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Due to the development of next-generation sequencing technology and an increased appreciation of their role in
modulating host immunity and their potential as therapeutic agents, the human microbiome has emerged as a
key area of interest in various biological investigations of human health and disease. However, microbiome data
present a number of statistical challenges not addressed by existing methods, such as the varying sequencing
depth, the compositionality, and zero inflation. Solutions like scaling and transformation methods help to
mitigate heterogeneity and release constraints, but often introduce biases and yield inconsistent results on the
same data. To address these issues, we conduct a systematic review of compositional data transformation,
with a particular focus on the connection and distinction of existing techniques. Additionally, we create a
new framework that enables the development of new transformations by combining proportion conversion
with contrast transformations. This framework includes well-known methods such as Additive Log Ratio (ALR)
and Centered Log Ratio (CLR) as special cases. Using this framework, we develop two novel transformations—
Centered Arcsine Contrast (CAC) and Additive Arcsine Contrast (AAC)—which show enhanced performance in
scenarios with high zero-inflation. Moreover, our findings suggest that ALR and CLR transformations are more
effective when zero values are less prevalent. This comprehensive review and the innovative framework provide
microbiome researchers with a significant direction to enhance data transformation procedures and improve
analytical outcomes.

1. Introduction acid-tolerant organisms, and periodontal pathogens [1]. The gut micro-
biome, for instance, is essential for breaking down complex carbohy-
drates, synthesizing vitamins, and modulating immune responses [2,3].

The significance of these microbes has been further highlighted by the

The vast family of microorganisms, including bacteria, fungi, and
viruses, outnumbers human cells by approximately ten to one, and

is integral to human physiology, affecting various bodily functions
and maintaining homeostasis. Unique microorganisms inhabit differ-
ent sites on the body, each adapted to the specific environment and
function needs of its location. Eating certain foods, like farmed ani-
mal meat, dairy products, refined vegetable oils, and processed cereals,
changes the oral microbiota composition, increasing acid-producing,

Human Microbiome Project, which demonstrates their contributing role
in metabolic functions that extend beyond the scope of human genetics
alone [3-5].

Research on human microbiome is revolutionizing our understand-
ing of its pivotal role in sustaining health and influencing the progres-
sion of diseases such as cancer, cardiovascular diseases, allergies, and
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obesity [6]. When the balance of microbiota is disrupted, a condition
known as dysbiosis, can lead to various health issues. For example,
changes in gut microbiota composition are associated with diseases such
as colorectal cancer, where microbial metabolites can influence car-
cinogenesis [7]. Similarly, cardiovascular diseases have been linked to
microbial metabolites like Trimethylamine N-oxide (TMAO), which can
contribute to atherosclerosis [8]. Furthermore, the microbiota plays a
crucial role in immune system development and regulation, with early-
life microbiota influencing long-term immune health [2]. A cancer re-
search study reveals that higher alpha-diversity of the tumor microbiota
in long-term pancreatic adenocarcinoma survivors is linked to improved
survival [9].

Despite these critical roles, analyzing microbiome data presents
several statistical challenges due to the complexities introduced by
high-throughput sequencing (HTS) techniques used to generate these
datasets. First, differences in sequencing depth across samples make
comparisons challenging. Variations in the number of sequences rep-
resenting the microbial community often result from differences in
sequencing efficiency rather than true biological variations. Addition-
ally, because the full diversity of bacterial species is rarely captured,
more species are discovered as sequencing efforts are increased [10-13].
Second, microbiome read counts, obtained through 16S rRNA marker
gene sequencing or metagenomic shotgun sequencing, often exhibit
high sparsity, with as many as 95% zeros. This high level of spar-
sity introduces uncertainty in the detection and quantification of rare
taxa [13-15]. Moreover, existing methods struggle to distinguish be-
tween different types of zeros, which are categorized as biological zeros
(when a taxon is truly absent), sampling zeros (due to sequencing depth
limitations), and technical zeros (resulting from sample preparation er-
rors) [16]. Third, HTS datasets inherently provide only relative abun-
dances of microbial populations, constrained by the sequencing instru-
ment’s capacity, rather than absolute counts [13,17]. Adding sequences
from one taxon reduces sequences from another, causing misinterpreta-
tions if the compositional nature is ignored. Using compositional data
analysis methods such as log-ratio transformations is crucial to avoid
spurious correlations and gain accurate insights into microbial commu-
nities [18].

Preprocessing microbiome data through scaling and transformation
is critical to prepare it for downstream analyses, helping to reduce biases
and recover true biological signals. Scaling involves dividing read counts
by a scale factor to adjust for discrepancies in sequencing depth and
other technical variations, ensuring comparability across samples [19].
Total sum scaling (TSS) is a specific scaling method that divides read
counts by the total count in each sample [14,20], producing relative
abundances that are both proportional and compositional. Transforma-
tion of relative abundance data involves removing the constant sum
constraint [21]. This constraint introduces interdependence between
variables, which can mislead statistical analyses if traditional multivari-
ate methods are used without adjustment [22,23].

Over the past decade, various scaling and transformation techniques,
along with differential abundance (DA) analyses have been developed
to identify key microbial taxa in host-health-microbiome association
studies. However, analyses of the same microbiome data often yield
divergent findings, highlighting the lack of consensus and resulting in
heterogeneous conclusions [24-26]. In addition, debates between count
data analysis [27-30] and compositional data analysis (CoDA) [31-34]
in the context of microbiome research are ongoing and touch upon sev-
eral key methodological and theoretical aspects. The field still faces
significant gaps, including a lack of comprehensive statistical validation
and consistent framework to produce robust results.

To address these questions, we will conduct a systematic review of
count data scaling and compositional data transformation, with a par-
ticular focus on the connection and distinction of existing techniques.
Our goal is to unify and refine compositional data transformation ap-
proaches, developing new methods to manage within-sample compo-
sitionality and across-sample variability. We will create a framework
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for proposing novel compositional transformations by combining pro-
portion conversion and contrast transformation. As shown in Fig. 1,
proportion conversion stabilizes variance and reduces the influence of
outliers, while contrast transformation handles compositionality. The
framework includes Additive Log Ratio (ALR) and Centered Log Ratio
(CLR) as special cases, while enriching the range of potential options. We
will study the statistical properties of different combinations in terms of
variance stabilization, handling zero values, and sensitivity to outliers.
These novel transformations strive to achieve a normal or quasi-normal
distribution of the transformed data, allowing the use of basic statisti-
cal tests, such as the t-test, to assess their effectiveness. This innovative
approach provides microbiome researchers with a significant direction
to enhance data transformation procedures and improve analytical out-
comes.

2. Methods

Microbial sequence abundance has intrinsic data characteristics that
prevent accurate recovery of the population composition within its
original environment. Different samples often yield different total read
counts due to variations in sequencing depth. To mitigate sequencing
depth variability, researchers often adopt rarefaction methods [35],
originally proposed in ecology. These methods involve subsampling
to a uniform depth to control the effects of uneven sequencing. Al-
ternatively, scaling preserves all the data and is employed to ensure
that inherent differences do not bias results, thereby facilitating accu-
rate comparisons across samples. However, the effectiveness of scaling
methods can vary depending on the context, leading to differing inter-
pretations of community structure and composition, which may limit
the generalizability of results derived from the same dataset. Total sum
scaling (TSS) [36] is a popular scaling method that preserves relative
abundance information, making it suitable for comparing the microbial
community composition across samples. Relative abundances are both
proportional and compositional in nature [13,37]. Therefore, there are
two aspects to consider when transforming compositional data. First,
converting proportional data enhances the symmetry of the distribution,
stabilizes variance, and controls the effects of outliers. Second, contrast
transformation constructs relative changes between compositions, fa-
cilitating unconstrained analysis in Euclidean space. In the following
section, we provide an in-depth review of these methods, highlighting
their specific advantages and disadvantages. We analyze various propor-
tion conversion techniques, contrast transformations, and their practical
implications. Additionally, we explore potential alternative solutions
that could address existing limitations and improve the accuracy and
reliability of microbiome data analysis.

2.1. Rarefaction of read counts

Rarefaction was first developed by Howard Sanders in 1968 to com-
pare species richness data among sets with different sample sizes in
marine ecology research [35]. The primary motivation behind its de-
velopment was to create a method that would allow fair comparisons
between datasets with unequal sampling efforts. This method is essential
for assessing the diversity of sequencing data, as it standardizes sampling
depth, allowing for accurate comparisons of diversity between environ-
ments. Without rarefaction, deeper sequencing can artificially inflate
diversity by detecting rare taxa that might be missed in shallower-
sequenced samples, leading to biased alpha (within-sample) and beta
(between-sample) diversity estimates [13].

Rarefaction works by selecting a fixed number of samples, equal
to or less than the smallest sample in the dataset, and randomly sub-
sampling the larger datasets by discarding reads until the sample sizes
match this threshold [38]. This subsampling to a common depth also
maintains the exchangeability of observations under the null hypoth-
esis, thereby controlling the Type I error rate in permutation-based
statistical tests [39]. Rarefaction curves are valuable for assessing both
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Fig. 1. An integrated framework for microbiome data transformation. This framework addresses critical challenges in microbiome data analysis by combining
proportional conversion with contrast transformation techniques. The goal is to achieve normal or quasi-normal distributions, facilitating robust statistical analysis

and ensuring the reliability and validity of the results.

sample coverage and the adequacy of threshold for reliable diversity es-
timates [40]. Moreover, rarefaction is straightforward to implement and
widely supported in various bioinformatics tools, making it accessible
for researchers [40,41].

When determining rarefaction depth, researchers must balance sam-
pling breadth and sequencing depth. Greater breadth increases sta-
tistical power for comparing treatment groups, while greater depth
improves the resolution of microbial community characterization [42].
Lower sequencing depth, however, may result in significant data loss
through rarefaction, reducing statistical power and increasing variance,
which decreases the sensitivity of analyses and makes it harder to detect
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true differences in microbial composition [25,39,43]. While McMurdie
and Holmes [43] argued that rarefaction could increase false positives
and reduce analysis sensitivity due to data reduction and added variabil-
ity [25,39], more recent studies support its continued use in microbiome
research. Schloss [42,44] countered these claims, emphasizing that rar-
efaction remains the most reliable method for controlling sequencing
depth variation in both alpha and beta diversity analyses. Their simu-
lations show that rarefaction preserves statistical power and limits false
positives, particularly when sequencing effort is confounded with treat-
ment groups.
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In the context of differential abundance analysis, rarefaction might
not be necessary unless there’s a strong correlation between sequenc-
ing depth and the variables of interest. Instead, scaling techniques are
generally preferred for differential abundance analysis because they re-
tain the full data set and provide more reliable results in the context of
compositional data.

2.2. Scaling of count data

Scaling is a straightforward and commonly used statistical method
that corrects observed counts by dividing them by sample-specific scale
factors, aiming to mitigate discrepancies in sequencing depth [45]. The
rationale behind scaling lies in its ability to correct for technical variabil-
ity while preserving the biological integrity of the data. By normalizing
counts using total reads or other summary statistics, scaling ensures that
comparisons between samples reflect true biological variation rather
than artifacts from uneven sequencing.

