the future.

By this we mean that observing measurements about a present situation can help us forecast future
situations.

This can be possible when there are statistical dependencies among measurements of something
taken at different points of time.

For example,

• inflation next year might co-vary with inflation this year
• unemployment next month might co-vary with unemployment this month

Markov chains are a workhorse for economics and finance.

The theory of Markov chains is beautiful and provides many insights into probability and dynamics.

In this lecture, we will

• review some of the key ideas from the theory of Markov chains and
• show how Markov chains appear in some economic applications.

Let’s start with some standard imports:

import matplotlib.pyplot as plt
import quantecon as qe
import numpy as np
import networkx as nx
from matplotlib import cm
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation
from IPython.display import HTML
from matplotlib.patches import Polygon
from mpl_toolkits.mplot3d.art3d import Poly3DCollection

9.2.2 Definitions and examples
In this section we provide some definitions and elementary examples.

9.2.2.1 Stochastic matrices
Recall that a probability mass function over 𝑛 possible outcomes is a nonnegative 𝑛-vector 𝑝 that
sums to one.

For example, 𝑝 = (0.2, 0.2, 0.6) is a probability mass function over 3 outcomes.

A stochastic matrix (or Markov matrix) is an 𝑛 × 𝑛 square matrix 𝑃  such that each row of 𝑃  is a
probability mass function over 𝑛 outcomes.

In other words,

1. each element of 𝑃  is nonnegative, and
2. each row of 𝑃  sums to one

If 𝑃  is a stochastic matrix, then so is the 𝑘-th power 𝑃 𝑘 for all 𝑘 ∈ ℕ.



You are asked to check this in an exercise below.

9.2.2.2 Markov chains
Now we can introduce Markov chains.

Before defining a Markov chain rigorously, we’ll give some examples.

9.2.2.2.1 Example 1
From US unemployment data, Hamilton Hamilton (2005) estimated the following dynamics.

Here there are three states

• “ng” represents normal growth
• “mr” represents mild recession
• “sr” represents severe recession

The arrows represent transition probabilities over one month.

For example, the arrow from mild recession to normal growth has 0.145 next to it.

This tells us that, according to past data, there is a 14.5% probability of transitioning from mild
recession to normal growth in one month.

The arrow from normal growth back to normal growth tells us that there is a 97% probability of
transitioning from normal growth to normal growth (staying in the same state).

Note that these are conditional probabilities — the probability of transitioning from one state to
another (or staying at the same one) conditional on the current state.

To make the problem easier to work with numerically, let’s convert states to numbers.

In particular, we agree that

• state 0 represents normal growth
• state 1 represents mild recession
• state 2 represents severe recession

Let 𝑋𝑡 record the value of the state at time 𝑡.

Now we can write the statement “there is a 14.5% probability of transitioning from mild recession to
normal growth in one month” as

ℙ{𝑋𝑡+1 = 0 | 𝑋𝑡 = 1} = 0.145 (9.17)

We can collect all of these conditional probabilities into a matrix, as follows

𝑃 =
[
[
[0.971

0.145
0

0.029
0.778
0.508

0
0.077
0.492]

]
] (9.18)



Notice that 𝑃  is a stochastic matrix.

Now we have the following relationship

𝑃(𝑖, 𝑗) = ℙ{𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖} (9.19)

This holds for any 𝑖, 𝑗 between 0 and 2.

In particular, 𝑃(𝑖, 𝑗) is the probability of transitioning from state 𝑖 to state 𝑗 in one month.

9.2.2.2.2 Example 2
Consider a worker who, at any given time 𝑡, is either unemployed (state 0) or employed (state 1).

Suppose that, over a one-month period,

1. the unemployed worker finds a job with probability 𝛼 ∈ (0, 1).
2. the employed worker loses her job and becomes unemployed with probability 𝛽 ∈ (0, 1).

Given the above information, we can write out the transition probabilities in matrix form as

𝑃 = [1 − 𝛼
𝛽

𝛼
1 − 𝛽] (9.20)

For example,

𝑃(0, 1) = probability of transitioning from state 0 to state 1 in one month
= probability finding a job next month
= 𝛼

(9.21)

Suppose we can estimate the values 𝛼 and 𝛽.

Then we can address a range of questions, such as

• What is the average duration of unemployment?
• Over the long-run, what fraction of the time does a worker find herself unemployed?
• Conditional on employment, what is the probability of becoming unemployed at least once

over the next 12 months?

We’ll cover some of these applications below.

9.2.2.2.3 Example 3
Imam and Temple Imam & Temple (2023) categorize political institutions into three types:
democracy (D), autocracy (A), and an intermediate state called anocracy (N).

Each institution can have two potential development regimes: collapse (C) and growth (G). This
results in six possible states: DG, DC, NG, NC, AG and AC.

Imam and Temple Imam & Temple (2023) estimate the following transition probabilities:

𝑃 :=

[
[
[
[
[
[
[0.86

0.52
0.12
0.13
0.00
0.00

0.11
0.33
0.03
0.02
0.00
0.00

0.03
0.13
0.70
0.35
0.09
0.09

0.00
0.02
0.11
0.36
0.11
0.15

0.00
0.00
0.03
0.10
0.55
0.26

0.00
0.00
0.01
0.04
0.25
0.50]

]
]
]
]
]
]

(9.22)

nodes = ['DG', 'DC', 'NG', 'NC', 'AG', 'AC']
P = [[0.86, 0.11, 0.03, 0.00, 0.00, 0.00],
     [0.52, 0.33, 0.13, 0.02, 0.00, 0.00],
     [0.12, 0.03, 0.70, 0.11, 0.03, 0.01],



     [0.13, 0.02, 0.35, 0.36, 0.10, 0.04],
     [0.00, 0.00, 0.09, 0.11, 0.55, 0.25],
     [0.00, 0.00, 0.09, 0.15, 0.26, 0.50]]

Here is a visualization, with darker colors indicating higher probability.

Looking at the data, we see that democracies tend to have longer-lasting growth regimes compared
to autocracies (as indicated by the lower probability of transitioning from growth to growth in
autocracies).

We can also find a higher probability from collapse to growth in democratic regimes.

9.2.2.3 Defining Markov chains
So far we’ve given examples of Markov chains but we haven’t defined them.

Let’s do that now.

To begin, let 𝑆 be a finite set {𝑥1, …, 𝑥𝑛} with 𝑛 elements.

The set 𝑆 is called the state space and 𝑥1, …, 𝑥𝑛 are the state values.

A distribution 𝜓 on 𝑆 is a probability mass function of length 𝑛, where 𝜓(𝑖) is the amount of
probability allocated to state 𝑥𝑖.

A Markov chain {𝑋𝑡} on 𝑆 is a sequence of random variables taking values in 𝑆 that have the
Markov property.

This means that, for any date 𝑡 and any state 𝑦 ∈ 𝑆,

ℙ{𝑋𝑡+1 = 𝑦 | 𝑋𝑡} = ℙ{𝑋𝑡+1 = 𝑦 | 𝑋𝑡, 𝑋𝑡−1, …} (9.23)



This means that once we know the current state 𝑋𝑡, adding knowledge of earlier states 𝑋𝑡−1, 𝑋𝑡−2
provides no additional information about probabilities of future states.

Thus, the dynamics of a Markov chain are fully determined by the set of conditional probabilities

𝑃(𝑥, 𝑦) := ℙ{𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥} (𝑥, 𝑦 ∈ 𝑆) (9.24)

By construction,

• 𝑃(𝑥, 𝑦) is the probability of going from 𝑥 to 𝑦 in one unit of time (one step)
• 𝑃(𝑥, ⋅) is the conditional distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥

We can view 𝑃  as a stochastic matrix where

𝑃𝑖𝑗 = 𝑃(𝑥𝑖, 𝑥𝑗) 1 ≤ 𝑖, 𝑗 ≤ 𝑛 (9.25)

Going the other way, if we take a stochastic matrix 𝑃 , we can generate a Markov chain {𝑋𝑡} as
follows:

• draw 𝑋0 from a distribution 𝜓0 on 𝑆
• for each 𝑡 = 0, 1, …, draw 𝑋𝑡+1 from 𝑃(𝑋𝑡, ⋅)

By construction, the resulting process satisfies (8).

9.2.3 Simulation
A good way to study Markov chains is to simulate them.

Let’s start by doing this ourselves and then look at libraries that can help us.

In these exercises, we’ll take the state space to be 𝑆 = 0, …, 𝑛 − 1.

(We start at 0 because Python arrays are indexed from 0.)

9.2.3.1 Writing our own simulation code
To simulate a Markov chain, we need

1. a stochastic matrix 𝑃  and
2. a probability mass function 𝜓0 of length 𝑛 from which to draw an initial realization of 𝑋0.

The Markov chain is then constructed as follows:

1. At time 𝑡 = 0, draw a realization of 𝑋0 from the distribution 𝜓0.
2. At each subsequent time 𝑡, draw a realization of the new state 𝑋𝑡+1 from 𝑃(𝑋𝑡, ⋅).

(That is, draw from row 𝑋𝑡 of 𝑃 .)

To implement this simulation procedure, we need a method for generating draws from a discrete
distribution.

For this task, we’ll use random.draw from QuantEcon.py.

To use random.draw, we first need to convert the probability mass function to a cumulative
distribution

ψ_0 = (0.3, 0.7)           # probabilities over {0, 1}
cdf = np.cumsum(ψ_0)       # convert into cumulative distribution
qe.random.draw(cdf, 5)   # generate 5 independent draws from ψ

array([0, 1, 1, 1, 1])

We’ll write our code as a function that accepts the following three arguments

• A stochastic matrix P.

http://quantecon.org/quantecon-py


• An initial distribution ψ_0.
• A positive integer ts_length representing the length of the time series the function should

return.

def mc_sample_path(P, ψ_0=None, ts_length=1_000):

    # set up
    P = np.asarray(P)
    X = np.empty(ts_length, dtype=int)

    # Convert each row of P into a cdf
    P_dist = np.cumsum(P, axis=1)  # Convert rows into cdfs

    # draw initial state, defaulting to 0
    if ψ_0 is not None:
        X_0 = qe.random.draw(np.cumsum(ψ_0))
    else:
        X_0 = 0

    # simulate
    X[0] = X_0
    for t in range(ts_length - 1):
        X[t+1] = qe.random.draw(P_dist[X[t], :])

    return X

Let’s see how it works using the small matrix

P = [[0.4, 0.6],
     [0.2, 0.8]]

Here’s a short time series.

mc_sample_path(P, ψ_0=(1.0, 0.0), ts_length=10)

array([0, 0, 1, 1, 1, 1, 1, 1, 1, 1])

It can be shown that for a long series drawn from P, the fraction of the sample that takes value 0 will
be about 0.25.

(We will explain why later.)

Moreover, this is true regardless of the initial distribution from which 𝑋0 is drawn.

The following code illustrates this

X = mc_sample_path(P, ψ_0=(0.1, 0.9), ts_length=1_000_000)
np.mean(X == 0)

0.250448

You can try changing the initial distribution to confirm that the output is always close to 0.25 (for
the P matrix above).

9.2.3.2 Using QuantEcon’s routines
QuantEcon.py has routines for handling Markov chains, including simulation.

Here’s an illustration using the same 𝑃  as the preceding example

mc = qe.MarkovChain(P)
X = mc.simulate(ts_length=1_000_000)
np.mean(X == 0)

http://quantecon.org/quantecon-py


0.250186

The simulate routine is faster (because it is JIT compiled).

%time mc_sample_path(P, ts_length=1_000_000) # Our homemade code version

CPU times: user 786 ms, sys: 7.03 ms, total: 793 ms
Wall time: 2.63 s

array([0, 0, 0, ..., 1, 1, 1])

%time mc.simulate(ts_length=1_000_000) # qe code version

CPU times: user 19 ms, sys: 2.09 ms, total: 21.1 ms
Wall time: 71.5 ms

array([1, 1, 0, ..., 1, 1, 1])

9.2.3.2.1 Adding state values and initial conditions
If we wish to, we can provide a specification of state values to MarkovChain.

These state values can be integers, floats, or even strings.

The following code illustrates

mc = qe.MarkovChain(P, state_values=('unemployed', 'employed'))
mc.simulate(ts_length=4, init='employed')  # Start at employed initial state

array(['employed', 'employed', 'unemployed', 'unemployed'], dtype='<U10')

mc.simulate(ts_length=4, init='unemployed')  # Start at unemployed initial state

array(['unemployed', 'employed', 'employed', 'unemployed'], dtype='<U10')

mc.simulate(ts_length=4)  # Start at randomly chosen initial state

array(['employed', 'unemployed', 'employed', 'employed'], dtype='<U10')

If we want to see indices rather than state values as outputs as we can use

mc.simulate_indices(ts_length=4)

array([0, 1, 1, 1])

9.2.4 Distributions over time
We learned that

1. {𝑋𝑡} is a Markov chain with stochastic matrix 𝑃
2. the distribution of 𝑋𝑡 is known to be 𝜓𝑡

What then is the distribution of 𝑋𝑡+1, or, more generally, of 𝑋𝑡+𝑚?

To answer this, we let 𝜓𝑡 be the distribution of 𝑋𝑡 for 𝑡 = 0, 1, 2, ….

Our first aim is to find 𝜓𝑡+1 given 𝜓𝑡 and 𝑃 .

To begin, pick any 𝑦 ∈ 𝑆.

To get the probability of being at 𝑦 tomorrow (at 𝑡 + 1), we account for all ways this can happen and
sum their probabilities.

This leads to

ℙ{𝑋𝑡+1 = 𝑦} = ∑
𝑥∈𝑆

ℙ{𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥} ⋅ ℙ{𝑋𝑡 = 𝑥} (9.26)

(We are using the law of total probability.)

Rewriting this statement in terms of marginal and conditional probabilities gives

https://python-programming.quantecon.org/numba.html\#numba-link
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𝜓𝑡+1(𝑦) = ∑
𝑥∈𝑆

𝑃(𝑥, 𝑦)𝜓𝑡(𝑥) (9.27)

There are 𝑛 such equations, one for each 𝑦 ∈ 𝑆.

If we think of 𝜓𝑡+1 and 𝜓𝑡 as row vectors, these 𝑛 equations are summarized by the matrix
expression

𝜓𝑡+1 = 𝜓𝑡𝑃 (9.28)

Thus, we postmultiply by 𝑃  to move a distribution forward one unit of time.

By postmultiplying 𝑚 times, we move a distribution forward 𝑚 steps into the future.

Hence, iterating on (12), the expression 𝜓𝑡+𝑚 = 𝜓𝑡𝑃𝑚 is also valid — here 𝑃𝑚 is the 𝑚-th power of
𝑃 .

As a special case, we see that if 𝜓0 is the initial distribution from which 𝑋0 is drawn, then 𝜓0𝑃𝑚 is
the distribution of 𝑋𝑚.

This is very important, so let’s repeat it

𝑋0 ∼ 𝜓0 ⟹ 𝑋𝑚 ∼ 𝜓0𝑃𝑚 (9.29)

The general rule is that postmultiplying a distribution by 𝑃𝑚 shifts it forward 𝑚 units of time.

Hence the following is also valid.

𝑋𝑡 ∼ 𝜓𝑡 ⟹ 𝑋𝑡+𝑚 ∼ 𝜓𝑡𝑃𝑚 (9.30)

9.2.4.1 Multiple step transition probabilities
We know that the probability of transitioning from 𝑥 to 𝑦 in one step is 𝑃(𝑥, 𝑦).

It turns out that the probability of transitioning from 𝑥 to 𝑦 in 𝑚 steps is 𝑃𝑚(𝑥, 𝑦), the (𝑥, 𝑦)-th
element of the 𝑚-th power of 𝑃 .

To see why, consider again (14), but now with a 𝜓𝑡 that puts all probability on state 𝑥.

Then 𝜓𝑡 is a vector with 1 in position 𝑥 and zero elsewhere.

Inserting this into (14), we see that, conditional on 𝑋𝑡 = 𝑥, the distribution of 𝑋𝑡+𝑚 is the 𝑥-th row
of 𝑃𝑚.

In particular

ℙ{𝑋𝑡+𝑚 = 𝑦 | 𝑋𝑡 = 𝑥} = 𝑃𝑚(𝑥, 𝑦) = (𝑥, 𝑦) -th element of𝑃𝑚 (9.31)

9.2.4.2 Example: probability of recession
Recall the stochastic matrix 𝑃  for recession and growth considered above.

Suppose that the current state is unknown — perhaps statistics are available only at the end of the
current month.

We guess that the probability that the economy is in state 𝑥 is 𝜓𝑡(𝑥) at time t.

The probability of being in recession (either mild or severe) in 6 months time is given by

(𝜓𝑡𝑃 6)(1) + (𝜓𝑡𝑃 6)(2) (9.32)

9.2.4.3 Example 2: cross-sectional distributions
The distributions we have been studying can be viewed either



1. as probabilities or
2. as cross-sectional frequencies that the law of large numbers leads us to anticipate for large

samples.

To illustrate, recall our model of employment/unemployment dynamics for a given worker discussed
above.

Consider a large population of workers, each of whose lifetime experience is described by the
specified dynamics, with each worker’s outcomes being realizations of processes that are statistically
independent of all other workers’ processes.

Let 𝜓𝑡 be the current cross-sectional distribution over {0, 1}.

The cross-sectional distribution records fractions of workers employed and unemployed at a given
moment 𝑡.

• For example, 𝜓𝑡(0) is the unemployment rate at time 𝑡.

What will the cross-sectional distribution be in 10 periods hence?

The answer is 𝜓𝑡𝑃 10, where 𝑃  is the stochastic matrix in (4).

This is because each worker’s state evolves according to 𝑃 , so 𝜓𝑡𝑃 10 is a marginal distribution for a
single randomly selected worker.

But when the sample is large, outcomes and probabilities are roughly equal (by an application of the
law of large numbers).

So for a very large (tending to infinite) population, 𝜓𝑡𝑃 10 also represents fractions of workers in
each state.

This is exactly the cross-sectional distribution.

9.2.5 Stationary distributions
As seen in (12), we can shift a distribution forward one unit of time via postmultiplication by 𝑃 .

Some distributions are invariant under this updating process — for example,

P = np.array([[0.4, 0.6],
              [0.2, 0.8]])
ψ = (0.25, 0.75)
ψ @ P

array([0.25, 0.75])

Notice that ψ @ P is the same as ψ.

Such distributions are called stationary or invariant.

Formally, a distribution 𝜓∗ on 𝑆 is called stationary for 𝑃  if 𝜓∗𝑃 = 𝜓∗.

Notice that, postmultiplying by 𝑃 , we have 𝜓∗𝑃 2 = 𝜓∗𝑃 = 𝜓∗.

Continuing in the same way leads to 𝜓∗ = 𝜓∗𝑃 𝑡 for all 𝑡 ≥ 0.

This tells us an important fact: If the distribution of 𝜓0 is a stationary distribution, then 𝜓𝑡 will have
this same distribution for all 𝑡 ≥ 0.

The following theorem is proved in Chapter 4 of Sargent & Stachurski (2023) and numerous other
sources.

Note that there can be many stationary distributions corresponding to a given stochastic matrix 𝑃 .

https://en.wikipedia.org/wiki/Marginal\_distribution


Theorem 9.4.

Every stochastic matrix 𝑃  has at least one stationary distribution.

Theorem 9.5.

If 𝑃  is everywhere positive, then 𝑃  has exactly one stationary distribution.

• For example, if 𝑃  is the identity matrix, then all distributions on 𝑆 are stationary.

To get uniqueness, we need the Markov chain to “mix around,” so that the state doesn’t get stuck in
some part of the state space.

This gives some intuition for the following theorem.

We will come back to this when we introduce irreducibility in the next lecture on Markov chains.

9.2.5.1 Example
Recall our model of the employment/unemployment dynamics of a particular worker discussed
above.

If 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1), then the transition matrix is everywhere positive.

Let 𝜓∗ = (𝑝, 1 − 𝑝) be the stationary distribution, so that 𝑝 corresponds to unemployment (state 0).

Using 𝜓∗ = 𝜓∗𝑃  and a bit of algebra yields

𝑝 = 𝛽
𝛼 + 𝛽

(9.33)

This is, in some sense, a steady state probability of unemployment.

Not surprisingly it tends to zero as 𝛽 → 0, and to one as 𝛼 → 0.

9.2.5.2 Calculating stationary distributions
A stable algorithm for computing stationary distributions is implemented in QuantEcon.py.

Here’s an example

P = [[0.4, 0.6],
     [0.2, 0.8]]

mc = qe.MarkovChain(P)
mc.stationary_distributions  # Show all stationary distributions

array([[0.25, 0.75]])

9.2.5.3 Asymptotic stationarity
Consider an everywhere positive stochastic matrix with unique stationary distribution 𝜓∗.

Sometimes the distribution 𝜓𝑡 = 𝜓0𝑃 𝑡 of 𝑋𝑡 converges to 𝜓∗ regardless of 𝜓0.

For example, we have the following result

This situation is often referred to as asymptotic stationarity or global stability.

A proof of the theorem can be found in Chapter 4 of Sargent & Stachurski (2023), as well as many
other sources.

/markov-chains-ii
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Theorem 9.6.

If there exists an integer 𝑚 such that all entries of 𝑃𝑚 are strictly positive, then

𝜓0𝑃 𝑡 → 𝜓∗ as𝑡 → ∞ (9.34)

where 𝜓∗ is the unique stationary distribution.

9.2.5.3.1 Example: Hamilton’s chain
Hamilton’s chain satisfies the conditions of the theorem because 𝑃 2 is everywhere positive:

P = np.array([[0.971, 0.029, 0.000],
              [0.145, 0.778, 0.077],
              [0.000, 0.508, 0.492]])
P @ P

array([[0.947046, 0.050721, 0.002233],
       [0.253605, 0.648605, 0.09779 ],
       [0.07366 , 0.64516 , 0.28118 ]])

Let’s pick an initial distribution 𝜓1, 𝜓2, 𝜓3 and trace out the sequence of distributions 𝜓𝑖𝑃 𝑡 for 𝑡 =
0, 1, 2, …, for 𝑖 = 1, 2, 3.

First, we write a function to iterate the sequence of distributions for ts_length period

def iterate_ψ(ψ_0, P, ts_length):
    n = len(P)
    ψ_t = np.empty((ts_length, n))
    ψ_t[0 ]= ψ_0
    for t in range(1, ts_length):
        ψ_t[t] = ψ_t[t-1] @ P
    return ψ_t

Now we plot the sequence

Here

• 𝑃  is the stochastic matrix for recession and growth considered above.
• The red, blue and green dots are initial marginal probability distributions 𝜓1, 𝜓2, 𝜓3, each of

which is represented as a vector in ℝ3.
• The transparent dots are the marginal distributions 𝜓𝑖𝑃 𝑡 for 𝑡 = 1, 2, …, for 𝑖 = 1, 2, 3..
• The yellow dot is 𝜓∗.

You might like to try experimenting with different initial conditions.

9.2.5.3.2 Example: failure of convergence
Consider the periodic chain with stochastic matrix

𝑃 = [0
1

1
0] (9.35)

This matrix does not satisfy the conditions of Theorem 3 because, as you can readily check,

• 𝑃𝑚 = 𝑃  when 𝑚 is odd and
• 𝑃𝑚 = 𝐼 , the identity matrix, when 𝑚 is even.

Hence there is no 𝑚 such that all elements of 𝑃𝑚 are strictly positive.

Moreover, we can see that global stability does not hold.



For instance, if we start at 𝜓0 = (1, 0), then 𝜓𝑚 = 𝜓0𝑃𝑚 is (1, 0) when 𝑚 is even and (0, 1) when
𝑚 is odd.

We can see similar phenomena in higher dimensions.

The next figure illustrates this for a periodic Markov chain with three states.

This animation demonstrates the behavior of an irreducible and periodic stochastic matrix.

The red, yellow, and green dots represent different initial probability distributions.

The blue dot represents the unique stationary distribution.

Unlike Hamilton’s Markov chain, these initial distributions do not converge to the unique stationary
distribution.

Instead, they cycle periodically around the probability simplex, illustrating that asymptotic stability
fails.

9.2.6 Computing expectations
We sometimes want to compute mathematical expectations of functions of 𝑋𝑡 of the form

𝔼[ℎ(𝑋𝑡)] (9.36)

and conditional expectations such as

𝔼[ℎ(𝑋𝑡+𝑘) mid 𝑋𝑡 = 𝑥] (9.37)

where

• {𝑋𝑡} is a Markov chain generated by 𝑛 × 𝑛 stochastic matrix 𝑃 .
• ℎ is a given function, which, in terms of matrix algebra, we’ll think of as the column vector

ℎ =
[
[
[ℎ(𝑥1)

⋮
ℎ(𝑥𝑛)]

]
]. (9.38)

Computing the unconditional expectation (20) is easy.

We just sum over the marginal distribution of 𝑋𝑡 to get

𝔼[ℎ(𝑋𝑡)] = ∑
𝑥∈𝑆

(𝜓𝑃 𝑡)(𝑥)ℎ(𝑥) (9.39)

Here 𝜓 is the distribution of 𝑋0.

Since 𝜓 and hence 𝜓𝑃 𝑡 are row vectors, we can also write this as

𝔼[ℎ(𝑋𝑡)] = 𝜓𝑃 𝑡ℎ (9.40)

For the conditional expectation (21), we need to sum over the conditional distribution of 𝑋𝑡+𝑘 given
𝑋𝑡 = 𝑥.

We already know that this is 𝑃 𝑘(𝑥, ⋅), so

𝔼[ℎ(𝑋𝑡+𝑘) mid 𝑋𝑡 = 𝑥] = (𝑃 𝑘ℎ)(𝑥) (9.41)

9.2.6.1 Expectations of geometric sums
Sometimes we want to compute the mathematical expectation of a geometric sum, such as
∑𝑡 𝛽𝑡ℎ(𝑋𝑡).

In view of the preceding discussion, this is



Exercise 9.46.

Imam and Temple Imam & Temple (2023) used a three-state transition matrix to describe the
transition of three states of a regime: growth, stagnation, and collapse

𝑃 :=
[
[
[0.68

0.50
0.36

0.12
0.24
0.18

0.20
0.26
0.46]

]
] (9.44)

where rows, from top to down, correspond to growth, stagnation, and collapse.

In this exercise,

1. visualize the transition matrix and show this process is asymptotically stationary
2. calculate the stationary distribution using simulations
3. visualize the dynamics of (𝜓0𝑃 𝑡)(𝑖) where 𝑡 ∈ 0, …, 25 and compare the convergent path

with the previous transition matrix

Compare your solution to the paper.

𝔼[∑
∞

𝑗=0
𝛽𝑗ℎ(𝑋𝑡+𝑗) mid 𝑋𝑡 = 𝑥] = 𝑥 + 𝛽(𝑃ℎ)(𝑥) + 𝛽2(𝑃 2ℎ)(𝑥) + ⋯ (9.42)

By the Neumann series lemma, this sum can be calculated using

𝐼 + 𝛽𝑃 + 𝛽2𝑃 2 + ⋯ = (𝐼 − 𝛽𝑃)−1 (9.43)

The vector 𝑃 𝑘ℎ stores the conditional expectation 𝔼[ℎ(𝑋𝑡+𝑘) mid 𝑋𝑡 = 𝑥] over all 𝑥.



Solution 9.40. Solution to Exercise 1

Solution 1:

Since the matrix is everywhere positive, there is a unique stationary distribution 𝜓∗ such that
𝜓𝑡 → 𝜓∗ as 𝑡 → ∞.

Solution 2:

One simple way to calculate the stationary distribution is to take the power of the transition
matrix as we have shown before

P = np.array([[0.68, 0.12, 0.20],
              [0.50, 0.24, 0.26],
              [0.36, 0.18, 0.46]])
P_power = np.linalg.matrix_power(P, 20)
P_power

array([[0.56145769, 0.15565164, 0.28289067],
       [0.56145769, 0.15565164, 0.28289067],
       [0.56145769, 0.15565164, 0.28289067]])

Note that rows of the transition matrix converge to the stationary distribution.

ψ_star_p = P_power[0]
ψ_star_p

array([0.56145769, 0.15565164, 0.28289067])

mc = qe.MarkovChain(P)
ψ_star = mc.stationary_distributions[0]
ψ_star

array([0.56145769, 0.15565164, 0.28289067])



Exercise 9.47.

We discussed the six-state transition matrix estimated by Imam & Temple Imam & Temple (2023)
before.

nodes = ['DG', 'DC', 'NG', 'NC', 'AG', 'AC']
P = [[0.86, 0.11, 0.03, 0.00, 0.00, 0.00],
     [0.52, 0.33, 0.13, 0.02, 0.00, 0.00],
     [0.12, 0.03, 0.70, 0.11, 0.03, 0.01],
     [0.13, 0.02, 0.35, 0.36, 0.10, 0.04],
     [0.00, 0.00, 0.09, 0.11, 0.55, 0.25],
     [0.00, 0.00, 0.09, 0.15, 0.26, 0.50]]

In this exercise,

1. show this process is asymptotically stationary without simulation
2. simulate and visualize the dynamics starting with a uniform distribution across states (each

state will have a probability of 1/6)
3. change the initial distribution to P(DG) = 1, while all other states have a probability of 0



Solution 9.41. Solution to Exercise 2

Solution 1:

Although 𝑃  is not every positive, 𝑃𝑚 when 𝑚 = 3 is everywhere positive.

P = np.array([[0.86, 0.11, 0.03, 0.00, 0.00, 0.00],
              [0.52, 0.33, 0.13, 0.02, 0.00, 0.00],
              [0.12, 0.03, 0.70, 0.11, 0.03, 0.01],
              [0.13, 0.02, 0.35, 0.36, 0.10, 0.04],
              [0.00, 0.00, 0.09, 0.11, 0.55, 0.25],
              [0.00, 0.00, 0.09, 0.15, 0.26, 0.50]])

np.linalg.matrix_power(P,3)

array([[0.764927, 0.133481, 0.085949, 0.011481, 0.002956, 0.001206],
       [0.658861, 0.131559, 0.161367, 0.031703, 0.011296, 0.005214],
       [0.291394, 0.057788, 0.439702, 0.113408, 0.062707, 0.035001],
       [0.272459, 0.051361, 0.365075, 0.132207, 0.108152, 0.070746],
       [0.064129, 0.012533, 0.232875, 0.154385, 0.299243, 0.236835],
       [0.072865, 0.014081, 0.244139, 0.160905, 0.265846, 0.242164]])

So it satisfies the requirement.

Solution 2:

We find the distribution 𝜓 converges to the stationary distribution quickly regardless of the
initial distributions

ts_length = 30
num_distributions = 20
nodes = ['DG', 'DC', 'NG', 'NC', 'AG', 'AC']

# Get parameters of transition matrix
n = len(P)
mc = qe.MarkovChain(P)
ψ_star = mc.stationary_distributions[0]
ψ_0 = np.array([[1/6 for i in range(6)],
                [0 if i != 0 else 1 for i in range(6)]])
## Draw the plot
fig, axes = plt.subplots(ncols=2)
plt.subplots_adjust(wspace=0.35)
for idx in range(2):
    ψ_t = iterate_ψ(ψ_0[idx], P, ts_length)
    for i in range(n):
        axes[idx].plot(ψ_t[:, i] - ψ_star[i], alpha=0.5, label=fr'$
\psi_t({i+1})$')
        axes[idx].set_ylim([-0.3, 0.3])
        axes[idx].set_xlabel('t')
        axes[idx].set_ylabel(fr'$\psi_t$')
        axes[idx].legend()
        axes[idx].axhline(0, linestyle='dashed', lw=1, color = 'black')

plt.show()



Exercise 9.48.

Prove the following: If 𝑃  is a stochastic matrix, then so is the 𝑘-th power 𝑃 𝑘 for all 𝑘 ∈ ℕ.

Solution 9.42. Solution to Exercise 3

Suppose that 𝑃  is stochastic and, moreover, that 𝑃 𝑘 is stochastic for some integer 𝑘.

We will prove that 𝑃 𝑘+1 = 𝑃𝑃 𝑘 is also stochastic.

(We are doing proof by induction — we assume the claim is true at 𝑘 and now prove it is true at
𝑘 + 1.)

To see this, observe that, since 𝑃 𝑘 is stochastic and the product of nonnegative matrices is
nonnegative, 𝑃 𝑘+1 = 𝑃𝑃 𝑘 is nonnegative.

Also, if 𝟏 is a column vector of ones, then, since 𝑃 𝑘 is stochastic we have 𝑃 𝑘𝟏 = 𝟏 (rows sum to
one).

Therefore 𝑃 𝑘+1𝟏 = 𝑃𝑃 𝑘𝟏 = 𝑃𝟏 = 𝟏

The proof is done.



9.3 Markov Chains: Irreducibility and Ergodicity
In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

9.3.1 Overview
This lecture continues on from our earlier lecture on Markov chains.

Specifically, we will introduce the concepts of irreducibility and ergodicity, and see how they
connect to stationarity.

Irreducibility describes the ability of a Markov chain to move between any two states in the system.

Ergodicity is a sample path property that describes the behavior of the system over long periods of
time.

As we will see,

• an irreducible Markov chain guarantees the existence of a unique stationary distribution, while
• an ergodic Markov chain generates time series that satisfy a version of the law of large

numbers.

Together, these concepts provide a foundation for understanding the long-term behavior of Markov
chains.

Let’s start with some standard imports:

import matplotlib.pyplot as plt
import quantecon as qe
import numpy as np

9.3.2 Irreducibility
To explain irreducibility, let’s take 𝑃  to be a fixed stochastic matrix.

State 𝑦 is called accessible (or reachable) from state 𝑥 if 𝑃 𝑡(𝑥, 𝑦) > 0 for some integer 𝑡 ≥ 0.

Two states, 𝑥 and 𝑦, are said to communicate if 𝑥 and 𝑦 are accessible from each other.

In view of our discussion above, this means precisely that

• state 𝑥 can eventually be reached from state 𝑦, and
• state 𝑦 can eventually be reached from state 𝑥

The stochastic matrix 𝑃  is called irreducible if all states communicate; that is, if 𝑥 and 𝑦
communicate for all (𝑥, 𝑦) in 𝑆 × 𝑆.

We can also test this using QuantEcon.py’s MarkovChain class

P = [[0.9, 0.1, 0.0],
     [0.4, 0.4, 0.2],
     [0.1, 0.1, 0.8]]

mc = qe.MarkovChain(P, ('poor', 'middle', 'rich'))
mc.is_irreducible

True

Let’s confirm this

P = [[1.0, 0.0, 0.0],
     [0.1, 0.8, 0.1],
     [0.0, 0.2, 0.8]]

/markov-chains-i
http://quantecon.org/quantecon-py


Example 9.20.