Before delving into specific scaling methods, we suggest categorizing
scaling methods into two main types to enhance clarity. This classifica-
tion structure is shown in Fig. 1. The first type of scaling, which we refer
to as Depth-Adjusted Abundance, retains the data in a count-like format
after scaling, such as Cumulative Sum Scaling (CSS) [14], Upper Quartile
(UQ) [20], Trimmed Mean of M-values (TMM) [46], Counts Per Million
(CPM) [29,30], and Geometric Mean of Pairwise Ratios (GMPR) [47].
The second type, which we refer to as Relative Abundance, transforms
the data into proportions where the sum of all taxa within each sample
equals one [27]. This scaling provides a true compositional view of the
data. Total Sum Scaling (TSS) [36] is a common method in this cate-
gory, as it directly scales count data into relative abundances. Given the
complexity and variability inherent in microbiome data, choosing the
appropriate scaling method is crucial for ensuring accurate and reliable
analysis. We will begin by examining the first type of scaling.

Cumulative Sum Scaling (CSS), which is used in metagenome-
Seq [14], assumes that observed abundances are roughly independent
and identically distributed up to a specific quantile [14]. This method
was originally proposed to better separate samples based on biological
factors while controlling within-group variance [14]. The motivation be-
hind CSS was to create a scaling technique that minimizes the influence
of highly abundant taxa, which can skew results in datasets with a wide
range of microbial abundances. Traditional scaling techniques, such as
TSS, are heavily influenced by a few highly abundant taxa, leading to
biased estimates of relative abundance. By focusing on the cumulative
sum up to a certain quantile, CSS provides a more stable and represen-
tative scaling factor that is less sensitive to extreme values [27,45,48].
However, determining the optimal quantile can be challenging due to
high count variability, potentially affecting the scaling process [14,45].

Upper Quartile (UQ) Scaling uses the upper quartile of observed
abundances as the scaling factor, aiming to capture the invariant seg-
ment of the count distribution [20,49,50]. Like CSS, the motivation
behind UQ Scaling is to develop a scaling method that minimizes the
influence of highly abundant taxa, which can skew the scaling factor
in traditional methods like Total Sum Scaling (TSS). By focusing on the
upper quartile, UQ Scaling ensures that the scaling process remains sta-
ble even in the presence of extreme values. UQ Scaling is robust as it
reduces the impact of extremely high counts from a few taxa. How-
ever, as CSS, selecting the most effective quantile remains nontrivial and
can influence the scaling’s effectiveness [27]. This challenge is particu-
larly evident in datasets with high count variability, where a suboptimal
choice of quantile can lead to under- or over-adjustment of abundances.
Additionally, the study by Pereira et al. [51] indicates that for shotgun
metagenomic data, TSS method has been evaluated and shown to per-
form on par with or surpass the UQ method.

Trimmed Mean of M-values (TMM) scaling adjusts for library sizes
by selecting a reference sample, typically with a median library size,
and calculating log-fold changes (M-values) between this reference and
each other sample for each gene. The motivation behind TMM scaling is
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to provide a robust method that accounts for compositional differences
between samples, especially in datasets with varying library sizes and
potential biases introduced by highly expressed genes. TMM assumes
that most OTUs (ASVs/genes) are not differentially abundant, and that
overall abundances between samples should be similar on average. The
process involves filtering OTUs based on their mean abundance and fold-
change relative to the reference, effectively trimming extreme M-values
to avoid outliers. This trimming helps to reduce the impact of highly
expressed genes and extreme values, leading to more reliable scaling.
A weighted mean of the remaining log-fold changes is then calculated,
where weights are the inverse of the variance [27,46,50]. However, the
assumptions underlying TMM scaling, such as the belief that most OTUs
are not differentially abundant, may not be suitable for highly diverse
microbial environments [13].

Counts Per Million (CPM) scaling, or called Reads Per Million
(RPM) scaling, is a simpler scaling technique where raw counts are
scaled by the total number of reads in each sample, then multiplied
by one million. This method adjusts for sequencing depth differences by
expressing counts on a per-million-reads basis, allowing straightforward
comparisons across samples [29,30]. However, CPM does not account
for compositional biases, which can be significant in microbiome data.

Geometric Mean of Pairwise Ratios (GMPR) scaling, builds on the
concept of Relative Log Expression (RLE) used for RNA-seq data [47,52],
provides a robust alternative by using the geometric mean of pairwise
ratios of counts between samples to calculate scaling factors. GMPR is
particularly effective for microbiome data as it accounts for compo-
sitional differences and handles zeros and varying sequencing depths
robustly [47,53]. By focusing on pairwise comparisons, GMPR reduces
the impact of outliers and rare taxa, resulting in more reliable normaliza-
tion across diverse microbial communities. This method enhances tra-
ditional approaches by using the median count ratio of nonzero counts
between samples to calculate the geometric mean for size factors, and it
is based on the moderated estimation of dispersion (MED) in the DESeq2
method [28].

The second type of scaling, Total Sum Scaling (TSS), proposed
by Bergemann and Wilson [36] in RNA-seq data, is a method that
scales individual read counts by the total number of reads. This pro-
cess transforms absolute abundances into relative abundances, which
are compositional and sum to 1. According to McKnight et al. [54],
TSS outperformed other scaling methods in producing accurate Bray-
Curtis dissimilarities [55,56], principal coordinates analysis, and PER-
MANOVAs, avoiding spurious correlations [52]. This makes TSS highly
effective for community-level comparisons in microbiome studies. Many
biological interpretations and downstream analyses, such as diversity
indices and ecological modeling, are based on these proportions rather
than absolute counts [57]. By focusing on the proportionate presence
of taxa, TSS mitigates biases introduced by overdispersion or sequenc-
ing errors. Additionally, TSS adjusts for differences in sequencing efforts
and efficiencies between samples, providing a more accurate reflection
of the microbial community structure [52]. However, TSS has limita-
tions, including potential biases in differential abundance estimates and
a high rate of false positives due to the influence of highly abundant
taxa [13,45,47,50].

In summary, while extensive discussion has focused on count data in
microbiome research, there has been limited review and systematic eval-
uation of relative abundance transformations, such as TSS. TSS actually
connects count data scaling with compositional data transformation.
TSS scales each count by the total number of reads in the sample, effec-
tively reconstructing count data into relative abundance, which ensures
comparability across samples and studies and reducing biases. To ana-
lyze relative abundance effectively, compositional data approaches are
required to transform data on the simplex to Euclidean space. In the
following paper, we will focus on TSS and relative abundance. Since
microbial relative abundance is both proportional and compositional,
our review will be structured into two parts: conversion of proportions
and transformation of compositions.
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Table 1
Distributions and corresponding conversion methods, formulas, and intervals.
Conversion Method Formula Interval Corresponding Distribution Distribution in Mathematical Formula Reference
Log Conversion y=1log(x) x>0 Log Normal Distribution (x;p,0)= L_exp(- M Crow and Shimizu [59]
8 2 8 ;s p 2
X0 T -
(log( % )-w?
Logit Conversion y=log (L ) 0<x<1 Logit Normal Distribution f(xipu,0)= ! exp( — ” ( "’,> " Atchison and Shen [60]
1—x x(1-x)0/27 202
i ) . — | (2 wosin v&)-s)’ ,
Arcsine Conversion y=1: armn(\/;) 0<x<1 Arcsine Normal Distribution f(xipu,0)= Py exp( — o - oy Proposed
A
. X 1 for A#0 . it XDy
Box-Cox Conversion y= x>0 Power Normal Distribution fGsp,o,0)= A ¢ ( - ) Gongalves [61]
log(x) for A=0 -

2.3. Conversion of proportional data

In microbiome research, each column of a relative abundance table
represents a proportional variable. Proportional data, expressed as per-
centages or fractions of a whole, are scale-independent and commonly
analyzed across various biological subfields, making them suitable for
studying many biological phenomena. Proportional data can be formally
understood as the division of a total W (e.g., counts, area, time, mass)
into C parts or categories [58]. Statistical analysis of proportional data
presents numerous challenges due to their bounded nature between 0
and 1. The variability in the observed proportions usually varies sys-
tematically with the mean of response [58]. To address these issues,
mathematical functions such as logarithm or logit are often applied to
the proportional data—a process we refer to as “conversion”. However,
applying these conversions can lead to biased estimates and interpreta-
tion difficulties [58]. We chose the term “conversion” instead of “trans-
formation” to avoid confusion with contrast transformations, which we
will discuss later in our manuscript.

We begin by exploring several common conversion methods for pro-
portional data, including log, logit, arcsine, and power conversion. Each
conversion is detailed with its mathematical formula, along with its ad-
vantages and disadvantages. Table 1 provides a detailed summary of the
distributions used for traditional proportional data conversion. After de-
tailing the conversion, we simulate proportional data using zero-inflated
beta regression, which is well-suited for modeling proportions, to eval-
uate the power of each conversion method. Additionally, we employ
simple linear regression to generate data with varying levels of variance
and outliers and evaluate the efficiency of these traditional conver-
sion (log, logit, arcsine, Box-Cox) in reducing variance and managing
outliers. By comparing these conversions, we aim to identify the most
effective methods for stabilizing variance in proportional data and im-
proving its interpretability, which will serve as a basis for more complex
compositional data transformation.

From 2021 to 2024, the popularity and usage trends of different con-
version methods in microbiome research were examined through Google
Scholar searches. In 2021, Log conversion was the most widely used,
with 17,400 results, followed by Logit conversion with 6,150 results,
and Arcsine and Box-Cox conversions with 641 and 464 results, respec-
tively. The trend continued in 2022, with Log conversion reaching a
peak of 24,700 results, Logit conversion increasing to 7,030 results, Arc-
sine conversion rising to 723 results, and Box-Cox conversion going up
to 496 results. In 2023, usage slightly declined, with Log conversion at
17,000 results, Logit conversion at 5,420 results, Arcsine conversion at
548 results, and Box-Cox conversion at 378 results. By 2024, Log con-
version decreased to 4,480 results, Logit conversion dropped to 1,820
results, Arcsine conversion had 181 results, and Box-Cox conversion had
122 results.

Overall, Log conversion is the most widely used method, followed
by Logit conversion, while Arcsine and Box-Cox conversions are less
common, with Box-Cox being the least used. These trends suggest that
researchers in microbiome studies favor certain conversion methods,
possibly because they effectively fit the nature of the data. The peak
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usage of most conversion methods in 2022 may indicate particularly
high research activity or publications in that year.

2.3.1. Log conversion

The history of logarithms dates back to John Napier’s invention in
1614, as detailed in his work “Mirifici Logarithmorum Canonis De-
scriptio,” which represents one of the greatest scientific discoveries,
providing a significant advancement in mathematical science and a
labor-saving tool for extensive numerical calculations [62].

The log conversion transforms multiplicative relationships into addi-
tive ones, thereby simplifying the analysis of multiplicative models. Fol-
lowing the conversion, exponential growth patterns may appear linear,
facilitating the implementation of simpler linear modeling techniques.
This is particularly advantageous when dealing with data where the
variance is proportional to the square of the mean or where the effects
are multiplicative, conditions commonly found in biological data such
as growth measurements or insect counts [63].

Mathematical form of log conversion, defined as y = log(x), assum-
ing x represents the proportional data, is commonly used to shape right
skewed data by making the distribution more symmetric. However, if
the data is left-skewed, log conversion will worsen the left skew, mov-
ing it further away from a normal distribution.

It is important to note that when x ranges from 0 to 1, the log con-
version log(x) ranges from —oo to 0. This means that the log conversion
cannot handle zero values because log(0) is undefined (it tends towards
negative infinity). Therefore, a small positive constant is often used to
replace 0 in x before applying the log conversion to avoid this issue.
The selection of this small constant is crucial, as even minor variations
can lead to significant differences in the transformed data. For example,
log(1075) = =5 and log(10~2) = —2. This issue is particularly pertinent
in microbiome data, where a high proportion of zeros is common. Select-
ing a replacement value that, after conversion, becomes a small negative
number far removed from other data values can lead to potential issues
in data conversion. As highlighted by Changyong et al. [64], the p-value
of the test can depend on the value added before applying the log conver-
sion, potentially making conclusions about differences between groups
reliant on the arbitrary decision regarding the size of the constant used
in the analysis.

People believe that the log conversion can reduce variance and the
impact of outliers [63]. However, for proportional data, things are dif-
ferent. Contrary to popular belief, the log conversion can sometimes
increase the variability of data, whether or not there are outliers [64].
This is particularly true for data with a small mean, such as propor-
tional data. Changyong et al. [64] recommend caution when applying
log conversion and emphasize that researchers must be mindful about
its limitations when using this method.

Despite its many shortcomings, the log conversion is a foundational
method in microbiome data analysis, underpinning many commonly
used techniques such as ALR and CLR [22]. These methods help in deal-
ing with compositional data and making it suitable for various statistical
analyses.
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2.3.2. Logit conversion

While the log conversion can merely handle right-skewed data, logit
conversion is capable of managing both left-skewed and right-skewed
data. The logit conversion is defined as the natural logarithm of the odds

of an event occurring, expressed as y = log (é ), where x is the pro-

portion of interest and must lie within the domain 0 < x < 1. The logit
conversion has its roots in the work of Pierre-Francois Verhulst [65],
who first introduced the logistic function in 1838 to describe population
growth. Verhulst’s work remained largely unnoticed until the early 20th
century when Raymond Pearl and Lowell Reed revived interest in the
logistic function, fitting it to U.S. Census data to model population dy-
namics [66]. However, the development of logit conversion as we know
it today owes much to Joseph Berkson [67]. In 1944, Berkson proposed
using the logistic function in bio-assay and coined the term “logit” [67].
He advocated for the logit model as a simpler and more computation-
ally efficient alternative to the probit model, which was prevalent at
the time [68,69]. The primary purpose of the logit model is to facili-
tate the analysis of binary outcomes, such as survival versus death or
success versus failure, by transforming probabilities into log-odds. This
conversion is essential in logistic regression, enabling the modeling of
relationships between a binary dependent variable and multiple inde-
pendent variables.

However, it is crucial to recognize that the logit conversion has lim-
itations at the boundaries of the proportion scale. Specifically, it cannot
directly handle proportions of exactly 0 or 1. Berkson [67] addresses this
limitation by noting that for proportions, such as observed mortalities
at zero or 100 percent, logit conversion becomes infinite. This limita-
tion arises due to the mathematical implications of division by zero and
taking the logarithm of zero in these cases. Consequently, in practical
applications, the values of x are typically assumed to be within the open
interval (0, 1) to avoid these undefined operations.

Both log and logit conversion share the common objective of re-
constructing skewed data into a more symmetric distribution, facili-
tating subsequent statistical analyses [70]. They are particularly useful
in handling data with wide ranges and mitigating the impact of val-
ues close to 0 and 1 [70]. Despite their differences in handling data
at the boundaries, both transformations convert multiplicative relation-
ships into additive ones, aiding in linear regression and other parametric
analyses [71]. Moreover, both methods are grounded in the principle of
converting proportions and probabilities to a scale that enhances the
interpretability and robustness of the data [70].

2.3.3. Arcsine conversion

Log and logit conversions can transform proportional data but strug-
gle at the boundaries of 0 or 1. To circumvent this, small value replace-
ments are often used, however, may introduce biases and reduce the ro-
bustness of the analysis. Alternatively, the arcsine conversion is well de-
fined on boundaries and presents a viable solution. The arcsine conver-
sion, proposed by Sokal and Rohlf [72], is defined as y = % arcsin(\/;). It
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has been widely used in the analysis of proportional data due to its abil-
ity to stabilize variances. This conversion converts proportions, which
are bounded between 0 and 1, into values between 0 and 1. One of the
key advantages of the arcsine conversion is its ability to handle bound-
ary values of 0 and 1, making it particularly useful for datasets that

include lots of such boundary values. Specifically, % arcsin(\/a) =0and

% arcsin( \/T) = 1. This ensures that the conversion is applicable across
the entire range of proportion data, providing a robust method for sta-
tistical analysis [73].

However, the arcsine conversion has been criticized for its lack of
interpretability and the fact that it can produce nonsensical predic-
tions [74]. The criticism mainly stems from the fact that while the
arcsine conversion stabilizes variances, it does not necessarily normal-
ize the data well, and its predictions can be difficult to interpret in a
meaningful way. One key issue is that the arcsine conversion maps 0
to 0. So when there is a high proportion of 0 in the data, the zeros
remain unchanged after the conversion. This results in fewer nonzero
values, limiting the transformed data’s ability to approximate a nor-
mal distribution. However, zero-inflation poses similar challenges for
all conversions.

To facilitate the normality of transformed data, we propose and de-
rive the arcsine normal distribution as a new method to transform and
analyze proportion data. As noted in Table 1, the arcsine conversion
results in a normal distribution when applied to data following an arc-
sine normal distribution. To illustrate the characteristics of the arcsine
normal distribution, we plot the probability density functions (PDFs) of
the arcsine normal distribution under various parameter settings. Fig. 2
shows these distributions, highlighting their flexibility and suitability
for different types of proportion data. This visualization demonstrates
that the arcsine normal distribution can provide a valuable tool for ana-
lyzing proportion data, particularly when dealing with boundary values.
For the full derivation of the arcsine normal distribution, refer to Sup-
plementary Section 1.

As we can summarize from Table 1 and Fig. 2, as x approaches
0, the density of the arcsine normal distribution can tend to infin-
ity. Because arcsine function is well defined at O and converts 0 to 0
(with a probability of 1). This behavior is primarily influenced by the
Beta kernel ﬁ, which always tends to infinity as x approaches
0. However, the overall density is moderated by the Gaussian kernel
R

exp )

. When y is low and o is high, this term does

not significantly reduce the density, leading to a sharp increase near 0.
Conversely, when y is high or ¢ is low, the exponential term becomes
very small, causing the density to approach extremely large values near
0—uvalues that are too small to observe effectively. Similarly, as x ap-
proaches 1, the density can also go to infinity, but if y is small and ¢
is small, the exponential part can moderate it, resulting in the density
approaching extremely large values very close to 1. This behavior is in
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stark contrast to the log-normal and logit-normal distributions, where
the density approaches 0 as x approaches 0. This indicates that when a
dataset has a high percentage of zero values, or is highly skewed to the
left (with most data points being extremely small), the arcsine normal
distribution may perform better in representing the data’s distribution.
This property makes the arcsine conversion particularly suitable for an-
alyzing datasets with these characteristics.

2.3.4. Power conversion

The power conversion, often referred to as the Box-Cox conver-
sion [75], is widely used in various fields, including economics, engi-
neering, and the natural sciences, due to its flexibility and ability to
handle different types of data distributions. Its application has been
shown to improve the performance of statistical models by making the
data more closely conform to the assumptions of normality and ho-
moscedasticity [76,75,77]. It is defined as follows:

_[E ifazo
log(x) ifA=0

where y is the transformed variable, x is the original variable (which
must be positive), and 4 is the conversion parameter. The power con-
version can take various forms depending on the value of A. When 4 =0,
the conversion is equivalent to a logarithmic conversion. When A =1,
it becomes an identity conversion, meaning no conversion is applied.
Other values of A result in different power conversions of the original
variable. The choice of A is critical and is typically selected to maxi-
mize the normality of the transformed data. This selection is often done
empirically or through optimization techniques.

The power conversion is especially useful in transforming non-
normal data into a normal distribution, which is a common prerequisite
for many statistical methods such as regression analysis, analysis of
variance, and t-tests [76,78]. The transformation helps in stabilizing
variance and making the data more symmetric, which enhances the va-
lidity of statistical inferences [77].

However, the power conversion has limitations, particularly when
dealing with values of x that include zero. Since when A =0, log(0) is
undefined and the conversion requires x to be positive, a common ap-
proach is to use a small positive constant to replace zero in all values of
x before applying the conversion to avoid this issue. These adjustments
ensure that the conversion can be applied to datasets that include zero,
although they may introduce some bias [76]. The small constant added
or used to replace zeros may also influence the A for Box-Cox; for the
same dataset, choosing different constants may result in different 4 val-
ues.

2.3.5. Other traditional conversion

In addition to the commonly used conversion techniques, there are
several other transformations frequently employed for normalizing and
analyzing proportion data. These include the Anscombe, probit, inverse
hyperbolic sine, and tangent transformations. We provide a brief intro-
duction to these methods without delving into detailed explanations.

The Anscombe conversion [79], expressed as y =24/x + %, plays a
pivotal role in statistical analysis, especially in scenarios involving bi-
nomially distributed data. This transformation is frequently utilized in
linear regression and Analysis of Variance (ANOVA) to satisfy key as-
sumptions such as homogeneity of variance and normality of residuals.
A notable feature of the Anscombe transformation is its inclusion of the
adjustment term 3, which ensures appropriate behavior across the en-
tire [0, 1] interval, including boundary values [80].

The probit conversion [68], defined as y = ®~!(x), where ®(x) repre-
sents the cumulative distribution function (CDF) of the standard normal
distribution, is another key statistical transformation. This conversion
transforms a variable x, which follows a uniform distribution between
0 and 1, into a variable y that follows a standard normal distribution.
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However, the probit transformation is undefined at the boundary values
of x =0 and x = 1, which can pose challenges in practical applications.
The inverse hyperbolic sine (IHS) conversion, defined as y =

log (x +vV1i+ x2>, can handle zero and negative values. For most val-

ues of y, it is approximately equal to log(2x), making it interpretable
similarly to a standard logarithmic variable. Unlike the log conversion,
the IHS is defined at zero, making it a robust alternative for certain
datasets [81,82].

The tangent conversion, expressed as y = tan(z(x — 0.5)), is another
transformation used in statistical analysis. Suppose x follows a uniform
distribution from 0 to 1, then y = tan(z(x — 0.5)) will follow a Cauchy
distribution. The Cauchy distribution does not have a mean or variance,
which precludes the use of traditional statistical methods such as the
two-sample t-test. However, the Cauchy combination test can be ap-
plied [83,84].