For example, consider the following transition probabilities for wealth of a fictitious set of
households

We can translate this into a stochastic matrix, putting zeros where there’s no edge between
nodes

𝑃 :=
[
[
[0.9

0.4
0.1

0.1
0.4
0.1

0
0.2
0.8]

]
] (9.45)

It’s clear from the graph that this stochastic matrix is irreducible: we can eventually reach any
state from any other state.

Example 9.21.

Here’s a more pessimistic scenario in which poor people remain poor forever

This stochastic matrix is not irreducible since, for example, rich is not accessible from poor.



Theorem 9.7.

If 𝑃  is irreducible, then 𝑃  has exactly one stationary distribution.

mc = qe.MarkovChain(P, ('poor', 'middle', 'rich'))
mc.is_irreducible

False

It might be clear to you already that irreducibility is going to be important in terms of long-run
outcomes.

For example, poverty is a life sentence in the second graph but not the first.

We’ll come back to this a bit later.

9.3.2.1 Irreducibility and stationarity
We discussed uniqueness of stationary distributions in our earlier lecture Markov Chains: Basic
Concepts.

There we stated that uniqueness holds when the transition matrix is everywhere positive.

In fact irreducibility is sufficient:

For proof, see Chapter 4 of Sargent & Stachurski (2023) or Theorem 5.2 of Häggström (2002).

9.3.3 Ergodicity
Under irreducibility, yet another important result obtains:

Here

• {𝑋𝑡} is a Markov chain with stochastic matrix 𝑃  and initial distribution 𝜓0
• 11{𝑋𝑡 = 𝑥} = 1 if 𝑋𝑡 = 𝑥 and zero otherwise.

The result in theorem 4.3 is sometimes called ergodicity.

The theorem tells us that the fraction of time the chain spends at state 𝑥 converges to 𝜓∗(𝑥) as time
goes to infinity.

This gives us another way to interpret the stationary distribution (provided irreducibility holds).

Importantly, the result is valid for any choice of 𝜓0.

The theorem is related to the law of large numbers.

It tells us that, in some settings, the law of large numbers sometimes holds even when the sequence
of random variables is not IID.

9.3.3.1 Example: ergodicity and unemployment
Recall our cross-sectional interpretation of the employment/unemployment model discussed before.

Theorem 9.8.

If 𝑃  is irreducible and 𝜓∗ is the unique stationary distribution, then, for all 𝑥 ∈ 𝑆,

1
𝑚

∑
𝑚

𝑡=1
11{𝑋𝑡 = 𝑥} → 𝜓∗(𝑥) as𝑚 → ∞ (9.46)

/markov-chains-i
/markov-chains-i
/lln-clt


Assume that 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1), so that irreducibility holds.

We saw that the stationary distribution is (𝑝, 1 − 𝑝), where

𝑝 = 𝛽
𝛼 + 𝛽

(9.47)

In the cross-sectional interpretation, this is the fraction of people unemployed.

In view of our latest (ergodicity) result, it is also the fraction of time that a single worker can expect
to spend unemployed.

Thus, in the long run, cross-sectional averages for a population and time-series averages for a given
person coincide.

This is one aspect of the concept of ergodicity.

9.3.3.2 Example: Hamilton dynamics
Another example is the Hamilton dynamics we discussed before.

Let {𝑋𝑡} be a sample path generated by these dynamics.

Let’s denote the fraction of time spent in state 𝑥 over the period 𝑡 = 1, …, 𝑛 by 𝑝𝑛(𝑥), so that

𝑝𝑛(𝑥) := 1
𝑛

∑
𝑛

𝑡=1
11{𝑋𝑡 = 𝑥} (𝑥 ∈ {0, 1, 2}) (9.48)

The graph of the Markov chain shows it is irreducible, so ergodicity holds.

Hence we expect that 𝑝𝑛(𝑥) ≈ 𝜓∗(𝑥) when 𝑛 is large.

The next figure shows convergence of 𝑝𝑛(𝑥) to 𝜓∗(𝑥) when 𝑥 = 1 and 𝑋0 is either 0, 1 or 2.

P = np.array([[0.971, 0.029, 0.000],
              [0.145, 0.778, 0.077],
              [0.000, 0.508, 0.492]])
ts_length = 10_000
mc = qe.MarkovChain(P)
ψ_star = mc.stationary_distributions[0]
x = 1  # We study convergence to psi^*(x)

fig, ax = plt.subplots()
ax.axhline(ψ_star[x], linestyle='dashed', color='black',
                label = fr'$\psi^*({x})$')
# Compute the fraction of time spent in state 0, starting from different x_0s
for x0 in range(len(P)):
    X = mc.simulate(ts_length, init=x0)
    p_hat = (X == x).cumsum() / np.arange(1, ts_length+1)
    ax.plot(p_hat, label=fr'$\hat p_n({x})$ when $X_0 = \, {x0}$')
ax.set_xlabel('t')
ax.set_ylabel(fr'$\hat p_n({x})$')
ax.legend()
plt.show()



You might like to try changing 𝑥 = 1 to either 𝑥 = 0 or 𝑥 = 2.

In any of these cases, ergodicity will hold.

9.3.3.3 Example: a periodic chain
Not surprisingly, this property is called periodicity.

Nonetheless, the model is irreducible, so ergodicity holds.

The following figure illustrates

Example 9.22.

Let’s look at the following example with states 0 and 1:

𝑃 := [0
1

1
0] (9.49)

The transition graph shows that this model is irreducible.

Notice that there is a periodic cycle — the state cycles between the two states in a regular way.

https://stats.libretexts.org/Bookshelves/Probability\_Theory/Probability\_Mathematical\_Statistics\_and\_Stochastic\_Processes\_(Siegrist)/16%3A\_Markov\_Processes/16.05%3A\_Periodicity\_of\_Discrete-Time\_Chains


P = np.array([[0, 1],
              [1, 0]])
ts_length = 100
mc = qe.MarkovChain(P)
n = len(P)
fig, axes = plt.subplots(nrows=1, ncols=n)
ψ_star = mc.stationary_distributions[0]

for i in range(n):
    axes[i].axhline(ψ_star[i], linestyle='dashed', lw=2, color='black',
                    label = fr'$\psi^*({i})$')
    axes[i].set_xlabel('t')
    axes[i].set_ylabel(fr'$\hat p_n({i})$')

    # Compute the fraction of time spent, for each x
    for x0 in range(n):
        # Generate time series starting at different x_0
        X = mc.simulate(ts_length, init=x0)
        p_hat = (X == i).cumsum() / np.arange(1, ts_length+1)
        axes[i].plot(p_hat, label=fr'$x_0 = \, {x0} $')

    axes[i].legend()
plt.tight_layout()
plt.show()

This example helps to emphasize that asymptotic stationarity is about the distribution, while
ergodicity is about the sample path.

The proportion of time spent in a state can converge to the stationary distribution with periodic
chains.



However, the distribution at each state does not.

9.3.3.4 Example: political institutions
Let’s go back to the political institutions model with six states discussed in a previous lecture and
study ergodicity.

Here’s the transition matrix.

𝑃 :=

[
[
[
[
[
[
[0.86

0.52
0.12
0.13
0.00
0.00

0.11
0.33
0.03
0.02
0.00
0.00

0.03
0.13
0.70
0.35
0.09
0.09

0.00
0.02
0.11
0.36
0.11
0.15

0.00
0.00
0.03
0.10
0.55
0.26

0.00
0.00
0.01
0.04
0.25
0.50]

]
]
]
]
]
]

(9.50)

The graph for the chain shows all states are reachable, indicating that this chain is irreducible.

In the next figure, we visualize the difference 𝑝𝑛(𝑥) − 𝜓∗(𝑥) for each state 𝑥.

Unlike the previous figure, 𝑋0 is held fixed.

P = [[0.86, 0.11, 0.03, 0.00, 0.00, 0.00],
     [0.52, 0.33, 0.13, 0.02, 0.00, 0.00],
     [0.12, 0.03, 0.70, 0.11, 0.03, 0.01],
     [0.13, 0.02, 0.35, 0.36, 0.10, 0.04],
     [0.00, 0.00, 0.09, 0.11, 0.55, 0.25],
     [0.00, 0.00, 0.09, 0.15, 0.26, 0.50]]

ts_length = 2500
mc = qe.MarkovChain(P)
ψ_star = mc.stationary_distributions[0]
fig, ax = plt.subplots()
X = mc.simulate(ts_length, random_state=1)
# Center the plot at 0
ax.axhline(linestyle='dashed', lw=2, color='black')

for x0 in range(len(P)):
    # Calculate the fraction of time for each state
    p_hat = (X == x0).cumsum() / np.arange(1, ts_length+1)
    ax.plot(p_hat - ψ_star[x0], label=f'$x = {x0+1} $')
    ax.set_xlabel('t')
    ax.set_ylabel(r'$\hat p_n(x) - \psi^* (x)$')

ax.legend()
plt.show()





Exercise 9.49.

Benhabib et al. Benhabib et al. (2019) estimated that the transition matrix for social mobility as
the following

𝑃 :=

[
[
[
[
[
[
[
[
[
[0.222

0.221
0.207
0.198
0.175
0.182
0.123
0.084

0.222
0.22
0.209
0.201
0.178
0.184
0.125
0.084

0.215
0.215
0.21
0.207
0.197
0.2

0.166
0.142

0.187
0.188
0.194
0.198
0.207
0.205
0.216
0.228

0.081
0.082
0.09
0.095
0.11
0.106
0.141
0.17

0.038
0.039
0.046
0.052
0.067
0.062
0.114
0.143

0.029
0.029
0.036
0.04
0.054
0.05
0.094
0.121

0.006
0.006
0.008
0.009
0.012
0.011
0.021
0.028

]
]
]
]
]
]
]
]
]
]

(9.51)

where each state 1 to 8 corresponds to a percentile of wealth shares

0 − 20%, 20 − 40%, 40 − 60%, 60 − 80%, 80 − 90%, 90 − 95%, 95 − 99%, 99 − 100%(9.52)

The matrix is recorded as P below

P = [
    [0.222, 0.222, 0.215, 0.187, 0.081, 0.038, 0.029, 0.006],
    [0.221, 0.22,  0.215, 0.188, 0.082, 0.039, 0.029, 0.006],
    [0.207, 0.209, 0.21,  0.194, 0.09,  0.046, 0.036, 0.008],
    [0.198, 0.201, 0.207, 0.198, 0.095, 0.052, 0.04,  0.009],
    [0.175, 0.178, 0.197, 0.207, 0.11,  0.067, 0.054, 0.012],
    [0.182, 0.184, 0.2,   0.205, 0.106, 0.062, 0.05,  0.011],
    [0.123, 0.125, 0.166, 0.216, 0.141, 0.114, 0.094, 0.021],
    [0.084, 0.084, 0.142, 0.228, 0.17,  0.143, 0.121, 0.028]
    ]

P = np.array(P)
codes_B = ('1','2','3','4','5','6','7','8')

1. Show this process is asymptotically stationary and calculate an approximation to the
stationary distribution.

2. Use simulations to illustrate ergodicity.

9.3.4 Exercises



Solution 9.43. Solution to Exercise 1

Part 1:

One option is to take the power of the transition matrix.

P = [[0.222, 0.222, 0.215, 0.187, 0.081, 0.038, 0.029, 0.006],
     [0.221, 0.22,  0.215, 0.188, 0.082, 0.039, 0.029, 0.006],
     [0.207, 0.209, 0.21,  0.194, 0.09,  0.046, 0.036, 0.008],
     [0.198, 0.201, 0.207, 0.198, 0.095, 0.052, 0.04,  0.009],
     [0.175, 0.178, 0.197, 0.207, 0.11,  0.067, 0.054, 0.012],
     [0.182, 0.184, 0.2,   0.205, 0.106, 0.062, 0.05,  0.011],
     [0.123, 0.125, 0.166, 0.216, 0.141, 0.114, 0.094, 0.021],
     [0.084, 0.084, 0.142, 0.228, 0.17,  0.143, 0.121, 0.028]]

P = np.array(P)
codes_B = ('1','2','3','4','5','6','7','8')

np.linalg.matrix_power(P, 10)

array([[0.20254451, 0.20379879, 0.20742102, 0.19505842, 0.09287832,
        0.0503871 , 0.03932382, 0.00858802],
       [0.20254451, 0.20379879, 0.20742102, 0.19505842, 0.09287832,
        0.0503871 , 0.03932382, 0.00858802],
       [0.20254451, 0.20379879, 0.20742102, 0.19505842, 0.09287832,
        0.0503871 , 0.03932382, 0.00858802],
       [0.20254451, 0.20379879, 0.20742102, 0.19505842, 0.09287832,
        0.0503871 , 0.03932382, 0.00858802],
       [0.20254451, 0.20379879, 0.20742102, 0.19505842, 0.09287832,
        0.0503871 , 0.03932382, 0.00858802],
       [0.20254451, 0.20379879, 0.20742102, 0.19505842, 0.09287832,
        0.0503871 , 0.03932382, 0.00858802],
       [0.20254451, 0.20379879, 0.20742102, 0.19505842, 0.09287832,
        0.0503871 , 0.03932382, 0.00858802],
       [0.20254451, 0.20379879, 0.20742102, 0.19505842, 0.09287832,
        0.0503871 , 0.03932382, 0.00858802]])

For this model, rows of 𝑃𝑛 converge to the stationary distribution as 𝑛 → ∞:

mc = qe.MarkovChain(P)
ψ_star = mc.stationary_distributions[0]
ψ_star

array([0.20254451, 0.20379879, 0.20742102, 0.19505842, 0.09287832,
       0.0503871 , 0.03932382, 0.00858802])

Part 2:

ts_length = 1000
mc = qe.MarkovChain(P)
fig, ax = plt.subplots()
X = mc.simulate(ts_length, random_state=1)
ax.axhline(linestyle='dashed', lw=2, color='black')

for x0 in range(len(P)):
    # Calculate the fraction of time for each worker
    p_hat = (X == x0).cumsum() / np.arange(1, ts_length+1)
    ax.plot(p_hat - ψ_star[x0], label=f'$x = {x0+1} $')
    ax.set_xlabel('t')
    ax.set_ylabel(r'$\hat p_n(x) - \psi^* (x)$')

ax.legend()
plt.show()

Note that the fraction of time spent at each state converges to the probability assigned to that
state by the stationary distribution.



Exercise 9.50.

According to the discussion above, if a worker’s employment dynamics obey the stochastic
matrix

𝑃 := [1 − 𝛼
𝛽

𝛼
1 − 𝛽] (9.53)

with 𝛼 ∈ (0, 1) and 𝛽 ∈ (0, 1), then, in the long run, the fraction of time spent unemployed will
be

𝑝 := 𝛽
𝛼 + 𝛽

(9.54)

In other words, if {𝑋𝑡} represents the Markov chain for employment, then 𝑋̄𝑚 → 𝑝 as 𝑚 → ∞,
where

𝑋̄𝑚 := 1
𝑚

∑
𝑚

𝑡=1
11{𝑋𝑡 = 0} (9.55)

This exercise asks you to illustrate convergence by computing 𝑋̄𝑚 for large 𝑚 and checking that
it is close to 𝑝.

You will see that this statement is true regardless of the choice of initial condition or the values
of 𝛼, 𝛽, provided both lie in (0, 1).

The result should be similar to the plot we plotted here



Solution 9.44. Solution to Exercise 2

We will address this exercise graphically.

The plots show the time series of 𝑋̄𝑚 − 𝑝 for two initial conditions.

As 𝑚 gets large, both series converge to zero.

α = β = 0.1
ts_length = 3000
p = β / (α + β)

P = ((1 - α,       α),               # Careful: P and p are distinct
     (    β,   1 - β))
mc = qe.MarkovChain(P)

fig, ax = plt.subplots()
ax.axhline(linestyle='dashed', lw=2, color='black')

for x0 in range(len(P)):
    # Generate time series for worker that starts at x0
    X = mc.simulate(ts_length, init=x0)
    # Compute fraction of time spent unemployed, for each n
    X_bar = (X == 0).cumsum() / np.arange(1, ts_length+1)
    # Plot
    ax.plot(X_bar - p, label=f'$x_0 = \, {x0} $')
    ax.set_xlabel('t')
    ax.set_ylabel(r'$\bar X_m - \psi^* (x)$')

ax.legend()
plt.show()



Exercise 9.51.

In quantecon library, irreducibility is tested by checking whether the chain forms a strongly
connected component.

Another way to test irreducibility is via the following statement:

The 𝑛 × 𝑛 matrix 𝐴 is irreducible if and only if ∑𝑛−1
𝑘=0 𝐴𝑘 is a strictly positive matrix.

(see, e.g., Zhao (2012) and this StackExchange post)

Based on this claim, write a function to test irreducibility.

Solution 9.45. Solution to Exercise 3

def is_irreducible(P):
    n = len(P)
    result = np.zeros((n, n))
    for i in range(n):
        result += np.linalg.matrix_power(P, i)
    return np.all(result > 0)

Let’s try it.

P1 = np.array([[0, 1],
               [1, 0]])
P2 = np.array([[1.0, 0.0, 0.0],
               [0.1, 0.8, 0.1],
               [0.0, 0.2, 0.8]])
P3 = np.array([[0.971, 0.029, 0.000],
               [0.145, 0.778, 0.077],
               [0.000, 0.508, 0.492]])

for P in (P1, P2, P3):
    result = lambda P: 'irreducible' if is_irreducible(P) else 'reducible'
    print(f'{P}: {result(P)}')

[[0 1]
 [1 0]]: irreducible
[[1.  0.  0. ]
 [0.1 0.8 0.1]
 [0.  0.2 0.8]]: reducible
[[0.971 0.029 0.   ]
 [0.145 0.778 0.077]
 [0.    0.508 0.492]]: irreducible

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.is\_strongly\_connected.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.is\_strongly\_connected.html
https://math.stackexchange.com/questions/3336616/how-to-prove-this-matrix-is-a-irreducible-matrix


9.4 Univariate Time Series with Matrix Algebra

9.4.1 Overview
This lecture uses matrices to solve some linear difference equations.

As a running example, we’ll study a second-order linear difference equation that was the key
technical tool in Paul Samuelson’s 1939 article Samuelson (1939) that introduced the multiplier-
accelerator model.

This model became the workhorse that powered early econometric versions of Keynesian
macroeconomic models in the United States.

You can read about the details of that model in Samuelson Multiplier-Accelerator.

(That lecture also describes some technicalities about second-order linear difference equations.)

In this lecture, we’ll also learn about an autoregressive representation and a moving average
representation of a non-stationary univariate time series {𝑦𝑡}

𝑇
𝑡=0.

We’ll also study a “perfect foresight” model of stock prices that involves solving a “forward-looking”
linear difference equation.

We will use the following imports:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm

# Custom figsize for this lecture
plt.rcParams["figure.figsize"] = (11, 5)

# Set decimal printing to 3 decimal places
np.set_printoptions(precision=3, suppress=True)

9.4.2 Samuelson’s model
Let 𝑡 = 0, ±1, ±2, … index time.

For 𝑡 = 1, 2, 3, …, 𝑇  suppose that

𝑦𝑡 = 𝛼0 + 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 (9.56)

where we assume that 𝑦0 and 𝑦−1 are given numbers that we take as initial conditions.

In Samuelson’s model, 𝑦𝑡 stood for national income or perhaps a different measure of aggregate
activity called gross domestic product (GDP) at time 𝑡.

Equation (1) is called a second-order linear difference equation. It is called second order because it
depends on two lags.

But actually, it is a collection of 𝑇  simultaneous linear equations in the 𝑇  variables 𝑦1, 𝑦2, …, 𝑦𝑇 .

Note

To be able to solve a second-order linear difference equation, we require two boundary conditions
that can take the form either of two initial conditions, two terminal conditions or possibly one of
each.

Let’s write our equations as a stacked system

https://python.quantecon.org/samuelson.html


[
[
[
[
[
[
[

1
−𝛼1
−𝛼2

0
⋮
0

0
1

−𝛼1
−𝛼2

⋮
0

0
0
1

−𝛼1
⋮
0

0
0
0
1
⋮
0

⋯
⋯
⋯
⋯
⋯
⋯

0
0
0
0
⋮

−𝛼2

0
0
0
0
⋮

−𝛼1

0
0
0
0
⋮
1]
]
]
]
]
]
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≡𝐴

[
[
[
[
[
[
[

𝑦1
𝑦2
𝑦3
𝑦4
⋮

𝑦𝑇 ]
]
]
]
]
]
]

=

[
[
[
[
[
[
[

𝛼0 + 𝛼1𝑦0 + 𝛼2𝑦−1
𝛼0 + 𝛼2𝑦0

𝛼0
𝛼0
⋮

𝛼0 ]
]
]
]
]
]
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
≡𝑏

(9.57)

or

𝐴𝑦 = 𝑏 (9.58)

where

𝑦 =

[
[
[
[
[𝑦1

𝑦2
⋮

𝑦𝑇 ]
]
]
]
]

(9.59)

Evidently 𝑦 can be computed from

𝑦 = 𝐴−1𝑏 (9.60)

The vector 𝑦 is a complete time path {𝑦𝑡}
𝑇
𝑡=1.

Let’s put Python to work on an example that captures the flavor of Samuelson’s multiplier-
accelerator model.

We’ll set parameters equal to the same values we used in Samuelson Multiplier-Accelerator.

T = 80

# parameters
α_0 = 10.0
α_1 = 1.53
α_2 = -.9

y_neg1 = 28.0 # y_{-1}
y_0 = 24.0

Now we construct 𝐴 and 𝑏.

A = np.identity(T)  # The T x T identity matrix

for i in range(T):

    if i-1 >= 0:
        A[i, i-1] = -α_1

    if i-2 >= 0:
        A[i, i-2] = -α_2

b = np.full(T, α_0)
b[0] = α_0 + α_1 * y_0 + α_2 * y_neg1
b[1] = α_0 + α_2 * y_0

Let’s look at the matrix 𝐴 and the vector 𝑏 for our example.

A, b

https://python.quantecon.org/samuelson.html


(array([[ 1.  ,  0.  ,  0.  , ...,  0.  ,  0.  ,  0.  ],
        [-1.53,  1.  ,  0.  , ...,  0.  ,  0.  ,  0.  ],
        [ 0.9 , -1.53,  1.  , ...,  0.  ,  0.  ,  0.  ],
        ...,
        [ 0.  ,  0.  ,  0.  , ...,  1.  ,  0.  ,  0.  ],
        [ 0.  ,  0.  ,  0.  , ..., -1.53,  1.  ,  0.  ],
        [ 0.  ,  0.  ,  0.  , ...,  0.9 , -1.53,  1.  ]]),
 array([ 21.52, -11.6 ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,
         10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,
         10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,
         10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,
         10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,
         10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,
         10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,
         10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,
         10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,
         10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ,  10.  ]))

Now let’s solve for the path of 𝑦.

If 𝑦𝑡 is GNP at time 𝑡, then we have a version of Samuelson’s model of the dynamics for GNP.

To solve 𝑦 = 𝐴−1𝑏 we can either invert 𝐴 directly, as in

A_inv = np.linalg.inv(A)

y = A_inv @ b

or we can use np.linalg.solve:

y_second_method = np.linalg.solve(A, b)

Here make sure the two methods give the same result, at least up to floating point precision:

np.allclose(y, y_second_method)

True

𝐴 is invertible as it is lower triangular and its diagonal entries are non-zero

# Check if A is lower triangular
np.allclose(A, np.tril(A))

True

Note

In general, np.linalg.solve is more numerically stable than using np.linalg.inv directly.
However, stability is not an issue for this small example. Moreover, we will repeatedly use A_inv
in what follows, so there is added value in computing it directly.

Now we can plot.

plt.plot(np.arange(T)+1, y)
plt.xlabel('t')
plt.ylabel('y')

plt.show()

https://www.statlect.com/matrix-algebra/triangular-matrix


The *steady state* value 𝑦∗ of 𝑦𝑡 is obtained by setting 𝑦𝑡 = 𝑦𝑡−1 = 𝑦𝑡−2 = 𝑦∗ in (1), which yields

𝑦∗ = 𝛼0
1 − 𝛼1 − 𝛼2

(9.61)

If we set the initial values to 𝑦0 = 𝑦−1 = 𝑦∗, then 𝑦𝑡 will be constant:

y_star = α_0 / (1 - α_1 - α_2)
y_neg1_steady = y_star # y_{-1}
y_0_steady = y_star

b_steady = np.full(T, α_0)
b_steady[0] = α_0 + α_1 * y_0_steady + α_2 * y_neg1_steady
b_steady[1] = α_0 + α_2 * y_0_steady

y_steady = A_inv @ b_steady

plt.plot(np.arange(T)+1, y_steady)
plt.xlabel('t')
plt.ylabel('y')

plt.show()



9.4.3 Adding a random term
To generate some excitement, we’ll follow in the spirit of the great economists Eugen Slutsky and
Ragnar Frisch and replace our original second-order difference equation with the following second-
order stochastic linear difference equation:

𝑦𝑡 = 𝛼0 + 𝛼1𝑦𝑡−1 + 𝛼2𝑦𝑡−2 + 𝑢𝑡 (9.62)

where 𝑢𝑡 ∼ 𝑁(0, 𝜎2
𝑢) and is IID, meaning independent and identically distributed.

We’ll stack these 𝑇  equations into a system cast in terms of matrix algebra.

Let’s define the random vector

𝑢 =

[
[
[
[

𝑢1
𝑢2
⋮

𝑢𝑇 ]
]
]
]

(9.63)

Where 𝐴, 𝑏, 𝑦 are defined as above, now assume that 𝑦 is governed by the system

𝐴𝑦 = 𝑏 + 𝑢 (9.64)

The solution for 𝑦 becomes

𝑦 = 𝐴−1(𝑏 + 𝑢) (9.65)

Let’s try it out in Python.

σ_u = 2.
u = np.random.normal(0, σ_u, size=T)
y = A_inv @ (b + u)

plt.plot(np.arange(T)+1, y)
plt.xlabel('t')
plt.ylabel('y')

plt.show()

The above time series looks a lot like (detrended) GDP series for a number of advanced countries in
recent decades.

We can simulate 𝑁  paths.

N = 100

https://en.wikipedia.org/wiki/Eugen\_Slutsky
https://en.wikipedia.org/wiki/Ragnar\_Frisch


for i in range(N):
    col = cm.viridis(np.random.rand())  # Choose a random color from viridis
    u = np.random.normal(0, σ_u, size=T)
    y = A_inv @ (b + u)
    plt.plot(np.arange(T)+1, y, lw=0.5, color=col)

plt.xlabel('t')
plt.ylabel('y')

plt.show()

Also consider the case when 𝑦0 and 𝑦−1 are at steady state.

N = 100

for i in range(N):
    col = cm.viridis(np.random.rand())  # Choose a random color from viridis
    u = np.random.normal(0, σ_u, size=T)
    y_steady = A_inv @ (b_steady + u)
    plt.plot(np.arange(T)+1, y_steady, lw=0.5, color=col)

plt.xlabel('t')
plt.ylabel('y')

plt.show()



9.4.4 Computing population moments
We can apply standard formulas for multivariate normal distributions to compute the mean vector
and covariance matrix for our time series model

𝑦 = 𝐴−1(𝑏 + 𝑢). (9.66)

You can read about multivariate normal distributions in this lecture Multivariate Normal
Distribution.

Let’s write our model as

𝑦 = 𝐴(𝑏 + 𝑢) (9.67)

where 𝐴 = 𝐴−1.

Because linear combinations of normal random variables are normal, we know that

𝑦 ∼ 𝒩(𝜇𝑦, Σ𝑦) (9.68)

where

𝜇𝑦 = 𝐴𝑏 (9.69)

and

Σ𝑦 = 𝐴(𝜎2
𝑢𝐼𝑇×𝑇 )𝐴𝑇 (9.70)

Let’s write a Python class that computes the mean vector 𝜇𝑦 and covariance matrix Σ𝑦.

class population_moments:
    """
    Compute population moments μ_y, Σ_y.
    ---------
    Parameters:
    α_0, α_1, α_2, T, y_neg1, y_0
    """
    def __init__(self, α_0=10.0, 
                       α_1=1.53, 
                       α_2=-.9, 
                       T=80, 
                       y_neg1=28.0, 
                       y_0=24.0, 

https://python.quantecon.org/multivariate\_normal.html
https://python.quantecon.org/multivariate\_normal.html


                       σ_u=1):

        # compute A
        A = np.identity(T)

        for i in range(T):
            if i-1 >= 0:
                A[i, i-1] = -α_1

            if i-2 >= 0:
                A[i, i-2] = -α_2

        # compute b
        b = np.full(T, α_0)
        b[0] = α_0 + α_1 * y_0 + α_2 * y_neg1
        b[1] = α_0 + α_2 * y_0

        # compute A inverse
        A_inv = np.linalg.inv(A)

        self.A, self.b, self.A_inv, self.σ_u, self.T = A, b, A_inv, σ_u, T
    
    def sample_y(self, n):
        """
        Give a sample of size n of y.
        """
        A_inv, σ_u, b, T = self.A_inv, self.σ_u, self.b, self.T
        us = np.random.normal(0, σ_u, size=[n, T])
        ys = np.vstack([A_inv @ (b + u) for u in us])

        return ys

    def get_moments(self):
        """
        Compute the population moments of y.
        """
        A_inv, σ_u, b = self.A_inv, self.σ_u, self.b

        # compute μ_y
        self.μ_y = A_inv @ b
        self.Σ_y = σ_u**2 * (A_inv @ A_inv.T)
        
        return self.μ_y, self.Σ_y

series_process = population_moments()
    
μ_y, Σ_y = series_process.get_moments()
A_inv = series_process.A_inv

It is enlightening to study the 𝜇𝑦, Σ𝑦’s implied by various parameter values.

Among other things, we can use the class to exhibit how statistical stationarity of 𝑦 prevails only
for very special initial conditions.

Let’s begin by generating 𝑁  time realizations of 𝑦 plotting them together with population mean 𝜇𝑦 .



# Plot mean
N = 100

for i in range(N):
    col = cm.viridis(np.random.rand())  # Choose a random color from viridis
    ys = series_process.sample_y(N)
    plt.plot(ys[i,:], lw=0.5, color=col)
    plt.plot(μ_y, color='red')

plt.xlabel('t')
plt.ylabel('y')

plt.show()

Visually, notice how the variance across realizations of 𝑦𝑡 decreases as 𝑡 increases.

Let’s plot the population variance of 𝑦𝑡 against 𝑡.

# Plot variance
plt.plot(Σ_y.diagonal())
plt.show()

Notice how the population variance increases and asymptotes.



Let’s print out the covariance matrix Σ𝑦 for a time series 𝑦.

series_process = population_moments(α_0=0, 
                                    α_1=.8, 
                                    α_2=0, 
                                    T=6,
                                    y_neg1=0., 
                                    y_0=0., 
                                    σ_u=1)

μ_y, Σ_y = series_process.get_moments()
print("μ_y = ", μ_y)
print("Σ_y = \n", Σ_y)

μ_y =  [0. 0. 0. 0. 0. 0.]
Σ_y = 
 [[1.    0.8   0.64  0.512 0.41  0.328]
 [0.8   1.64  1.312 1.05  0.84  0.672]
 [0.64  1.312 2.05  1.64  1.312 1.049]
 [0.512 1.05  1.64  2.312 1.849 1.48 ]
 [0.41  0.84  1.312 1.849 2.48  1.984]
 [0.328 0.672 1.049 1.48  1.984 2.587]]

Notice that the covariance between 𝑦𝑡 and 𝑦𝑡−1 – the elements on the superdiagonal – are not
identical.

This is an indication that the time series represented by our 𝑦 vector is not stationary.

To make it stationary, we’d have to alter our system so that our initial conditions (𝑦0, 𝑦−1) are not
fixed numbers but instead a jointly normally distributed random vector with a particular mean and
covariance matrix.

We describe how to do that in Linear State Space Models.

But just to set the stage for that analysis, let’s print out the bottom right corner of Σ𝑦.

series_process = population_moments()
μ_y, Σ_y = series_process.get_moments()

print("bottom right corner of Σ_y = \n", Σ_y[72:,72:])

bottom right corner of Σ_y = 
 [[ 14.965  12.051   4.969  -3.243  -9.434 -11.515  -9.128  -3.602]
 [ 12.051  14.965  12.051   4.969  -3.243  -9.434 -11.515  -9.128]
 [  4.969  12.051  14.966  12.051   4.97   -3.243  -9.434 -11.516]
 [ -3.243   4.969  12.051  14.966  12.052   4.97   -3.243  -9.434]
 [ -9.434  -3.243   4.97   12.052  14.967  12.053   4.97   -3.243]
 [-11.515  -9.434  -3.243   4.97   12.053  14.968  12.053   4.97 ]
 [ -9.128 -11.515  -9.434  -3.243   4.97   12.053  14.968  12.053]
 [ -3.602  -9.128 -11.516  -9.434  -3.243   4.97   12.053  14.968]]

Please notice how the subdiagonal and superdiagonal elements seem to have converged.

This is an indication that our process is asymptotically stationary.

You can read about stationarity of more general linear time series models in this lecture Linear State
Space Models.

There is a lot to be learned about the process by staring at the off diagonal elements of Σ𝑦
corresponding to different time periods 𝑡, but we resist the temptation to do so here.

https://python.quantecon.org/linear\_models.html
https://python.quantecon.org/linear\_models.html
https://python.quantecon.org/linear\_models.html


9.4.5 Moving average representation
Let’s print out 𝐴−1 and stare at its structure

• is it triangular or almost triangular or … ?

To study the structure of 𝐴−1, we shall print just up to 3 decimals.

Let’s begin by printing out just the upper left hand corner of 𝐴−1.

print(A_inv[0:7,0:7])

[[ 1.     0.    -0.    -0.     0.    -0.    -0.   ]
 [ 1.53   1.    -0.    -0.     0.    -0.    -0.   ]
 [ 1.441  1.53   1.     0.     0.     0.     0.   ]
 [ 0.828  1.441  1.53   1.     0.     0.     0.   ]
 [-0.031  0.828  1.441  1.53   1.    -0.    -0.   ]
 [-0.792 -0.031  0.828  1.441  1.53   1.     0.   ]
 [-1.184 -0.792 -0.031  0.828  1.441  1.53   1.   ]]

Evidently, 𝐴−1 is a lower triangular matrix.

Notice how every row ends with the previous row’s pre-diagonal entries.

Since 𝐴−1 is lower triangular, each row represents 𝑦𝑡 for a particular 𝑡 as the sum of

• a time-dependent function 𝐴−1𝑏 of the initial conditions incorporated in 𝑏, and
• a weighted sum of current and past values of the IID shocks {𝑢𝑡}.

Thus, let 𝐴 = 𝐴−1.

Evidently, for 𝑡 ≥ 0,

𝑦𝑡+1 = ∑
𝑡+1

𝑖=1
𝐴𝑡+1,𝑖𝑏𝑖 + ∑

𝑡

𝑖=1
𝐴𝑡+1,𝑖𝑢𝑖 + 𝑢𝑡+1 (9.71)

This is a moving average representation with time-varying coefficients.