2.3.6. Proposed new conversion for proportions

Microbiome data, which often exhibit zero inflation, present signif-
icant challenges for traditional conversion methods like log and logit.
These methods typically cannot handle zero values, as they are unde-
fined for zero. Using small constants to replace zeros introduces bias
and distorts data distribution, as there is no mathematical justification
for the chosen constant’s magnitude. To address this issue, we propose
a truncated Logit conversion with adjustable parameters, defined as

y= log( lfjf(o

remains well-defined even when x =0 or x = 1, thus accommodating
the zero-inflation often observed in microbiome data. This introduc-
tion of adjustable parameters is inspired by the Box-Cox transforma-
tion [77,78], where the power parameter A is varied to adjust data
distribution characteristics. We expect that the transformed data will
approximate a normal distribution, denoted as N (u, 62). Given the four
parameters in the joint likelihood function, we optimize and estimate
the adjustable parameters through profile likelihood maximization. This
new conversion enhances flexibility by incorporating adjustable param-
eters, refining small constant selection to ensure a well-defined and
robust conversion.

In studies comparing two groups to identify differential features, we
introduce and clarify the concept of dual group conversion method.
Instead of assuming a single normal distribution, we assume the
transformed data will approximate two distinct normal distributions:
N (MA,GE‘) for group A and N '(u Byoé) for group B, while using same
adjustable parameters across both groups. More specifically, given two
groups A and B, we apply the truncated logit conversion to data from
two groups x* and x# as follows:

B
yA:10g< >’ yB=log(lx +¢

—xB+g

where ¢ > 0, > 0 are the shared truncation parameters at 0 and 1
respectively. Given the six parameters in the joint likelihood function,
we estimate the adjustable parameters through profile likelihood maxi-
mization. Since our approach aims to approximate distinct normal dis-
tributions across two groups, we have named our method as the Dual-
Group Truncated Logit conversion (DGTL). For a detailed derivation
of DGTL, please refer to Supplementary Section 3.2. This dual-group
conversion structure offers a valuable and streamlined approach for dif-
ferential abundance analysis in microbiome studies, yet it has rarely
been systematically explored or clearly defined.

This technique can also be applied to other conversions, such as
the Box-Cox conversion (detailed in the Supplementary Section 3.3 as
the Dual-Group Box-Cox Conversion (DGBC)). By incorporating dual
group considerations and maintaining the same adjustable parameters,
this framework achieves an effective balance between preserving pre-
conversion information and enhancing the power to detect differential
abundance.

). Here, ¢ > 0 and ¢ > 0 ensure that logit conversion

xte
1-xA+¢
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groups with data simulated from a Bernoulli distribution based on the
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(g =0%,30%,50%,70%), where different values of g represent differen & glggssgssssg|gseszsesss
scenarios: for example, ¢ = 0% may correspond to datasets aggregated g
to class level, while higher ¢ values indicate increasing levels of zero- _q";
inflation typically found in species-level data. For details and the algo- g BEES35/RE 2338358338
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rithm for this Zero Inflated Beta Regression Simulation, please refer to 2 sss23s238g|ggessssss
Supplementary Section 4. =) HOH H CH H A H | HH H H HH H A
i i i i El 5|32 ERFERIF|FET SIS
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Fig. 3. Intercept and Standard Error Estimates for Different Conditions (No Outliers, Right Outliers, Left Outliers). The plots compare the performance of different
conversion (Original, Log, Logit, Arcsine, Box-Cox) in terms of their intercepts and standard errors across various f, values. Right outliers represent larger outliers
(0.9, 0.99, 0.999, 0.9999, 0.99999, 0.99999), while left outliers represent smaller outliers (0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001). The results highlight the
robustness of the arcsine conversion in managing variance and handling outliers.

Beyond comparing the power of each conversion method, analyzing
their skewness and kurtosis is important to determine which one has
the highest conversion ability. Our table in Supplementary Section 5
provides a comprehensive summary of skewness and kurtosis statistics
for various conversions applied to datasets with different g values and
percentages of zero values.

The dual group conversion, specifically the DGTL and DGBC conver-
sion, generally outperform their traditional counterparts. Dual group
conversion not only helps transform the data to a normal distribution
using optimization but also has better efficiency in preserving signals
after conversion. Although the DGTL conversion does not always re-
sult in significant improvements in conversion compared to the tradi-
tional logit conversion, it consistently demonstrates better power and
relatively lower false discovery rate. Table 2 further supports this by
showing the enhanced power of the DGTL conversion, which is notably
higher than that of the traditional logit conversion, indicating its supe-
rior ability to detect true effects in the data, especially in the presence
of zeros.

Besides understanding which conversion has higher power, manag-
ing outliers is another critical aspect that requires our attention. Outliers
often result from variations in sample collection, processing, sequenc-
ing, and biological differences between individuals. These discrepancies
introduce significant noise, which can overshadow genuine biological
signals and negatively impact the effectiveness and accuracy of analy-
sis [25,48,86,87]. Therefore, we conducted a detailed simulation study.
The goal was to compare the performance of different traditional con-
versions (Log, Logit, Arcsine, Box-Cox) under various conditions. Using
simple linear regression, the simulations involved generating data with
different f, values and adding random noise uniformly distributed in
the range from -0.18 to 0.18. Three scenarios were considered: no out-
liers, left outliers (smaller outliers: 0.1, 0.01, 0.001, 0.0001, 0.00001,
0.000001), and right outliers (larger outliers: 0.9, 0.99, 0.999, 0.9999,
0.99999, 0.99999). For each scenario, intercepts and standard errors
were estimated using linear models. The mean and standard error of
the intercept estimates were calculated across 100,000 simulations for
each f, value, and the results were compiled into a combined plot to vi-
sualize the performance of each conversion in managing variance and
handling outliers.

The analysis depicted in Fig. 3 provides several critical insights into
the effectiveness of different conversion methods in managing variance
and handling outliers. Log conversion is particularly sensitive to left out-
liers (smaller outliers) but is less sensitive to right outliers. However, it
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tends to expand the variance compared to the original data. Logit con-
version is sensitive to both right and left outliers and also fails to control
variance effectively. Box-Cox conversion, which selects the parameter 4
based on the data, is highly influenced by right outliers and less so by
left outliers, and similarly cannot control variance. This contradicts the
common belief that log, logit, and Box-Cox conversion can reduce vari-
ance and mitigate the influence of outliers.

Notably, for Box-Cox conversion, the influence of right outliers is
particularly severe when f, is small. As f, increases, the influence of
right outliers becomes relatively smaller. Additionally, the standard er-
ror for log and Box-Cox conversions is reduced as f, increases. However,
it is important to highlight that for microbiome data, which is typically
compositional and right-skewed, these conversion methods may not be
as effective in reducing variance and handling outliers due to the inher-
ent characteristics of the data.

In contrast, the arcsine conversion demonstrates robustness to out-
liers. The intercepts for the arcsine-converted data remain relatively
stable, even in the presence of outliers. Additionally, the standard er-
rors for the arcsine conversion are consistently lower, indicating that it
effectively reduces variance.

2.4. Contrast transformations for compositional data

Compositional data were defined traditionally as constrained data
with a fixed constant sum constraint (1 or 100) [88]. The microbial se-
quence read counts carry relative information, because the total number
of counts is fixed and different across samples. TSS transforms them to
relative abundances, imposing the simplex constraint where the com-
ponents sum to one. Thus, the degree of freedom is reduced by one.
The unit-sum constraint can induce spurious correlations among com-
ponents, complicating the interpretation of statistical measures such
as correlation and variance [22]. This inherent interdependence poses
unique challenges for statistical analysis since traditional multivariate
techniques, designed for unconstrained data, can produce misleading
results when applied to compositional data [22,23].

Appropriate transformations are essential to preserving the same
degree of freedom for both the original and transformed data, and to
improving the properties of the transformed data by relaxing the simplex
constraint. To address these challenges, John Aitchison laid the ground-
work for compositional data analysis (CoDA) by developing methods
that respect the relative nature of compositional data. He introduced
the concept of log-ratios to handle compositional data appropriately,
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arguing that the ratios between components are more meaningful than
their absolute values [89]. This approach transforms the data out of the
simplex, breaking the sample space of the compositional data out of a
constrained hyperplane and into the real vector space. This transforma-
tion allows for the application of standard statistical techniques while
maintaining the relative nature of the data, as the product of a log ratio is
transformed to real space, making the data appear independent [90,91].
We derive the contrast transformation from the log-ratio transfor-
mation by omitting the univariate log conversion. For now, we focus
on contrast transformation and we give its definition as follows. A con-
trast transformation for compositional data is a linear transformation
used to analyze the relative differences between components in a com-
position, while respecting the inherent sum constraint of the data (i.e.,
the components sum to a constant, typically 1). In contrast transforma-
tions, each contrast is constructed to compare parts of the composition,
ensuring that the sum of the coefficients for each component in the con-
trast equals zero. This approach eliminates the influence of the total
sum or size, focusing solely on the relative relationships between the
components. Let C =(cy,c,,...,C p) represent a p X p dimensional con-
trast transformation matrix, where each column vector is orthogonal to
the vectors of one’s, denoted by 1, implying that cJTl = (. The orthog-
onality is necessary to transform the simplex into a new space that is
uncorrelated with the original simplex. Based on this simple and gen-
eral condition, various contrast transformations can be designed. Several
well-known examples and realizations are provided below.

2.4.1. Additive contrast (AC)

Based on the comprehensive summary of compositional data analysis
by Greenacre [92] and the detailed demonstration of Supplementary
materials by Zhang et al. [93], the additive contrast matrix is defined

by

1 0 0 0 0
0o 1 0 0 0
o R
0 0 0 - 10 ®
-1 -1 -1 -1 0 oo
=1y = (o1} IP):XI) »
where I, denotes a p-dimensional diagonal matrix and (OPX(p,U;

1 p):Xp denotes a p-dimensional matrix with the last row consisting of
1’s and all other elements set to 0.

Here is an intuitive explanation. Multiplying the data by the AC
matrix C means that each component of a sample is subtracted by
the last component. We can modify the position of the row of 1’s in
(Opx(p—l);lp):x[,' If the 1’s are placed in the j-th row, then the j-th
component is chosen as the reference. The last column of the matrix
C contains only zeros, because the reference component is subtracted
from itself. This omission results in the transformed data having only
p—1 columns, thus preserving the same degrees of freedom as the origi-
nal compositional data. Researchers typically remove the last column of
C as it does not affect the calculation. Utilizing the resulting p X (p — 1)
matrix simplifies the transformation process.

2.4.2. Centered contrast (CC)
Similarly, the centered contrast matrix is defined by

(2)
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Multiplying the data by the CC matrix C subtracts the average from each
component of a sample. The centered contrast transformation treats
all components symmetrically, but it introduces a new constraint: the
sum of the transformed components is zero [94]. This means that the
transformed sample lies on a plane passing through the origin of R?,
enabling the use of standard statistical techniques in Euclidean space.
Additionally, this transformation preserves the degrees of freedom at
p— 1, maintaining consistency with the original sum-constrained data.

Beyond the additive and centered contrasts discussed, other contrast
transformations, such as pairwise contrast (employed in pairwise logra-
tios) [92] and pivot contrast (utilized in pivot logratios) [88,92], are
also commonly used. Additionally, nonlinear contrasts such as amalga-
mation (or summated) contrast offer another approach to compositional
data analysis [92,95]. However, due to space constraints, this paper fo-
cuses primarily on the additive and centered contrasts.

Contrast transformations are not exclusive to compositional data
analysis; they are widely used in the context of ANOVA and regression
models to test specific hypotheses about group means. This application
predates their use in compositional data analysis, with the theory behind
ANOVA formalized by Ronald Fisher in the 1920s. A key reference for
understanding contrast coding and transformations in statistical mod-
els is Kutner et al. [96], which offers a detailed explanation of contrast
coding and transformations in linear models. The book covers impor-
tant concepts such as orthogonality and how contrast transformations
facilitate comparisons of group means.

2.5. Revamp compositional data transformation

Suppose we have an n X p compositional data matrix X = (x,x,, ...,
X p), where each column vector x ; (for j =1,2,...,p) denotes the j-th
variable. Without loss of generality, we assume that each row of X lies
on a simplex, where x;; > 0 and Z;’:] x;; =1 for i =1,2,...,n. This
structural property reduces the degrees of freedom of the data matrix
to p — 1. The right multiplication of a contrast matrix C defines the
application of a contrast transformation. The transformed data can be
represented as

P
XC= <Zx,~jcjk>7i= 1,2,...,m;k=1,2,...,p,
=1

where c;, are the contrast coefficients, which satisfy 25:1 cjx = 0.
Therefore, each contrast actually extracts relative information and com-
pares the parts of the compositions.

Microbial relative abundance is both proportional and composi-
tional. Following Aitchison [89]’s seminal work on log-ratio transforma-
tions, a similar analogy for compositional data transformation typically
involves two steps: first, applying conversion to the proportions, and
then performing a contrast transformation. Based on this understand-
ing, we propose a new framework of compositional data analysis that
combines univariate proportion conversion and multivariate contrast
transformation (as shown in Fig. 1). We call this the CCT (Conversion
and Contrast Transformation) framework. In this framework, we use g
to represent a conversion function for proportional data. Afterwards, we
apply the right multiplication of a contrast matrix C. Then the frame-
work of compositional data transformation can be defined as

T =g(X)C. 3

Within this framework, two commonly used methods, ALR and CLR,
are special cases. This section reviews these two methods, along with
other established methods, laying the groundwork for the novel trans-
formations proposed in subsequent sections. By revisiting these classical
approaches, we aim to highlight both their strengths and areas where
innovation can further enhance their utility.
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2.5.1. Additive log ratio transformation

If we use the log function to convert compositional data X and then
multiply it by the additive contrast matrix C as defined in Equation (1),
the application of Equation (3) yields the ALR transformation as a spe-
cial case in this new framework. The j-th column of the transformed
data can be calculated as

where xp, D € {1,2, ..., p} represents a chosen reference. Introduced by
Aitchison [22], the ALR transformation has several advantages, includ-
ing simplicity and ease of interpretation, especially when the reference
component is biologically or chemically meaningful. For example, in
microbiome studies, a stable and ubiquitous microbial species can serve
as a reference, providing clear and interpretable results [97]. However,
choosing different references may cause totally different results [89,98].
We ran a real data study to show the significant changes in abundance
tests. As shown in Fig. 4a, we conducted two group t-tests on pancreatic
tumor microbiome data [9] to evaluate the impact of selecting different
references on the ALR transformation and differential analysis. Before
we use the ALR transformation, we also filter the taxa. Initially, the data
consisted of 2288 taxa, and we filtered out those taxa where more than
90% of the data were zeros, leaving us with 310 taxa. Both x-axis and
y-axis denote the variable positions in the data. The blue diagonal line
in the figure represents the chosen reference, moving from the first to
the last position in the data. The red dots along the y-axis indicate the
variables identified as significant. In other words, the x-axis corresponds
to the variables chosen as references, and a vertical examination reveals
which variables become significant for each specific reference.

Horizontal red lines imply that these variables are consistently iden-
tified as significant regardless of the reference chosen. Vertical red lines
indicate choosing these references result in the majority of the vari-
ables being identified as significant. We isolated references that cause a
significant rate of over 80% across all variables. Specifically, “Variable
98” resulted in 100% of variables being significant, “Variable 196" re-
sulted in 96.4% of variables being significant, “Variable 231" resulted
in 89.6% of variables being significant, and “Variable 244” resulted in
97.4% of variables being significant. We created boxplots for these four
references in Fig. 4b and found them significantly differential between
two groups. This result indicates that using different references leads to
dramatically inconsistent testing outcomes. Utilizing highly significant
references may produce lots of false positives.

Outliers in the reference (as shown in Fig. 4b) can potentially have a
strong impact on ALR transformation. To investigate this, we removed
the outliers and retested, creating a new figure (similar to Fig. 4a) in
our paper’s Supplementary material section 2. We used interquartile
range (IQR) filtering method [99] to remove outliers by filtering them
based on log-converted values. Specifically, we log-converted the non-
zero values, calculated the IQR, and then filtered out values outside
1.5 times the IQR from the first and third quartiles. We found that
outliers negatively influenced detection. Additionally, using different
values to replace zeros in ALR transformation also impacted differential
abundance detection, which we illustrated in Fig. S1 in Supplementary
material Section 2.

In general, for the ALR transformation, choosing a reference is cru-
cial. We recommend choosing a reference that is not significant and
has little or no outliers. Moreover, selecting a value to replace zeros is
important and needs careful consideration. As mentioned by Greenacre
et al. [100], the reference can be chosen to maximize the Procrustes cor-
relation between the additive logratio geometry and the exact logratio
geometry, as well as to minimize the variance of the reference com-
ponent’s log-transformed relative abundance values, making the subse-
quent interpretation of the logratios even easier [100]. Additionally, it
is important to avoid references with low abundances or many zeros, as
replacing zeros can impact the interpretation of ALRs and zeros cannot

Xj

ALR; =log(X)c; =log(x;) —log(xp) =log <xD

for j=1,2,...,p,
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(a) Heatmap showing significant variables identified by ALR
transformation using different reference variables. Using tu-
mor microbiome data, this graph shows how different refer-
ence selections (blue line) for ALR transformation affect the
detection of significant variables (red points).
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(b) Boxplot depicting the relative abundance of the reference
variables that result in a significant rate of over 80% across all
variables. Specifically, the boxplots represent "Variable 98,"
"Variable 196," "Variable 231," and "Variable 244," which
were found to be statistically significant.

Fig. 4. Effects of reference variable selection on ALR transformation.

provide information, making it challenging to draw meaningful conclu-
sions from them [100].

Additionally, ALR transformation sacrifices one component to serve
as the denominator, and the transformed variables are not isometric,
meaning they do not preserve the original geometric relationships ex-
actly. These limitations are often acceptable in practice, given the ben-
efits of simplicity and interpretability [22,90]. Another significant issue
is the presence of zeros in the data, which can complicate the trans-
formation and subsequent analysis. Various strategies, such as zero re-
placement or imputation, have been proposed, but they can introduce
biases and affect the robustness of the results [22].

2.5.2. Centered log ratio transformation

If we use the log function to convert compositional data X and then
multiply it by the centered contrast matrix C as defined in Equation (2),
the application of Equation (3) yields the CLR transformation as a spe-
cial case in this new framework. The j-th column of the transformed
data can be calculated as
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p
1

CLR; = log(X)c; =log(x;) = - log(Y x))

i

j=1
=1
o8 < 70

Mathematically, f(X) is the geometric mean of the components of X,
defined as f(X) = ( f=1 xj>1/p

CLR is another fundamental technique in the analysis of composi-
tional data introduced by Aitchison [22]. This transformation projects
the compositional data into a higher-dimensional space where the com-
ponents sum to zero (hyperplane passing through origin), ensuring that
the data is appropriately scaled and enabling the application of Eu-
clidean geometry [22,90].

The CLR transformation has several advantages. Unlike ALR, CLR is
invariant to the choice of reference. The geometric mean transformation
ensures that the results are not affected by the selection of any particu-
lar component as the reference [101]. It often yields a more normal-like
data distribution by centering around the geometric mean. It preserves
the relative information among components, ensuring that no single
component is disproportionately weighted or treated differently from
others.

However, the CLR transformation is not without challenges, partic-
ularly its sensitivity to zeros, as log conversion is undefined for zero
values. Therefore, the CLR transformation requires all components to be
non-zero [102]. Zero-replacement techniques, although helpful, can in-
troduce biases and affect the analysis’s robustness [13,103]. CLR trans-
formation can smooth out variability across components by centering
around the geometric mean. This may lead to a loss of important vari-
ability information in the data. Additionally, the transformed variables
sum to zero, resulting in collinear data and an incomplete solution to
the constant sum constraint problem, as the data matrix remains not full
rank [104,105].

While ALR and CLR transformations are well-established and widely
used in compositional data analysis, some alternative transformations
like the Isometric Log-Ratio [106], a-transformation [107] and the Box-
Cox transformation for compositional data [108] offer additional flexi-
bility and advantages in specific scenarios. Each of these transformations
extends the traditional log ratio methods by introducing different per-
spectives on orthonormality, normality, and optimality.

),forj: 1,2,...,p,

2.5.3. Other transformations

Let’s view our proposed CCT framework from another perspective:
it begins with an initial conversion of each component, followed by
the application of contrasts on each compositional vector. These con-
trasts represent linear transformations, forming overall linear combi-
nations of converted components. With this in mind, we can examine
whether other existing transformations can be incorporated into our
CCT framework. The isometric log-ratio transformation [106] fits within
our framework, as it can be viewed as the CLR transformation fol-
lowed by multiplication with an additional orthogonal contrast matrix,
which remains linear combinations of converted components. In con-
trast, transformations such as the a-transformation [107,109] and the
Box—Cox transformation for compositional data [108] fall outside the
scope of our framework. Both involve taking ratios between compo-
nents, which can not be expressed as linear combinations of converted
components. These nonlinear approaches offer unique lens for composi-
tional data transformations, and we explore them in more detail below.

The Isometric Log-Ratio (ILR) transformation is a robust method
for compositional data analysis, introduced by Egozcue et al. [106],
which preserves the geometric properties of the original data in the sim-
plex by ensuring that distances and angles are maintained [110,111].
Mathematically, it uses an orthonormal basis in the simplex to map com-
positional data to real space, which is defined using orthonormal basis
vectors e, ep, ... NH

ILR(X) = ((X,e)).(X.e2).....(X,e, 1)),
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where (-, -) denotes the inner product [106]. Additionally, the ILR trans-
formation can be represented as ILR(X) = CLR(X) - H, where H is an
orthonormal contrast matrix of dimensions p X (p — 1), with rows that
are orthogonal to the vector of ones, 1,. A common choice for H is the
transposed Helmert sub-matrix, which is derived by removing the first
row from the Helmert matrix [107,112], as the Helmert matrix shown
in the Supplementary material Section 6.

However, like ALR and CLR transformations, ILR is also sensitive to
zeros. Additionally, selecting an appropriate orthonormal basis is cru-
cial, as different bases can lead to varying representations [101]. While
ILR preserves geometric structure [106], it may have lower statistical
power compared to ALR and CLR, particularly with high-dimensional
data or small sample sizes due to the orthonormal basis selection and
transformation process. Despite these challenges, the ILR transforma-
tion remains valuable for its geometric consistency and effectiveness in
compositional data analysis [106].