Just as system (10) constitutes a moving average representation for 𝑦, system (9) constitutes an
autoregressive representation for 𝑦.

9.4.6 A forward looking model
Samuelson’s model is backward looking in the sense that we give it initial conditions and let it run.

Let’s now turn to model that is forward looking.

We apply similar linear algebra machinery to study a perfect foresight model widely used as a
benchmark in macroeconomics and finance.

As an example, we suppose that 𝑝𝑡 is the price of a stock and that 𝑦𝑡 is its dividend.

We assume that 𝑦𝑡 is determined by second-order difference equation that we analyzed just above,
so that

𝑦 = 𝐴−1(𝑏 + 𝑢) (9.72)

Our perfect foresight model of stock prices is

𝑝𝑡 = ∑
𝑇−𝑡

𝑗=0
𝛽𝑗𝑦𝑡+𝑗, 𝛽 ∈ (0, 1) (9.73)

where 𝛽 is a discount factor.



The model asserts that the price of the stock at 𝑡 equals the discounted present values of the
(perfectly foreseen) future dividends.

Form

[
[
[
[
[

𝑝1
𝑝2
𝑝3
⋮

𝑝𝑇 ]
]
]
]
]

⏟
≡𝑝

=

[
[
[
[
[

1
0
0
⋮
0

𝛽
1
0
⋮
0

𝛽2

𝛽
1
⋮
0

⋯
⋯
⋯
⋮
⋯

𝛽𝑇−1

𝛽𝑇−2

𝛽𝑇−3

⋮
1 ]

]
]
]
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
≡𝐵

[
[
[
[
[

𝑦1
𝑦2
𝑦3
⋮

𝑦𝑇 ]
]
]
]
]

(9.74)

β = .96

# construct B
B = np.zeros((T, T))

for i in range(T):
    B[i, i:] = β ** np.arange(0, T-i)

print(B)

[[1.    0.96  0.922 ... 0.043 0.041 0.04 ]
 [0.    1.    0.96  ... 0.045 0.043 0.041]
 [0.    0.    1.    ... 0.047 0.045 0.043]
 ...
 [0.    0.    0.    ... 1.    0.96  0.922]
 [0.    0.    0.    ... 0.    1.    0.96 ]
 [0.    0.    0.    ... 0.    0.    1.   ]]

σ_u = 0.
u = np.random.normal(0, σ_u, size=T)
y = A_inv @ (b + u)
y_steady = A_inv @ (b_steady + u)

p = B @ y

plt.plot(np.arange(0, T)+1, y, label='y')
plt.plot(np.arange(0, T)+1, p, label='p')
plt.xlabel('t')
plt.ylabel('y/p')
plt.legend()

plt.show()



Can you explain why the trend of the price is downward over time?

Also consider the case when 𝑦0 and 𝑦−1 are at the steady state.

p_steady = B @ y_steady

plt.plot(np.arange(0, T)+1, y_steady, label='y')
plt.plot(np.arange(0, T)+1, p_steady, label='p')
plt.xlabel('t')
plt.ylabel('y/p')
plt.legend()

plt.show()





Chapter 10

10. Optimization
10.1 Linear Programming
In this lecture, we will need the following library. Install ortools using pip.

!pip install ortools

10.1.1 Overview
Linear programming problems either maximize or minimize a linear objective function subject to
a set of linear equality and/or inequality constraints.

Linear programs come in pairs:

• an original primal problem, and
• an associated dual problem.

If a primal problem involves maximization, the dual problem involves minimization.

If a primal problem involves minimization*, the dual problem involves *maximization.

We provide a standard form of a linear program and methods to transform other forms of linear
programming problems into a standard form.

We tell how to solve a linear programming problem using SciPy and Google OR-Tools.

See Also

In another lecture, we will employ the linear programming method to solve the optimal
transport problem.

Let’s start with some standard imports.

import numpy as np
from ortools.linear_solver import pywraplp
from scipy.optimize import linprog
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon

Let’s start with some examples of linear programming problem.

10.1.2 Example 1: production problem
This example was created by Bertsimas (1997)

Suppose that a factory can produce two goods called Product 1 and Product 2.

To produce each product requires both material and labor.

Selling each product generates revenue.

Required per unit material and labor inputs and revenues are shown in table below:

Product 1 Product 2
Material 2 5

Labor 4 2
Revenue 3 4

https://developers.google.com/optimization
https://scipy.org/
https://developers.google.com/optimization
https://quantecon.github.io/lecture-tools-techniques/opt\_transport.html
https://quantecon.github.io/lecture-tools-techniques/opt\_transport.html


30 units of material and 20 units of labor available.

A firm’s problem is to construct a production plan that uses its 30 units of materials and 20 units of
labor to maximize its revenue.

Let 𝑥𝑖 denote the quantity of Product 𝑖 that the firm produces and 𝑧 denote the total revenue.

This problem can be formulated as:

max
𝑥1,𝑥2

 𝑧 = 3𝑥1 + 4𝑥2

subject to  2𝑥1 + 5𝑥2 ≤ 30
4𝑥1 + 2𝑥2 ≤ 20
𝑥1, 𝑥2 ≥ 0

(10.1)

The following graph illustrates the firm’s constraints and iso-revenue lines.

Iso-revenue lines show all the combinations of materials and labor that produce the same revenue.

The blue region is the feasible set within which all constraints are satisfied.

Parallel black lines are iso-revenue lines.

The firm’s objective is to find the parallel black lines to the upper boundary of the feasible set.

The intersection of the feasible set and the highest black line delineates the optimal set.

In this example, the optimal set is the point (2.5, 5).

10.1.2.1 Computation: using OR-Tools
Let’s try to solve the same problem using the package ortools.linear_solver.



The following cell instantiates a solver and creates two variables specifying the range of values that
they can have.

# Instantiate a GLOP(Google Linear Optimization Package) solver
solver = pywraplp.Solver.CreateSolver('GLOP')

Let’s create two variables 𝑥1 and 𝑥2 such that they can only have nonnegative values.

# Create the two variables and let them take on any non-negative value.
x1 = solver.NumVar(0, solver.infinity(), 'x1')
x2 = solver.NumVar(0, solver.infinity(), 'x2')

Add the constraints to the problem.

# Constraint 1: 2x_1 + 5x_2 <= 30.0
solver.Add(2 * x1 + 5 * x2 <= 30.0)

# Constraint 2: 4x_1 + 2x_2 <= 20.0
solver.Add(4 * x1 + 2 * x2 <= 20.0)

<ortools.linear_solver.pywraplp.Constraint; proxy of <Swig Object of type
'operations_research::MPConstraint *' at 0x12fd387b0> >

Let’s specify the objective function. We use solver.Maximize method in the case when we want to
maximize the objective function and in the case of minimization we can use solver.Minimize.

# Objective function: 3x_1 + 4x_2
solver.Maximize(3 * x1 + 4 * x2)

Once we solve the problem, we can check whether the solver was successful in solving the problem
using its status. If it’s successful, then the status will be equal to pywraplp.Solver.OPTIMAL.

# Solve the system.
status = solver.Solve()

if status == pywraplp.Solver.OPTIMAL:
    print('Objective value =', solver.Objective().Value())
    print(f'(x1, x2): ({x1.solution_value():.2}, {x2.solution_value():.2})')
else:
    print('The problem does not have an optimal solution.')

Objective value = 27.5
(x1, x2): (2.5, 5.0)

10.1.3 Example 2: investment problem
We now consider a problem posed and solved by Hu (2018).

A mutual fund has $100, 000 to be invested over a three-year horizon.

Three investment options are available:

1. Annuity: the fund can pay a same amount of new capital at the beginning of each of three
years and receive a payoff of 130% of total capital invested at the end of the third year. Once
the mutual fund decides to invest in this annuity, it has to keep investing in all subsequent
years in the three year horizon.

2. Bank account: the fund can deposit any amount into a bank at the beginning of each year and
receive its capital plus 6% interest at the end of that year. In addition, the mutual fund is
permitted to borrow no more than $20,000 at the beginning of each year and is asked to pay
back the amount borrowed plus 6% interest at the end of the year. The mutual fund can choose
whether to deposit or borrow at the beginning of each year.



3. Corporate bond: At the beginning of the second year, a corporate bond becomes available. The
fund can buy an amount that is no more than $50,000 of this bond at the beginning of the
second year and at the end of the third year receive a payout of 130% of the amount invested
in the bond.

The mutual fund’s objective is to maximize total payout that it owns at the end of the third year.

We can formulate this as a linear programming problem.

Let 𝑥1 be the amount of put in the annuity, 𝑥2, 𝑥3, 𝑥4 be bank deposit balances at the beginning of
the three years, and 𝑥5 be the amount invested in the corporate bond.

When 𝑥2, 𝑥3, 𝑥4 are negative, it means that the mutual fund has borrowed from bank.

The table below shows the mutual fund’s decision variables together with the timing protocol
described above:

Year 1 Year 2 Year 3
Annuity 𝑥1 𝑥1 𝑥1

Bank account 𝑥2 𝑥3 𝑥4

Corporate bond 0 𝑥5 0

The mutual fund’s decision making proceeds according to the following timing protocol:

1. At the beginning of the first year, the mutual fund decides how much to invest in the annuity
and how much to deposit in the bank. This decision is subject to the constraint:

𝑥1 + 𝑥2 = 100, 000 (10.2)

1. At the beginning of the second year, the mutual fund has a bank balance of 1.06𝑥2. It must
keep 𝑥1 in the annuity. It can choose to put 𝑥5 into the corporate bond, and put 𝑥3 in the
bank. These decisions are restricted by

𝑥1 + 𝑥5 = 1.06𝑥2 − 𝑥3 (10.3)

1. At the beginning of the third year, the mutual fund has a bank account balance equal to
1.06𝑥3. It must again invest 𝑥1 in the annuity, leaving it with a bank account balance equal to
𝑥4. This situation is summarized by the restriction:

𝑥1 = 1.06𝑥3 − 𝑥4 (10.4)

The mutual fund’s objective function, i.e., its wealth at the end of the third year is:

1.30 ⋅ 3𝑥1 + 1.06𝑥4 + 1.30𝑥5 (10.5)

Thus, the mutual fund confronts the linear program:



max
𝑥

 1.30 ⋅ 3𝑥1 + 1.06𝑥4 + 1.30𝑥5

subject to  𝑥1 + 𝑥2 = 100, 000
𝑥1 − 1.06𝑥2 + 𝑥3 + 𝑥5 = 0
𝑥1 − 1.06𝑥3 + 𝑥4 = 0
𝑥2 ≥ −20, 000
𝑥3 ≥ −20, 000
𝑥4 ≥ −20, 000
𝑥5 ≤ 50, 000
𝑥𝑗 ≥ 0, 𝑗 = 1, 5

𝑥𝑗 unrestricted, 𝑗 = 2, 3, 4

(10.6)

10.1.3.1 Computation: using OR-Tools
Let’s try to solve the above problem using the package ortools.linear_solver.

The following cell instantiates a solver and creates two variables specifying the range of values that
they can have.

# Instantiate a GLOP(Google Linear Optimization Package) solver
solver = pywraplp.Solver.CreateSolver('GLOP')

Let’s create five variables 𝑥1, 𝑥2, 𝑥3, 𝑥4, and 𝑥5 such that they can only have the values defined in
the above constraints.

# Create the variables using the ranges available from constraints
x1 = solver.NumVar(0, solver.infinity(), 'x1')
x2 = solver.NumVar(-20_000, solver.infinity(), 'x2')
x3 = solver.NumVar(-20_000, solver.infinity(), 'x3')
x4 = solver.NumVar(-20_000, solver.infinity(), 'x4')
x5 = solver.NumVar(0, 50_000, 'x5')

Add the constraints to the problem.

# Constraint 1: x_1 + x_2 = 100,000
solver.Add(x1 + x2 == 100_000.0)

# Constraint 2: x_1 - 1.06 * x_2 + x_3 + x_5 = 0
solver.Add(x1 - 1.06 * x2 + x3 + x5 == 0.0)

# Constraint 3: x_1 - 1.06 * x_3 + x_4 = 0
solver.Add(x1 - 1.06 * x3 + x4 == 0.0)

<ortools.linear_solver.pywraplp.Constraint; proxy of <Swig Object of type
'operations_research::MPConstraint *' at 0x12fce6a30> >

Let’s specify the objective function.

# Objective function: 1.30 * 3 * x_1 + 1.06 * x_4 + 1.30 * x_5
solver.Maximize(1.30 * 3 * x1 + 1.06 * x4 + 1.30 * x5)

Let’s solve the problem and check the status using pywraplp.Solver.OPTIMAL.

# Solve the system.
status = solver.Solve()

if status == pywraplp.Solver.OPTIMAL:
    print('Objective value =', solver.Objective().Value())



    x1_sol = round(x1.solution_value(), 3)
    x2_sol = round(x2.solution_value(), 3)
    x3_sol = round(x1.solution_value(), 3)
    x4_sol = round(x2.solution_value(), 3)
    x5_sol = round(x1.solution_value(), 3)
    print(f'(x1, x2, x3, x4, x5): ({x1_sol}, {x2_sol}, {x3_sol}, {x4_sol},
{x5_sol})')
else:
    print('The problem does not have an optimal solution.')

Objective value = 141018.24349792692
(x1, x2, x3, x4, x5): (24927.755, 75072.245, 24927.755, 75072.245, 24927.755)

OR-Tools tells us that the best investment strategy is:

1. At the beginning of the first year, the mutual fund should buy $24, 927.755 of the annuity. Its
bank account balance should be $75, 072.245.

2. At the beginning of the second year, the mutual fund should buy $24, 927.755 of the corporate
bond and keep invest in the annuity. Its bank balance should be $24, 927.755.

3. At the beginning of the third year, the bank balance should be $75, 072.245.
4. At the end of the third year, the mutual fund will get payouts from the annuity and corporate

bond and repay its loan from the bank. At the end it will own $141, 018.24, so that it’s total
net rate of return over the three periods is 41.02%.

10.1.4 Standard form
For purposes of

• unifying linear programs that are initially stated in superficially different forms, and
• having a form that is convenient to put into black-box software packages,

it is useful to devote some effort to describe a standard form.

Our standard form is:

min
𝑥

 𝑐1𝑥1 + 𝑐2𝑥2 + … + 𝑐𝑛𝑥𝑛

subject to  𝑎11𝑥1 + 𝑎12𝑥2 + … + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + … + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + … + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

𝑥1, 𝑥2, …, 𝑥𝑛 ≥ 0

(10.7)

Let

𝐴 =

[
[
[
[
[ 𝑎11

𝑎21

𝑎𝑚1

𝑎12
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𝑎𝑚2

…
…
⋮
…

𝑎1𝑛
𝑎2𝑛

𝑎𝑚𝑛]
]
]
]
]

, 𝑏 =

[
[
[
[
[𝑏1

𝑏2
⋮

𝑏𝑚]
]
]
]
]

, 𝑐 =

[
[
[
[
[𝑐1

𝑐2
⋮

𝑐𝑛]
]
]
]
]

, 𝑥 =

[
[
[
[
[𝑥1

𝑥2
⋮

𝑥𝑛]
]
]
]
]

. (10.8)

The standard form linear programming problem can be expressed concisely as:

min
𝑥

 𝑐′𝑥

subject to  𝐴𝑥 = 𝑏
𝑥 ≥ 0

(10.9)

Here, 𝐴𝑥 = 𝑏 means that the 𝑖-th entry of 𝐴𝑥 equals the 𝑖-th entry of 𝑏 for every 𝑖.



Similarly, 𝑥 ≥ 0 means that 𝑥𝑗 is greater than equal to 0 for every 𝑗.

10.1.4.1 Useful transformations
It is useful to know how to transform a problem that initially is not stated in the standard form into
one that is.

By deploying the following steps, any linear programming problem can be transformed into an
equivalent standard form linear programming problem.

1. Objective function: If a problem is originally a constrained maximization problem, we can
construct a new objective function that is the additive inverse of the original objective
function. The transformed problem is then a minimization problem.

2. Decision variables: Given a variable 𝑥𝑗 satisfying 𝑥𝑗 ≤ 0, we can introduce a new variable
𝑥𝑗′ = −𝑥𝑗 and substitute it into original problem. Given a free variable 𝑥𝑖 with no restriction
on its sign, we can introduce two new variables 𝑥+

𝑗  and 𝑥−
𝑗  satisfying 𝑥+

𝑗 , 𝑥−
𝑗 ≥ 0 and replace

𝑥𝑗 by 𝑥+
𝑗 − 𝑥−

𝑗 .
3. Inequality constraints: Given an inequality constraint ∑𝑛

𝑗=1 𝑎𝑖𝑗𝑥𝑗 ≤ 0, we can introduce a
new variable 𝑠𝑖, called a slack variable that satisfies 𝑠𝑖 ≥ 0 and replace the original
constraint by ∑𝑛

𝑗=1 𝑎𝑖𝑗𝑥𝑗 + 𝑠𝑖 = 0.

Let’s apply the above steps to the two examples described above.

10.1.4.2 Example 1: production problem
The original problem is:

max
𝑥1,𝑥2

 3𝑥1 + 4𝑥2

subject to  2𝑥1 + 5𝑥2 ≤ 30
4𝑥1 + 2𝑥2 ≤ 20
𝑥1, 𝑥2 ≥ 0

(10.10)

This problem is equivalent to the following problem with a standard form:

min
𝑥1,𝑥2

 −(3𝑥1 + 4𝑥2)

subject to  2𝑥1 + 5𝑥2 + 𝑠1 = 30
4𝑥1 + 2𝑥2 + 𝑠2 = 20
𝑥1, 𝑥2, 𝑠1, 𝑠2 ≥ 0

(10.11)

10.1.4.3 Computation: using SciPy
The package scipy.optimize provides a function linprog to solve linear programming problems
with a form below:

min
𝑥

 𝑐′𝑥

subject to  𝐴𝑢𝑏𝑥 ≤ 𝑏𝑢𝑏

𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞

𝑙 ≤ 𝑥 ≤ 𝑢

(10.12)

𝐴𝑒𝑞, 𝑏𝑒𝑞 denote the equality constraint matrix and vector, and 𝐴𝑢𝑏, 𝑏𝑢𝑏 denote the inequality
constraint matrix and vector.

Note



By default 𝑙 = 0 and 𝑢 = None unless explicitly specified with the argument bounds.

Let’s now try to solve the Problem 1 using SciPy.

# Construct parameters
c_ex1 = np.array([3, 4])

# Inequality constraints
A_ex1 = np.array([[2, 5],
                  [4, 2]])
b_ex1 = np.array([30,20])

Once we solve the problem, we can check whether the solver was successful in solving the problem
using the boolean attribute success. If it’s successful, then the success attribute is set to True.

# Solve the problem
# we put a negative sign on the objective as linprog does minimization
res_ex1 = linprog(-c_ex1, A_ub=A_ex1, b_ub=b_ex1)

if res_ex1.success:
    # We use negative sign to get the optimal value (maximized value)
    print('Optimal Value:', -res_ex1.fun)
    print(f'(x1, x2): {res_ex1.x[0], res_ex1.x[1]}')
else:
    print('The problem does not have an optimal solution.')

Optimal Value: 27.5
(x1, x2): (2.5, 5.0)

The optimal plan tells the factory to produce 2.5 units of Product 1 and 5 units of Product 2; that
generates a maximizing value of revenue of 27.5.

We are using the linprog function as a black box.

Inside it, Python first transforms the problem into standard form.

To do that, for each inequality constraint it generates one slack variable.

Here the vector of slack variables is a two-dimensional NumPy array that equals 𝑏𝑢𝑏 − 𝐴𝑢𝑏𝑥.

See the official documentation for more details.

Note

This problem is to maximize the objective, so that we need to put a minus sign in front of
parameter vector 𝑐.

10.1.4.4 Example 2: investment problem
The original problem is:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html\#scipy.optimize.linprog


max
𝑥

 1.30 ⋅ 3𝑥1 + 1.06𝑥4 + 1.30𝑥5

subject to  𝑥1 + 𝑥2 = 100, 000
𝑥1 − 1.06𝑥2 + 𝑥3 + 𝑥5 = 0
𝑥1 − 1.06𝑥3 + 𝑥4 = 0
𝑥2 ≥ −20, 000
𝑥3 ≥ −20, 000
𝑥4 ≥ −20, 000
𝑥5 ≤ 50, 000
𝑥𝑗 ≥ 0, 𝑗 = 1, 5

𝑥𝑗 unrestricted, 𝑗 = 2, 3, 4

(10.13)

This problem is equivalent to the following problem with a standard form:

min
𝑥

 −(1.30 ⋅ 3𝑥1 + 1.06𝑥+
4 − 1.06𝑥−

4 + 1.30𝑥5)

subject to  𝑥1 + 𝑥+
2 − 𝑥−

2 = 100, 000

𝑥1 − 1.06(𝑥+
2 − 𝑥−

2 ) + 𝑥+
3 − 𝑥−

3 + 𝑥5 = 0

𝑥1 − 1.06(𝑥+
3 − 𝑥−

3 ) + 𝑥+
4 − 𝑥−

4 = 0

𝑥−
2 − 𝑥+

2 + 𝑠1 = 20, 000

𝑥−
3 − 𝑥+

3 + 𝑠2 = 20, 000

𝑥−
4 − 𝑥+

4 + 𝑠3 = 20, 000
𝑥5 + 𝑠4 = 50, 000
𝑥𝑗 ≥ 0, 𝑗 = 1, 5

𝑥+
𝑗 , 𝑥−

𝑗 ≥ 0, 𝑗 = 2, 3, 4

𝑠𝑗 ≥ 0, 𝑗 = 1, 2, 3, 4

(10.14)

# Construct parameters
rate = 1.06

# Objective function parameters
c_ex2 = np.array([1.30*3, 0, 0, 1.06, 1.30])

# Inequality constraints
A_ex2 = np.array([[1,  1,  0,  0,  0],
                  [1, -rate, 1, 0, 1],
                  [1, 0, -rate, 1, 0]])
b_ex2 = np.array([100_000, 0, 0])

# Bounds on decision variables
bounds_ex2 = [(  0,    None),
              (-20_000, None),
              (-20_000, None),
              (-20_000, None),
              (  0,   50_000)]

Let’s solve the problem and check the status using success attribute.

# Solve the problem
res_ex2 = linprog(-c_ex2, A_eq=A_ex2, b_eq=b_ex2,



                  bounds=bounds_ex2)

if res_ex2.success:
    # We use negative sign to get the optimal value (maximized value)
    print('Optimal Value:', -res_ex2.fun)
    x1_sol = round(res_ex2.x[0], 3)
    x2_sol = round(res_ex2.x[1], 3)
    x3_sol = round(res_ex2.x[2], 3)
    x4_sol = round(res_ex2.x[3], 3)
    x5_sol = round(res_ex2.x[4], 3)
    print(f'(x1, x2, x3, x4, x5): {x1_sol, x2_sol, x3_sol, x4_sol, x5_sol}')
else:
    print('The problem does not have an optimal solution.')

Optimal Value: 141018.24349792692
(x1, x2, x3, x4, x5): (24927.755, 75072.245, 4648.825, -20000.0, 50000.0)

SciPy tells us that the best investment strategy is:

1. At the beginning of the first year, the mutual fund should buy $24, 927.75 of the annuity. Its
bank account balance should be $75, 072.25.

2. At the beginning of the second year, the mutual fund should buy $50, 000 of the corporate
bond and keep invest in the annuity. Its bank account balance should be $4, 648.83.

3. At the beginning of the third year, the mutual fund should borrow $20, 000 from the bank and
invest in the annuity.

4. At the end of the third year, the mutual fund will get payouts from the annuity and corporate
bond and repay its loan from the bank. At the end it will own $141, 018.24, so that it’s total
net rate of return over the three periods is 41.02%.

Note

You might notice the difference in the values of optimal solution using OR-Tools and SciPy but
the optimal value is the same. It is because there can be many optimal solutions for the same
problem.

Exercise 10.52.

Implement a new extended solution for the Problem 1 where in the factory owner decides that
number of units of Product 1 should not be less than the number of units of Product 2.



Solution 10.46. Solution to Exercise 1

So we can reformulate the problem as:

max
𝑥1,𝑥2

 𝑧 = 3𝑥1 + 4𝑥2

subject to  2𝑥1 + 5𝑥2 ≤ 30
4𝑥1 + 2𝑥2 ≤ 20
𝑥1 ≥ 𝑥2

𝑥1, 𝑥2 ≥ 0

(10.15)

# Instantiate a GLOP(Google Linear Optimization Package) solver
solver = pywraplp.Solver.CreateSolver('GLOP')

# Create the two variables and let them take on any non-negative value.
x1 = solver.NumVar(0, solver.infinity(), 'x1')
x2 = solver.NumVar(0, solver.infinity(), 'x2')

# Constraint 1: 2x_1 + 5x_2 <= 30.0
solver.Add(2 * x1 + 5 * x2 <= 30.0)

# Constraint 2: 4x_1 + 2x_2 <= 20.0
solver.Add(4 * x1 + 2 * x2 <= 20.0)

# Constraint 3: x_1 >= x_2
solver.Add(x1 >= x2)

<ortools.linear_solver.pywraplp.Constraint; proxy of <Swig Object of type
'operations_research::MPConstraint *' at 0x12fce6220> >

# Objective function: 3x_1 + 4x_2
solver.Maximize(3 * x1 + 4 * x2)

# Solve the system.
status = solver.Solve()

if status == pywraplp.Solver.OPTIMAL:
    print('Objective value =', solver.Objective().Value())
    x1_sol = round(x1.solution_value(), 2)
    x2_sol = round(x2.solution_value(), 2)
    print(f'(x1, x2): ({x1_sol}, {x2_sol})')
else:
    print('The problem does not have an optimal solution.')

Objective value = 23.333333333333336
(x1, x2): (3.33, 3.33)

10.1.5 Exercises



Exercise 10.53.

A carpenter manufactures 2 products - 𝐴 and 𝐵.

Product 𝐴 generates a profit of 23 and product 𝐵 generates a profit of 10.

It takes 2 hours for the carpenter to produce 𝐴 and 0.8 hours to produce 𝐵.

Moreover, he can’t spend more than 25 hours per week and the total number of units of 𝐴 and 𝐵
should not be greater than 20.

Find the number of units of 𝐴 and product 𝐵 that he should manufacture in order to maximise
his profit.

Solution 10.47. Solution to Exercise 2

Let us assume the carpenter produces 𝑥 units of 𝐴 and 𝑦 units of 𝐵.

So we can formulate the problem as:

max
𝑥,𝑦

 𝑧 = 23𝑥 + 10𝑦

subject to  𝑥 + 𝑦 ≤ 20
2𝑥 + 0.8𝑦 ≤ 25

(10.16)

# Instantiate a GLOP(Google Linear Optimization Package) solver
solver = pywraplp.Solver.CreateSolver('GLOP')

Let’s create two variables 𝑥1 and 𝑥2 such that they can only have nonnegative values.

# Create the two variables and let them take on any non-negative value.
x = solver.NumVar(0, solver.infinity(), 'x')
y = solver.NumVar(0, solver.infinity(), 'y')

# Constraint 1: x + y <= 20.0
solver.Add(x + y <= 20.0)

# Constraint 2: 2x + 0.8y <= 25.0
solver.Add(2 * x + 0.8 * y <= 25.0)

<ortools.linear_solver.pywraplp.Constraint; proxy of <Swig Object of type
'operations_research::MPConstraint *' at 0x12fce6df0> >

# Objective function: 23x + 10y
solver.Maximize(23 * x + 10 * y)

# Solve the system.
status = solver.Solve()

if status == pywraplp.Solver.OPTIMAL:
    print('Maximum Profit =', solver.Objective().Value())
    x_sol = round(x.solution_value(), 3)
    y_sol = round(y.solution_value(), 3)
    print(f'(x, y): ({x_sol}, {y_sol})')
else:
    print('The problem does not have an optimal solution.')

Maximum Profit = 297.5
(x, y): (7.5, 12.5)



10.2 Shortest Paths

10.2.1 Overview
The shortest path problem is a classic problem in mathematics and computer science with
applications in

• Economics (sequential decision making, analysis of social networks, etc.)
• Operations research and transportation
• Robotics and artificial intelligence
• Telecommunication network design and routing
• etc., etc.

Variations of the methods we discuss in this lecture are used millions of times every day, in
applications such as

• Google Maps
• routing packets on the internet

For us, the shortest path problem also provides a nice introduction to the logic of dynamic
programming.

Dynamic programming is an extremely powerful optimization technique that we apply in many
lectures on this site.

The only scientific library we’ll need in what follows is NumPy:

import numpy as np

10.2.2 Outline of the problem
The shortest path problem is one of finding how to traverse a graph from one specified node to
another at minimum cost.

Consider the following graph

We wish to travel from node (vertex) A to node G at minimum cost

• Arrows (edges) indicate the movements we can take.
• Numbers on edges indicate the cost of traveling that edge.

(Graphs such as the one above are called weighted directed graphs.)

Possible interpretations of the graph include

• Minimum cost for supplier to reach a destination.
• Routing of packets on the internet (minimize time).
• etc., etc.

For this simple graph, a quick scan of the edges shows that the optimal paths are

• A, C, F, G at cost 8

• A, D, F, G at cost 8

10.2.3 Finding least-cost paths
For large graphs, we need a systematic solution.

Let 𝐽(𝑣) denote the minimum cost-to-go from node 𝑣, understood as the total cost from 𝑣 if we take
the best route.

https://en.wikipedia.org/wiki/Shortest\_path
https://en.wikipedia.org/wiki/Graph\_%28mathematics%29
https://en.wikipedia.org/wiki/Directed\_graph


Suppose that we know 𝐽(𝑣) for each node 𝑣, as shown below for the graph from the preceding
example.

Note that 𝐽(𝐺) = 0.



The best path can now be found as follows

1. Start at node 𝑣 = 𝐴
2. From current node 𝑣, move to any node that solves



min
𝑤∈𝐹𝑣

{𝑐(𝑣, 𝑤) + 𝐽(𝑤)} (10.17)

where

• 𝐹𝑣 is the set of nodes that can be reached from 𝑣 in one step.
• 𝑐(𝑣, 𝑤) is the cost of traveling from 𝑣 to 𝑤.

Hence, if we know the function 𝐽 , then finding the best path is almost trivial.

But how can we find the cost-to-go function 𝐽?

Some thought will convince you that, for every node 𝑣, the function 𝐽  satisfies

𝐽(𝑣) = min
𝑤∈𝐹𝑣

{𝑐(𝑣, 𝑤) + 𝐽(𝑤)} (10.18)

This is known as the Bellman equation, after the mathematician Richard Bellman.

The Bellman equation can be thought of as a restriction that 𝐽  must satisfy.

What we want to do now is use this restriction to compute 𝐽 .

10.2.4 Solving for minimum cost-to-go
Let’s look at an algorithm for computing 𝐽  and then think about how to implement it.

10.2.4.1 The algorithm
The standard algorithm for finding 𝐽  is to start an initial guess and then iterate.

This is a standard approach to solving nonlinear equations, often called the method of successive
approximations.

Our initial guess will be

𝐽0(𝑣) = 0 for all𝑣 (10.19)

Now

1. Set 𝑛 = 0
2. Set 𝐽𝑛+1(𝑣) = min𝑤∈𝐹𝑣

{𝑐(𝑣, 𝑤) + 𝐽𝑛(𝑤)} for all 𝑣
3. If 𝐽𝑛+1 and 𝐽𝑛 are not equal then increment 𝑛, go to 2

This sequence converges to 𝐽 .

Although we omit the proof, we’ll prove similar claims in our other lectures on dynamic
programming.

10.2.4.2 Implementation
Having an algorithm is a good start, but we also need to think about how to implement it on a
computer.

First, for the cost function 𝑐, we’ll implement it as a matrix 𝑄, where a typical element is

𝑄(𝑣, 𝑤) = (10.20)

In this context 𝑄 is usually called the distance matrix.

We’re also numbering the nodes now, with 𝐴 = 0, so, for example

𝑄(1, 2) = the cost of traveling from B to C (10.21)

For example, for the simple graph above, we set

from numpy import inf

https://en.wikipedia.org/wiki/Richard\_E.\_Bellman


Q = np.array([[inf, 1,   5,   3,   inf, inf, inf],
              [inf, inf, inf, 9,   6,   inf, inf],
              [inf, inf, inf, inf, inf, 2,   inf],
              [inf, inf, inf, inf, inf, 4,   8],
              [inf, inf, inf, inf, inf, inf, 4],
              [inf, inf, inf, inf, inf, inf, 1],
              [inf, inf, inf, inf, inf, inf, 0]])

Notice that the cost of staying still (on the principle diagonal) is set to

• np.inf for non-destination nodes — moving on is required.
• 0 for the destination node — here is where we stop.

For the sequence of approximations {𝐽𝑛} of the cost-to-go functions, we can use NumPy arrays.

Let’s try with this example and see how we go:

nodes = range(7)                              # Nodes = 0, 1, ..., 6
J = np.zeros_like(nodes, dtype=int)        # Initial guess
next_J = np.empty_like(nodes, dtype=int)   # Stores updated guess

max_iter = 500
i = 0

while i < max_iter:
    for v in nodes:
        # Minimize Q[v, w] + J[w] over all choices of w
        next_J[v] = np.min(Q[v, :] + J)
    
    if np.array_equal(next_J, J):                
        break
    
    J[:] = next_J                                # Copy contents of next_J to J
    i += 1

print("The cost-to-go function is", J)

The cost-to-go function is [ 8 10  3  5  4  1  0]

This matches with the numbers we obtained by inspection above.

But, importantly, we now have a methodology for tackling large graphs.



10.2.5 Exercises



Exercise 10.54. Note

The text below describes a weighted directed graph.

The line node0, node1 0.04, node8 11.11, node14 72.21 means that from node0 we can go
to

• node1 at cost 0.04
• node8 at cost 11.11
• node14 at cost 72.21

No other nodes can be reached directly from node0.

Other lines have a similar interpretation.

Your task is to use the algorithm given above to find the optimal path and its cost.

Note

You will be dealing with floating point numbers now, rather than integers, so consider
replacing np.equal() with np.allclose().