The a-transformation for compositional data generalizes traditional
log-ratio transformations. Because the logarithm transformation is a spe-
cific case of the power transformation when the power parameter a
equals zero [107,109]. To maintain consistency with the original lit-
erature, we use D instead of p to describe the dimension here. The
transformation is defined as

Du,(x)—1p )

a
where a > 0, u,(x) is the compositional power transformation, 1 is a
vector of ones, and H is a matrix of orthonormal rows that are orthog-
onal to 1. The power transformation u,(x) is given by

p

< XIII >T

uX) =\ ——.... —5— .
P a P a
j:]xj Zj:] Xj

When « is set to 0, the transformation behaves as a log-ratio trans-
formation, which is equivalent to performing log-ratio analysis. When
« is set to 1, it functions as a linear transformation of the data, par-
ticularly when applied with discriminant analysis and nearest-neighbor
classification methods, corresponding to Euclidean data analysis [109].

This transformation is advantageous for its flexibility, handling ze-
ros and optimizing criteria like cross-validation in classification tasks,
making it suitable for various fields such as geology, biology, and eco-
nomics [109]. However, a disadvantage is its mapping to a subset of
RP-1, potentially ignoring probabilities outside the simplex. The folded
a-transformation addresses this by folding values back into the sim-
plex, improving fit and applicability, though it increases computational
complexity and lacks a one-to-one inverse transformation [113].

The Box-Cox transformation for compositional data, as described
by Rayens and Srinivasan [108], enhances the traditional log-ratio
approach by incorporating the Box-Cox family of transformations to
achieve better normality in the transformed data. This transformation
involves a two-step process where compositional data are first trans-
formed into ratios and then subjected to a Box-Cox transformation. The
ratios are formed as y;= j—’ forj=1,2,...,p—1, the divisor x, is chosen

z,(x)=H - <

x®

without loss of generality (Rayens and Srinivasan [108]). The Box-Cox
transformation is then applied to each ratio y;:

/lj_

py if4;#0
log(y;) if4;=0

BC(yj;Aj)=

The parameter 4; is chosen to best fit the data to a normal distribu-
tion [108]. This transformation generalizes ALR and allows for further
extensions, as it includes the logarithmic transformation as a special case
when 4; =0.

The main advantage of using the Box-Cox transformation in this con-
text is its ability to improve the fit to normality beyond what is achiev-

able with a simple log conversion. However, a limitation of the Box-Cox
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transformation is that if different A; parameters are used for different
columns of the ratio-transformed data, it may change the covariance and
compositionality among the columns of the original data. This could
potentially mislead subsequent analyses. Additionally, like many tra-
ditional methods, the Box-Cox transformation for compositional data
cannot handle zero values.

2.6. Novel transformations for compositional data

Statisticians have employed log-ratio transformations to handle mi-
crobiome data because it is compositional in nature. However, log-ratio
transformations were not originally designed for data with a high preva-
lence of zeros, making them less appropriate for microbiome datasets.
In fields like material science, chemistry, or ecology, zero inflation was
not a significant issue in compositional data [52]. With the advent of
omics data, particularly since the Human Genome Project launched in
1986, the presence of excess zeros has become more common, posing
additional challenges in sequencing data analysis.

When performing log-ratio transformations, a common strategy to
handle zeros is to replace them with a small value (e.g., 0.5 in count
data). However, this approach introduces bias and may distort the re-
sults [22,76,114]. To briefly demonstrate these issues, we defined a
group effect and conducted a simulation using zero-inflated negative
binomial (ZINB) models [115] by varying the percentage of zeros. We
then applied different constants for zero-replacement and used both ALR
and CLR transformations. For each transformed dataset, we performed
t-tests to assess the power and false discovery rate (FDR) in differen-
tial testing. A two-way ANOVA was conducted to investigate the impact
of zero-inflation and zero-replacement on both power and FDR. Ideally,
power and FDR should remain consistent, but all resulting p-values are
significant, indicating that both the proportion of zeros and the choice of
values for zero-replacement have a substantial impact on the statistical
significance of the tests. Further details are provided in Supplementary
Section 11.

This inconsistency and distortion motivated us to replace the log
function in log-ratio transformations. Therefore, we propose the arcsin
transformation as an alternative. It is well-defined at zero and does not
require zero-replacement, making it a more suitable option.

2.6.1. Developed new transformations within this framework

Among the various extensions and options discussed, we focus on
our proposed CCT framework for developing new compositional data
transformations. Fig. 5 elucidates some existing and newly developed
transformations. This framework integrates univariate conversion of
proportions with contrast transformations for compositions. The uni-
variate conversion on the left stabilizes variance, manages zeros, and
mitigates the impact of outliers. The contrast transformation in the
middle releases the simplex constraint while preserving the degrees of
freedom. The multivariate transformation on the right represents the
newly developed compositional data transformations. This figure illus-
trates just a few examples of combinations, but it actually opens up a
wide range of possibilities for researchers.

For compositional data X, the Additive Arcsine Contrast (AAC) for
the j-th component is defined as:

AAC = arcsine(X)c;,

for j=1,2,...,p, where C is the additive contrast matrix as defined in
Equation (1). This approach demonstrates the versatility of the frame-
work in applying the arcsine transformation in combination with addi-
tive contrast.

Notably, compared with log conversion, arcsine conversion stands
out as it effectively handles boundary values (0 and 1) without the need
for zero replacement, thereby reducing bias and enhancing robustness.
As shown in Section 2.3.7, the arcsine conversion also stabilizes vari-
ance and controls outliers more effectively than log, logit, or Box-Cox
transformations.
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Fig. 5. Diagram of framework for developing new compositional data transfor-
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The choice between contrast transformations, such as AC or CC, rep-
resents another important consideration in ensuring the accuracy of
compositional data analysis. Both AC and CC transformations aim to
shape the data, promoting symmetry. When choosing between these
transformations for compositional data analysis, it is essential to con-
sider the structure and complexity of the data. This consideration is
similar to selecting between Additive Logratio (ALR) and Centered Lo-
gratio (CLR) transformations after deciding to use log conversion as the
univariate conversion.

The AC is particularly suitable for simpler data structures where
a natural reference part exists. It reduces the dimensionality by one,
making it more straightforward to interpret in models with fewer pa-
rameters. This approach is beneficial in regression and classification
tasks where comparisons relative to a specific reference are meaning-
ful [116-118]. AC is frequently employed when researchers are specifi-
cally interested in a particular taxon, as it allows for direct comparison
against a chosen reference component, making it valuable in micro-
biome studies focusing on a single taxonomic group.

On the other hand, the CC is preferred for more complex data struc-
tures where no single reference part is appropriate. It maintains the full
dimensionality, providing a balanced representation of all components.
This method is optimal for exploratory data analysis, Principal Compo-
nent Analysis (PCA), and other multivariate techniques where gaining
insights into the overall data structure is essential [22,105,117].

Based on the Fig. 5, the transformations we proposed include Ad-
ditive Power Contrast (APC), Additive Logit Contrast (ALTC), Additive
Arcsine Contrast (AAC), Centered Power Contrast (CPC), Centered Logit
Contrast (CLTC), and Centered Arcsine Contrast (CAC). Additionally, we
have combined the new proposed DGTL and DGBC proportional data
conversion in Section 2.3.6 with contrast transformations. This results
in new transformations such as Additive Dual Group Truncated Logit
Contrast (ADGTLC), Additive Dual Group Box-Cox Contrast (ADGBCC),
Contrast Dual Group Truncated Logit Contrast (CDGTLC), and Contrast
Dual Group Box-Cox Contrast (CDGBCC). Details are provided in Sup-
plementary Material Section 12.

Moreover, these proposed transformations pave the way for many
additional compositional data transformations through the combination
of various proportional data conversion methods with contrast transfor-
mations. Researchers can further explore and propose new combina-
tions, enhancing the flexibility and applicability of compositional data
analysis techniques in diverse fields.

3. Evaluating compositional data transformations through
simulation

To thoroughly evaluate the performance of various compositional
data transformations, we conducted extensive simulations using two pri-
mary methods: the Zero Inflated Negative Binomial (ZINB) regression
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Table 3

Power comparisons of different transformations under various conditions using data
simulated by a ZINB model. The coefficients indicate the impact of diverse data
characteristics on the testing power of each method. The parameters are defined as
follows: the intercept represents the baseline power for each transformation method.
The a coefficient indicates how dispersion affects power, f, shows the effect of the
regression model intercept on power, f represents the influence of effect size, and ¢

reflects the impact of zero-inflation probability on power.

Transformation Intercept
ALR 0.5219
CLR 0.3625
ALTC 0.5240
CLTC 0.3631
AAC 0.5928
CAC 0.2654
APC 0.5711
CPC 0.5211
ADGTLC 0.5603
CDGTLC 0.3332
ADGBCC 0.3391
CDGBCC 0.2351
ILR 0.0223
Box-Cox in Ratio 0.5047
Dual Group Box-Cox in Ratio 0.5268

a By s q

-0.0223 -0.0267 0.0733 -0.8272
-0.0243 -0.0100 0.0367 -0.5650
-0.0225 -0.0265 0.0733 -0.8292
-0.0244 -0.0099 0.0366 -0.5643
-0.0559 0.0014 0.0424 -0.6773
-0.0293 0.0006 0.0133 -0.2758
-0.0299 -0.0210 0.0800 -0.7818
-0.0380 -0.0137 0.0715 -0.6815
-0.0494 0.0020 0.0571 -0.7629
-0.0360 0.0023 0.0222 -0.4025
-0.0130 -0.0138 0.1015 -0.5881
-0.0089 -0.0118 0.0967 -0.4925
-0.0005 -0.0017 0.0044 -0.0242
-0.0229 -0.0192 0.0672 -0.8462
-0.0234 -0.0235 0.0716 -0.8490

model [115] and the SimulateMSeq function from the GUniFrac pack-
age [119]. These simulations are designed to mimic real-world scenarios
in microbiome research, where data often exhibits complex characteris-
tics such as zero inflation, dispersion, and varying sequencing depths.

3.1. Simulation with zero inflated negative binomial model [115]

We simulated microbiome count data using a zero-inflated negative
binomial regression model [115], as this approach provides better con-
trol over zero-inflation. Then we conducted various transformations to
the relative abundances. For differential testing, we mostly relied on
a two-sample t-test, which assumes that the data follow a normal dis-
tribution, as the goal of these transformations is to achieve a more
normal-like data distribution. Our decision to employ fundamental tests,
such as the t-test and Wilcoxon rank-sum test, stems from their simplic-
ity, widespread use, and adaptability to more advanced methods like
regression. Our goal was to demonstrate that if these basic tests per-
form well with our proposed transformations, then more sophisticated
tests would also be applicable and potentially even more effective.

The simulation was conducted with the following parameters: a sam-
ple size of 100, 50 variables with 25 significant. The significant variables
were influenced by the covariate x, which equals to 1 and 0, and the
significant coefficient f ranging from 1 to 9 by increments of 2. The
higher the coefficient, the more significant the variable. While the non-
significant coefficient f is zero, ensuring they are generated from the
same distribution. The dispersion parameter « ranging from 1 to 9 by
increments of 2, the intercept f, ranging from 1 to 9 by increments of 2,
and zero-inflation probabilities ¢ ranging from 0 to 0.8 by increments of
0.2. Zero-inflation is applied to both groups, with zeros generated from
the Bernoulli distribution using a probability of zero, ¢q. Each parame-
ter combination underwent 100 independent simulation runs to ensure
robustness. Details of the full methodology and the algorithm for this
zero-inflated negative binomial regression simulation can be found in
Supplementary Section 7.

Because some transformations method cannot handle zeros, we re-
place zeros in the count data for these transformations with 0.5 before
TSS. This replacement allows the transformations to be applied without
encountering undefined values. Specifically, we replace zeros for the
following transformations: ALR, CLR, APC, CPC, ALTC, CLTC, ADGBCC,
CDGBCC, Box-Cox in Ratio, Dual Group Box-Cox in Ratio, and ILR.

The results of our simulations, including the coefficients for each
transformation method derived from the linear regression model, are
presented in Table 3. By training a linear regression model with mean

power as the dependent variable and the transformation parameters (a,
Po, P, and g) as the independent variables, we can directly assess the con-
tribution of each parameter to the transformation’s performance. This
method allows us to identify which transformations are most effective
under varying conditions, providing a clear advantage over traditional
methods that do not account for these nuances. The intercept represents
the baseline power for each transformation method, which is crucial for
understanding the inherent effectiveness of each method.

We also created a linear regression model for FDR, using the same
approach as the linear regression for power. The detailed results are pro-
vided in the Supplementary Section 8. Notably, the FDR for most of the
transformations is inversely correlated with power, meaning that higher
power for a transformation corresponds to a lower FDR. In particular,
the coefficient of ¢ value in the FDR table for the AAC is 0.021137927,
the smallest among the transformations, indicating that an increase in
the percentage of zeros in the data frame has the relatively smallest im-
pact on its FDR.

Among the various transformations evaluated, the AAC stands out
with the highest intercept of 0.5928, indicating superior baseline power
for compositional data analysis, especially in zero-inflated datasets. Its
effectiveness is due to the arcsine normal distribution, where y ap-
proaches infinity as x approaches 0, unlike traditional distributions like
the logit normal distribution. However, in scenarios with less severe zero
inflation, other transformations may outperform the AAC.

The APC also demonstrates significant baseline power with an inter-
cept of 0.5711, making it a robust option for compositional data. This
transformation’s flexibility is balanced by the potential issue of differ-
ent variables choosing different A values, which can disrupt variable
correlations.

The ADGTLC shows strong baseline power with an intercept of
0.5603689938, providing a viable alternative to the AAC, but shares
the same issue as the APC.

Other methods like the ALTC and Dual Group Box-Cox in Ratio
also demonstrate strong baseline power with intercepts of 0.5240 and
0.5268, respectively, offering reliable alternatives for researchers.

The ILR method demonstrates the lowest intercept at 0.0223, sug-
gesting it may not be suitable for achieving high power in compositional
data analysis.

However, Centered Contrast transformation methods like the CLR
have a lower intercept of 0.3625416, indicating lower baseline power.
Additionally, methods like CDGBCC and CAC exhibit even lower base-
line power compare with Additive Contrast transformation methods.
This result contradicts the common belief that CLR transformation is
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generally preferred. Aitchison’s recommendation of the CLR transfor-
mation underscores this belief. Additionally, this method has gained
traction in the microbial literature, where it has been argued that the
CLR transformation can effectively analyze microbiome data, RNA-seq
data, and any next-generation sequencing data set [97,120]. Moreover,
the CLR transformation is the most widely used and convenient for com-
positional data [10].

Our simulation serves as an illustrative example demonstrating that
researchers cannot arbitrarily choose between AC methods like ALR and
CC methods like CLR. The choice between these methods is highly de-
pendent on the data structure, necessitating a thorough exploration of
the data prior to analysis. Although CC transformations like CLR are
generally more robust and less sensitive to outliers, our simulation is a
good example showing a situation where AC is better than CC. In count
data, particularly in microbiome studies with multiple groups such as
cancer patients and healthy controls, if variables in one group consis-
tently show higher or lower counts compared to another group, using
AC transformations (such as the ALR) becomes more favorable over CC
transformations (such as the CLR).

The CLR transformation averages all variables, which can dimin-
ish the signal of significant variables. This may result in the dilution
of the impact of truly significant changes, while also amplifying noise.
Consequently, this can introduce false signals to non-significant vari-
ables, thereby reducing statistical power and increasing the false dis-
covery rate (FDR). In contrast, ALR transformation compares variables
directly to a chosen reference, preserving the relative differences be-
tween groups more effectively. Therefore, when analyzing microbiome
count data with distinct group differences, ALR is a preferable transfor-
mation method to CLR. However, when the dataframe is complex and
trends are difficult to discern, CLR transformation can also be a good
choice, as it can help to standardize the data and reveal underlying pat-
terns.

In conclusion, the AAC and APC exhibit significantly better power
compared to other transformations. The AAC is highly effective for zero-
inflated data, while the APC offers a robust alternative, though care must
be taken with variable A values to avoid disrupting data associations.
These findings underscore the importance of selecting appropriate trans-
formation methods with high intercepts to ensure accurate and reliable
results in microbiome research. Furthermore, the choice between AC
and CC transformations should be guided by the specific data structure,
as our findings indicate that AC methods like AAC are more advanta-
geous in certain contexts.

3.2. Simulation using the GUniFrac package [119]

We utilized the SimulateMSeq function from the GUniFrac pack-
age [119] to generate microbiome data simulations, using the human
gut metagenome [121] as a reference. The simulation begins by fil-
tering real datasets to remove rare taxa, ensuring that the reference
captures essential compositional variations. An empirical Bayes model
then estimates the underlying microbial compositions, with Dirichlet hy-
perparameters derived from observed counts. These compositions are
multiplied by a microbial load factor modeled with a log-normal dis-
tribution to compute absolute abundances. Covariate and confounder
effects are integrated by applying specific coefficients to the absolute
abundances, reflecting true biological variability. Sequencing depths are
simulated using a negative binomial distribution, adjusting the compo-
sitions to produce realistic read counts. This comprehensive approach
ensures that the simulated datasets reflect the variability, zero-inflation,
and compositional characteristics typical of real microbiome data, mak-
ing them highly representative of actual scenarios in microbiome anal-
ysis [26].

The simulation study was designed with various configurations to
represent different scenarios of OTU differential abundance and se-
quencing depth. We included both “unbalanced” and “balanced” con-
figurations to simulate skewed and evenly distributed differential abun-
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dances of OTUs. Different abundance levels were represented by the
“rare”, “mix”, and “abundant” modes. We varied the average number
of sequences per sample, represented by the values 10, 100, 1,000, and
10,000, and controlled sequencing depth dispersion with values set at
5, 10, and 15. Additionally, we accounted for variability in covariate
and confounder effects, with standard deviations set at 0 and 0.5, and
controlled the dependence of sequencing depth on the covariate of in-
terest with factors also set at 0 and 0.5. Each parameter combination
was subjected to 100 independent simulation runs to ensure statistical
robustness and reliability.

To generate the table, we performed simulations using these param-
eters and calculated the mean power for each transformation. We then
conducted linear regression analysis, using the mean power as the de-
pendent variable (y) and the other parameters as independent variables
(x). The coefficients from these linear regressions are presented in Ta-
ble 4.

We also conducted a linear regression analysis for false discovery
rate (FDR), following the same approach as for power. The coefficients
from these FDR regressions are presented in a Supplementary table in
Section 9. Interestingly, we observed that the FDR for each transforma-
tion is inversely correlated with power, indicating that transformations
with higher power tend to have lower FDR.

The intercept values in the table indicate that the CAC transfor-
mation exhibits the highest intercept. Additionally, the CLTC and the
Centered Log Ratio transformations also show relatively high intercepts
compared to other transformations, suggesting their robustness.

An interesting observation is that the coefficient for sequencing
depth is positive for both the AAC and CAC transformations. This con-
trasts with most other transformations, which generally have negative
or negligible coefficients for sequencing depth. The positive coefficient
implies that, for these transformations, an increase in the average num-
ber of sequences per sample is associated with a higher mean power.
This may indicate that these transformations are particularly effective
at high sequencing depths to improve statistical power.

Furthermore, the coefficient for the dispersion of sequencing depth is
relatively smaller for both the AAC and CAC transformations compared
to other transformations with similarly high intercepts. This suggests
that these transformations are less sensitive to variability in sequencing
depth, making them more robust in scenarios with variable sequencing
depth.

In summary, the CAC transformation and CLTC transformation stand
out due to their high intercepts, making them preferable choices in many
practical microbiome data analysis scenarios. The AAC also merits at-
tention for its high intercept and robustness, particularly in its unique
positive association with higher sequencing depths and lower sensitivity
to sequencing depth variability.

4. Evaluation of transformation methods on human gut
microbiota data [121]

Research has shown a strong link between the gut microbiome and
inflammatory bowel disease (IBD), which includes chronic conditions
like Crohn’s disease and ulcerative colitis that inflame the gastrointesti-
nal tract. Among recent studies, Mills et al. [121] examines how the gut
bacterium Bacteroides vulgatus aggravates colitis, particularly through
the role of its proteases in promoting inflammation and disrupting the
gut barrier. Through a multi-omics approach combining metagenomics,
metaproteomics, and microbiome data, the study identifies a subset of
ulcerative colitis (UC) patients with elevated levels of B. vulgatus pro-
teases, which are linked to increased disease severity. In this section,
we applied the discussed transformation methods to 16S rRNA sequenc-
ing data from this study to compare our proposed methods with existing
ones, aiming to demonstrate the enhanced robustness of our methods in
differential abundance analyses.

Initially, the data, consisting of 206 samples, was reorganized by con-
solidating samples from various diagnostic groups into two categories—
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Table 4

Comparison of the effectiveness of various transformations under different conditions using data simulated by SimulateMSeq. The coefficients indicate the impact of diverse data characteristics on the testing power of

each method.