%%file graph.txt
node0, node1 0.04, node8 11.11, node14 72.21
node1, node46 1247.25, node6 20.59, node13 64.94
node2, node66 54.18, node31 166.80, node45 1561.45
node3, node20 133.65, node6 2.06, node11 42.43
node4, node75 3706.67, node5 0.73, node7 1.02
node5, node45 1382.97, node7 3.33, node11 34.54
node6, node31 63.17, node9 0.72, node10 13.10
node7, node50 478.14, node9 3.15, node10 5.85
node8, node69 577.91, node11 7.45, node12 3.18
node9, node70 2454.28, node13 4.42, node20 16.53
node10, node89 5352.79, node12 1.87, node16 25.16
node11, node94 4961.32, node18 37.55, node20 65.08
node12, node84 3914.62, node24 34.32, node28 170.04
node13, node60 2135.95, node38 236.33, node40 475.33
node14, node67 1878.96, node16 2.70, node24 38.65
node15, node91 3597.11, node17 1.01, node18 2.57
node16, node36 392.92, node19 3.49, node38 278.71
node17, node76 783.29, node22 24.78, node23 26.45
node18, node91 3363.17, node23 16.23, node28 55.84
node19, node26 20.09, node20 0.24, node28 70.54
node20, node98 3523.33, node24 9.81, node33 145.80
node21, node56 626.04, node28 36.65, node31 27.06
node22, node72 1447.22, node39 136.32, node40 124.22
node23, node52 336.73, node26 2.66, node33 22.37
node24, node66 875.19, node26 1.80, node28 14.25
node25, node70 1343.63, node32 36.58, node35 45.55
node26, node47 135.78, node27 0.01, node42 122.00
node27, node65 480.55, node35 48.10, node43 246.24
node28, node82 2538.18, node34 21.79, node36 15.52
node29, node64 635.52, node32 4.22, node33 12.61
node30, node98 2616.03, node33 5.61, node35 13.95
node31, node98 3350.98, node36 20.44, node44 125.88
node32, node97 2613.92, node34 3.33, node35 1.46
node33, node81 1854.73, node41 3.23, node47 111.54
node34, node73 1075.38, node42 51.52, node48 129.45
node35, node52 17.57, node41 2.09, node50 78.81
node36, node71 1171.60, node54 101.08, node57 260.46
node37, node75 269.97, node38 0.36, node46 80.49
node38, node93 2767.85, node40 1.79, node42 8.78
node39, node50 39.88, node40 0.95, node41 1.34
node40, node75 548.68, node47 28.57, node54 53.46
node41, node53 18.23, node46 0.28, node54 162.24
node42, node59 141.86, node47 10.08, node72 437.49
node43, node98 2984.83, node54 95.06, node60 116.23
node44, node91 807.39, node46 1.56, node47 2.14
node45, node58 79.93, node47 3.68, node49 15.51
node46, node52 22.68, node57 27.50, node67 65.48
node47, node50 2.82, node56 49.31, node61 172.64
node48, node99 2564.12, node59 34.52, node60 66.44
node49, node78 53.79, node50 0.51, node56 10.89
node50, node85 251.76, node53 1.38, node55 20.10
node51, node98 2110.67, node59 23.67, node60 73.79
node52, node94 1471.80, node64 102.41, node66 123.03
node53, node72 22.85, node56 4.33, node67 88.35
node54, node88 967.59, node59 24.30, node73 238.61
node55, node84 86.09, node57 2.13, node64 60.80
node56, node76 197.03, node57 0.02, node61 11.06
node57, node86 701.09, node58 0.46, node60 7.01
node58, node83 556.70, node64 29.85, node65 34.32
node59, node90 820.66, node60 0.72, node71 0.67
node60, node76 48.03, node65 4.76, node67 1.63
node61, node98 1057.59, node63 0.95, node64 4.88
node62, node91 132.23, node64 2.94, node76 38.43
node63, node66 4.43, node72 70.08, node75 56.34
node64, node80 47.73, node65 0.30, node76 11.98
node65, node94 594.93, node66 0.64, node73 33.23
node66, node98 395.63, node68 2.66, node73 37.53
node67, node82 153.53, node68 0.09, node70 0.98
node68, node94 232.10, node70 3.35, node71 1.66
node69, node99 247.80, node70 0.06, node73 8.99
node70, node76 27.18, node72 1.50, node73 8.37
node71, node89 104.50, node74 8.86, node91 284.64
node72, node76 15.32, node84 102.77, node92 133.06
node73, node83 52.22, node76 1.40, node90 243.00
node74, node81 1.07, node76 0.52, node78 8.08
node75, node92 68.53, node76 0.81, node77 1.19
node76, node85 13.18, node77 0.45, node78 2.36
node77, node80 8.94, node78 0.98, node86 64.32
node78, node98 355.90, node81 2.59
node79, node81 0.09, node85 1.45, node91 22.35
node80, node92 121.87, node88 28.78, node98 264.34
node81, node94 99.78, node89 39.52, node92 99.89
node82, node91 47.44, node88 28.05, node93 11.99
node83, node94 114.95, node86 8.75, node88 5.78
node84, node89 19.14, node94 30.41, node98 121.05
node85, node97 94.51, node87 2.66, node89 4.90
node86, node97 85.09
node87, node88 0.21, node91 11.14, node92 21.23
node88, node93 1.31, node91 6.83, node98 6.12
node89, node97 36.97, node99 82.12
node90, node96 23.53, node94 10.47, node99 50.99
node91, node97 22.17
node92, node96 10.83, node97 11.24, node99 34.68
node93, node94 0.19, node97 6.71, node99 32.77
node94, node98 5.91, node96 2.03
node95, node98 6.17, node99 0.27
node96, node98 3.32, node97 0.43, node99 5.87
node97, node98 0.30
node98, node99 0.33
node99,

Overwriting graph.txt



Solution 10.48. Solution to Exercise 1

First let’s write a function that reads in the graph data above and builds a distance matrix.

num_nodes = 100
destination_node = 99

def map_graph_to_distance_matrix(in_file):

    # First let's set of the distance matrix Q with inf everywhere
    Q = np.full((num_nodes, num_nodes), np.inf)

    # Now we read in the data and modify Q
    with open(in_file) as infile:
        for line in infile:
            elements = line.split(',')
            node = elements.pop(0)
            node = int(node[4:])    # convert node description to integer
            if node != destination_node:
                for element in elements:
                    destination, cost = element.split()
                    destination = int(destination[4:])
                    Q[node, destination] = float(cost)
            Q[destination_node, destination_node] = 0
    return Q

In addition, let’s write

1. a “Bellman operator” function that takes a distance matrix and current guess of J and
returns an updated guess of J, and

2. a function that takes a distance matrix and returns a cost-to-go function.

We’ll use the algorithm described above.

The minimization step is vectorized to make it faster.

def bellman(J, Q):
    return np.min(Q + J, axis=1)

def compute_cost_to_go(Q):
    num_nodes = Q.shape[0]
    J = np.zeros(num_nodes)      # Initial guess
    max_iter = 500
    i = 0

    while i < max_iter:
        next_J = bellman(J, Q)
        if np.allclose(next_J, J):
            break
        else:
            J[:] = next_J   # Copy contents of next_J to J
            i += 1

    return(J)

We used np.allclose() rather than testing exact equality because we are dealing with floating
point numbers now.

Finally, here’s a function that uses the cost-to-go function to obtain the optimal path (and its
cost).

def print_best_path(J, Q):
    sum_costs = 0
    current_node = 0
    while current_node != destination_node:
        print(current_node)
        # Move to the next node and increment costs
        next_node = np.argmin(Q[current_node, :] + J)
        sum_costs += Q[current_node, next_node]
        current_node = next_node

    print(destination_node)
    print('Cost: ', sum_costs)

Okay, now we have the necessary functions, let’s call them to do the job we were assigned.

Q = map_graph_to_distance_matrix('graph.txt')
J = compute_cost_to_go(Q)
print_best_path(J, Q)

0
8
11
18
23
33
41
53
56
57
60
67
70
73
76
85
87
88
93
94
96
97
98
99
Cost:  160.55000000000007

The total cost of the path should agree with 𝐽[0] so let’s check this.

J[0]

160.55





Chapter 11

11. Modeling in Higher Dimensions
11.1 The Perron-Frobenius Theorem
In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

In this lecture we will begin with the foundational concepts in spectral theory.

Then we will explore the Perron-Frobenius theorem and connect it to applications in Markov chains
and networks.

We will use the following imports:

import numpy as np
from numpy.linalg import eig
import scipy as sp
import quantecon as qe

11.1.1 Nonnegative matrices
Often, in economics, the matrix that we are dealing with is nonnegative.

Nonnegative matrices have several special and useful properties.

In this section we will discuss some of them — in particular, the connection between nonnegativity
and eigenvalues.

An 𝑛 × 𝑚 matrix 𝐴 is called nonnegative if every element of 𝐴 is nonnegative, i.e., 𝑎𝑖𝑗 ≥ 0 for
every 𝑖, 𝑗.

We denote this as 𝐴 ≥ 0.

11.1.1.1 Irreducible matrices
We introduced irreducible matrices in the Markov chain lecture.

Here we generalize this concept:

Let 𝑎𝑘
𝑖𝑗 be element (𝑖, 𝑗) of 𝐴𝑘.

An 𝑛 × 𝑛 nonnegative matrix 𝐴 is called irreducible if 𝐴 + 𝐴2 + 𝐴3 + ⋯ ≫ 0, where ≫ 0 indicates
that every element in 𝐴 is strictly positive.

In other words, for each 𝑖, 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑛, there exists a 𝑘 ≥ 0 such that 𝑎𝑘
𝑖𝑗 > 0.

11.1.1.2 Left eigenvectors
Recall that we previously discussed eigenvectors in Eigenvalues and Eigenvectors.

In particular, 𝜆 is an eigenvalue of 𝐴 and 𝑣 is an eigenvector of 𝐴 if 𝑣 is nonzero and satisfy

𝐴𝑣 = 𝜆𝑣. (11.4)
In this section we introduce left eigenvectors.

To avoid confusion, what we previously referred to as “eigenvectors” will be called “right
eigenvectors”.

Left eigenvectors will play important roles in what follows, including that of stochastic steady states
for dynamic models under a Markov assumption.



Example 11.23.

Here are some examples to illustrate this further:

𝐴 = [0.5
0.2

0.1
0.2] (11.1)

𝐴 is irreducible since 𝑎𝑖𝑗 > 0 for all (𝑖, 𝑗).

𝐵 = [0
1

1
0], 𝐵2 = [1

0
0
1] (11.2)

𝐵 is irreducible since 𝐵 + 𝐵2 is a matrix of ones.

𝐶 = [1
0

0
1] (11.3)

𝐶 is not irreducible since 𝐶𝑘 = 𝐶 for all 𝑘 ≥ 0 and thus 𝑐𝑘
12, 𝑐𝑘

21 = 0 for all 𝑘 ≥ 0.

A vector 𝑤 is called a left eigenvector of 𝐴 if 𝑤 is a right eigenvector of 𝐴⊤.

In other words, if 𝑤 is a left eigenvector of matrix 𝐴, then 𝐴⊤𝑤 = 𝜆𝑤, where 𝜆 is the eigenvalue
associated with the left eigenvector 𝑣.

This hints at how to compute left eigenvectors

A = np.array([[3, 2],
              [1, 4]])

# Compute eigenvalues and right eigenvectors
λ, v = eig(A)

# Compute eigenvalues and left eigenvectors
λ, w = eig(A.T)

# Keep 5 decimals
np.set_printoptions(precision=5)

print(f"The eigenvalues of A are:\n {λ}\n")
print(f"The corresponding right eigenvectors are: \n {v[:,0]} and {-v[:,1]}\n")
print(f"The corresponding left eigenvectors are: \n {w[:,0]} and {-w[:,1]}\n")

The eigenvalues of A are:
 [2. 5.]

The corresponding right eigenvectors are: 
 [-0.89443  0.44721] and [0.70711 0.70711]

The corresponding left eigenvectors are: 
 [-0.70711  0.70711] and [0.44721 0.89443]

We can also use scipy.linalg.eig with argument left=True to find left eigenvectors directly

eigenvals, ε, e = sp.linalg.eig(A, left=True)

print(f"The eigenvalues of A are:\n {eigenvals.real}\n")
print(f"The corresponding right eigenvectors are: \n {e[:,0]} and {-e[:,1]}\n")
print(f"The corresponding left eigenvectors are: \n {ε[:,0]} and {-ε[:,1]}\n")



The eigenvalues of A are:
 [2. 5.]

The corresponding right eigenvectors are: 
 [-0.89443  0.44721] and [0.70711 0.70711]

The corresponding left eigenvectors are: 
 [-0.70711  0.70711] and [0.44721 0.89443]

The eigenvalues are the same while the eigenvectors themselves are different.

(Also note that we are taking the nonnegative value of the eigenvector of dominant eigenvalue, this
is because eig automatically normalizes the eigenvectors.)

We can then take transpose to obtain 𝐴⊤𝑤 = 𝜆𝑤 and obtain 𝑤⊤𝐴 = 𝜆𝑤⊤.

This is a more common expression and where the name left eigenvectors originates.

11.1.1.3 The Perron-Frobenius theorem
For a square nonnegative matrix 𝐴, the behavior of 𝐴𝑘 as 𝑘 → ∞ is controlled by the eigenvalue
with the largest absolute value, often called the dominant eigenvalue.

For any such matrix 𝐴, the Perron-Frobenius theorem characterizes certain properties of the
dominant eigenvalue and its corresponding eigenvector.

(This is a relatively simple version of the theorem — for more details see here).

We will see applications of the theorem below.

Let’s build our intuition for the theorem using a simple example we have seen before.

Now let’s consider examples for each case.

11.1.1.3.1 Example: irreducible matrix
Consider the following irreducible matrix 𝐴:

A = np.array([[0, 1, 0],
              [.5, 0, .5],
              [0, 1, 0]])

We can compute the dominant eigenvalue and the corresponding eigenvector

eig(A)

Theorem 11.9. Perron-Frobenius Theorem

If a matrix 𝐴 ≥ 0 then,

1. the dominant eigenvalue of 𝐴, 𝑟(𝐴), is real-valued and nonnegative.
2. for any other eigenvalue (possibly complex) 𝜆 of 𝐴, | 𝜆 | ≤ 𝑟(𝐴).
3. we can find a nonnegative and nonzero eigenvector 𝑣 such that 𝐴𝑣 = 𝑟(𝐴)𝑣.

Moreover if 𝐴 is also irreducible then,

4. the eigenvector 𝑣 associated with the eigenvalue 𝑟(𝐴) is strictly positive.
5. there exists no other positive eigenvector 𝑣 (except scalar multiples of 𝑣) associated with

𝑟(𝐴).

(More of the Perron-Frobenius theorem about primitive matrices will be introduced below.)

https://en.wikipedia.org/wiki/Perron%E2%80%93Frobenius\_theorem


EigResult(eigenvalues=array([-1.00000e+00, -3.30139e-18,  1.00000e+00]),
eigenvectors=array([[ 5.77350e-01,  7.07107e-01,  5.77350e-01],
       [-5.77350e-01,  2.95712e-18,  5.77350e-01],
       [ 5.77350e-01, -7.07107e-01,  5.77350e-01]]))

Now we can see the claims of the Perron-Frobenius theorem holds for the irreducible matrix 𝐴:

1. The dominant eigenvalue is real-valued and non-negative.
2. All other eigenvalues have absolute values less than or equal to the dominant eigenvalue.
3. A non-negative and nonzero eigenvector is associated with the dominant eigenvalue.
4. As the matrix is irreducible, the eigenvector associated with the dominant eigenvalue is

strictly positive.
5. There exists no other positive eigenvector associated with the dominant eigenvalue.

11.1.1.4 Primitive matrices
We know that in real world situations it’s hard for a matrix to be everywhere positive (although they
have nice properties).

The primitive matrices, however, can still give us helpful properties with looser definitions.

Let 𝐴 be a square nonnegative matrix and let 𝐴𝑘 be the 𝑘𝑡ℎ power of 𝐴.

A matrix is called primitive if there exists a 𝑘 ∈ ℕ such that 𝐴𝑘 is everywhere positive.

We can see that if a matrix is primitive, then it implies the matrix is irreducible but not vice versa.

Now let’s step back to the primitive matrices part of the Perron-Frobenius theorem

11.1.1.4.1 Example 1: primitive matrix
Consider the following primitive matrix 𝐵:

B = np.array([[0, 1, 1],
              [1, 0, 1],
              [1, 1, 0]])

Example 11.24.

Recall the examples given in irreducible matrices:

𝐴 = [0.5
0.2

0.1
0.2] (11.5)

𝐴 here is also a primitive matrix since 𝐴𝑘 is everywhere nonnegative for 𝑘 ∈ ℕ.

𝐵 = [0
1

1
0], 𝐵2 = [1

0
0
1] (11.6)

𝐵 is irreducible but not primitive since there are always zeros in either principal diagonal or
secondary diagonal.

Theorem 11.10. Continous of Perron-Frobenius Theorem

If 𝐴 is primitive then,

6. the inequality | 𝜆 | ≤ 𝑟(𝐴) is strict for all eigenvalues 𝜆 of 𝐴 distinct from 𝑟(𝐴), and
7. with 𝑣 and 𝑤 normalized so that the inner product of 𝑤 and 𝑣 = 1, we have 𝑟(𝐴)−𝑚𝐴𝑚

converges to 𝑣𝑤⊤ when 𝑚 → ∞. The matrix 𝑣𝑤⊤ is called the Perron projection of 𝐴.



np.linalg.matrix_power(B, 2)

array([[2, 1, 1],
       [1, 2, 1],
       [1, 1, 2]])

We compute the dominant eigenvalue and the corresponding eigenvector

eig(B)

EigResult(eigenvalues=array([-1.,  2., -1.]), eigenvectors=array([[-0.8165 ,
0.57735, -0.2788 ],
       [ 0.40825,  0.57735, -0.52521],
       [ 0.40825,  0.57735,  0.80401]]))

Now let’s give some examples to see if the claims of the Perron-Frobenius theorem hold for the
primitive matrix 𝐵:

1. The dominant eigenvalue is real-valued and non-negative.
2. All other eigenvalues have absolute values strictly less than the dominant eigenvalue.
3. A non-negative and nonzero eigenvector is associated with the dominant eigenvalue.
4. The eigenvector associated with the dominant eigenvalue is strictly positive.
5. There exists no other positive eigenvector associated with the dominant eigenvalue.
6. The inequality | 𝜆 | < 𝑟(𝐵) holds for all eigenvalues 𝜆 of 𝐵 distinct from the dominant

eigenvalue.

Furthermore, we can verify the convergence property (7) of the theorem on the following examples:

def compute_perron_projection(M):

    eigval, v = eig(M)
    eigval, w = eig(M.T)

    r = np.max(eigval)

    # Find the index of the dominant (Perron) eigenvalue
    i = np.argmax(eigval)

    # Get the Perron eigenvectors
    v_P = v[:, i].reshape(-1, 1)
    w_P = w[:, i].reshape(-1, 1)

    # Normalize the left and right eigenvectors
    norm_factor = w_P.T @ v_P
    v_norm = v_P / norm_factor

    # Compute the Perron projection matrix
    P = v_norm @ w_P.T
    return P, r

def check_convergence(M):
    P, r = compute_perron_projection(M)
    print("Perron projection:")
    print(P)

    # Define a list of values for n
    n_list = [1, 10, 100, 1000, 10000]



    for n in n_list:

        # Compute (A/r)^n
        M_n = np.linalg.matrix_power(M/r, n)

        # Compute the difference between A^n / r^n and the Perron projection
        diff = np.abs(M_n - P)

        # Calculate the norm of the difference matrix
        diff_norm = np.linalg.norm(diff, 'fro')
        print(f"n = {n}, error = {diff_norm:.10f}")

A1 = np.array([[1, 2],
               [1, 4]])

A2 = np.array([[0, 1, 1],
               [1, 0, 1],
               [1, 1, 0]])

A3 = np.array([[0.971, 0.029, 0.1, 1],
               [0.145, 0.778, 0.077, 0.59],
               [0.1, 0.508, 0.492, 1.12],
               [0.2, 0.8, 0.71, 0.95]])

for M in A1, A2, A3:
    print("Matrix:")
    print(M)
    check_convergence(M)
    print()
    print("-"*36)
    print()

Matrix:
[[1 2]
 [1 4]]
Perron projection:
[[0.1362  0.48507]
 [0.24254 0.8638 ]]
n = 1, error = 0.0989045731
n = 10, error = 0.0000000001
n = 100, error = 0.0000000000
n = 1000, error = 0.0000000000
n = 10000, error = 0.0000000000

------------------------------------

Matrix:
[[0 1 1]
 [1 0 1]
 [1 1 0]]
Perron projection:
[[0.33333 0.33333 0.33333]
 [0.33333 0.33333 0.33333]
 [0.33333 0.33333 0.33333]]
n = 1, error = 0.7071067812
n = 10, error = 0.0013810679



n = 100, error = 0.0000000000
n = 1000, error = 0.0000000000
n = 10000, error = 0.0000000000

------------------------------------

Matrix:
[[0.971 0.029 0.1   1.   ]
 [0.145 0.778 0.077 0.59 ]
 [0.1   0.508 0.492 1.12 ]
 [0.2   0.8   0.71  0.95 ]]
Perron projection:
[[0.12506 0.31949 0.20233 0.43341]
 [0.07714 0.19707 0.1248  0.26735]
 [0.12158 0.31058 0.19669 0.42133]
 [0.13885 0.3547  0.22463 0.48118]]
n = 1, error = 0.5361031549
n = 10, error = 0.0000434043
n = 100, error = 0.0000000000
n = 1000, error = 0.0000000000
n = 10000, error = 0.0000000000

------------------------------------

The convergence is not observed in cases of non-primitive matrices.

Let’s go through an example

B = np.array([[0, 1, 1],
              [1, 0, 0],
              [1, 0, 0]])

# This shows that the matrix is not primitive
print("Matrix:")
print(B)
print("100th power of matrix B:")
print(np.linalg.matrix_power(B, 100))

check_convergence(B)

Matrix:
[[0 1 1]
 [1 0 0]
 [1 0 0]]
100th power of matrix B:
[[1125899906842624                0                0]
 [               0  562949953421312  562949953421312]
 [               0  562949953421312  562949953421312]]
Perron projection:
[[0.5     0.35355 0.35355]
 [0.35355 0.25    0.25   ]
 [0.35355 0.25    0.25   ]]
n = 1, error = 1.0000000000
n = 10, error = 1.0000000000
n = 100, error = 1.0000000000
n = 1000, error = 1.0000000000
n = 10000, error = 1.0000000000



The result shows that the matrix is not primitive as it is not everywhere positive.

These examples show how the Perron-Frobenius theorem relates to the eigenvalues and
eigenvectors of positive matrices and the convergence of the power of matrices.

In fact we have already seen the theorem in action before in the Markov chain lecture.

11.1.1.4.2 Example 2: connection to Markov chains
We are now prepared to bridge the languages spoken in the two lectures.

A primitive matrix is both irreducible and aperiodic.

So Perron-Frobenius theorem explains why both Imam and Temple matrix and Hamilton matrix
converge to a stationary distribution, which is the Perron projection of the two matrices

P = np.array([[0.68, 0.12, 0.20],
              [0.50, 0.24, 0.26],
              [0.36, 0.18, 0.46]])

print(compute_perron_projection(P)[0])

[[0.56146 0.15565 0.28289]
 [0.56146 0.15565 0.28289]
 [0.56146 0.15565 0.28289]]

mc = qe.MarkovChain(P)
ψ_star = mc.stationary_distributions[0]
ψ_star

array([0.56146, 0.15565, 0.28289])

P_hamilton = np.array([[0.971, 0.029, 0.000],
                       [0.145, 0.778, 0.077],
                       [0.000, 0.508, 0.492]])

print(compute_perron_projection(P_hamilton)[0])

[[0.8128  0.16256 0.02464]
 [0.8128  0.16256 0.02464]
 [0.8128  0.16256 0.02464]]

mc = qe.MarkovChain(P_hamilton)
ψ_star = mc.stationary_distributions[0]
ψ_star

array([0.8128 , 0.16256, 0.02464])

We can also verify other properties hinted by Perron-Frobenius in these stochastic matrices.

Another example is the relationship between convergence gap and convergence rate.

In the exercise, we stated that the convergence rate is determined by the spectral gap, the difference
between the largest and the second largest eigenvalue.

This can be proven using what we have learned here.

Please note that we use 11 for a vector of ones in this lecture.

With Markov model 𝑀  with state space 𝑆 and transition matrix 𝑃 , we can write 𝑃 𝑡 as

𝑃 𝑡 = ∑
𝑛−1

𝑖=1
𝜆𝑡

𝑖𝑣𝑖𝑤⊤
𝑖 + 11𝜓∗, (11.7)

This is proven in Sargent & Stachurski (2023) and a nice discussion can be found here.

https://en.wikipedia.org/wiki/Hamiltonian\_matrix
https://math.stackexchange.com/questions/2433997/can-all-matrices-be-decomposed-as-product-of-right-and-left-eigenvector


In this formula 𝜆𝑖 is an eigenvalue of 𝑃  with corresponding right and left eigenvectors 𝑣𝑖 and 𝑤𝑖 .

Premultiplying 𝑃 𝑡 by arbitrary 𝜓 ∈ 𝒟 (𝑆) and rearranging now gives

𝜓𝑃 𝑡 − 𝜓∗ = ∑
𝑛−1

𝑖=1
𝜆𝑡

𝑖𝜓𝑣𝑖𝑤⊤
𝑖 (11.8)

Recall that eigenvalues are ordered from smallest to largest from 𝑖 = 1…𝑛.

As we have seen, the largest eigenvalue for a primitive stochastic matrix is one.

This can be proven using Gershgorin Circle Theorem, but it is out of the scope of this lecture.

So by the statement (6) of Perron-Frobenius theorem, 𝜆𝑖 < 1 for all 𝑖 < 𝑛, and 𝜆𝑛 = 1 when 𝑃  is
primitive.

Hence, after taking the Euclidean norm deviation, we obtain

| 𝜓𝑃 𝑡 − 𝜓∗ | = 𝑂(𝜂𝑡) where 𝜂 := | 𝜆𝑛−1 | < 1 (11.9)

Thus, the rate of convergence is governed by the modulus of the second largest eigenvalue.

https://en.wikipedia.org/wiki/Gershgorin\_circle\_theorem


Exercise 11.55. Leontief’s Input-Output Model

Wassily Leontief developed a model of an economy with 𝑛 sectors producing 𝑛 different
commodities representing the interdependencies of different sectors of an economy.

Under this model some of the output is consumed internally by the industries and the rest is
consumed by external consumers.

We define a simple model with 3 sectors - agriculture, industry, and service.

The following table describes how output is distributed within the economy:

Total output Agriculture Industry Service Consumer
Agriculture 𝑥1 0.3𝑥1 0.2𝑥2 0.3𝑥3 4

Industry 𝑥2 0.2𝑥1 0.4𝑥2 0.3𝑥3 5
Service 𝑥3 0.2𝑥1 0.5𝑥2 0.1𝑥3 12

The first row depicts how agriculture’s total output 𝑥1 is distributed

• 0.3𝑥1 is used as inputs within agriculture itself,
• 0.2𝑥2 is used as inputs by the industry sector to produce 𝑥2 units,
• 0.3𝑥3 is used as inputs by the service sector to produce 𝑥3 units and
• 4 units is the external demand by consumers.

We can transform this into a system of linear equations for the 3 sectors as given below:

𝑥1 = 0.3𝑥1 + 0.2𝑥2 + 0.3𝑥3 + 4
𝑥2 = 0.2𝑥1 + 0.4𝑥2 + 0.3𝑥3 + 5
𝑥3 = 0.2𝑥1 + 0.5𝑥2 + 0.1𝑥3 + 12

(11.10)

This can be transformed into the matrix equation 𝑥 = 𝐴𝑥 + 𝑑 where

𝑥 =
[
[
[𝑥1

𝑥2
𝑥3]

]
], 𝐴 =

[
[
[0.3

0.2
0.2

0.2
0.4
0.5

0.3
0.3
0.1]

]
] and 𝑑 =

[
[
[ 4

5
12]

]
] (11.11)

The solution 𝑥∗ is given by the equation 𝑥∗ = (𝐼 − 𝐴)−1𝑑

1. Since 𝐴 is a nonnegative irreducible matrix, find the Perron-Frobenius eigenvalue of 𝐴.
2. Use the Neumann Series Lemma to find the solution 𝑥∗ if it exists.

11.1.2 Exercises

https://en.wikipedia.org/wiki/Wassily\_Leontief


Solution 11.49. Solution to Exercise 1

A = np.array([[0.3, 0.2, 0.3],
              [0.2, 0.4, 0.3],
              [0.2, 0.5, 0.1]])

evals, evecs = eig(A)

r = max(abs(λ) for λ in evals)   #dominant eigenvalue/spectral radius
print(r)

0.8444086477164554

Since we have 𝑟(𝐴) < 1 we can thus find the solution using the Neumann Series Lemma.

I = np.identity(3)
B = I - A

d = np.array([4, 5, 12])
d.shape = (3,1)

B_inv = np.linalg.inv(B)
x_star = B_inv @ d
print(x_star)

[[38.30189]
 [44.33962]
 [46.47799]]



11.2 Input-Output Models

11.2.1 Overview
This lecture requires the following imports and installs before we proceed.

!pip install quantecon_book_networks
!pip install quantecon
!pip install pandas-datareader

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import quantecon_book_networks
import quantecon_book_networks.input_output as qbn_io
import quantecon_book_networks.plotting as qbn_plt
import quantecon_book_networks.data as qbn_data
import matplotlib as mpl
from matplotlib.patches import Polygon

quantecon_book_networks.config("matplotlib")
mpl.rcParams.update(mpl.rcParamsDefault)

The following figure illustrates a network of linkages among 15 sectors obtained from the US Bureau
of Economic Analysis’s 2021 Input-Output Accounts Data.



Figure 113.  US 15 sector production network

Label Sector Label Sector Label Sector
ag Agriculture wh Wholesale pr Professional Services
mi Mining re Retail ed Education & Health
ut Utilities tr Transportation ar Arts & Entertainment
co Construction in Information ot Other Services (exc govt)
ma Manufacturing fi Finance go Government

An arrow from 𝑖 to 𝑗 means that some of sector 𝑖’s output serves as an input to production of sector
𝑗.

Economies are characterised by many such links.

A basic framework for their analysis is Leontief’s input-output model.

After introducing the input-output model, we describe some of its connections to linear
programming lecture.

https://en.wikipedia.org/wiki/Wassily\_Leontief
/lp-intro
/lp-intro


11.2.2 Input-output analysis
Let

• 𝑥0 be the amount of a single exogenous input to production, say labor
• 𝑥𝑗, 𝑗 = 1, …𝑛 be the gross output of final good 𝑗
• 𝑑𝑗, 𝑗 = 1, …𝑛 be the net output of final good 𝑗 that is available for final consumption
• 𝑧𝑖𝑗 be the quantity of good 𝑖 allocated to be an input to producing good 𝑗 for 𝑖 = 1, …𝑛, 𝑗 =

1, …𝑛
• 𝑧0𝑗 be the quantity of labor allocated to producing good 𝑗.
• 𝑎𝑖𝑗 be the number of units of good 𝑖 required to produce one unit of good 𝑗, 𝑖 = 0, …, 𝑛, 𝑗 =

1, …𝑛.
• 𝑤 > 0 be an exogenous wage of labor, denominated in dollars per unit of labor
• 𝑝 be an 𝑛 × 1 vector of prices of produced goods 𝑖 = 1, …, 𝑛.

The technology for producing good 𝑗 ∈ {1, …, 𝑛} is described by the Leontief function

𝑥𝑗 = min
𝑖∈{0,…,𝑛}

(
𝑧𝑖𝑗

𝑎𝑖𝑗
) (11.12)

11.2.2.1 Two goods
To illustrate, we begin by setting 𝑛 = 2 and formulating the following network.

Feasible allocations must satisfy

(1 − 𝑎11)𝑥1 − 𝑎12𝑥2 ≥ 𝑑1

−𝑎21𝑥1 + (1 − 𝑎22)𝑥2 ≥ 𝑑2

𝑎01𝑥1 + 𝑎02𝑥2 ≤ 𝑥0

(11.13)

This can be graphically represented as follows.



More generally, constraints on production are

(𝐼 − 𝐴)𝑥 ≥ 𝑑

𝑎⊤
0 𝑥 ≤ 𝑥0

(11.14)

where 𝐴 is the 𝑛 × 𝑛 matrix with typical element 𝑎𝑖𝑗 and 𝑎⊤
0 = [𝑎01 ⋯ 𝑎0𝑛].

If we solve the first block of equations of (3) for gross output 𝑥 we get

𝑥 = (𝐼 − 𝐴)−1𝑑 ≡ 𝐿𝑑 (11.15)

where the matrix 𝐿 = (𝐼 − 𝐴)−1 is sometimes called a Leontief Inverse.

To assure that the solution 𝑋 of (4) is a positive vector, the following Hawkins-Simon conditions
suffice:

det(𝐼 − 𝐴) > 0 and
(𝐼 − 𝐴)𝑖𝑗 > 0 for all𝑖 = 𝑗 (11.16)

A = np.array([[0.1, 40],
             [0.01, 0]])
d = np.array([50, 2]).reshape((2, 1))

Example 11.25.

For example a two-good economy described by

𝐴 = [ 0.1
0.01

40
0 ] and𝑑 = [50

2 ] (11.17)



I = np.identity(2)
B = I - A
B

array([[ 9.e-01, -4.e+01],
       [-1.e-02,  1.e+00]])

Let’s check the Hawkins-Simon conditions

np.linalg.det(B) > 0 # checking Hawkins-Simon conditions

True

Now, let’s compute the Leontief inverse matrix

L = np.linalg.inv(B) # obtaining Leontief inverse matrix
L

array([[2.0e+00, 8.0e+01],
       [2.0e-02, 1.8e+00]])

x = L @ d   # solving for gross output
x

array([[260. ],
       [  4.6]])

11.2.3 Production possibility frontier
The second equation of (3) can be written

𝑎⊤
0 𝑥 = 𝑥0 (11.18)

or

𝐴⊤
0 𝑑 = 𝑥0 (11.19)

where

𝐴⊤
0 = 𝑎⊤

0 (𝐼 − 𝐴)−1 (11.20)

For 𝑖 ∈ {1, …, 𝑛}, the 𝑖th component of 𝐴0 is the amount of labor that is required to produce one
unit of final output of good 𝑖.

Equation (8) sweeps out a production possibility frontier of final consumption bundles 𝑑 that can
be produced with exogenous labor input 𝑥0.

Then we can find 𝐴⊤
0  by

a0 = np.array([4, 100])
A0 = a0 @ L
A0

array([ 10., 500.])

Thus, the production possibility frontier for this economy is

Example 11.26.

Consider the example in (6).

Suppose we are now given

𝑎⊤
0 = [4 100] (11.21)



10𝑑1 + 500𝑑2 = 𝑥0 (11.22)

11.2.4 Prices
Dorfman et al. (1958) argue that relative prices of the 𝑛 produced goods must satisfy

𝑝1 = 𝑎11𝑝1 + 𝑎21𝑝2 + 𝑎01𝑤
𝑝2 = 𝑎12𝑝1 + 𝑎22𝑝2 + 𝑎02𝑤

(11.23)

More generally,

𝑝 = 𝐴⊤𝑝 + 𝑎0𝑤 (11.24)

which states that the price of each final good equals the total cost of production, which consists of
costs of intermediate inputs 𝐴⊤𝑝 plus costs of labor 𝑎0𝑤.

This equation can be written as

(𝐼 − 𝐴⊤)𝑝 = 𝑎0𝑤 (11.25)

which implies

𝑝 = (𝐼 − 𝐴⊤)−1𝑎0𝑤 (11.26)

Notice how (14) with (3) forms a conjugate pair through the appearance of operators that are
transposes of one another.

This connection surfaces again in a classic linear program and its dual.

11.2.5 Linear programs
A primal problem is

min
𝑥

𝑤𝑎⊤
0 𝑥 (11.27)

subject to

(𝐼 − 𝐴)𝑥 ≥ 𝑑 (11.28)

The associated dual problem is

max
𝑝

𝑝⊤𝑑 (11.29)

subject to

(𝐼 − 𝐴)⊤𝑝 ≤ 𝑎0𝑤 (11.30)

The primal problem chooses a feasible production plan to minimize costs for delivering a pre-
assigned vector of final goods consumption 𝑑.

The dual problem chooses prices to maximize the value of a pre-assigned vector of final goods 𝑑
subject to prices covering costs of production.

By the strong duality theorem, optimal value of the primal and dual problems coincide:

𝑤𝑎⊤
0 𝑥∗ = 𝑝∗𝑑 (11.31)

where ∗’s denote optimal choices for the primal and dual problems.

The dual problem can be graphically represented as follows.

https://en.wikipedia.org/wiki/Dual\_linear\_program\#Strong\_duality


11.2.6 Leontief inverse
We have discussed that gross output 𝑥 is given by (4), where 𝐿 is called the Leontief Inverse.

Recall the Neumann Series Lemma which states that 𝐿 exists if the spectral radius 𝑟(𝐴) < 1.

In fact

𝐿 = ∑
∞

𝑖=0
𝐴𝑖 (11.32)

11.2.6.1 Demand shocks
Consider the impact of a demand shock Δ𝑑 which shifts demand from 𝑑0 to 𝑑1 = 𝑑0 + Δ𝑑.

Gross output shifts from 𝑥0 = 𝐿𝑑0 to 𝑥1 = 𝐿𝑑1.

If 𝑟(𝐴) < 1 then a solution exists and

Δ𝑥 = 𝐿Δ𝑑 = Δ𝑑 + 𝐴(Δ𝑑) + 𝐴2(Δ𝑑) + ⋯ (11.33)

This illustrates that an element 𝑙𝑖𝑗 of 𝐿 shows the total impact on sector 𝑖 of a unit change in
demand of good 𝑗.

11.2.7 Applications of graph theory
We can further study input-output networks through applications of graph theory.

An input-output network can be represented by a weighted directed graph induced by the adjacency
matrix 𝐴.

The set of nodes 𝑉 = [𝑛] is the list of sectors and the set of edges is given by

𝐸 = {(𝑖, 𝑗) ∈ 𝑉 × 𝑉 : 𝑎𝑖𝑗 > 0} (11.34)

/eigen-ii
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In Fig. 1 weights are indicated by the widths of the arrows, which are proportional to the
corresponding input-output coefficients.

We can now use centrality measures to rank sectors and discuss their importance relative to the
other sectors.

11.2.7.1 Eigenvector centrality
Eigenvector centrality of a node 𝑖 is measured by

𝑒𝑖 = 1
𝑟(𝐴)

∑
1≤𝑗≤𝑛

𝑎𝑖𝑗𝑒𝑗 (11.35)

We plot a bar graph of hub-based eigenvector centrality for the sectors represented in Fig. 1.

A higher measure indicates higher importance as a supplier.

As a result demand shocks in most sectors will significantly impact activity in sectors with high
eigenvector centrality.

The above figure indicates that manufacturing is the most dominant sector in the US economy.

11.2.7.2 Output multipliers
Another way to rank sectors in input-output networks is via output multipliers.

The output multiplier of sector 𝑗 denoted by 𝜇𝑗 is usually defined as the total sector-wide impact
of a unit change of demand in sector 𝑗.

Earlier when disussing demand shocks we concluded that for 𝐿 = (𝑙𝑖𝑗) the element 𝑙𝑖𝑗 represents
the impact on sector 𝑖 of a unit change in demand in sector 𝑗.

Thus,



𝜇𝑗 = ∑
𝑛

𝑗=1
𝑙𝑖𝑗 (11.36)

This can be written as 𝜇⊤ = 11⊤𝐿 or

𝜇⊤ = 11⊤(𝐼 − 𝐴)−1 (11.37)

Please note that here we use 11 to represent a vector of ones.

High ranking sectors within this measure are important buyers of intermediate goods.

A demand shock in such sectors will cause a large impact on the whole production network.

The following figure displays the output multipliers for the sectors represented in Fig. 1.

We observe that manufacturing and agriculture are highest ranking sectors.



Exercise 11.56.

Dorfman et al. (1958) Chapter 9 discusses an example with the following parameter settings:

𝐴 = [ 0.1
0.16

1.46
0.17] and𝑎0 = [.04 .33] (11.38)

𝑥 = [250
120] and𝑥0 = 50 (11.39)

𝑑 = [50
60] (11.40)

Describe how they infer the input-output coefficients in 𝐴 and 𝑎0 from the following
hypothetical underlying “data” on agricultural and manufacturing industries:

𝑧 = [25
40

175
20 ] and𝑧0 = [10 40] (11.41)

where 𝑧0 is a vector of labor services used in each industry.

Solution 11.50. Solution to Exercise 1

For each 𝑖 = 0, 1, 2 and 𝑗 = 1, 2

𝑎𝑖𝑗 =
𝑧𝑖𝑗

𝑥𝑗
(11.42)

11.2.8 Exercises

Exercise 11.57.

Derive the production possibility frontier for the economy characterized in the previous exercise.

Solution 11.51. Solution to Exercise 2

A = np.array([[0.1, 1.46],
              [0.16, 0.17]])
a_0 = np.array([0.04, 0.33])

I = np.identity(2)
B = I - A
L = np.linalg.inv(B)

A_0 = a_0 @ L
A_0

array([0.16751071, 0.69224776])

Thus the production possibility frontier is given by

0.17𝑑1 + 0.69𝑑2 = 50 (11.43)



Figure 11.114.  An illustration of the lake model

11.3 A Lake Model of Employment

11.3.1 Outline
In addition to what’s in Anaconda, this lecture will need the following libraries:

import numpy as np
import matplotlib.pyplot as plt

11.3.2 The Lake model
This model is sometimes called the lake model because there are two pools of workers:

1. those who are currently employed.
2. those who are currently unemployed but are seeking employment.

The “flows” between the two lakes are as follows:

1. workers exit the labor market at rate 𝑑.
2. new workers enter the labor market at rate 𝑏.
3. employed workers separate from their jobs at rate 𝛼.
4. unemployed workers find jobs at rate 𝜆.

The graph below illustrates the lake model.

11.3.3 Dynamics
Let 𝑒𝑡 and 𝑢𝑡 be the number of employed and unemployed workers at time 𝑡 respectively.

The total population of workers is 𝑛𝑡 = 𝑒𝑡 + 𝑢𝑡.

The number of unemployed and employed workers thus evolves according to:

𝑢𝑡+1 = (1 − 𝑑)(1 − 𝜆)𝑢𝑡 + 𝛼(1 − 𝑑)𝑒𝑡 + 𝑏𝑛𝑡

= ((1 − 𝑑)(1 − 𝜆) + 𝑏)𝑢𝑡 + (𝛼(1 − 𝑑) + 𝑏)𝑒𝑡

𝑒𝑡+1 = (1 − 𝑑)𝜆𝑢𝑡 + (1 − 𝛼)(1 − 𝑑)𝑒𝑡

(11.44)

We can arrange (1) as a linear system of equations in matrix form 𝑥𝑡+1 = 𝐴𝑥𝑡 where

𝑥𝑡+1 = [𝑢𝑡+1
𝑒𝑡+1

] 𝐴 = [(1 − 𝑑)(1 − 𝜆) + 𝑏
(1 − 𝑑)𝜆

𝛼(1 − 𝑑) + 𝑏
(1 − 𝛼)(1 − 𝑑)] and 𝑥𝑡 = [𝑢𝑡

𝑒𝑡
]. (11.45)

Suppose at 𝑡 = 0 we have 𝑥0 = [𝑢0 𝑒0]⊤.

Then, 𝑥1 = 𝐴𝑥0, 𝑥2 = 𝐴𝑥1 = 𝐴2𝑥0 and thus 𝑥𝑡 = 𝐴𝑡𝑥0.

Thus the long-run outcomes of this system may depend on the initial condition 𝑥0 and the matrix 𝐴.



We are interested in how 𝑢𝑡 and 𝑒𝑡 evolve over time.

What long-run unemployment rate and employment rate should we expect?

Do long-run outcomes depend on the initial values (𝑢0, 𝑒𝑜)?

11.3.3.1 Visualising the long-run outcomes
Let us first plot the time series of unemployment 𝑢𝑡, employment 𝑒𝑡, and labor force 𝑛𝑡.

class LakeModel:
    """
    Solves the lake model and computes dynamics of the unemployment stocks and
    rates.

    Parameters:
    ------------
    λ : scalar
        The job finding rate for currently unemployed workers
    α : scalar
        The dismissal rate for currently employed workers
    b : scalar
        Entry rate into the labor force
    d : scalar
        Exit rate from the labor force

    """
    def __init__(self, λ=0.1, α=0.013, b=0.0124, d=0.00822):
        self.λ, self.α, self.b, self.d = λ, α, b, d

        λ, α, b, d = self.λ, self.α, self.b, self.d
        self.g = b - d
        g = self.g

        self.A = np.array([[(1-d)*(1-λ) + b,   α*(1-d) + b],
                           [        (1-d)*λ,   (1-α)*(1-d)]])

        self.ū = (1 + g - (1 - d) * (1 - α)) / (1 + g - (1 - d) * (1 - α) + (1 - d) *
λ)
        self.ē = 1 - self.ū

    def simulate_path(self, x0, T=1000):
        """
        Simulates the sequence of employment and unemployment

        Parameters
        ----------
        x0 : array
            Contains initial values (u0,e0)
        T : int
            Number of periods to simulate

        Returns
        ----------
        x : iterator
            Contains sequence of employment and unemployment rates



        """
        x0 = np.atleast_1d(x0)  # Recast as array just in case
        x_ts= np.zeros((2, T))
        x_ts[:, 0] = x0
        for t in range(1, T):
            x_ts[:, t] = self.A @ x_ts[:, t-1]
        return x_ts

lm = LakeModel()
e_0 = 0.92          # Initial employment
u_0 = 1 - e_0       # Initial unemployment, given initial n_0 = 1

lm = LakeModel()
T = 100         # Simulation length

x_0 = (u_0, e_0)
x_path = lm.simulate_path(x_0, T)

fig, axes = plt.subplots(3, 1, figsize=(10, 8))

axes[0].plot(x_path[0, :], lw=2)
axes[0].set_title('Unemployment')

axes[1].plot(x_path[1, :], lw=2)
axes[1].set_title('Employment')

axes[2].plot(x_path.sum(0), lw=2)
axes[2].set_title('Labor force')

for ax in axes:
    ax.grid()

plt.tight_layout()
plt.show()



Not surprisingly, we observe that labor force 𝑛𝑡 increases at a constant rate.

This coincides with the fact there is only one inflow source (new entrants pool) to unemployment
and employment pools.

The inflow and outflow of labor market system is determined by constant exit rate and entry rate of
labor market in the long run.

In detail, let 11 = [1, 1]⊤ be a vector of ones.

Observe that
𝑛𝑡+1 = 𝑢𝑡+1 + 𝑒𝑡+1

= 11⊤𝑥𝑡+1

= 11⊤𝐴𝑥𝑡

= (1 + 𝑏 − 𝑑)(𝑢𝑡 + 𝑒𝑡)
= (1 + 𝑏 − 𝑑)𝑛𝑡.

(11.46)

Hence, the growth rate of 𝑛𝑡 is fixed at 1 + 𝑏 − 𝑑.

Moreover, the times series of unemployment and employment seems to grow at some stable rates in
the long run.

11.3.3.2 The application of Perron-Frobenius theorem
Since by intuition if we consider unemployment pool and employment pool as a closed system, the
growth should be similar to the labor force.

We next ask whether the long-run growth rates of 𝑒𝑡 and 𝑢𝑡 also dominated by 1 + 𝑏 − 𝑑 as labor
force.



The answer will be clearer if we appeal to Perron-Frobenius theorem.

The importance of the Perron-Frobenius theorem stems from the fact that firstly in the real world
most matrices we encounter are nonnegative matrices.

Secondly, many important models are simply linear iterative models that begin with an initial
condition 𝑥0 and then evolve recursively by the rule 𝑥𝑡+1 = 𝐴𝑥𝑡 or in short 𝑥𝑡 = 𝐴𝑡𝑥0.

This theorem helps characterise the dominant eigenvalue 𝑟(𝐴) which determines the behavior of
this iterative process.

11.3.3.2.1 Dominant eigenvector
We now illustrate the power of the Perron-Frobenius theorem by showing how it helps us to analyze
the lake model.

Since 𝐴 is a nonnegative and irreducible matrix, the Perron-Frobenius theorem implies that:

• the spectral radius 𝑟(𝐴) is an eigenvalue of 𝐴, where

𝑟(𝐴) := max{| 𝜆 | : 𝜆 is an eigenvalue of𝐴} (11.47)

• any other eigenvalue 𝜆 in absolute value is strictly smaller than 𝑟(𝐴): | 𝜆 | < 𝑟(𝐴),
• there exist unique and everywhere positive right eigenvector 𝜙 (column vector) and left

eigenvector 𝜓 (row vector):

𝐴𝜙 = 𝑟(𝐴)𝜙, 𝜓𝐴 = 𝑟(𝐴)𝜓 (11.48)

• if further 𝐴 is positive, then with < 𝜓, 𝜙 >= 𝜓𝜙 = 1 we have

𝑟(𝐴)−𝑡𝐴𝑡 → 𝜙𝜓 (11.49)

The last statement implies that the magnitude of 𝐴𝑡 is identical to the magnitude of 𝑟(𝐴)𝑡 in the
long run, where 𝑟(𝐴) can be considered as the dominant eigenvalue in this lecture.

Therefore, the magnitude 𝑥𝑡 = 𝐴𝑡𝑥0 is also dominated by 𝑟(𝐴)𝑡 in the long run.

Recall that the spectral radius is bounded by column sums: for 𝐴 ≥ 0, we have

min
𝑗

colsum𝑗(𝐴) ≤ 𝑟(𝐴) ≤ max
𝑗

colsum𝑗(𝐴) (11.50)

Note that colsum𝑗(𝐴) = 1 + 𝑏 − 𝑑 for 𝑗 = 1, 2 and by (7) we can thus conclude that the dominant
eigenvalue is 𝑟(𝐴) = 1 + 𝑏 − 𝑑.

Denote 𝑔 = 𝑏 − 𝑑 as the overall growth rate of the total labor force, so that 𝑟(𝐴) = 1 + 𝑔.

The Perron-Frobenius implies that there is a unique positive eigenvector ̄𝑥 = [𝑢̄
̄𝑒] such that 𝐴 ̄𝑥 =

𝑟(𝐴) ̄𝑥 and [1 1] ̄𝑥 = 1:

𝑢̄ = 𝑏 + 𝛼(1 − 𝑑)
𝑏 + (𝛼 + 𝜆)(1 − 𝑑)

̄𝑒 = 𝜆(1 − 𝑑)
𝑏 + (𝛼 + 𝜆)(1 − 𝑑)

(11.51)

Since ̄𝑥 is the eigenvector corresponding to the dominant eigenvalue 𝑟(𝐴), we call ̄𝑥 the dominant
eigenvector.

This dominant eigenvector plays an important role in determining long-run outcomes as illustrated
below.



def plot_time_paths(lm, x0=None, T=1000, ax=None):
        """
        Plots the simulated time series.

        Parameters
        ----------
        lm : class
            Lake Model
        x0 : array
            Contains some different initial values.
        T : int
            Number of periods to simulate

        """

        if x0 is None:
            x0 = np.array([[5.0, 0.1]])

        ū, ē = lm.ū, lm.ē

        x0 = np.atleast_2d(x0)

        if ax is None:
            fig, ax = plt.subplots(figsize=(10, 8))
            # Plot line D
            s = 10
            ax.plot([0, s * ū], [0, s * ē], "k--", lw=1, label='set $D$')

        # Set the axes through the origin
        for spine in ["left", "bottom"]:
            ax.spines[spine].set_position("zero")
        for spine in ["right", "top"]:
            ax.spines[spine].set_color("none")

        ax.set_xlim(-2, 6)
        ax.set_ylim(-2, 6)
        ax.set_xlabel("unemployed workforce")
        ax.set_ylabel("employed workforce")
        ax.set_xticks((0, 6))
        ax.set_yticks((0, 6))

        # Plot time series
        for x in x0:
            x_ts = lm.simulate_path(x0=x)

            ax.scatter(x_ts[0, :], x_ts[1, :], s=4,)

            u0, e0 = x
            ax.plot([u0], [e0], "ko", ms=2, alpha=0.6)
            ax.annotate(f'$x_0 = ({u0},{e0})$',
                        xy=(u0, e0),
                        xycoords="data",



                        xytext=(0, 20),
                        textcoords="offset points",
                        arrowprops=dict(arrowstyle = "->"))

        ax.plot([ū], [ē], "ko", ms=4, alpha=0.6)
        ax.annotate(r'$\bar{x}$',
                xy=(ū, ē),
                xycoords="data",
                xytext=(20, -20),
                textcoords="offset points",
                arrowprops=dict(arrowstyle = "->"))

        if ax is None:
            plt.show()

lm = LakeModel(α=0.01, λ=0.1, d=0.02, b=0.025)
x0 = ((5.0, 0.1), (0.1, 4.0), (2.0, 1.0))
plot_time_paths(lm, x0=x0)

Since ̄𝑥 is an eigenvector corresponding to the eigenvalue 𝑟(𝐴), all the vectors in the set 𝐷 := {𝑥 ∈
ℝ2 : 𝑥 = 𝛼 ̄𝑥 for some 𝛼 > 0} are also eigenvectors corresponding to 𝑟(𝐴).

This set 𝐷 is represented by a dashed line in the above figure.

The graph illustrates that for two distinct initial conditions 𝑥0 the sequences of iterates (𝐴𝑡𝑥0)𝑡≥0
move towards 𝐷 over time.

This suggests that all such sequences share strong similarities in the long run, determined by the
dominant eigenvector ̄𝑥.



11.3.3.2.2 Negative growth rate
In the example illustrated above we considered parameters such that overall growth rate of the labor
force 𝑔 > 0.

Suppose now we are faced with a situation where the 𝑔 < 0, i.e., negative growth in the labor force.

This means that 𝑏 − 𝑑 < 0, i.e., workers exit the market faster than they enter.

What would the behavior of the iterative sequence 𝑥𝑡+1 = 𝐴𝑥𝑡 be now?

This is visualised below.

lm = LakeModel(α=0.01, λ=0.1, d=0.025, b=0.02)
plot_time_paths(lm, x0=x0)

Thus, while the sequence of iterates still moves towards the dominant eigenvector ̄𝑥, in this case
they converge to the origin.

This is a result of the fact that 𝑟(𝐴) < 1, which ensures that the iterative sequence (𝐴𝑡𝑥0)𝑡≥0
 will

converge to some point, in this case to (0, 0).

This leads us to the next result.

11.3.3.3 Properties
Since the column sums of 𝐴 are 𝑟(𝐴) = 1, the left eigenvector is 11⊤ = [1, 1].

Perron-Frobenius theory implies that

𝑟(𝐴)−𝑡𝐴𝑡 ≈ ̄𝑥11⊤ = [𝑢̄
̄𝑒
𝑢̄
̄𝑒]. (11.52)

As a result, for any 𝑥0 = (𝑢0, 𝑒0)
⊤, we have



𝑥𝑡 = 𝐴𝑡𝑥0 ≈ 𝑟(𝐴)𝑡[𝑢̄
̄𝑒
𝑢̄
̄𝑒][𝑢0

𝑒0
]

= (1 + 𝑔)𝑡(𝑢0 + 𝑒0)[
𝑢̄
̄𝑒]

= (1 + 𝑔)𝑡𝑛0 ̄𝑥
= 𝑛𝑡 ̄𝑥.

(11.53)

as 𝑡 is large enough.

We see that the growth of 𝑢𝑡 and 𝑒𝑡 also dominated by 𝑟(𝐴) = 1 + 𝑔 in the long run: 𝑥𝑡 grows along
𝐷 as 𝑟(𝐴) > 1 and converges to (0, 0) as 𝑟(𝐴) < 1.

Moreover, the long-run unemployment and employment are steady fractions of 𝑛𝑡.

The latter implies that 𝑢̄ and ̄𝑒 are long-run unemployment rate and employment rate, respectively.

In detail, we have the unemployment rates and employment rates: 𝑥𝑡/𝑛𝑡 = 𝐴𝑡𝑛0/𝑛𝑡 → ̄𝑥 as 𝑡 → ∞.

To illustrate the dynamics of the rates, let 𝐴 := 𝐴/(1 + 𝑔) be the transition matrix of 𝑟𝑡 := 𝑥𝑡/𝑛𝑡.

The dynamics of the rates follow

𝑟𝑡+1 =
𝑥𝑡+1
𝑛𝑡+1

=
𝑥𝑡+1

(1 + 𝑔)𝑛𝑡
= 𝐴𝑥𝑡

(1 + 𝑔)𝑛𝑡
= 𝐴𝑥𝑡

𝑛𝑡
= 𝐴𝑟𝑡. (11.54)

Observe that the column sums of 𝐴 are all one so that 𝑟(𝐴) = 1.

One can check that ̄𝑥 is also the right eigenvector of 𝐴 corresponding to 𝑟(𝐴) that ̄𝑥 = 𝐴 ̄𝑥.

Moreover, 𝐴𝑡𝑟0 → ̄𝑥 as 𝑡 → ∞ for any 𝑟0 = 𝑥0/𝑛0, since the above discussion implies

𝑟𝑡 = 𝐴𝑡𝑟0 = (1 + 𝑔)−𝑡𝐴𝑡𝑟0 = 𝑟(𝐴)−𝑡𝐴𝑡𝑟0 → [𝑢̄
̄𝑒
𝑢̄
̄𝑒]𝑟0 = [𝑢̄

̄𝑒]. (11.55)

This is illustrated below.

lm = LakeModel()
e_0 = 0.92          # Initial employment
u_0 = 1 - e_0       # Initial unemployment, given initial n_0 = 1

lm = LakeModel()
T = 100         # Simulation length

x_0 = (u_0, e_0)

x_path = lm.simulate_path(x_0, T)

rate_path = x_path / x_path.sum(0)

fig, axes = plt.subplots(2, 1, figsize=(10, 8))

# Plot steady ū and ē
axes[0].hlines(lm.ū, 0, T, 'r', '--', lw=2, label='ū')
axes[1].hlines(lm.ē, 0, T, 'r', '--', lw=2, label='ē')

titles = ['Unemployment rate', 'Employment rate']
locations = ['lower right', 'upper right']

# Plot unemployment rate and employment rate



for i, ax in enumerate(axes):
    ax.plot(rate_path[i, :], lw=2, alpha=0.6)
    ax.set_title(titles[i])
    ax.grid()
    ax.legend(loc=locations[i])

plt.tight_layout()
plt.show()

To provide more intuition for convergence, we further explain the convergence below without the
Perron-Frobenius theorem.

Suppose that 𝐴 = 𝑃𝐷𝑃−1 is diagonalizable, where 𝑃 = [𝑣1, 𝑣2] consists of eigenvectors 𝑣1 and 𝑣2
of 𝐴 corresponding to eigenvalues 𝛾1 and 𝛾2 respectively, and 𝐷 = diag(𝛾1, 𝛾2).

Let 𝛾1 = 𝑟(𝐴) = 1 and | 𝛾2 | < 𝛾1, so that the spectral radius is a dominant eigenvalue.

The dynamics of the rates follow 𝑟𝑡+1 = 𝐴𝑟𝑡, where 𝑟0 is a probability vector: ∑𝑗 𝑟0,𝑗 = 1.

Consider 𝑧𝑡 = 𝑃−1𝑟𝑡.

Then, we have 𝑧𝑡+1 = 𝑃−1𝑟𝑡+1 = 𝑃−1𝐴𝑟𝑡 = 𝑃−1𝐴𝑃𝑧𝑡 = 𝐷𝑧𝑡.

Hence, we obtain 𝑧𝑡 = 𝐷𝑡𝑧0, and for some 𝑧0 = (𝑐1, 𝑐2)
⊤ we have

𝑟𝑡 = 𝑃𝑧𝑡 = [𝑣1 𝑣2][
𝛾𝑡

1
0

0
𝛾𝑡

2
][𝑐1

𝑐2
] = 𝑐1𝛾𝑡

1𝑣1 + 𝑐2𝛾𝑡
2𝑣2. (11.56)

Since | 𝛾2 | < | 𝛾1 | = 1, the second term in the right hand side converges to zero.



Exercise 11.58. Evolution of unemployment and employment rate

How do the long-run unemployment rate and employment rate evolve if there is an increase in
the separation rate 𝛼 or a decrease in job finding rate 𝜆?

Is the result compatible with your intuition?

Plot the graph to illustrate how the line 𝐷 := {𝑥 ∈ ℝ2 : 𝑥 = 𝛼 ̄𝑥 for some 𝛼 > 0} shifts in the
unemployment-employment space.

Therefore, the convergence follows 𝑟𝑡 → 𝑐1𝑣1.

Since the column sums of 𝐴 are one and 𝑟0 is a probability vector, 𝑟𝑡 must be a probability vector.

In this case, 𝑐1𝑣1 must be a normalized eigenvector, so 𝑐1𝑣1 = ̄𝑥 and then 𝑟𝑡 → ̄𝑥.



Solution 11.52. Solution to Exercise 1

Eq. (8) implies that the long-run unemployment rate will increase, and the employment rate will
decrease if 𝛼 increases or 𝜆 decreases.

Suppose first that 𝛼 = 0.01, 𝜆 = 0.1, 𝑑 = 0.02, 𝑏 = 0.025. Assume that 𝛼 increases to 0.04.

The below graph illustrates that the line 𝐷 shifts clockwise downward, which indicates that the
fraction of unemployment rises as the separation rate increases.

fig, ax = plt.subplots(figsize=(10, 8))

lm = LakeModel(α=0.01, λ=0.1, d=0.02, b=0.025)
plot_time_paths(lm, ax=ax)
s=10
ax.plot([0, s * lm.ū], [0, s * lm.ē], "k--", lw=1, label='set $D$, α=0.01')

lm = LakeModel(α=0.04, λ=0.1, d=0.02, b=0.025)
plot_time_paths(lm, ax=ax)
ax.plot([0, s * lm.ū], [0, s * lm.ē], "r--", lw=1, label='set $D$, α=0.04')

ax.legend(loc='best')
plt.show()

11.3.4 Exercise



11.4 Networks
!pip install quantecon-book-networks pandas-datareader

11.4.1 Outline
In recent years there has been rapid growth in a field called network science.

Network science studies relationships between groups of objects.

One important example is the world wide web , where web pages are connected by hyperlinks.

Another is the human brain: studies of brain function emphasize the network of connections
between nerve cells (neurons).

Artificial neural networks are based on this idea, using data to build intricate connections between
simple processing units.

Epidemiologists studying transmission of diseases like COVID-19 analyze interactions between
groups of human hosts.

In operations research, network analysis is used to study fundamental problems as on minimum cost
flow, the traveling salesman, shortest paths, and assignment.

This lecture gives an introduction to economic and financial networks.

Some parts of this lecture are drawn from the text https://networks.quantecon.org/ but the level of
this lecture is more introductory.

We will need the following imports.

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import pandas as pd
import quantecon as qe

import matplotlib.cm as cm
import quantecon_book_networks.input_output as qbn_io
import quantecon_book_networks.data as qbn_data

import matplotlib.patches as mpatches

11.4.2 Economic and financial networks
Within economics, important examples of networks include

• financial networks
• production networks
• trade networks
• transport networks and
• social networks

Social networks affect trends in market sentiment and consumer decisions.

The structure of financial networks helps to determine relative fragility of the financial system.

The structure of production networks affects trade, innovation and the propagation of local shocks.

To better understand such networks, let’s look at some examples in more depth.

https://en.wikipedia.org/wiki/Network\_science
https://en.wikipedia.org/wiki/World\_Wide\_Web\#Linking
https://en.wikipedia.org/wiki/Neural\_circuit
https://en.wikipedia.org/wiki/Artificial\_neural\_network
https://en.wikipedia.org/wiki/Network\_medicine\#Network\_epidemics
https://en.wikipedia.org/wiki/Shortest\_path\_problem
https://networks.quantecon.org/


11.4.2.1 Example: Aircraft Exports
The following figure shows international trade in large commercial aircraft in 2019 based on
International Trade Data SITC Revision 2.

Figure 115.  Commercial Aircraft Network

The circles in the figure are called nodes or vertices – in this case they represent countries.

The arrows in the figure are called edges or links.

Node size is proportional to total exports and edge width is proportional to exports to the target
country.

(The data is for trade in commercial aircraft weighing at least 15,000kg and was sourced from CID
Dataverse.)

The figure shows that the US, France and Germany are major export hubs.

In the discussion below, we learn to quantify such ideas.

11.4.2.2 Example: A Markov Chain
Recall that, in our lecture on Markov chains we studied a dynamic model of business cycles where
the states are

• “ng” = “normal growth”
• “mr” = “mild recession”
• “sr” = “severe recession”



Let’s examine the following figure

This is an example of a network, where the set of nodes 𝑉  equals the states:

𝑉 = {"ng","mr","sr"} (11.57)

The edges between the nodes show the one month transition probabilities.

11.4.3 An introduction to graph theory
Now we’ve looked at some examples, let’s move on to theory.

This theory will allow us to better organize our thoughts.

The theoretical part of network science is constructed using a major branch of mathematics called
graph theory.

Graph theory can be complicated and we will cover only the basics.

However, these concepts will already be enough for us to discuss interesting and important ideas on
economic and financial networks.

We focus on “directed” graphs, where connections are, in general, asymmetric (arrows typically
point one way, not both ways).

E.g.,

• bank 𝐴 lends money to bank 𝐵
• firm 𝐴 supplies goods to firm 𝐵
• individual 𝐴 “follows” individual 𝐵 on a given social network

(“Undirected” graphs, where connections are symmetric, are a special case of directed graphs — we
just need to insist that each arrow pointing from 𝐴 to 𝐵 is paired with another arrow pointing from
𝐵 to 𝐴.)

11.4.3.1 Key definitions
A directed graph consists of two things:

1. a finite set 𝑉  and
2. a collection of pairs (𝑢, 𝑣) where 𝑢 and 𝑣 are elements of 𝑉 .

The elements of 𝑉  are called the vertices or nodes of the graph.

The pairs (𝑢, 𝑣) are called the edges of the graph and the set of all edges will usually be denoted by
𝐸

Intuitively and visually, an edge (𝑢, 𝑣) is understood as an arrow from node 𝑢 to node 𝑣.

(A neat way to represent an arrow is to record the location of the tail and head of the arrow, and
that’s exactly what an edge does.)

https://en.wikipedia.org/wiki/Graph\_theory


Figure 11.116.  Poverty Trap

In the aircraft export example shown in Fig. 1

• 𝑉  is all countries included in the data set.
• 𝐸 is all the arrows in the figure, each indicating some positive amount of aircraft exports from

one country to another.

Let’s look at more examples.

Two graphs are shown below, each with three nodes.

We now construct a graph with the same nodes but different edges.

For these graphs, the arrows (edges) can be thought of as representing positive transition
probabilities over a given unit of time.

In general, if an edge (𝑢, 𝑣) exists, then the node 𝑢 is called a direct predecessor of 𝑣 and 𝑣 is called
a direct successor of 𝑢.

Also, for 𝑣 ∈ 𝑉 ,

• the in-degree is 𝑖𝑑(𝑣) = the number of direct predecessors of 𝑣 and
• the out-degree is 𝑜𝑑(𝑣) = the number of direct successors of 𝑣.

11.4.3.2 Digraphs in Networkx
The Python package Networkx provides a convenient data structure for representing directed
graphs and implements many common routines for analyzing them.

As an example, let us recreate Fig. 3 using Networkx.

To do so, we first create an empty DiGraph object:

G_p = nx.DiGraph()

Next we populate it with nodes and edges.

Figure 11.117.  Poverty Trap

https://networkx.org/


To do this we write down a list of all edges, with poor represented by p and so on:

edge_list = [('p', 'p'),
             ('m', 'p'), ('m', 'm'), ('m', 'r'),
             ('r', 'p'), ('r', 'm'), ('r', 'r')]

Finally, we add the edges to our DiGraph object:

for e in edge_list:
    u, v = e
    G_p.add_edge(u, v)

Alternatively, we can use the method add_edges_from.

G_p.add_edges_from(edge_list)

Adding the edges automatically adds the nodes, so G_p is now a correct representation of our graph.

We can verify this by plotting the graph via Networkx with the following code:

fig, ax = plt.subplots()
nx.draw_spring(G_p, ax=ax, node_size=500, with_labels=True,
               font_weight='bold', arrows=True, alpha=0.8,
               connectionstyle='arc3,rad=0.25', arrowsize=20)
plt.show()

The figure obtained above matches the original directed graph in Fig. 3.

DiGraph objects have methods that calculate in-degree and out-degree of nodes.

For example,

G_p.in_degree('p')

3



11.4.3.3 Communication
Next, we study communication and connectedness, which have important implications for economic
networks.

Node 𝑣 is called accessible from node 𝑢 if either 𝑢 = 𝑣 or there exists a sequence of edges that lead
from 𝑢 to 𝑣.

• in this case, we write 𝑢 → 𝑣

(Visually, there is a sequence of arrows leading from 𝑢 to 𝑣.)

For example, suppose we have a directed graph representing a production network, where

• elements of 𝑉  are industrial sectors and
• existence of an edge (𝑖, 𝑗) means that 𝑖 supplies products or services to 𝑗.

Then 𝑚 → ℓ means that sector 𝑚 is an upstream supplier of sector ℓ.

Two nodes 𝑢 and 𝑣 are said to communicate if both 𝑢 → 𝑣 and 𝑣 → 𝑢.

A graph is called strongly connected if all nodes communicate.

For example, Fig. 2 is strongly connected however in Fig. 3 rich is not accessible from poor, thus it is
not strongly connected.

We can verify this by first constructing the graphs using Networkx and then using
nx.is_strongly_connected.

fig, ax = plt.subplots()
G1 = nx.DiGraph()

G1.add_edges_from([('p', 'p'),('p','m'),('p','r'),
             ('m', 'p'), ('m', 'm'), ('m', 'r'),
             ('r', 'p'), ('r', 'm'), ('r', 'r')])

nx.draw_networkx(G1, with_labels = True)



nx.is_strongly_connected(G1)    #checking if above graph is strongly connected

True

fig, ax = plt.subplots()
G2 = nx.DiGraph()

G2.add_edges_from([('p', 'p'),
             ('m', 'p'), ('m', 'm'), ('m', 'r'),
             ('r', 'p'), ('r', 'm'), ('r', 'r')])

nx.draw_networkx(G2, with_labels = True)



nx.is_strongly_connected(G2)    #checking if above graph is strongly connected

False

11.4.4 Weighted graphs
We now introduce weighted graphs, where weights (numbers) are attached to each edge.

11.4.4.1 International private credit flows by country
To motivate the idea, consider the following figure which shows flows of funds (i.e., loans) between
private banks, grouped by country of origin.



Figure 118.  International Credit Network

The country codes are given in the following table

Code Country Code Country Code Country Code Country
AU Australia DE Germany CL Chile ES Spain
PT Portugal FR France TR Turkey GB United Kingdom
US United States IE Ireland AT Austria IT Italy
BE Belgium JP Japan SW Switzerland SE Sweden

An arrow from Japan to the US indicates aggregate claims held by Japanese banks on all US-
registered banks, as collected by the Bank of International Settlements (BIS).

The size of each node in the figure is increasing in the total foreign claims of all other nodes on this
node.

The widths of the arrows are proportional to the foreign claims they represent.

Notice that, in this network, an edge (𝑢, 𝑣) exists for almost every choice of 𝑢 and 𝑣 (i.e., almost
every country in the network).

(In fact, there are even more small arrows, which we have dropped for clarity.)

Hence the existence of an edge from one node to another is not particularly informative.

To understand the network, we need to record not just the existence or absence of a credit flow, but
also the size of the flow.



Figure 11.119.  Weighted Poverty Trap

The correct data structure for recording this information is a “weighted directed graph”.

11.4.4.2 Definitions
A weighted directed graph is a directed graph to which we have added a weight function 𝑤 that
assigns a positive number to each edge.

The figure above shows one weighted directed graph, where the weights are the size of fund flows.

The following figure shows a weighted directed graph, with arrows representing edges of the
induced directed graph.

The numbers next to the edges are the weights.

In this case, you can think of the numbers on the arrows as transition probabilities for a household
over, say, one year.

We see that a rich household has a 10% chance of becoming poor in one year.

11.4.5 Adjacency matrices
Another way that we can represent weights, which turns out to be very convenient for numerical
work, is via a matrix.

The adjacency matrix of a weighted directed graph with nodes {𝑣1, …, 𝑣𝑛}, edges 𝐸 and weight
function 𝑤 is the matrix

𝐴 = (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑛
with 𝑎𝑖𝑗 = (11.58)

Once the nodes in 𝑉  are enumerated, the weight function and adjacency matrix provide essentially
the same information.

For example, with {poor, middle, rich} mapped to {1, 2, 3} respectively, the adjacency matrix
corresponding to the weighted directed graph in Fig. 5 is

(
((
(0.9

0.4
0.1

0.1
0.4
0.1

0
0.2
0.8)

))
). (11.59)

In QuantEcon’s DiGraph implementation, weights are recorded via the keyword weighted:

A = ((0.9, 0.1, 0.0),
     (0.4, 0.4, 0.2),
     (0.1, 0.1, 0.8))
A = np.array(A)
G = qe.DiGraph(A, weighted=True)    # store weights



One of the key points to remember about adjacency matrices is that taking the transpose reverses all
the arrows in the associated directed graph.

For example, the following directed graph can be interpreted as a stylized version of a financial
network, with nodes as banks and edges showing the flow of funds.

G4 = nx.DiGraph()

G4.add_edges_from([('1','2'),
                   ('2','1'),('2','3'),
                   ('3','4'),
                   ('4','2'),('4','5'),
                   ('5','1'),('5','3'),('5','4')])
pos = nx.circular_layout(G4)

edge_labels={('1','2'): '100',
             ('2','1'): '50', ('2','3'): '200',
             ('3','4'): '100',
             ('4','2'): '500', ('4','5'): '50',
             ('5','1'): '150',('5','3'): '250', ('5','4'): '300'}

nx.draw_networkx(G4, pos, node_color = 'none',node_size = 500)
nx.draw_networkx_edge_labels(G4, pos, edge_labels=edge_labels)
nx.draw_networkx_nodes(G4, pos, linewidths= 0.5, edgecolors = 'black',
                       node_color = 'none',node_size = 500)

plt.show()

We see that bank 2 extends a loan of size 200 to bank 3.

The corresponding adjacency matrix is



𝐴 =

(
((
((
((
((
( 0

50
0
0

150

100
0
0

500
0

0
200
0
0

250

0
0

100
0

300

0
0
0
50
0 )

))
))
))
))
)

. (11.60)

The transpose is

𝐴⊤ =

(
((
((
((
((
( 0

100
0
0
0

50
0

200
0
0

0
0
0

100
0

0
500
0
0
50

150
0

250
300
0 )

))
))
))
))
)

. (11.61)

The corresponding network is visualized in the following figure which shows the network of
liabilities after the loans have been granted.

Both of these networks (original and transpose) are useful for analyzing financial markets.

G5 = nx.DiGraph()

G5.add_edges_from([('1','2'),('1','5'),
                   ('2','1'),('2','4'),
                   ('3','2'),('3','5'),
                   ('4','3'),('4','5'),
                   ('5','4')])

edge_labels={('1','2'): '50', ('1','5'): '150',
             ('2','1'): '100', ('2','4'): '500',
             ('3','2'): '200', ('3','5'): '250',
             ('4','3'): '100', ('4','5'): '300',
             ('5','4'): '50'}

nx.draw_networkx(G5, pos, node_color = 'none',node_size = 500)
nx.draw_networkx_edge_labels(G5, pos, edge_labels=edge_labels)
nx.draw_networkx_nodes(G5, pos, linewidths= 0.5, edgecolors = 'black',
                       node_color = 'none',node_size = 500)

plt.show()



In general, every nonnegative 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖𝑗) can be viewed as the adjacency matrix of a
weighted directed graph.

To build the graph we set 𝑉 = 1, …, 𝑛 and take the edge set 𝐸 to be all (𝑖, 𝑗) such that 𝑎𝑖𝑗 > 0.

For the weight function we set 𝑤(𝑖, 𝑗) = 𝑎𝑖𝑗 for all edges (𝑖, 𝑗).

We call this graph the weighted directed graph induced by 𝐴.

11.4.6 Properties
Consider a weighted directed graph with adjacency matrix 𝐴.

Let 𝑎𝑘
𝑖𝑗 be element 𝑖, 𝑗 of 𝐴𝑘, the 𝑘-th power of 𝐴.

The following result is useful in many applications:

The above result is obvious when 𝑘 = 1 and a proof of the general case can be found in Sargent &
Stachurski (2022).

Now recall from the eigenvalues lecture that a nonnegative matrix 𝐴 is called irreducible if for each
(𝑖, 𝑗) there is an integer 𝑘 ≥ 0 such that 𝑎𝑘

𝑖𝑗 > 0.

From the preceding theorem, it is not too difficult (see Sargent & Stachurski (2022) for details) to get
the next result.

We illustrate the above theorem with a simple example.

Theorem 11.11.

For distinct nodes 𝑖, 𝑗 in 𝑉  and any integer 𝑘, we have

𝑎𝑘
𝑖𝑗 > 0 if and only if j is accessible from i. (11.62)



Theorem 11.12.

For a weighted directed graph the following statements are equivalent:

1. The directed graph is strongly connected.
2. The adjacency matrix of the graph is irreducible.

Consider the following weighted directed graph.

We first create the above network as a Networkx DiGraph object.

G6 = nx.DiGraph()

G6.add_edges_from([('1','2'),('1','3'),
                   ('2','1'),
                   ('3','1'),('3','2')])

Then we construct the associated adjacency matrix A.

A = np.array([[0,0.7,0.3],    # adjacency matrix A
              [1,0,0],
              [0.4,0.6,0]])

is_irreducible(A)      # check irreducibility of A

True

nx.is_strongly_connected(G6)      # check connectedness of graph

True

11.4.7 Network centrality
When studying networks of all varieties, a recurring topic is the relative “centrality” or “importance”
of different nodes.

Examples include

• ranking of web pages by search engines
• determining the most important bank in a financial network (which one a central bank should

rescue if there is a financial crisis)
• determining the most important industrial sector in an economy.

In what follows, a centrality measure associates to each weighted directed graph a vector 𝑚 where
the 𝑚𝑖 is interpreted as the centrality (or rank) of node 𝑣𝑖.



11.4.7.1 Degree centrality
Two elementary measures of “importance” of a node in a given directed graph are its in-degree and
out-degree.

Both of these provide a centrality measure.

In-degree centrality is a vector containing the in-degree of each node in the graph.

Consider the following simple example.

G7 = nx.DiGraph()

G7.add_nodes_from(['1','2','3','4','5','6','7'])

G7.add_edges_from([('1','2'),('1','6'),
                   ('2','1'),('2','4'),
                   ('3','2'),
                   ('4','2'),
                   ('5','3'),('5','4'),
                   ('6','1'),
                   ('7','4'),('7','6')])
pos = nx.planar_layout(G7)

nx.draw_networkx(G7, pos, node_color='none', node_size=500)
nx.draw_networkx_nodes(G7, pos, linewidths=0.5, edgecolors='black',
                       node_color='none',node_size=500)

plt.show()

Figure 120.  Sample Graph

The following code displays the in-degree centrality of all nodes.

iG7 = [G7.in_degree(v) for v in G7.nodes()]   # computing in-degree centrality



for i, d in enumerate(iG7):
    print(i+1, d)

1 2
2 3
3 1
4 3
5 0
6 2
7 0

Consider the international credit network displayed in Fig. 4.

The following plot displays the in-degree centrality of each country.

D = qbn_io.build_unweighted_matrix(Z)
indegree = D.sum(axis=0)

def centrality_plot_data(countries, centrality_measures):
    df = pd.DataFrame({'code': countries,
                       'centrality':centrality_measures,
                       'color': qbn_io.colorise_weights(centrality_measures).tolist()
                       })
    return df.sort_values('centrality')

fig, ax = plt.subplots()

df = centrality_plot_data(countries, indegree)

ax.bar('code', 'centrality', data=df, color=df["color"], alpha=0.6)

patch = mpatches.Patch(color=None, label='in degree', visible=False)
ax.legend(handles=[patch], fontsize=12, loc="upper left", handlelength=0,
frameon=False)

ax.set_ylim((0,20))

plt.show()



Unfortunately, while in-degree and out-degree centrality are simple to calculate, they are not always
informative.

In Fig. 4, an edge exists between almost every node, so the in- or out-degree based centrality ranking
fails to effectively separate the countries.

This can be seen in the above graph as well.

Another example is the task of a web search engine, which ranks pages by relevance whenever a
user enters a search.

Suppose web page A has twice as many inbound links as page B.

In-degree centrality tells us that page A deserves a higher rank.

But in fact, page A might be less important than page B.

To see why, suppose that the links to A are from pages that receive almost no traffic, while the links
to B are from pages that receive very heavy traffic.

In this case, page B probably receives more visitors, which in turn suggests that page B contains
more valuable (or entertaining) content.

Thinking about this point suggests that importance might be recursive.

This means that the importance of a given node depends on the importance of other nodes that link
to it.

As another example, we can imagine a production network where the importance of a given sector
depends on the importance of the sectors that it supplies.

This reverses the order of the previous example: now the importance of a given node depends on the
importance of other nodes that it links to.



The next centrality measures will have these recursive features.

11.4.7.2 Eigenvector centrality
Suppose we have a weighted directed graph with adjacency matrix 𝐴.

For simplicity, we will suppose that the nodes 𝑉  of the graph are just the integers 1, …, 𝑛.

Let 𝑟(𝐴) denote the spectral radius of 𝐴.

The eigenvector centrality of the graph is defined as the 𝑛-vector 𝑒 that solves

𝑒 = 1
𝑟(𝐴)

𝐴𝑒. (11.63)

In other words, 𝑒 is the dominant eigenvector of 𝐴 (the eigenvector of the largest eigenvalue — see
the discussion of the Perron-Frobenius theorem in the eigenvalue lecture.

To better understand (7), we write out the full expression for some element 𝑒𝑖

𝑒𝑖 = 1
𝑟(𝐴)

∑
1≤𝑗≤𝑛

𝑎𝑖𝑗𝑒𝑗 (11.64)

Note the recursive nature of the definition: the centrality obtained by node 𝑖 is proportional to a sum
of the centrality of all nodes, weighted by the rates of flow from 𝑖 into these nodes.

A node 𝑖 is highly ranked if

1. there are many edges leaving 𝑖,
2. these edges have large weights, and
3. the edges point to other highly ranked nodes.

Later, when we study demand shocks in production networks, there will be a more concrete
interpretation of eigenvector centrality.

We will see that, in production networks, sectors with high eigenvector centrality are important
suppliers.

In particular, they are activated by a wide array of demand shocks once orders flow backwards
through the network.

To compute eigenvector centrality we can use the following function.

def eigenvector_centrality(A, k=40, authority=False):
    """
    Computes the dominant eigenvector of A. Assumes A is
    primitive and uses the power method.

    """
    A_temp = A.T if authority else A
    n = len(A_temp)
    r = np.max(np.abs(np.linalg.eigvals(A_temp)))
    e = r**(-k) * (np.linalg.matrix_power(A_temp, k) @ np.ones(n))
    return e / np.sum(e)

Let’s compute eigenvector centrality for the graph generated in Fig. 6.

A = nx.to_numpy_array(G7)         # compute adjacency matrix of graph

e = eigenvector_centrality(A)
n = len(e)



for i in range(n):
    print(i+1,e[i])

1 0.18580570704268035
2 0.18580570704268035
3 0.11483424225608216
4 0.11483424225608216
5 0.14194292957319637
6 0.11483424225608216
7 0.14194292957319637

While nodes 2 and 4 had the highest in-degree centrality, we can see that nodes 1 and 2 have the
highest eigenvector centrality.

Let’s revisit the international credit network in Fig. 4.

eig_central = eigenvector_centrality(Z)

fig, ax = plt.subplots()

df = centrality_plot_data(countries, eig_central)

ax.bar('code', 'centrality', data=df, color=df["color"], alpha=0.6)

patch = mpatches.Patch(color=None, visible=False)
ax.legend(handles=[patch], fontsize=12, loc="upper left", handlelength=0,
frameon=False)

plt.show()

Figure 121.  Eigenvector centrality

Countries that are rated highly according to this rank tend to be important players in terms of
supply of credit.

Japan takes the highest rank according to this measure, although countries with large financial
sectors such as Great Britain and France are not far behind.



The advantage of eigenvector centrality is that it measures a node’s importance while considering
the importance of its neighbours.

A variant of eigenvector centrality is at the core of Google’s PageRank algorithm, which is used to
rank web pages.

The main principle is that links from important nodes (as measured by degree centrality) are worth
more than links from unimportant nodes.

11.4.7.3 Katz centrality
One problem with eigenvector centrality is that 𝑟(𝐴) might be zero, in which case 1/𝑟(𝐴) is not
defined.

For this and other reasons, some researchers prefer another measure of centrality for networks
called Katz centrality.

Fixing 𝛽 in (0, 1/𝑟(𝐴)), the Katz centrality of a weighted directed graph with adjacency matrix 𝐴
is defined as the vector 𝜅 that solves

𝜅𝑖 = 𝛽 ∑
1≤𝑗1

𝑎𝑖𝑗𝜅𝑗 + 1 for all𝑖 ∈ {0, …, 𝑛 − 1}. (11.65)

Here 𝛽 is a parameter that we can choose.

In vector form we can write

𝜅 = 𝟏 + 𝛽𝐴𝜅 (11.66)

where 𝟏 is a column vector of ones.

The intuition behind this centrality measure is similar to that provided for eigenvector centrality:
high centrality is conferred on 𝑖 when it is linked to by nodes that themselves have high centrality.

Provided that 0 < 𝛽 < 1/𝑟(𝐴), Katz centrality is always finite and well-defined because then
𝑟(𝛽𝐴) < 1.

This means that (10) has the unique solution

𝜅 = (𝐼 − 𝛽𝐴)−1𝟏 (11.67)

This follows from the Neumann series theorem.

The parameter 𝛽 is used to ensure that 𝜅 is finite

When 𝑟(𝐴) < 1, we use 𝛽 = 1 as the default for Katz centrality computations.

11.4.7.4 Authorities vs hubs
Search engine designers recognize that web pages can be important in two different ways.

Some pages have high hub centrality, meaning that they link to valuable sources of information
(e.g., news aggregation sites).

Other pages have high authority centrality, meaning that they contain valuable information, as
indicated by the number and significance of incoming links (e.g., websites of respected news
organizations).

Similar ideas can and have been applied to economic networks (often using different terminology).

The eigenvector centrality and Katz centrality measures we discussed above measure hub centrality.

(Nodes have high centrality if they point to other nodes with high centrality.)



If we care more about authority centrality, we can use the same definitions except that we take the
transpose of the adjacency matrix.

This works because taking the transpose reverses the direction of the arrows.

(Now nodes will have high centrality if they receive links from other nodes with high centrality.)

For example, the authority-based eigenvector centrality of a weighted directed graph with
adjacency matrix 𝐴 is the vector 𝑒 solving

𝑒 = 1
𝑟(𝐴)

𝐴⊤𝑒. (11.68)

The only difference from the original definition is that 𝐴 is replaced by its transpose.

(Transposes do not affect the spectral radius of a matrix so we wrote 𝑟(𝐴) instead of 𝑟(𝐴⊤).)

Element-by-element, this is given by

𝑒𝑗 = 1
𝑟(𝐴)

∑
1≤𝑖≤𝑛

𝑎𝑖𝑗𝑒𝑖 (11.69)

We see 𝑒𝑗 will be high if many nodes with high authority rankings link to 𝑗.

The following figurenshows the authority-based eigenvector centrality ranking for the international
credit network shown in Fig. 4.

ecentral_authority = eigenvector_centrality(Z, authority=True)

fig, ax = plt.subplots()

df = centrality_plot_data(countries, ecentral_authority)

ax.bar('code', 'centrality', data=df, color=df["color"], alpha=0.6)

patch = mpatches.Patch(color=None, visible=False)
ax.legend(handles=[patch], fontsize=12, loc="upper left", handlelength=0,
frameon=False)

plt.show()



Figure 122.  Eigenvector authority

Highly ranked countries are those that attract large inflows of credit, or credit inflows from other
major players.

In this case the US clearly dominates the rankings as a target of interbank credit.

11.4.8 Further reading
We apply the ideas discussed in this lecture to:

Textbooks on economic and social networks include Jackson (2010), Easley et al. (2010), Borgatti et
al. (2018), Sargent & Stachurski (2022) and Goyal (2023).

Within the realm of network science, the texts by Newman (2018), Menczer et al. (2020) and Coscia
(2021) are excellent.

Exercise 11.59.

Here is a mathematical exercise for those who like proofs.

Let (𝑉 , 𝐸) be a directed graph and write 𝑢 ∼ 𝑣 if 𝑢 and 𝑣 communicate.

Show that ∼ is an equivalence relation on 𝑉 .

https://en.wikipedia.org/wiki/Equivalence\_relation


Solution 11.53. Solution to Exercise 1

Reflexivity:

Trivially, 𝑢 = 𝑣 ⇒ 𝑢 → 𝑣.

Thus, 𝑢 ∼ 𝑢.

Symmetry: Suppose, 𝑢 ∼ 𝑣

⇒ 𝑢 → 𝑣 and 𝑣 → 𝑢.

By definition, this implies 𝑣 ∼ 𝑢.

Transitivity:

Suppose, 𝑢 ∼ 𝑣 and 𝑣 ∼ 𝑤

This implies, 𝑢 → 𝑣 and 𝑣 → 𝑢 and also 𝑣 → 𝑤 and 𝑤 → 𝑣.

Thus, we can conclude 𝑢 → 𝑣 → 𝑤 and 𝑤 → 𝑣 → 𝑢.

Which means 𝑢 ∼ 𝑤.

11.4.9 Exercises

Exercise 11.60.

Consider a directed graph 𝐺 with the set of nodes

𝑉 = {0, 1, 2, 3, 4, 5, 6, 7} (11.70)

and the set of edges

𝐸 = {(0, 1), (0, 3), (1, 0), (2, 4), (3, 2), (3, 4), (3, 7), (4, 3), (5, 4), (5, 6), (6, 3), (6, 5), (7, 0)}(11.71)

1. Use Networkx to draw graph 𝐺.
2. Find the associated adjacency matrix 𝐴 for 𝐺.
3. Use the functions defined above to compute in-degree centrality, out-degree centrality and

eigenvector centrality of G.



Solution 11.54. Solution to Exercise 2

# First, let's plot the given graph

G = nx.DiGraph()

G.add_nodes_from(np.arange(8))  # adding nodes

G.add_edges_from([(0,1),(0,3),       # adding edges
                  (1,0),
                  (2,4),
                  (3,2),(3,4),(3,7),
                  (4,3),
                  (5,4),(5,6),
                  (6,3),(6,5),
                  (7,0)])

nx.draw_networkx(G, pos=nx.circular_layout(G), node_color='gray', node_size=500,
with_labels=True)

plt.show()

A = nx.to_numpy_array(G)      #find adjacency matrix associated with G

A

array([[0., 1., 0., 1., 0., 0., 0., 0.],
       [1., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 1., 0., 0., 0.],
       [0., 0., 1., 0., 1., 0., 0., 1.],
       [0., 0., 0., 1., 0., 0., 0., 0.],
       [0., 0., 0., 0., 1., 0., 1., 0.],
       [0., 0., 0., 1., 0., 1., 0., 0.],
       [1., 0., 0., 0., 0., 0., 0., 0.]])
oG = [G.out_degree(v) for v in G.nodes()]   # computing in-degree centrality

for i, d in enumerate(oG):
    print(i, d)

0 2
1 1
2 1
3 3
4 1
5 2
6 2
7 1

e = eigenvector_centrality(A)   # computing eigenvector centrality
n = len(e)

for i in range(n):
    print(i+1, e[i])

1 0.1458980838002507
2 0.09016989800748738
3 0.055728056024793506
4 0.14589810100962303
5 0.09016994824024989
6 0.1803397955498566
7 0.20162621936025152
8 0.09016989800748738



Exercise 11.61.

Consider a graph 𝐺 with 𝑛 nodes and 𝑛 × 𝑛 adjacency matrix 𝐴.

Let 𝑆 = ∑𝑛−1
𝑘=0 𝐴𝑘

We can say for any two nodes 𝑖 and 𝑗, 𝑗 is accessible from 𝑖 if and only if 𝑆𝑖𝑗 > 0.

Devise a function is_accessible that checks if any two nodes of a given graph are accessible.

Consider the graph in Exercise 2 and use this function to check if

1. 1 is accessible from 2
2. 6 is accessible from 3

Solution 11.55. Solution to Exercise 3

def is_accessible(G,i,j):
    A = nx.to_numpy_array(G)
    n = len(A)
    result = np.zeros((n, n))
    for i in range(n):
        result += np.linalg.matrix_power(A, i)
    if result[i,j]>0:
        return True
    else:
        return False

G = nx.DiGraph()

G.add_nodes_from(np.arange(8))  # adding nodes

G.add_edges_from([(0,1),(0,3),       # adding edges
                  (1,0),
                  (2,4),
                  (3,2),(3,4),(3,7),
                  (4,3),
                  (5,4),(5,6),
                  (6,3),(6,5),
                  (7,0)])

is_accessible(G, 2, 1)

True

is_accessible(G, 3, 6)

False





Chapter 12

12. Markets and Competitive Equilibrium
12.1 Supply and Demand with Many Goods

12.1.1 Overview
In a previous lecture we studied supply, demand and welfare in a market with a single consumption
good.

In this lecture, we study a setting with 𝑛 goods and 𝑛 corresponding prices.

Key infrastructure concepts that we’ll encounter in this lecture are

• inverse demand curves
• marginal utilities of wealth
• inverse supply curves
• consumer surplus
• producer surplus
• social welfare as a sum of consumer and producer surpluses
• competitive equilibrium

We will provide a version of the first fundamental welfare theorem, which was formulated by

• Leon Walras
• Francis Ysidro Edgeworth
• Vilfredo Pareto

Important extensions to the key ideas were obtained by

• Abba Lerner
• Harold Hotelling
• Paul Samuelson
• Kenneth Arrow
• Gerard Debreu

We shall describe two classic welfare theorems:

• first welfare theorem: for a given distribution of wealth among consumers, a competitive
equilibrium allocation of goods solves a social planning problem.

• second welfare theorem: An allocation of goods to consumers that solves a social planning
problem can be supported by a competitive equilibrium with an appropriate initial distribution
of wealth.

As usual, we start by importing some Python modules.

# import some packages
import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import inv

12.1.2 Formulas from linear algebra
We shall apply formulas from linear algebra that

• differentiate an inner product with respect to each vector
• differentiate a product of a matrix and a vector with respect to the vector
• differentiate a quadratic form in a vector with respect to the vector

/intro-supply-demand
https://en.wikipedia.org/wiki/Fundamental\_theorems\_of\_welfare\_economics
https://en.wikipedia.org/wiki/L%C3%A9on\_Walras
https://en.wikipedia.org/wiki/Francis\_Ysidro\_Edgeworth
https://en.wikipedia.org/wiki/Vilfredo\_Pareto
https://en.wikipedia.org/wiki/Abba\_P.\_Lerner
https://en.wikipedia.org/wiki/Harold\_Hotelling
https://en.wikipedia.org/wiki/Paul\_Samuelson
https://en.wikipedia.org/wiki/Kenneth\_Arrow
https://en.wikipedia.org/wiki/G%C3%A9rard\_Debreu


Where 𝑎 is an 𝑛 × 1 vector, 𝐴 is an 𝑛 × 𝑛 matrix, and 𝑥 is an 𝑛 × 1 vector:

𝜕𝑎⊤𝑥
𝜕𝑥

= 𝜕𝑥⊤𝑎
𝜕𝑥

= 𝑎 (12.1)

𝜕𝐴𝑥
𝜕𝑥

= 𝐴 (12.2)

𝜕𝑥⊤𝐴𝑥
𝜕𝑥

= (𝐴 + 𝐴⊤)𝑥 (12.3)

12.1.3 From utility function to demand curve
Our study of consumers will use the following primitives

• Π be an 𝑚 × 𝑛 matrix,
• 𝑏 be an 𝑚 × 1 vector of bliss points,
• 𝑒 be an 𝑛 × 1 vector of endowments, and

We will analyze endogenous objects 𝑐 and 𝑝, where

• 𝑐 is an 𝑛 × 1 vector of consumptions of various goods,
• 𝑝 is an 𝑛 × 1 vector of prices

The matrix Π describes a consumer’s willingness to substitute one good for every other good.

We assume that Π has linearly independent columns, which implies that Π⊤Π is a positive definite
matrix.

• it follows that Π⊤Π has an inverse.

We shall see below that (Π⊤Π)−1 is a matrix of slopes of (compensated) demand curves for 𝑐 with
respect to a vector of prices:

𝜕𝑐
𝜕𝑝

= (Π⊤Π)−1 (12.4)

A consumer faces 𝑝 as a price taker and chooses 𝑐 to maximize the utility function

−1
2
(Π𝑐 − 𝑏)⊤(Π𝑐 − 𝑏) (12.5)

subject to the budget constraint

𝑝⊤(𝑐 − 𝑒) = 0 (12.6)

We shall specify examples in which Π and 𝑏 are such that it typically happens that

Π𝑐 ≪ 𝑏 (12.7)
This means that the consumer has much less of each good than he wants.

The deviation in (7) will ultimately assure us that competitive equilibrium prices are positive.

12.1.3.1 Demand curve implied by constrained utility maximization
For now, we assume that the budget constraint is (6).

So we’ll be deriving what is known as a Marshallian demand curve.

Our aim is to maximize (5) subject to (6).

Form a Lagrangian



𝐿 = −1
2
(Π𝑐 − 𝑏)⊤(Π𝑐 − 𝑏) + 𝜇[𝑝⊤(𝑒 − 𝑐)] (12.8)

where 𝜇 is a Lagrange multiplier that is often called a marginal utility of wealth.

The consumer chooses 𝑐 to maximize 𝐿 and 𝜇 to minimize it.

First-order conditions for 𝑐 are

𝜕𝐿
𝜕𝑐

= −Π⊤Π𝑐 + Π⊤𝑏 − 𝜇𝑝 = 0 (12.9)

so that, given 𝜇, the consumer chooses

𝑐 = (Π⊤Π)−1(Π⊤𝑏 − 𝜇𝑝) (12.10)

Substituting (10) into budget constraint (6) and solving for 𝜇 gives

𝜇(𝑝, 𝑒) =
𝑝⊤(Π⊤Π)−1Π⊤𝑏 − 𝑝⊤𝑒

𝑝⊤(Π⊤Π)−1𝑝
. (12.11)

Equation (11) tells how marginal utility of wealth depends on the endowment vector 𝑒 and the price
vector 𝑝.

Note

Equation (11) is a consequence of imposing that 𝑝⊤(𝑐 − 𝑒) = 0.

We could instead take 𝜇 as a parameter and use (10) and the budget constraint (13) to solve for
wealth.

Which way we proceed determines whether we are constructing a Marshallian or Hicksian
demand curve.

12.1.4 Endowment economy
We now study a pure-exchange economy, or what is sometimes called an endowment economy.

Consider a single-consumer, multiple-goods economy without production.

The only source of goods is the single consumer’s endowment vector 𝑒.

A competitive equilibrium price vector induces the consumer to choose 𝑐 = 𝑒.

This implies that the equilibrium price vector satisfies

𝑝 = 𝜇−1(Π⊤𝑏 − Π⊤Π𝑒) (12.12)

In the present case where we have imposed budget constraint in the form (6), we are free to
normalize the price vector by setting the marginal utility of wealth 𝜇 = 1 (or any other value for
that matter).

This amounts to choosing a common unit (or numeraire) in which prices of all goods are expressed.

(Doubling all prices will affect neither quantities nor relative prices.)

We’ll set 𝜇 = 1.

Exercise 12.62.

Verify that setting 𝜇 = 1 in (10) implies that formula (11) is satisfied.



Exercise 12.63.

Verify that setting 𝜇 = 2 in (10) also implies that formula (11) is satisfied.

Here is a class that computes competitive equilibria for our economy.

class ExchangeEconomy:
    
    def __init__(self, 
                 Π, 
                 b, 
                 e,
                 thres=1.5):
        """
        Set up the environment for an exchange economy

        Args:
            Π (np.array): shared matrix of substitution
            b (list):  the consumer's bliss point
            e (list):  the consumer's endowment
            thres (float): a threshold to check p >> Π e condition
        """

        # check non-satiation
        if np.min(b / np.max(Π @ e)) <= thres:
            raise Exception('set bliss points further away')

        self.Π, self.b, self.e = Π, b, e

    
    def competitive_equilibrium(self):
        """
        Compute the competitive equilibrium prices and allocation
        """
        Π, b, e = self.Π, self.b, self.e

        # compute price vector with μ=1
        p = Π.T @ b - Π.T @ Π @ e
        
        # compute consumption vector
        slope_dc = inv(Π.T @ Π)
        Π_inv = inv(Π)
        c = Π_inv @ b - slope_dc @ p

        if any(c < 0):
            print('allocation: ', c)
            raise Exception('negative allocation: equilibrium does not exist')

        return p, c

12.1.5 Digression: Marshallian and Hicksian demand curves
Sometimes we’ll use budget constraint (6) in situations in which a consumer’s endowment vector 𝑒
is his only source of income.



Other times we’ll instead assume that the consumer has another source of income (positive or
negative) and write his budget constraint as

𝑝⊤(𝑐 − 𝑒) = 𝑤 (12.13)

where 𝑤 is measured in “dollars” (or some other numeraire) and component 𝑝𝑖 of the price vector
is measured in dollars per unit of good 𝑖.

Whether the consumer’s budget constraint is (6) or (13) and whether we take 𝑤 as a free parameter
or instead as an endogenous variable will affect the consumer’s marginal utility of wealth.

Consequently, how we set 𝜇 determines whether we are constructing

• a Marshallian demand curve, as when we use (6) and solve for 𝜇 using equation (11) above, or
• a Hicksian demand curve, as when we treat 𝜇 as a fixed parameter and solve for 𝑤 from (13).

Marshallian and Hicksian demand curves contemplate different mental experiments:

For a Marshallian demand curve, hypothetical changes in a price vector have both substitution and
income effects

• income effects are consequences of changes in 𝑝⊤𝑒 associated with the change in the price
vector

For a Hicksian demand curve, hypothetical price vector changes have only substitution effects

• changes in the price vector leave the 𝑝⊤𝑒 + 𝑤 unaltered because we freeze 𝜇 and solve for 𝑤

Sometimes a Hicksian demand curve is called a compensated demand curve in order to emphasize
that, to disarm the income (or wealth) effect associated with a price change, the consumer’s wealth
𝑤 is adjusted.

We’ll discuss these distinct demand curves more below.

12.1.6 Dynamics and risk as special cases
Special cases of our 𝑛-good pure exchange model can be created to represent

• dynamics — by putting different dates on different commodities
• risk — by interpreting delivery of goods as being contingent on states of the world whose

realizations are described by a known probability distribution

Let’s illustrate how.

12.1.6.1 Dynamics
Suppose that we want to represent a utility function

−1
2
[(𝑐1 − 𝑏1)

2 + 𝛽(𝑐2 − 𝑏2)
2] (12.14)

where 𝛽 ∈ (0, 1) is a discount factor, 𝑐1 is consumption at time 1 and 𝑐2 is consumption at time 2.

To capture this with our quadratic utility function (5), set

Π = [1
0

0√
𝛽] (12.15)

𝑒 = [𝑒1
𝑒2

] (12.16)

and



𝑏 = [ 𝑏1√
𝛽𝑏2

] (12.17)

The budget constraint (6) becomes

𝑝1𝑐1 + 𝑝2𝑐2 = 𝑝1𝑒1 + 𝑝2𝑒2 (12.18)

The left side is the discounted present value of consumption.

The right side is the discounted present value of the consumer’s endowment.

The relative price 𝑝1
𝑝2

 has units of time 2 goods per unit of time 1 goods.

Consequently,

(1 + 𝑟) := 𝑅 := 𝑝1
𝑝2

(12.19)

is the gross interest rate and 𝑟 is the net interest rate.

Here is an example.

beta = 0.95

Π = np.array([[1, 0],
              [0, np.sqrt(beta)]])

b = np.array([5, np.sqrt(beta) * 5])

e = np.array([1, 1])

dynamics = ExchangeEconomy(Π, b, e)
p, c = dynamics.competitive_equilibrium()

print('Competitive equilibrium price vector:', p)
print('Competitive equilibrium allocation:', c)

Competitive equilibrium price vector: [4.  3.8]
Competitive equilibrium allocation: [1. 1.]

12.1.6.2 Risk and state-contingent claims
We study risk in the context of a static environment, meaning that there is only one period.

By risk we mean that an outcome is not known in advance, but that it is governed by a known
probability distribution.

As an example, our consumer confronts risk means in particular that

• there are two states of nature, 1 and 2.
• the consumer knows that the probability that state 1 occurs is 𝜆.
• the consumer knows that the probability that state 2 occurs is (1 − 𝜆).

Before the outcome is realized, the consumer’s expected utility is

−1
2
[𝜆(𝑐1 − 𝑏1)

2 + (1 − 𝜆)(𝑐2 − 𝑏2)
2] (12.20)

where

• 𝑐1 is consumption in state 1
• 𝑐2 is consumption in state 2



To capture these preferences we set

Π = [
√

𝜆
0

0√
1 − 𝜆

] (12.21)

𝑒 = [𝑒1
𝑒2

] (12.22)

𝑏 = [
√

𝜆𝑏1√
1 − 𝜆𝑏2

] (12.23)

A consumer’s endowment vector is

𝑐 = [𝑐1
𝑐2

] (12.24)

A price vector is

𝑝 = [𝑝1
𝑝2

] (12.25)

where 𝑝𝑖 is the price of one unit of consumption in state 𝑖 ∈ {1, 2}.

The state-contingent goods being traded are often called Arrow securities.

Before the random state of the world 𝑖 is realized, the consumer sells his/her state-contingent
endowment bundle and purchases a state-contingent consumption bundle.

Trading such state-contingent goods is one way economists often model insurance.

We use the tricks described above to interpret 𝑐1, 𝑐2 as “Arrow securities” that are state-contingent
claims to consumption goods.

Here is an instance of the risk economy:

prob = 0.2

Π = np.array([[np.sqrt(prob), 0],
              [0, np.sqrt(1 - prob)]])

b = np.array([np.sqrt(prob) * 5, np.sqrt(1 - prob) * 5])

e = np.array([1, 1])

risk = ExchangeEconomy(Π, b, e)
p, c = risk.competitive_equilibrium()

print('Competitive equilibrium price vector:', p)
print('Competitive equilibrium allocation:', c)

Competitive equilibrium price vector: [0.8 3.2]
Competitive equilibrium allocation: [1. 1.]

12.1.7 Economies with endogenous supplies of goods
Up to now we have described a pure exchange economy in which endowments of goods are
exogenous, meaning that they are taken as given from outside the model.



Exercise 12.64.

Consider the instance above.

Please numerically study how each of the following cases affects the equilibrium prices and
allocations:

• the consumer gets poorer,
• they like the first good more, or
• the probability that state 1 occurs is higher.

Hints. For each case choose some parameter 𝑒, 𝑏, or𝜆 different from the instance.

12.1.7.1 Supply curve of a competitive firm
A competitive firm that can produce goods takes a price vector 𝑝 as given and chooses a quantity 𝑞
to maximize total revenue minus total costs.

The firm’s total revenue equals 𝑝⊤𝑞 and its total cost equals 𝐶(𝑞) where 𝐶(𝑞) is a total cost function

𝐶(𝑞) = ℎ⊤𝑞 + 1
2
𝑞⊤𝐽𝑞 (12.26)

and 𝐽  is a positive definite matrix.

So the firm’s profits are

𝑝⊤𝑞 − 𝐶(𝑞) (12.27)

An 𝑛 × 1 vector of marginal costs is

𝜕𝐶(𝑞)
𝜕𝑞

= ℎ + 𝐻𝑞 (12.28)

where

𝐻 = 1
2
(𝐽 + 𝐽⊤) (12.29)

The firm maximizes total profits by setting marginal revenue to marginal costs.

An 𝑛 × 1 vector of marginal revenues for the price-taking firm is 𝜕𝑝⊤𝑞
𝜕𝑞 = 𝑝.

So price equals marginal revenue for our price-taking competitive firm.

This leads to the following inverse supply curve for the competitive firm:

𝑝 = ℎ + 𝐻𝑞 (12.30)

12.1.7.2 Competitive equilibrium
To compute a competitive equilibrium for a production economy where demand curve is pinned
down by the marginal utility of wealth 𝜇, we first compute an allocation by solving a planning
problem.

Then we compute the equilibrium price vector using the inverse demand or supply curve.

12.1.7.2.1 𝜇 = 1 warmup
As a special case, let’s pin down a demand curve by setting the marginal utility of wealth 𝜇 = 1.

Equating supply price to demand price and letting 𝑞 = 𝑐 we get

𝑝 = ℎ + 𝐻𝑐 = Π⊤𝑏 − Π⊤Π𝑐, (12.31)



Solution 12.56. Solution to Exercise 3

First consider when the consumer is poorer.

Here we just decrease the endowment.

risk.e = np.array([0.5, 0.5])

p, c = risk.competitive_equilibrium()

print('Competitive equilibrium price vector:', p)
print('Competitive equilibrium allocation:', c)

Competitive equilibrium price vector: [0.9 3.6]
Competitive equilibrium allocation: [0.5 0.5]

If the consumer likes the first (or second) good more, then we can set a larger bliss value for
good 1.

risk.b = np.array([np.sqrt(prob) * 6, np.sqrt(1 - prob) * 5])
p, c = risk.competitive_equilibrium()

print('Competitive equilibrium price vector:', p)
print('Competitive equilibrium allocation:', c)

Competitive equilibrium price vector: [1.1 3.6]
Competitive equilibrium allocation: [0.5 0.5]

Increase the probability that state 1 occurs.

prob = 0.8

Π = np.array([[np.sqrt(prob), 0],
              [0, np.sqrt(1 - prob)]])

b = np.array([np.sqrt(prob) * 5, np.sqrt(1 - prob) * 5])

e = np.array([1, 1])

risk = ExchangeEconomy(Π, b, e)
p, c = risk.competitive_equilibrium()

print('Competitive equilibrium price vector:', p)
print('Competitive equilibrium allocation:', c)

Competitive equilibrium price vector: [3.2 0.8]
Competitive equilibrium allocation: [1. 1.]

which implies the equilibrium quantity vector

𝑐 = (Π⊤Π + 𝐻)−1(Π⊤𝑏 − ℎ) (12.32)

This equation is the counterpart of equilibrium quantity (15) for the scalar 𝑛 = 1 model with which
we began.

12.1.7.2.2 General 𝜇 ≠ 1 case
Now let’s extend the preceding analysis to a more general case by allowing 𝜇 ≠ 1.

Then the inverse demand curve is



𝑝 = 𝜇−1[Π⊤𝑏 − Π⊤Π𝑐] (12.33)

Equating this to the inverse supply curve, letting 𝑞 = 𝑐 and solving for 𝑐 gives

𝑐 = [Π⊤Π + 𝜇𝐻]−1[Π⊤𝑏 − 𝜇ℎ] (12.34)

12.1.7.3 Implementation
A Production Economy will consist of

• a single person that we’ll interpret as a representative consumer
• a single set of production costs
• a multiplier 𝜇 that weights “consumers” versus “producers” in a planner’s welfare function, as

described above in the main text
• an 𝑛 × 1 vector 𝑝 of competitive equilibrium prices
• an 𝑛 × 1 vector 𝑐 of competitive equilibrium quantities
• consumer surplus
• producer surplus

Here we define a class ProductionEconomy.

class ProductionEconomy:
    
    def __init__(self, 
                 Π, 
                 b, 
                 h, 
                 J, 
                 μ):
        """
        Set up the environment for a production economy

        Args:
            Π (np.ndarray): matrix of substitution
            b (np.array): bliss points
            h (np.array): h in cost func
            J (np.ndarray): J in cost func
            μ (float): welfare weight of the corresponding planning problem
        """
        self.n = len(b)
        self.Π, self.b, self.h, self.J, self.μ = Π, b, h, J, μ
        
    def competitive_equilibrium(self):
        """
        Compute a competitive equilibrium of the production economy
        """
        Π, b, h, μ, J = self.Π, self.b, self.h, self.μ, self.J
        H = .5 * (J + J.T)

        # allocation
        c = inv(Π.T @ Π + μ * H) @ (Π.T @ b - μ * h)

        # price
        p = 1 / μ * (Π.T @ b - Π.T @ Π @ c)

        # check non-satiation
        if any(Π @ c - b >= 0):



            raise Exception('invalid result: set bliss points further away')

        return c, p

    def compute_surplus(self):
        """
        Compute consumer and producer surplus for single good case
        """
        if self.n != 1:
            raise Exception('not single good')
        h, J, Π, b, μ = self.h.item(), self.J.item(), self.Π.item(), self.b.item(),
self.μ
        H = J

        # supply/demand curve coefficients
        s0, s1 = h, H
        d0, d1 = 1 / μ * Π * b, 1 / μ * Π**2

        # competitive equilibrium
        c, p = self.competitive_equilibrium()

        # calculate surplus
        c_surplus = d0 * c - .5 * d1 * c**2 - p * c
        p_surplus = p * c - s0 * c - .5 * s1 * c**2

        return c_surplus, p_surplus

Then define a function that plots demand and supply curves and labels surpluses and equilibrium.

12.1.7.3.1 Example: single agent with one good and production
Now let’s construct an example of a production economy with one good.

To do this we

• specify a single person and a cost curve in a way that let’s us replicate the simple single-good
supply demand example with which we started

• compute equilibrium 𝑝 and 𝑐 and consumer and producer surpluses
• draw graphs of both surpluses
• do experiments in which we shift 𝑏 and watch what happens to 𝑝, 𝑐.

Π = np.array([[1]])  # the matrix now is a singleton
b = np.array([10])
h = np.array([0.5])
J = np.array([[1]])
μ = 1

PE = ProductionEconomy(Π, b, h, J, μ)
c, p = PE.competitive_equilibrium()

print('Competitive equilibrium price:', p.item())
print('Competitive equilibrium allocation:', c.item())

# plot
plot_competitive_equilibrium(PE)

Competitive equilibrium price: 5.25
Competitive equilibrium allocation: 4.75



c_surplus, p_surplus = PE.compute_surplus()

print('Consumer surplus:', c_surplus.item())
print('Producer surplus:', p_surplus.item())

Consumer surplus: 11.28125
Producer surplus: 11.28125

Let’s give the consumer a lower welfare weight by raising 𝜇.

PE.μ = 2
c, p = PE.competitive_equilibrium()

print('Competitive equilibrium price:', p.item())
print('Competitive equilibrium allocation:', c.item())

# plot
plot_competitive_equilibrium(PE)

Competitive equilibrium price: 3.5
Competitive equilibrium allocation: 3.0



c_surplus, p_surplus = PE.compute_surplus()

print('Consumer surplus:', c_surplus.item())
print('Producer surplus:', p_surplus.item())

Consumer surplus: 2.25
Producer surplus: 4.5

Now we change the bliss point so that the consumer derives more utility from consumption.

PE.μ = 1
PE.b = PE.b * 1.5
c, p = PE.competitive_equilibrium()

print('Competitive equilibrium price:', p.item())
print('Competitive equilibrium allocation:', c.item())

# plot
plot_competitive_equilibrium(PE)

Competitive equilibrium price: 7.75
Competitive equilibrium allocation: 7.25



This raises both the equilibrium price and quantity.

12.1.7.3.2 Example: single agent two-good economy with production
• we’ll do some experiments like those above
• we can do experiments with a diagonal Π and also with a non-diagonal Π matrices to study

how cross-slopes affect responses of 𝑝 and 𝑐 to various shifts in 𝑏 (TODO)

Π = np.array([[1, 0],
              [0, 1]])

b = np.array([10, 10])

h = np.array([0.5, 0.5])

J = np.array([[1, 0.5],
              [0.5, 1]])
μ = 1

PE = ProductionEconomy(Π, b, h, J, μ)
c, p = PE.competitive_equilibrium()

print('Competitive equilibrium price:', p)
print('Competitive equilibrium allocation:', c)

Competitive equilibrium price: [6.2 6.2]
Competitive equilibrium allocation: [3.8 3.8]

PE.b = np.array([12, 10])

c, p = PE.competitive_equilibrium()



print('Competitive equilibrium price:', p)
print('Competitive equilibrium allocation:', c)

Competitive equilibrium price: [7.13333333 6.46666667]
Competitive equilibrium allocation: [4.86666667 3.53333333]

PE.Π = np.array([[1, 0.5],
                 [0.5, 1]])

PE.b = np.array([10, 10])

c, p = PE.competitive_equilibrium()

print('Competitive equilibrium price:', p)
print('Competitive equilibrium allocation:', c)

Competitive equilibrium price: [6.3 6.3]
Competitive equilibrium allocation: [3.86666667 3.86666667]

PE.b = np.array([12, 10])
c, p = PE.competitive_equilibrium()

print('Competitive equilibrium price:', p)
print('Competitive equilibrium allocation:', c)

Competitive equilibrium price: [7.23333333 6.56666667]
Competitive equilibrium allocation: [4.93333333 3.6       ]

12.1.7.4 Digression: a supplier who is a monopolist
A competitive firm is a price-taker who regards the price and therefore its marginal revenue as
being beyond its control.

A monopolist knows that it has no competition and can influence the price and its marginal revenue
by setting quantity.

A monopolist takes a demand curve and not the price as beyond its control.

Thus, instead of being a price-taker, a monopolist sets prices to maximize profits subject to the
inverse demand curve (33).

So the monopolist’s total profits as a function of its output 𝑞 is

[𝜇−1Π⊤(𝑏 − Π𝑞)]⊤𝑞 − ℎ⊤𝑞 − 1
2
𝑞⊤𝐽𝑞 (12.35)

After finding first-order necessary conditions for maximizing monopoly profits with respect to 𝑞 and
solving them for 𝑞, we find that the monopolist sets

𝑞 = (𝐻 + 2𝜇−1Π⊤Π)−1(𝜇−1Π⊤𝑏 − ℎ) (12.36)

We’ll soon see that a monopolist sets a lower output 𝑞 than does either a

• planner who chooses 𝑞 to maximize social welfare
• a competitive equilibrium

Exercise 12.65.

Please verify the monopolist’s supply curve (36).



12.1.7.5 A monopolist
Let’s consider a monopolist supplier.

We have included a method in our ProductionEconomy class to compute an equilibrium price and
allocation when the supplier is a monopolist.

Since the supplier now has the price-setting power

• we first compute the optimal quantity that solves the monopolist’s profit maximization
problem.

• Then we back out an equilibrium price from the consumer’s inverse demand curve.

Next, we use a graph for the single good case to illustrate the difference between a competitive
equilibrium and an equilibrium with a monopolist supplier.

Recall that in a competitive equilibrium, a price-taking supplier equates marginal revenue 𝑝 to
marginal cost ℎ + 𝐻𝑞.

This yields a competitive producer’s inverse supply curve.

A monopolist’s marginal revenue is not constant but instead is a non-trivial function of the quantity
it sets.

The monopolist’s marginal revenue is

𝑀𝑅(𝑞) = −2𝜇−1Π⊤Π𝑞 + 𝜇−1Π⊤𝑏, (12.37)

which the monopolist equates to its marginal cost.

The plot indicates that the monopolist’s sets output lower than either the competitive equilibrium
quantity.

In a single good case, this equilibrium is associated with a higher price of the good.

class Monopoly(ProductionEconomy):
    
    def __init__(self, 
                 Π, 
                 b, 
                 h, 
                 J, 
                 μ):
        """
        Inherit all properties and methods from class ProductionEconomy
        """
        super().__init__(Π, b, h, J, μ)
        

    def equilibrium_with_monopoly(self):
        """
        Compute the equilibrium price and allocation when there is a monopolist
supplier
        """
        Π, b, h, μ, J = self.Π, self.b, self.h, self.μ, self.J
        H = .5 * (J + J.T)

        # allocation
        q = inv(μ * H + 2 * Π.T @ Π) @ (Π.T @ b - μ * h)

        # price



        p = 1 / μ * (Π.T @ b - Π.T @ Π @ q)

        if any(Π @ q - b >= 0):
            raise Exception('invalid result: set bliss points further away')

        return q, p

Define a function that plots the demand, marginal cost and marginal revenue curves with surpluses
and equilibrium labelled.

12.1.7.5.1 A multiple good example
Let’s compare competitive equilibrium and monopoly outcomes in a multiple goods economy.

Π = np.array([[1, 0],
              [0, 1.2]])

b = np.array([10, 10])

h = np.array([0.5, 0.5])

J = np.array([[1, 0.5],
              [0.5, 1]])
μ = 1

M = Monopoly(Π, b, h, J, μ)
c, p = M.competitive_equilibrium()
q, pm = M.equilibrium_with_monopoly()

print('Competitive equilibrium price:', p)
print('Competitive equilibrium allocation:', c)

print('Equilibrium with monopolist supplier price:', pm)
print('Equilibrium with monopolist supplier allocation:', q)

Competitive equilibrium price: [6.23542117 6.32397408]
Competitive equilibrium allocation: [3.76457883 3.94168467]
Equilibrium with monopolist supplier price: [7.26865672 8.23880597]
Equilibrium with monopolist supplier allocation: [2.73134328 2.6119403 ]

12.1.7.5.2 A single-good example
Π = np.array([[1]])  # the matrix now is a singleton
b = np.array([10])
h = np.array([0.5])
J = np.array([[1]])
μ = 1

M = Monopoly(Π, b, h, J, μ)
c, p = M.competitive_equilibrium()
q, pm = M.equilibrium_with_monopoly()

print('Competitive equilibrium price:', p.item())
print('Competitive equilibrium allocation:', c.item())

print('Equilibrium with monopolist supplier price:', pm.item())
print('Equilibrium with monopolist supplier allocation:', q.item())



# plot
plot_monopoly(M)

Competitive equilibrium price: 5.25
Competitive equilibrium allocation: 4.75
Equilibrium with monopolist supplier price: 6.833333333333334
Equilibrium with monopolist supplier allocation: 3.1666666666666665

12.1.8 Multi-good welfare maximization problem
Our welfare maximization problem – also sometimes called a social planning problem – is to choose
𝑐 to maximize

−1
2
𝜇−1(Π𝑐 − 𝑏)⊤(Π𝑐 − 𝑏) (12.38)

minus the area under the inverse supply curve, namely,

ℎ𝑐 + 1
2
𝑐⊤𝐽𝑐 (12.39)

So the welfare criterion is

−1
2
𝜇−1(Π𝑐 − 𝑏)⊤(Π𝑐 − 𝑏) − ℎ𝑐 − 1

2
𝑐⊤𝐽𝑐 (12.40)

In this formulation, 𝜇 is a parameter that describes how the planner weighs interests of outside
suppliers and our representative consumer.

The first-order condition with respect to 𝑐 is

−𝜇−1Π⊤Π𝑐 + 𝜇−1Π⊤𝑏 − ℎ − 𝐻𝑐 = 0 (12.41)

which implies (34).



Thus, as for the single-good case, with multiple goods a competitive equilibrium quantity vector
solves a planning problem.

(This is another version of the first welfare theorem.)

We can deduce a competitive equilibrium price vector from either

• the inverse demand curve, or
• the inverse supply curve



12.2 Market Equilibrium with Heterogeneity

12.2.1 Overview
In the previous lecture, we studied competitive equilibria in an economy with many goods.

While the results of the study were informative, we used a strong simplifying assumption: all of the
agents in the economy are identical.

In the real world, households, firms and other economic agents differ from one another along many
dimensions.

In this lecture, we introduce heterogeneity across consumers by allowing their preferences and
endowments to differ.

We will examine competitive equilibrium in this setting.

We will also show how a “representative consumer” can be constructed.

Here are some imports:

import numpy as np
from scipy.linalg import inv

12.2.2 An simple example
Let’s study a simple example of pure exchange economy without production.

There are two consumers who differ in their endowment vectors 𝑒𝑖 and their bliss-point vectors 𝑏𝑖
for 𝑖 = 1, 2.

The total endowment is 𝑒1 + 𝑒2.

A competitive equilibrium requires that

𝑐1 + 𝑐2 = 𝑒1 + 𝑒2 (12.42)

Assume the demand curves

𝑐𝑖 = (Π⊤Π)−1(Π⊤𝑏𝑖 − 𝜇𝑖𝑝) (12.43)

Competitive equilibrium then requires that

𝑒1 + 𝑒2 = (Π⊤Π)−1(Π⊤(𝑏1 + 𝑏2) − (𝜇1 + 𝜇2)𝑝) (12.44)

which, after a line or two of linear algebra, implies that

(𝜇1 + 𝜇2)𝑝 = Π⊤(𝑏1 + 𝑏2) − Π⊤Π(𝑒1 + 𝑒2) (12.45)

We can normalize prices by setting 𝜇1 + 𝜇2 = 1 and then solving

𝜇𝑖(𝑝, 𝑒) =
𝑝⊤(Π−1𝑏𝑖 − 𝑒𝑖)
𝑝⊤(Π⊤Π)−1𝑝

(12.46)

for 𝜇𝑖, 𝑖 = 1, 2.

12.2.3 Pure exchange economy
Let’s further explore a pure exchange economy with 𝑛 goods and 𝑚 people.

12.2.3.1 Competitive equilibrium
We’ll compute a competitive equilibrium.

To compute a competitive equilibrium of a pure exchange economy, we use the fact that

/supply-demand-multiple-goods


Exercise 12.66.

Show that, up to normalization by a positive scalar, the same competitive equilibrium price
vector that you computed in the preceding two-consumer economy would prevail in a single-
consumer economy in which a single representative consumer has utility function

−.5(Π𝑐 − 𝑏)⊤(Π𝑐 − 𝑏) (12.47)

and endowment vector 𝑒, where

𝑏 = 𝑏1 + 𝑏2 (12.48)

and

𝑒 = 𝑒1 + 𝑒2. (12.49)

• Relative prices in a competitive equilibrium are the same as those in a special single person or
representative consumer economy with preference Π and 𝑏 = ∑𝑖 𝑏𝑖, and endowment 𝑒 =
∑𝑖 𝑒𝑖.

We can use the following steps to compute a competitive equilibrium:

• First we solve the single representative consumer economy by normalizing 𝜇 = 1. Then, we
renormalize the price vector by using the first consumption good as a numeraire.

• Next we use the competitive equilibrium prices to compute each consumer’s marginal utility of
wealth:

𝜇𝑖 =
−𝑊𝑖 + 𝑝⊤(Π−1𝑏𝑖 − 𝑒𝑖)

𝑝⊤(Π⊤Π)−1𝑝
(12.50)

• Finally we compute a competitive equilibrium allocation by using the demand curves:

𝑐𝑖 = Π−1𝑏𝑖 − (Π⊤Π)−1𝜇𝑖𝑝 (12.51)

12.2.3.2 Designing some Python code
Below we shall construct a Python class with the following attributes:

• Preferences in the form of

‣ an 𝑛 × 𝑛 positive definite matrix Π
‣ an 𝑛 × 1 vector of bliss points 𝑏

• Endowments in the form of

‣ an 𝑛 × 1 vector 𝑒
‣ a scalar “wealth” 𝑊  with default value 0

The class will include a test to make sure that 𝑏 ≫ Π𝑒 and raise an exception if it is violated (at
some threshold level we’d have to specify).

• A Person in the form of a pair that consists of

‣ Preferences and Endowments
• A Pure Exchange Economy will consist of

‣ a collection of 𝑚 persons

– 𝑚 = 1 for our single-agent economy
– 𝑚 = 2 for our illustrations of a pure exchange economy



‣ an equilibrium price vector 𝑝 (normalized somehow)
‣ an equilibrium allocation 𝑐1, 𝑐2, …, 𝑐𝑚 – a collection of 𝑚 vectors of dimension 𝑛 × 1

Now let’s proceed to code.

class ExchangeEconomy:
    def __init__(self, 
                 Π, 
                 bs, 
                 es, 
                 Ws=None, 
                 thres=1.5):
        """
        Set up the environment for an exchange economy

        Args:
            Π (np.array): shared matrix of substitution
            bs (list): all consumers' bliss points
            es (list): all consumers' endowments
            Ws (list): all consumers' wealth
            thres (float): a threshold set to test b >> Pi e violated
        """
        n, m = Π.shape[0], len(bs)

        # check non-satiation
        for b, e in zip(bs, es):
            if np.min(b / np.max(Π @ e)) <= thres:
                raise Exception('set bliss points further away')

        if Ws == None:
            Ws = np.zeros(m)
        else:
            if sum(Ws) != 0:
                raise Exception('invalid wealth distribution')

        self.Π, self.bs, self.es, self.Ws, self.n, self.m = Π, bs, es, Ws, n, m

    def competitive_equilibrium(self):
        """
        Compute the competitive equilibrium prices and allocation
        """
        Π, bs, es, Ws = self.Π, self.bs, self.es, self.Ws
        n, m = self.n, self.m
        slope_dc = inv(Π.T @ Π)
        Π_inv = inv(Π)

        # aggregate
        b = sum(bs)
        e = sum(es)

        # compute price vector with mu=1 and renormalize
        p = Π.T @ b - Π.T @ Π @ e
        p = p / p[0]

        # compute marginal utility of wealth
        μ_s = []
        c_s = []



        A = p.T @ slope_dc @ p

        for i in range(m):
            μ_i = (-Ws[i] + p.T @ (Π_inv @ bs[i] - es[i])) / A
            c_i = Π_inv @ bs[i] - μ_i * slope_dc @ p
            μ_s.append(μ_i)
            c_s.append(c_i)

        for c_i in c_s:
            if any(c_i < 0):
                print('allocation: ', c_s)
                raise Exception('negative allocation: equilibrium does not exist')

        return p, c_s, μ_s

12.2.4 Implementation
Next we use the class ExchangeEconomy defined above to study

• a two-person economy without production,
• a dynamic economy, and
• an economy with risk and arrow securities.

12.2.4.1 Two-person economy without production
Here we study how competitive equilibrium 𝑝, 𝑐1, 𝑐2 respond to different 𝑏𝑖 and 𝑒𝑖, 𝑖 ∈ {1, 2}.

Π = np.array([[1, 0],
              [0, 1]])

bs = [np.array([5, 5]),  # first consumer's bliss points
      np.array([5, 5])]  # second consumer's bliss points

es = [np.array([0, 2]),  # first consumer's endowment
      np.array([2, 0])]  # second consumer's endowment

EE = ExchangeEconomy(Π, bs, es)
p, c_s, μ_s = EE.competitive_equilibrium()

print('Competitive equilibrium price vector:', p)
print('Competitive equilibrium allocation:', c_s)

Competitive equilibrium price vector: [1. 1.]
Competitive equilibrium allocation: [array([1., 1.]), array([1., 1.])]

What happens if the first consumer likes the first good more and the second consumer likes the
second good more?

EE.bs = [np.array([6, 5]),  # first consumer's bliss points
         np.array([5, 6])]  # second consumer's bliss points

p, c_s, μ_s = EE.competitive_equilibrium()

print('Competitive equilibrium price vector:', p)
print('Competitive equilibrium allocation:', c_s)

Competitive equilibrium price vector: [1. 1.]
Competitive equilibrium allocation: [array([1.5, 0.5]), array([0.5, 1.5])]

Let the first consumer be poorer.



EE.es = [np.array([0.5, 0.5]),  # first consumer's endowment
         np.array([1, 1])]  # second consumer's endowment

p, c_s, μ_s = EE.competitive_equilibrium()

print('Competitive equilibrium price vector:', p)
print('Competitive equilibrium allocation:', c_s)

Competitive equilibrium price vector: [1. 1.]
Competitive equilibrium allocation: [array([1., 0.]), array([0.5, 1.5])]

Now let’s construct an autarky (i.e., no-trade) equilibrium.

EE.bs = [np.array([4, 6]),  # first consumer's bliss points
      np.array([6, 4])]  # second consumer's bliss points

EE.es = [np.array([0, 2]),  # first consumer's endowment
      np.array([2, 0])]  # second consumer's endowment

p, c_s, μ_s = EE.competitive_equilibrium()

print('Competitive equilibrium price vector:', p)
print('Competitive equilibrium allocation:', c_s)

Competitive equilibrium price vector: [1. 1.]
Competitive equilibrium allocation: [array([0., 2.]), array([2., 0.])]

Now let’s redistribute endowments before trade.

bs = [np.array([5, 5]),  # first consumer's bliss points
      np.array([5, 5])]  # second consumer's bliss points

es = [np.array([1, 1]),  # first consumer's endowment
      np.array([1, 1])]  # second consumer's endowment

Ws = [0.5, -0.5]
EE_new = ExchangeEconomy(Π, bs, es, Ws)
p, c_s, μ_s = EE_new.competitive_equilibrium()

print('Competitive equilibrium price vector:', p)
print('Competitive equilibrium allocation:', c_s)

Competitive equilibrium price vector: [1. 1.]
Competitive equilibrium allocation: [array([1.25, 1.25]), array([0.75, 0.75])]

12.2.4.2 A dynamic economy
Now let’s use the tricks described above to study a dynamic economy, one with two periods.

beta = 0.95

Π = np.array([[1, 0],
              [0, np.sqrt(beta)]])

bs = [np.array([5, np.sqrt(beta) * 5])]

es = [np.array([1, 1])]

EE_DE = ExchangeEconomy(Π, bs, es)
p, c_s, μ_s = EE_DE.competitive_equilibrium()



print('Competitive equilibrium price vector:', p)
print('Competitive equilibrium allocation:', c_s)

Competitive equilibrium price vector: [1.   0.95]
Competitive equilibrium allocation: [array([1., 1.])]

12.2.4.3 Risk economy with arrow securities
We use the tricks described above to interpret 𝑐1, 𝑐2 as “Arrow securities” that are state-contingent
claims to consumption goods.

prob = 0.7

Π = np.array([[np.sqrt(prob), 0],
              [0, np.sqrt(1 - prob)]])

bs = [np.array([np.sqrt(prob) * 5, np.sqrt(1 - prob) * 5]),
      np.array([np.sqrt(prob) * 5, np.sqrt(1 - prob) * 5])]

es = [np.array([1, 0]),
      np.array([0, 1])]

EE_AS = ExchangeEconomy(Π, bs, es)
p, c_s, μ_s = EE_AS.competitive_equilibrium()

print('Competitive equilibrium price vector:', p)
print('Competitive equilibrium allocation:', c_s)

Competitive equilibrium price vector: [1.         0.42857143]
Competitive equilibrium allocation: [array([0.7, 0.7]), array([0.3, 0.3])]

12.2.5 Deducing a representative consumer
In the class of multiple consumer economies that we are studying here, it turns out that there exists
a single representative consumer whose preferences and endowments can be deduced from lists
of preferences and endowments for separate individual consumers.

Consider a multiple consumer economy with initial distribution of wealth 𝑊𝑖 satisfying ∑𝑖 𝑊𝑖 = 0

We allow an initial redistribution of wealth.

We have the following objects

• The demand curve:

𝑐𝑖 = Π−1𝑏𝑖 − (Π⊤Π)−1𝜇𝑖𝑝 (12.52)

• The marginal utility of wealth:

𝜇𝑖 =
−𝑊𝑖 + 𝑝⊤(Π−1𝑏𝑖 − 𝑒𝑖)

𝑝⊤(Π⊤Π)−1𝑝
(12.53)

• Market clearing:

∑ 𝑐𝑖 = ∑ 𝑒𝑖 (12.54)

Denote aggregate consumption ∑𝑖 𝑐𝑖 = 𝑐 and ∑𝑖 𝜇𝑖 = 𝜇.

Market clearing requires

Π−1(∑
𝑖

𝑏𝑖) − (Π⊤Π)−1𝑝(∑
𝑖

𝜇𝑖) = ∑
𝑖

𝑒𝑖 (12.55)



which, after a few steps, leads to

𝑝 = 𝜇−1(Π⊤𝑏 − Π⊤Π𝑒) (12.56)

where

𝜇 = ∑
𝑖

𝜇𝑖 =
0 + 𝑝⊤(Π−1𝑏 − 𝑒)

𝑝⊤(Π⊤Π)−1𝑝
. (12.57)

Now consider the representative consumer economy specified above.

Denote the marginal utility of wealth of the representative consumer by 𝜇̃.

The demand function is

𝑐 = Π−1𝑏 − (Π⊤Π)−1𝜇̃𝑝 (12.58)

Substituting this into the budget constraint gives

𝜇̃ =
𝑝⊤(Π−1𝑏 − 𝑒)
𝑝⊤(Π⊤Π)−1𝑝

(12.59)

In an equilibrium 𝑐 = 𝑒, so

𝑝 = 𝜇̃−1(Π⊤𝑏 − Π⊤Π𝑒) (12.60)

Thus, we have verified that, up to the choice of a numeraire in which to express absolute prices, the
price vector in our representative consumer economy is the same as that in an underlying economy
with multiple consumers.





Chapter 13

13. Estimation
13.1 Simple Linear Regression Model
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

The simple regression model estimates the relationship between two variables 𝑥𝑖 and 𝑦𝑖

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝜀𝑖, 𝑖 = 1, 2, …, 𝑁 (13.1)

where 𝜀𝑖 represents the error between the line of best fit and the sample values for 𝑦𝑖 given 𝑥𝑖.

Our goal is to choose values for 𝛼 and 𝛽 to build a line of “best” fit for some data that is available for
variables 𝑥𝑖 and 𝑦𝑖.

Let us consider a simple dataset of 10 observations for variables 𝑥𝑖 and 𝑦𝑖:

𝑦𝑖 𝑥𝑖

1 2000 32
2 1000 21
3 1500 24
4 2500 35
5 500 10
6 900 11
7 1100 22
8 1500 21
9 1800 27
10 250 2

Let us think about 𝑦𝑖 as sales for an ice-cream cart, while 𝑥𝑖 is a variable that records the day’s
temperature in Celsius.

x = [32, 21, 24, 35, 10, 11, 22, 21, 27, 2]
y = [2000,1000,1500,2500,500,900,1100,1500,1800, 250]
df = pd.DataFrame([x,y]).T
df.columns = ['X', 'Y']
df

X Y
0 32 2000
1 21 1000
2 24 1500
3 35 2500
4 10 500
5 11 900
6 22 1100
7 21 1500



X Y
8 27 1800
9 2 250

We can use a scatter plot of the data to see the relationship between 𝑦𝑖 (ice-cream sales in dollars
($‘s)) and 𝑥𝑖 (degrees Celsius).

ax = df.plot(
    x='X', 
    y='Y', 
    kind='scatter', 
    ylabel='Ice-cream sales ($\'s)', 
    xlabel='Degrees celcius'
)

Figure 123.  Scatter plot

as you can see the data suggests that more ice-cream is typically sold on hotter days.

To build a linear model of the data we need to choose values for 𝛼 and 𝛽 that represents a line of
“best” fit such that

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 (13.2)

Let’s start with 𝛼 = 5 and 𝛽 = 10

α = 5
β = 10
df['Y_hat'] = α + β * df['X']

fig, ax = plt.subplots()
ax = df.plot(x='X',y='Y', kind='scatter', ax=ax)
ax = df.plot(x='X',y='Y_hat', kind='line', ax=ax)
plt.show()



Figure 124.  Scatter plot with a line of fit

We can see that this model does a poor job of estimating the relationship.

We can continue to guess and iterate towards a line of “best” fit by adjusting the parameters

β = 100
df['Y_hat'] = α + β * df['X']

fig, ax = plt.subplots()
ax = df.plot(x='X',y='Y', kind='scatter', ax=ax)
ax = df.plot(x='X',y='Y_hat', kind='line', ax=ax)
plt.show()



Figure 125.  Scatter plot with a line of fit #2

β = 65
df['Y_hat'] = α + β * df['X']

fig, ax = plt.subplots()
ax = df.plot(x='X',y='Y', kind='scatter', ax=ax)
ax = df.plot(x='X',y='Y_hat', kind='line', ax=ax, color='g')
plt.show()

Figure 126.  Scatter plot with a line of fit #3



However we need to think about formalizing this guessing process by thinking of this problem as an
optimization problem.

Let’s consider the error 𝜀𝑖 and define the difference between the observed values 𝑦𝑖 and the
estimated values 𝑦𝑖 which we will call the residuals

𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖

= 𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖
(13.3)

df['error'] = df['Y_hat'] - df['Y']

df

X Y Y_hat error
0 32 2000 2085 85
1 21 1000 1370 370
2 24 1500 1565 65
3 35 2500 2280 −220
4 10 500 655 155
5 11 900 720 −180
6 22 1100 1435 335
7 21 1500 1370 −130
8 27 1800 1760 −40
9 2 250 135 −115

fig, ax = plt.subplots()
ax = df.plot(x='X',y='Y', kind='scatter', ax=ax)
ax = df.plot(x='X',y='Y_hat', kind='line', ax=ax, color='g')
plt.vlines(df['X'], df['Y_hat'], df['Y'], color='r')
plt.show()

Figure 127.  Plot of the residuals



The Ordinary Least Squares (OLS) method chooses 𝛼 and 𝛽 in such a way that minimizes the sum
of the squared residuals (SSR).

min
𝛼,𝛽

∑
𝑁

𝑖=1
𝑒2

𝑖 = min
𝛼,𝛽

∑
𝑁

𝑖=1
(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)

2 (13.4)

Let’s call this a cost function

𝐶 = ∑
𝑁

𝑖=1
(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)

2 (13.5)

that we would like to minimize with parameters 𝛼 and 𝛽.

13.1.1 How does error change with respect to 𝛼 and 𝛽
Let us first look at how the total error changes with respect to 𝛽 (holding the intercept 𝛼 constant)

We know from the next section the optimal values for 𝛼 and 𝛽 are:

β_optimal = 64.38
α_optimal = -14.72

We can then calculate the error for a range of 𝛽 values

errors = {}
for β in np.arange(20,100,0.5):
    errors[β] = abs((α_optimal + β * df['X']) - df['Y']).sum()

Plotting the error

ax = pd.Series(errors).plot(xlabel='β', ylabel='error')
plt.axvline(β_optimal, color='r');

Figure 128.  Plotting the error

Now let us vary 𝛼 (holding 𝛽 constant)



errors = {}
for α in np.arange(-500,500,5):
    errors[α] = abs((α + β_optimal * df['X']) - df['Y']).sum()

Plotting the error

ax = pd.Series(errors).plot(xlabel='α', ylabel='error')
plt.axvline(α_optimal, color='r');

Figure 129.  Plotting the error (2)

13.1.2 Calculating optimal values
Now let us use calculus to solve the optimization problem and compute the optimal values for 𝛼 and
𝛽 to find the ordinary least squares solution.

First taking the partial derivative with respect to 𝛼

𝜕𝐶
𝜕𝛼

[∑
𝑁

𝑖=1
(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)

2] (13.6)

and setting it equal to 0

0 = ∑
𝑁

𝑖=1
−2(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖) (13.7)

we can remove the constant −2 from the summation by dividing both sides by −2

0 = ∑
𝑁

𝑖=1
(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖) (13.8)

Now we can split this equation up into the components

0 = ∑
𝑁

𝑖=1
𝑦𝑖 − ∑

𝑁

𝑖=1
𝛼 − 𝛽 ∑

𝑁

𝑖=1
𝑥𝑖 (13.9)

The middle term is a straight forward sum from 𝑖 = 1, …𝑁  by a constant 𝛼



0 = ∑
𝑁

𝑖=1
𝑦𝑖 − 𝑁 ∗ 𝛼 − 𝛽 ∑

𝑁

𝑖=1
𝑥𝑖 (13.10)

and rearranging terms

𝛼 =
∑𝑁

𝑖=1 𝑦𝑖 − 𝛽 ∑𝑁
𝑖=1 𝑥𝑖

𝑁
(13.11)

We observe that both fractions resolve to the means ̄𝑦𝑖 and ̄𝑥𝑖

𝛼 = ̄𝑦𝑖 − 𝛽 ̄𝑥𝑖 (13.12)

Now let’s take the partial derivative of the cost function 𝐶 with respect to 𝛽

𝜕𝐶
𝜕𝛽

[∑
𝑁

𝑖=1
(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖)

2] (13.13)

and setting it equal to 0

0 = ∑
𝑁

𝑖=1
−2𝑥𝑖(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖) (13.14)

we can again take the constant outside of the summation and divide both sides by −2

0 = ∑
𝑁

𝑖=1
𝑥𝑖(𝑦𝑖 − 𝛼 − 𝛽𝑥𝑖) (13.15)

which becomes

0 = ∑
𝑁

𝑖=1
(𝑥𝑖𝑦𝑖 − 𝛼𝑥𝑖 − 𝛽𝑥2

𝑖 ) (13.16)

now substituting for 𝛼

0 = ∑
𝑁

𝑖=1
(𝑥𝑖𝑦𝑖 − ( ̄𝑦𝑖 − 𝛽 ̄𝑥𝑖)𝑥𝑖 − 𝛽𝑥2

𝑖 ) (13.17)

and rearranging terms

0 = ∑
𝑁

𝑖=1
(𝑥𝑖𝑦𝑖 − ̄𝑦𝑖𝑥𝑖 − 𝛽 ̄𝑥𝑖𝑥𝑖 − 𝛽𝑥2

𝑖 ) (13.18)

This can be split into two summations

0 = ∑
𝑁

𝑖=1
(𝑥𝑖𝑦𝑖 − ̄𝑦𝑖𝑥𝑖) + 𝛽 ∑

𝑁

𝑖=1
( ̄𝑥𝑖𝑥𝑖 − 𝑥2

𝑖 ) (13.19)

and solving for 𝛽 yields

𝛽 =
∑𝑁

𝑖=1(𝑥𝑖𝑦𝑖 − ̄𝑦𝑖𝑥𝑖)

∑𝑁
𝑖=1(𝑥

2
𝑖 − ̄𝑥𝑖𝑥𝑖)

(13.20)

We can now use (12) and (20) to calculate the optimal values for 𝛼 and 𝛽

Calculating 𝛽

df = df[['X','Y']].copy()  # Original Data

# Calculate the sample means



x_bar = df['X'].mean()
y_bar = df['Y'].mean()

Now computing across the 10 observations and then summing the numerator and denominator

# Compute the Sums
df['num'] = df['X'] * df['Y'] - y_bar * df['X']
df['den'] = pow(df['X'],2) - x_bar * df['X']
β = df['num'].sum() / df['den'].sum()
print(β)

64.37665782493369

Calculating 𝛼

α = y_bar - β * x_bar
print(α)

-14.72148541114052

Now we can plot the OLS solution

df['Y_hat'] = α + β * df['X']
df['error'] = df['Y_hat'] - df['Y']

fig, ax = plt.subplots()
ax = df.plot(x='X',y='Y', kind='scatter', ax=ax)
ax = df.plot(x='X',y='Y_hat', kind='line', ax=ax, color='g')
plt.vlines(df['X'], df['Y_hat'], df['Y'], color='r');

Figure 130.  OLS line of best fit



Exercise 13.67.

Now that you know the equations that solve the simple linear regression model using OLS you
can now run your own regressions to build a model between 𝑦 and 𝑥.

Let’s consider two economic variables GDP per capita and Life Expectancy.

1. What do you think their relationship would be?
2. Gather some data from our world in data
3. Use pandas to import the csv formatted data and plot a few different countries of interest
4. Use (12) and (20) to compute optimal values for 𝛼 and 𝛽
5. Plot the line of best fit found using OLS
6. Interpret the coefficients and write a summary sentence of the relationship between GDP

per capita and Life Expectancy

https://ourworldindata.org


Solution 13.57. Solution to Exercise 1

Q2: Gather some data from our world in data

You can download a copy of the data here if you get stuck

Q3: Use pandas to import the csv formatted data and plot a few different countries of interest

data_url = "https://github.com/QuantEcon/lecture-python-intro/raw/main/lectures/_
static/lecture_specific/simple_linear_regression/life-expectancy-vs-gdp-per-
capita.csv"
df = pd.read_csv(data_url, nrows=10)

df

Entity Code Year Life
expectancy
at birth
(historical)

GDP per
capita

417485-
annotations

Population
(historical
estimates)

Continent

0 Abkhazia OWID_ABK2015 NaN NaN NaN NaN Asia
1 AfghanistanAFG 1950 27.7 1156.0 NaN 7480464.0 NaN
2 AfghanistanAFG 1951 28.0 1170.0 NaN 7571542.0 NaN
3 AfghanistanAFG 1952 28.4 1189.0 NaN 7667534.0 NaN
4 AfghanistanAFG 1953 28.9 1240.0 NaN 7764549.0 NaN
5 AfghanistanAFG 1954 29.2 1245.0 NaN 7864289.0 NaN
6 AfghanistanAFG 1955 29.9 1246.0 NaN 7971933.0 NaN
7 AfghanistanAFG 1956 30.4 1278.0 NaN 8087730.0 NaN
8 AfghanistanAFG 1957 30.9 1253.0 NaN 8210207.0 NaN
9 AfghanistanAFG 1958 31.5 1298.0 NaN 8333827.0 NaN

You can see that the data downloaded from Our World in Data has provided a global set of
countries with the GDP per capita and Life Expectancy Data.

It is often a good idea to at first import a few lines of data from a csv to understand its structure
so that you can then choose the columns that you want to read into your DataFrame.

You can observe that there are a bunch of columns we won’t need to import such as Continent

So let’s built a list of the columns we want to import

cols = ['Code', 'Year', 'Life expectancy at birth (historical)', 'GDP per capita']
df = pd.read_csv(data_url, usecols=cols)
df

Code Year Life expectancy at birth (historical) GDP per capita
0 OWID_ABK 2015 NaN NaN
1 AFG 1950 27.7 1156.0
2 AFG 1951 28.0 1170.0
3 AFG 1952 28.4 1189.0
4 AFG 1953 28.9 1240.0
… … … … …
62151 ZWE 1946 NaN NaN62152 ZWE 1947 NaN NaN62153 ZWE 1948 NaN NaN62154 ZWE 1949 NaN NaN62155 ALA 2015 NaN NaN

62156 rows × 4 columns

Sometimes it can be useful to rename your columns to make it easier to work with in the
DataFrame

df.columns = ["cntry", "year", "life_expectancy", "gdppc"]
df

cntry year life_expectancy gdppc
0 OWID_ABK 2015 NaN NaN1 AFG 1950 27.7 1156.02 AFG 1951 28.0 1170.03 AFG 1952 28.4 1189.04 AFG 1953 28.9 1240.0… … … … …62151 ZWE 1946 NaN NaN62152 ZWE 1947 NaN NaN62153 ZWE 1948 NaN NaN62154 ZWE 1949 NaN NaN62155 ALA 2015 NaN NaN

62156 rows × 4 columns

We can see there are NaN values which represents missing data so let us go ahead and drop those

df.dropna(inplace=True)

df
cntry year life_expectancy gdppc

1 AFG 1950 27.7 1156.00002 AFG 1951 28.0 1170.00003 AFG 1952 28.4 1189.00004 AFG 1953 28.9 1240.00005 AFG 1954 29.2 1245.0000… … … … …61960 ZWE 2014 58.8 1594.000061961 ZWE 2015 59.6 1560.000061962 ZWE 2016 60.3 1534.000061963 ZWE 2017 60.7 1582.366261964 ZWE 2018 61.4 1611.4052
12445 rows × 4 columns

We have now dropped the number of rows in our DataFrame from 62156 to 12445 removing a lot
of empty data relationships.

Now we have a dataset containing life expectancy and GDP per capita for a range of years.

It is always a good idea to spend a bit of time understanding what data you actually have.

For example, you may want to explore this data to see if there is consistent reporting for all
countries across years

Let’s first look at the Life Expectancy Data

le_years = df[['cntry', 'year', 'life_expectancy']].set_index(['cntry',
'year']).unstack()['life_expectancy']
le_years

year1543154815531558156315681573157815831588… 2009201020112012201320142015201620172018
cntry

AFGNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN… 60.4 60.9 61.4 61.9 62.4 62.5 62.7 63.1 63.0 63.1AGONaNNaNNaNNaNNaNNaNNaNNaNNaNNaN… 55.8 56.7 57.6 58.6 59.3 60.0 60.7 61.1 61.7 62.1ALBNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN… 77.8 77.9 78.1 78.1 78.1 78.4 78.6 78.9 79.0 79.2ARENaNNaNNaNNaNNaNNaNNaNNaNNaNNaN… 78.0 78.3 78.5 78.7 78.9 79.0 79.2 79.3 79.5 79.6ARGNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN… 75.9 75.7 76.1 76.5 76.5 76.8 76.8 76.3 76.8 77.0… … … … … … … … … … … … … … … … … … … … … …VNMNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN… 73.5 73.5 73.7 73.7 73.8 73.9 73.9 73.9 74.0 74.0YEMNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN… 67.2 67.3 67.4 67.3 67.5 67.4 65.9 66.1 66.0 64.6ZAFNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN… 57.4 58.9 60.7 61.8 62.5 63.4 63.9 64.7 65.4 65.7ZMBNaNNaNNaNNaNNaNNaNNaNNaNNaNNaN… 55.3 56.8 57.8 58.9 59.9 60.7 61.2 61.8 62.1 62.3ZWENaNNaNNaNNaNNaNNaNNaNNaNNaNNaN… 48.1 50.7 53.3 55.6 57.5 58.8 59.6 60.3 60.7 61.4
166 rows × 310 columns

As you can see there are a lot of countries where data is not available for the Year 1543!

Which country does report this data?

le_years[~le_years[1543].isna()]

year1543154815531558156315681573157815831588… 2009201020112012201320142015201620172018
cntry

GBR33.9438.8239.5922.3836.6639.6741.0641.5642.7 37.05… 80.2 80.4 80.8 80.9 80.9 81.2 80.9 81.1 81.2 81.1
1 rows × 310 columns

You can see that Great Britain (GBR) is the only one available

You can also take a closer look at the time series to find that it is also non-continuous, even for
GBR.

le_years.loc['GBR'].plot()

<Axes: xlabel='year'>

In fact we can use pandas to quickly check how many countries are captured in each year

le_years.stack().unstack(level=0).count(axis=1).plot(xlabel="Year", ylabel="Number
of countries");

So it is clear that if you are doing cross-sectional comparisons then more recent data will include
a wider set of countries

Now let us consider the most recent year in the dataset 2018

df = df[df.year == 2018].reset_index(drop=True).copy()

df.plot(x='gdppc', y='life_expectancy', kind='scatter',  xlabel="GDP per capita",
ylabel="Life expectancy (years)",);

This data shows a couple of interesting relationships.

1. there are a number of countries with similar GDP per capita levels but a wide range in Life
Expectancy

2. there appears to be a positive relationship between GDP per capita and life expectancy.
Countries with higher GDP per capita tend to have higher life expectancy outcomes

Even though OLS is solving linear equations – one option we have is to transform the variables,
such as through a log transform, and then use OLS to estimate the transformed variables.

By specifying logx you can plot the GDP per Capita data on a log scale

df.plot(x='gdppc', y='life_expectancy', kind='scatter',  xlabel="GDP per capita",
ylabel="Life expectancy (years)", logx=True);

As you can see from this transformation – a linear model fits the shape of the data more closely.

df['log_gdppc'] = df['gdppc'].apply(np.log10)

df
cntry year life_expectancy gdppc log_gdppc

0 AFG 2018 63.1 1934.5550 3.2865811 ALB 2018 79.2 11104.1660 4.0454862 DZA 2018 76.1 14228.0250 4.1531453 AGO 2018 62.1 7771.4420 3.8905024 ARG 2018 77.0 18556.3830 4.268493… … … … … …161 VNM 2018 74.0 6814.1420 3.833411162 OWID_WRL 2018 72.6 15212.4150 4.182198163 YEM 2018 64.6 2284.8900 3.358865164 ZMB 2018 62.3 3534.0337 3.548271165 ZWE 2018 61.4 1611.4052 3.207205
166 rows × 5 columns

Q4: Use (12) and (20) to compute optimal values for 𝛼 and 𝛽

data = df[['log_gdppc', 'life_expectancy']].copy()  # Get Data from DataFrame

# Calculate the sample means
x_bar = data['log_gdppc'].mean()
y_bar = data['life_expectancy'].mean()

data
log_gdppc life_expectancy

0 3.286581 63.11 4.045486 79.22 4.153145 76.13 3.890502 62.14 4.268493 77.0… … …161 3.833411 74.0162 4.182198 72.6163 3.358865 64.6164 3.548271 62.3165 3.207205 61.4
166 rows × 2 columns

# Compute the Sums
data['num'] = data['log_gdppc'] * data['life_expectancy'] - y_bar *
data['log_gdppc']
data['den'] = pow(data['log_gdppc'],2) - x_bar * data['log_gdppc']
β = data['num'].sum() / data['den'].sum()
print(β)

12.643730292819704α = y_bar - β * x_bar
print(α)
21.702096701389053Q5: Plot the line of best fit found using OLS

data['life_expectancy_hat'] = α + β * df['log_gdppc']
data['error'] = data['life_expectancy_hat'] - data['life_expectancy']

fig, ax = plt.subplots()
data.plot(x='log_gdppc',y='life_expectancy', kind='scatter', ax=ax)
data.plot(x='log_gdppc',y='life_expectancy_hat', kind='line', ax=ax, color='g')
plt.vlines(data['log_gdppc'], data['life_expectancy_hat'],
data['life_expectancy'], color='r')

<matplotlib.collections.LineCollection at 0x12f2949e0>

https://ourworldindata.org
https://github.com/QuantEcon/lecture-python-intro/raw/main/lectures/\_static/lecture\_specific/simple\_linear\_regression/life-expectancy-vs-gdp-per-capita.csv


Exercise 13.68.

Minimizing the sum of squares is not the only way to generate the line of best fit.

For example, we could also consider minimizing the sum of the absolute values, that would
give less weight to outliers.

Solve for 𝛼 and 𝛽 using the least absolute values



Example 13.27.

For example, if 𝑎 = 0.05, 𝑏 = 0.1, and 𝑤̄ = 2.5, this means

• a 5% tax on wealth up to 2.5 and
• a 10% tax on wealth in excess of 2.5.

The unit is 100,000, so 𝑤 = 2.5 means 250,000 dollars.

13.2 Maximum Likelihood Estimation
from scipy.stats import lognorm, pareto, expon
import numpy as np
from scipy.integrate import quad
import matplotlib.pyplot as plt
import pandas as pd
from math import exp

13.2.1 Introduction
Consider a situation where a policymaker is trying to estimate how much revenue a proposed
wealth tax will raise.

The proposed tax is

ℎ(𝑤) = (13.21)

where 𝑤 is wealth.

Let’s go ahead and define ℎ:

def h(w, a=0.05, b=0.1, w_bar=2.5):
    if w <= w_bar:
        return a * w
    else:
        return a * w_bar + b * (w - w_bar)

For a population of size 𝑁 , where individual 𝑖 has wealth 𝑤𝑖, total revenue raised by the tax will be

𝑇 = ∑
𝑁

𝑖=1
ℎ(𝑤𝑖) (13.22)

We wish to calculate this quantity.

The problem we face is that, in most countries, wealth is not observed for all individuals.

Collecting and maintaining accurate wealth data for all individuals or households in a country is just
too hard.

So let’s suppose instead that we obtain a sample 𝑤1, 𝑤2, ⋯, 𝑤𝑛 telling us the wealth of 𝑛 randomly
selected individuals.

For our exercise we are going to use a sample of 𝑛 = 10, 000 observations from wealth data in the
US in 2016.

n = 10_000

The data is derived from the Survey of Consumer Finances (SCF).

The following code imports this data and reads it into an array called sample.

Let’s histogram this sample.

https://en.wikipedia.org/wiki/Survey\_of\_Consumer\_Finances


fig, ax = plt.subplots()
ax.set_xlim(-1, 20)
density, edges = np.histogram(sample, bins=5000, density=True)
prob = density * np.diff(edges)
plt.stairs(prob, edges, fill=True, alpha=0.8, label=r"unit: $\$100,000$")
plt.ylabel("prob")
plt.xlabel("net wealth")
plt.legend()
plt.show()

The histogram shows that many people have very low wealth and a few people have very high
wealth.

We will take the full population size to be

N = 100_000_000

How can we estimate total revenue from the full population using only the sample data?

Our plan is to assume that wealth of each individual is a draw from a distribution with density 𝑓 .

If we obtain an estimate of 𝑓  we can then approximate 𝑇  as follows:

𝑇 = ∑
𝑁

𝑖=1
ℎ(𝑤𝑖) = 𝑁 1

𝑁
∑
𝑁

𝑖=1
ℎ(𝑤𝑖) ≈ 𝑁 ∫

∞

0
ℎ(𝑤)𝑓(𝑤)𝑑𝑤 (13.23)

(The sample mean should be close to the mean by the law of large numbers.)

The problem now is: how do we estimate 𝑓?

13.2.2 Maximum likelihood estimation
Maximum likelihood estimation is a method of estimating an unknown distribution.

Maximum likelihood estimation has two steps:

https://en.wikipedia.org/wiki/Maximum\_likelihood\_estimation


1. Guess what the underlying distribution is (e.g., normal with mean 𝜇 and standard deviation 𝜎).
2. Estimate the parameter values (e.g., estimate 𝜇 and 𝜎 for the normal distribution)

One possible assumption for the wealth is that each 𝑤𝑖 is log-normally distributed, with parameters
𝜇 ∈ (−∞, ∞) and 𝜎 ∈ (0, ∞).

(This means that ln 𝑤𝑖 is normally distributed with mean 𝜇 and standard deviation 𝜎.)

You can see that this assumption is not completely unreasonable because, if we histogram log wealth
instead of wealth, the picture starts to look something like a bell-shaped curve.

ln_sample = np.log(sample)
fig, ax = plt.subplots()
ax.hist(ln_sample, density=True, bins=200, histtype='stepfilled', alpha=0.8)
plt.show()

Now our job is to obtain the maximum likelihood estimates of 𝜇 and 𝜎, which we denote by 𝜇̂ and 𝜎̂.

These estimates can be found by maximizing the likelihood function given the data.

The pdf of a lognormally distributed random variable 𝑋 is given by:

𝑓(𝑥, 𝜇, 𝜎) = 1
𝑥

1
𝜎
√

2𝜋
exp (−1

2
(ln 𝑥 − 𝜇

𝜎
))

2

(13.24)

For our sample 𝑤1, 𝑤2, ⋯, 𝑤𝑛, the likelihood function is given by

𝐿(𝜇, 𝜎 | 𝑤𝑖) = ∏
𝑛

𝑖=1
𝑓(𝑤𝑖, 𝜇, 𝜎) (13.25)

The likelihood function can be viewed as both

• the joint distribution of the sample (which is assumed to be IID) and
• the “likelihood” of parameters (𝜇, 𝜎) given the data.

https://en.wikipedia.org/wiki/Log-normal\_distribution
https://en.wikipedia.org/wiki/Likelihood\_function


Taking logs on both sides gives us the log likelihood function, which is

ℓ(𝜇, 𝜎 | 𝑤𝑖) = ln[∏
𝑛

𝑖=1
𝑓(𝑤𝑖, 𝜇, 𝜎)]

= − ∑
𝑛

𝑖=1
ln 𝑤𝑖 − 𝑛

2
ln(2𝜋) − 𝑛

2
ln 𝜎2 − 1

2𝜎2 ∑
𝑛

𝑖=1
(ln 𝑤𝑖 − 𝜇)2

(13.26)

To find where this function is maximised we find its partial derivatives wrt 𝜇 and 𝜎2 and equate
them to 0.

Let’s first find the maximum likelihood estimate (MLE) of 𝜇

𝛿ℓ
𝛿𝜇

= − 1
2𝜎2 × 2 ∑

𝑛

𝑖=1
(ln 𝑤𝑖 − 𝜇) = 0

⟹ ∑
𝑛

𝑖=1
ln 𝑤𝑖 − 𝑛𝜇 = 0

⟹ 𝜇̂ =
∑𝑛

𝑖=1 ln 𝑤𝑖

𝑛

(13.27)

Now let’s find the MLE of 𝜎

𝛿ℓ
𝛿𝜎2 = − 𝑛

2𝜎2 + 1
2𝜎4 ∑

𝑛

𝑖=1
(ln 𝑤𝑖 − 𝜇)2 = 0

⟹ 𝑛
2𝜎2 = 1

2𝜎4 ∑
𝑛

𝑖=1
(ln 𝑤𝑖 − 𝜇)2

⟹ 𝜎̂ =
(
((

∑𝑛
𝑖=1 (ln 𝑤𝑖 − 𝜇̂)2

𝑛 )
))

1/2

(13.28)

Now that we have derived the expressions for 𝜇̂ and 𝜎̂, let’s compute them for our wealth sample.

μ_hat = np.mean(ln_sample)
μ_hat

0.0634375526654064

num = (ln_sample - μ_hat)**2
σ_hat = (np.mean(num))**(1/2)
σ_hat

2.1507346258433424

Let’s plot the lognormal pdf using the estimated parameters against our sample data.

dist_lognorm = lognorm(σ_hat, scale = exp(μ_hat))
x = np.linspace(0,50,10000)

fig, ax = plt.subplots()
ax.set_xlim(-1,20)

ax.hist(sample, density=True, bins=5_000, histtype='stepfilled', alpha=0.5)
ax.plot(x, dist_lognorm.pdf(x), 'k-', lw=0.5, label='lognormal pdf')
ax.legend()
plt.show()



Our estimated lognormal distribution appears to be a reasonable fit for the overall data.

We now use (3) to calculate total revenue.

We will compute the integral using numerical integration via SciPy’s quad function

def total_revenue(dist):
    integral, _ = quad(lambda x: h(x) * dist.pdf(x), 0, 100_000)
    T = N * integral
    return T

tr_lognorm = total_revenue(dist_lognorm)
tr_lognorm

101105326.82814859

(Our unit was 100,000 dollars, so this means that actual revenue is 100,000 times as large.)

13.2.3 Pareto distribution
We mentioned above that using maximum likelihood estimation requires us to make a prior
assumption of the underlying distribution.

Previously we assumed that the distribution is lognormal.

Suppose instead we assume that 𝑤𝑖 are drawn from the Pareto Distribution with parameters 𝑏 and
𝑥𝑚.

In this case, the maximum likelihood estimates are known to be

𝑏̂ = 𝑛
∑𝑛

𝑖=1 ln(𝑤𝑖/𝑥𝑚)
and 𝑥𝑚 = min

𝑖
𝑤𝑖 (13.29)

Let’s calculate them.

xm_hat = min(sample)
xm_hat

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
https://en.wikipedia.org/wiki/Pareto\_distribution


0.0001

den = np.log(sample/xm_hat)
b_hat = 1/np.mean(den)
b_hat

0.10783091940803055

Now let’s recompute total revenue.

dist_pareto = pareto(b = b_hat, scale = xm_hat)
tr_pareto = total_revenue(dist_pareto) 
tr_pareto

12933168365.762566

The number is very different!

tr_pareto / tr_lognorm

127.91777418162562

We see that choosing the right distribution is extremely important.

Let’s compare the fitted Pareto distribution to the histogram:

fig, ax = plt.subplots()
ax.set_xlim(-1, 20)
ax.set_ylim(0,1.75)

ax.hist(sample, density=True, bins=5_000, histtype='stepfilled', alpha=0.5)
ax.plot(x, dist_pareto.pdf(x), 'k-', lw=0.5, label='Pareto pdf')
ax.legend()

plt.show()



We observe that in this case the fit for the Pareto distribution is not very good, so we can probably
reject it.

13.2.4 What is the best distribution?
There is no “best” distribution — every choice we make is an assumption.

All we can do is try to pick a distribution that fits the data well.

The plots above suggested that the lognormal distribution is optimal.

However when we inspect the upper tail (the richest people), the Pareto distribution may be a better
fit.

To see this, let’s now set a minimum threshold of net worth in our dataset.

We set an arbitrary threshold of $500,000 and read the data into sample_tail.

Let’s plot this data.

fig, ax = plt.subplots()
ax.set_xlim(0,50)
ax.hist(sample_tail, density=True, bins=500, histtype='stepfilled', alpha=0.8)
plt.show()

Now let’s try fitting some distributions to this data.

13.2.4.1 Lognormal distribution for the right hand tail
Let’s start with the lognormal distribution

We estimate the parameters again and plot the density against our data.

ln_sample_tail = np.log(sample_tail)
μ_hat_tail = np.mean(ln_sample_tail)
num_tail = (ln_sample_tail - μ_hat_tail)**2



σ_hat_tail = (np.mean(num_tail))**(1/2)
dist_lognorm_tail = lognorm(σ_hat_tail, scale = exp(μ_hat_tail))

fig, ax = plt.subplots()
ax.set_xlim(0,50)
ax.hist(sample_tail, density=True, bins=500, histtype='stepfilled', alpha=0.5)
ax.plot(x, dist_lognorm_tail.pdf(x), 'k-', lw=0.5, label='lognormal pdf')
ax.legend()
plt.show()

While the lognormal distribution was a good fit for the entire dataset, it is not a good fit for the right
hand tail.

13.2.4.2 Pareto distribution for the right hand tail
Let’s now assume the truncated dataset has a Pareto distribution.

We estimate the parameters again and plot the density against our data.

xm_hat_tail = min(sample_tail)
den_tail = np.log(sample_tail/xm_hat_tail)
b_hat_tail = 1/np.mean(den_tail)
dist_pareto_tail = pareto(b = b_hat_tail, scale = xm_hat_tail)

fig, ax = plt.subplots()
ax.set_xlim(0, 50)
ax.set_ylim(0,0.65)
ax.hist(sample_tail, density=True, bins= 500, histtype='stepfilled', alpha=0.5)
ax.plot(x, dist_pareto_tail.pdf(x), 'k-', lw=0.5, label='pareto pdf')
plt.show()



The Pareto distribution is a better fit for the right hand tail of our dataset.

13.2.4.3 So what is the best distribution?
As we said above, there is no “best” distribution — each choice is an assumption.

We just have to test what we think are reasonable distributions.

One test is to plot the data against the fitted distribution, as we did.

There are other more rigorous tests, such as the Kolmogorov-Smirnov test.

We omit such advanced topics (but encourage readers to study them once they have completed these
lectures).

Exercise 13.69.

Suppose we assume wealth is exponentially distributed with parameter 𝜆 > 0.

The maximum likelihood estimate of 𝜆 is given by

𝜆̂ = 𝑛
∑𝑛

𝑖=1 𝑤𝑖
(13.30)

1. Compute 𝜆̂ for our initial sample.
2. Use 𝜆̂ to find the total revenue

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov\_test
https://en.wikipedia.org/wiki/Exponential\_distribution


Solution 13.58. Solution to Exercise 1

λ_hat = 1/np.mean(sample)
λ_hat

0.15234120963403971

dist_exp = expon(scale = 1/λ_hat)
tr_expo = total_revenue(dist_exp) 
tr_expo

55246978.53427645

Exercise 13.70.

Plot the exponential distribution against the sample and check if it is a good fit or not.

13.2.5 Exercises

Solution 13.59. Solution to Exercise 2

fig, ax = plt.subplots()
ax.set_xlim(-1, 20)

ax.hist(sample, density=True, bins=5000, histtype='stepfilled', alpha=0.5)
ax.plot(x, dist_exp.pdf(x), 'k-', lw=0.5, label='exponential pdf')
ax.legend()

plt.show()

Clearly, this distribution is not a good fit for our data.





Chapter 14

14. Other
14.1 Troubleshooting
This page is for readers experiencing errors when running the code from the lectures.

14.1.1 Fixing your local environment
The basic assumption of the lectures is that code in a lecture should execute whenever

1. it is executed in a Jupyter notebook and
2. the notebook is running on a machine with the latest version of Anaconda Python.

You have installed Anaconda, haven’t you, following the instructions in this lecture?

Assuming that you have, the most common source of problems for our readers is that their
Anaconda distribution is not up to date.

Here’s a useful article on how to update Anaconda.

Another option is to simply remove Anaconda and reinstall.

You also need to keep the external code libraries, such as QuantEcon.py up to date.

For this task you can either

• use conda install -y quantecon on the command line, or
• execute !conda install -y quantecon within a Jupyter notebook.

If your local environment is still not working you can do two things.

First, you can use a remote machine instead, by clicking on the Launch Notebook icon available for
each lecture

Second, you can report an issue, so we can try to fix your local set up.

We like getting feedback on the lectures so please don’t hesitate to get in touch.

14.1.2 Reporting an issue
One way to give feedback is to raise an issue through our issue tracker.

Please be as specific as possible. Tell us where the problem is and as much detail about your local set
up as you can provide.

https://python-programming.quantecon.org/getting\_started.html
https://www.anaconda.com/blog/keeping-anaconda-date
https://quantecon.org/quantecon-py
https://github.com/QuantEcon/lecture-python/issues


Another feedback option is to use our discourse forum.

Finally, you can provide direct feedback to contact@quantecon.org

https://discourse.quantecon.org/
mailto:contact\@quantecon.org


14.2 References



14.3 Execution Statistics
This table contains the latest execution statistics.

These lectures are built on linux instances through github actions.

These lectures are using the following python version

!python --version

Python 3.12.7

and the following package versions

!conda list
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