Sequencing Depth-

Confounder Effect
Variability

Covariate Effect
Variability

Sequencing Depth

Dispersion

Average Sequencing

Depth

Differential OTU Mode

(rare)

Differential OTU Mode

(mix)

Differential Abundance Pattern

(unbalanced)

Intercept

Transformation

Covariate Dependence

0.0771814

0.0014363
0.0027917

0.0005273 0.0371649

-0.0000032
-0.0000022
-0.0000029
-0.0000020
0.0000043
0.0000046
-0.0000056
0.0000069
0.0000006
0.0000006
-0.0000063
0.0000040
-0.0000072
-0.0000019
-0.0000014

-0.2102865
-0.1859688
-0.2128425
-0.1877396
-0.2310723
-0.2181458
-0.0629879
-0.0753385
-0.0222931
-0.0307942
-0.0160535
-0.1026406
-0.0412708
-0.1932584
-0.2028145

-0.1176483
-0.1026250
-0.1192861
-0.1036927
-0.1278716
-0.1126927
-0.0363470
-0.0446615
-0.0130620
-0.0170749
-0.0149387
-0.0589896
-0.0524010
-0.1137799
-0.1156872

-0.0140753
-0.0411319
-0.0150747
-0.0413785
-0.0476764
-0.0418819
-0.0282513
-0.0404306
-0.0114539
-0.0078861
-0.0043816
0.0132917

-0.0173542
-0.0149951
-0.0158178

0.2028583
0.2360945
0.2051875

ALR
CLR

0.1398889
0.0757862
0.1369514

0.0318194
0.0365919

0.0005901

0.0014232
0.0024236
0.0011916

0.0005524

ALTC

0.0319097
0.0260472

0.0005776

0.2373464
0.2371161

CLTC

AAC

0.0127752
0.0513333
1.0308448
1.1736389

0.0003289

0.0197222 0.0020139

0.0109311

0.0003578

0.2450212

CAC
APC
CPC

-0.0004762
-0.0018611
-0.0003211
0.0004768
-0.0017481
-0.0018611
0.0046944
0.0002474

0.0050506
0.0027630

0.0243141

0.0167361

0.0280524
0.0260923
0.0334972
-0.0553810
-0.0764263
0.0883522

0.0075632 -0.0000809
0.0050141

-0.0000426
-0.0002231
0.0085528

ADGTLC

0.0120827
0.0055796
0.0053611

CDGTLC

0.3861693

ADGBCC

0.8805417

0.0112505
0.0003078

CDGBCC
ILR

0.1855417

0.0156528
0.0353823
0.0356577

0.0595519

0.0004621

0.1872684
0.1961110

Box-Cox in Ratio

0.0674130

0.0010361

0.0005145

Dual Group Box-Cox

in Ratio
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healthy controls and all other diagnoses. Before applying any prepro-
cessing methods, taxa containing more than 90% zero values were fil-
tered out, reducing the number of taxa from 7019 to 211.

DESeq?2 is a popular tool used for analyzing count-based data from
RNA sequencing (RNA-seq) experiments [28] and is also frequently ap-
plied in microbiome differential abundance analysis. It scales count data
by a size factor calculated using the median count ratio across rows and
columns, making it incompatible with zero values. To handle zero values
in the data, two commonly used preprocessing methods were employed
in DESeq2: (1) using the ‘poscounts’ estimator, which handles genes with
zero values by calculating a modified geometric mean, specifically the
n-th root of the product of the non-zero counts [49], which supported
by Van den Berge et al. [122], and (2) replacing zero values with 1.

We applied DESeq2 to the amplicon sequence variant (ASV) count
data using the two preprocessing methods for handling zeros described
above. The first method resulted in the detection of 6 significant fea-
tures, while the second method detected 98 significant features. This
variation suggests that DESeq2 does not handle zero values very well,
producing inconsistent results. The choice of method for handling zeros
can lead to significantly different results.

Next, we used Total Sum Scaling (TSS) to scale the count data
into relative abundances. For transformations that cannot handle zeros,
we replaced zeros with 0.5 prior to performing TSS. We then applied
the transformation methods to the relative abundance data and con-
ducted two-sample t-tests to identify significant features. For the AC
transformations, which require a reference, we first identified the most
non-significant variable using a series of statistical tests (e.g., Wilcoxon
test [85]) and used this variable as the reference. The results were then
compared with the significant features identified by DESeq2 in both
preprocessing methods. The overlap between DESeq2 and our transfor-
mation methods is summarized in Table 5.

From Table 5, different compositional transformations produce no-
tably varied results, illustrating a common phenomenon in microbiome
analysis: various differential analysis tools often yield inconsistent out-
comes. Notably, the CAC method exhibits the highest overlap with
DESeq2 results (3 overlaps using the ‘poscounts’ estimator, and 36 over-
laps when replacing zero values with 1), indicating strong concordance.
While other transformations such as CLR and CLTC also show high
overlaps, the CAC method stands out by having the lowest number of
t-test-only significant features in both methods, suggesting a lower false
discovery rate (FDR). However, relying solely on overlap may not pro-
vide a comprehensive evaluation, given the lack of a true ground truth
in real data. We further analyzed the transformed data by calculating
the mean and standard deviation (SD) of skewness and kurtosis for each
transformation method across the two groups (healthy controls as A and
all other diagnoses as B) to assess the normality and distribution char-
acteristics of the transformed data.

The table for skewness and kurtosis was included in our Supplemen-
tary materials in Section 10. Although the CAC transformation did not
exhibit the best conversion skewness and kurtosis compared to others,
such as the CPC, it demonstrates a good balance between conversion and
maintaining the signal. This balance is crucial for reliable parametric
statistical tests and the detection of significant features in microbiome
data analysis.

5. Conclusion

When analyzing microbiome data, researchers often debate between
two major approaches: count data analysis and compositional data anal-
ysis. Despite the argument for considering the compositional nature
of microbiome data [18,10,100,70,971, a significant portion of micro-
biome data analysis still relies on count data, as seen with differen-
tial abundance tools like edgeR [29], LEfSe [30], DESeq2 [28] and
ANCOM-BC [27]. Preprocessing microbiome data through count data
scaling and compositional data transformation is critical to prepare the
data for downstream analyses, helping to mitigate heterogeneity and
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Table 5

Computational and Structural Biotechnology Journal 23 (2024) 4088-4107

Comparison of significant features detected by DESeq2 and various transformation methods using two-sample t-tests.
The table lists the number of overlapping significant features, those detected only by DESeq2, and those detected only

by the t-test for each transformation method.

Different Preprocessing Methods for DESeq2

Using Modified Geometric Mean

Replace 0 With 1

Transformation Overlap  DESeq2y T TestOnly Overlap DESeq2y T Test Only
ALR 0 6 27 14 84 13
CLR 3 3 74 34 64 43
ALTC 0 6 27 14 84 13
CLTC 3 3 74 34 64 43
AAC 0 6 11 6 92 5
CAC 3 3 70 36 62 37
APC 0 6 0 0 98 0
CPC 0 6 11 4 94 7
ADGTLC 0 6 3 2 96 1
CDGTLC 1 5 26 13 85 14
ADGBCC 0 6 0 0 98 0
CDGBCC 0 6 2 0 98 2
ILR 0 6 54 0 98 54
Box-Cox in Ratio 0 6 23 11 87 12
Dual Group Box-Cox in Ratio 0 6 25 0 98 25

release constraints. But both count data and compositional data ap-
proaches introduce biases and yield inconsistent results on the same
data. To address these discrepancies, we have systematically reviewed
current transformation techniques for microbiome data analysis and
introduced a novel framework that combines proportion conversion
with contrast transformations. This innovative approach provides micro-
biome researchers with a significant direction to enhance data transfor-
mation procedures and improve analytical outcomes. Its impact extends
beyond immediate research outcomes, shaping the evolution of micro-
biome data analysis and advancing accurate discoveries in the broader
field of microbiome science.

Through extensive simulations using Zero-Inflated Negative Bino-
mial (ZINB) models and the GUniFrac simulation framework, we found
that our proposed methods, particularly the Additive Arcsine Contrast
(AAC) and Centered Arcsine Contrast (CAC) transformations, consis-
tently outperformed traditional approaches. These methods excel not
only because they eliminate the need for biased zero replacement—
a common issue in highly zero-inflated datasets such as microbiome
data—but also because they demonstrate remarkable stability across
various conditions, including varying sequence depths and scenarios
with subtle differential abundance signals.

Furthermore, our real data analyses revealed that DESeq2 produced
markedly different results depending on the choice of size factor, under-
scoring the critical importance of the transformation step in differential
analysis. This finding highlights that transformation is not merely a
procedural necessity but a decisive factor that directly impacts analyt-
ical outcomes in real-world applications. While existing tools typically
involve multi-step pipelines—including decisions on size factor selec-
tion, scaling, transformation, and methods to mitigate the influence of
outliers—our proposed transformations, AAC and CAC, provide critical
robustness in the initial steps, enhancing the reliability of subsequent
analyses, particularly in zero-inflation scenarios. These transformations
streamline the analytical process and have the potential to be integrated
to enhance the reliability of results across various differential analysis
tools.

In this paper, we unify and refine compositional data transformation
approaches, developing new methods to manage within-sample compo-
sitionality and across-sample variability. Our framework offers a flexible
solution for normalizing compositional data, allowing researchers to
adapt proportional conversion methods and specific contrast transfor-
mations to their unique analytical needs. This adaptability ensures that
the data meets the assumptions of common statistical methods, thereby
enhancing the accuracy and reliability of subsequent analyses.

Our new framework for robust data transformation is indispensable
for unlocking the full quantitative potential of microbiome research.
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Given its interdisciplinary nature, adopting thoroughly justified, precise,
and reliable biostatistical and computational methods will be critical
in translating quantitative insights into tangible health benefits. This
proposed framework offers a promising direction for future research
focused on the development and validation of new transformation tech-
niques, ensuring meaningful and impactful progress in the field.

We encourage researchers to adopt and refine the methods and
framework discussed in this review, contributing to the collective effort
to improve data analysis in microbiome research. By addressing the limi-
tations and building on the strengths of current techniques, the scientific
community can continue to make significant strides in understanding
the intricate relationships within microbial ecosystems and their effects
on human health.

6. Discussion

Our proposed framework, which combines the conversion of pro-
portional data with contrast transformations, presents significant ad-
vancements in compositional data analysis. By consolidating existing
methods into a structured framework, akin to the periodic table, we sys-
tematically organize approaches to clarify relationships among current
methods and lay a foundation for developing new methodologies within
this structured context. This unified framework not only addresses key
challenges but also offers a comprehensive assessment of existing ana-
lytical issues and misconceptions in microbial analysis.

A key limitation of our framework is its design specifically for com-
positional data, where values sum to one. In cases involving count data,
methods like TSS are often required to scale counts into relative abun-
dances before application. This transformation may not fully capture
the nuances of the original data, potentially reducing its accuracy. A fu-
ture direction would be adapting the framework to work directly with
raw count data, broadening its applicability and enabling more direct
microbiome analysis without prior transformations.

Additionally, the contrast transformation employed here is based on
differences rather than ratios, emphasizing deviations between variables
instead of fold changes. While this approach offers simplicity and in-
terpretability, it may overlook the multiplicative relationships between
components in some datasets. The log conversion, a special case in pro-
portional data conversion due to its application of the Quotient Rule,
preserves ratio-based relationships. Exploring alternative transforma-
tions that preserve ratio-based relationships could improve insights,
especially in contexts where relative changes are critical.

Furthermore, while this paper focuses on additive and centered con-
trasts, other contrast transformations such as pairwise contrasts [92] and
pivot contrasts [88,92] are also commonly employed in compositional
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data analysis. Nonlinear contrasts like amalgamation contrasts offer ad-
ditional approaches as well [95,92]. Future research could explore these
transformations within our framework, potentially enhancing flexibility
and performance across diverse datasets.

Another aspect with room for future development in the paper is
that we evaluated the performance of these transformations solely us-
ing the traditional t-test. Our decision to employ fundamental tests, such
as the t-test and Wilcoxon rank-sum test, stems from their simplicity,
widespread use, and adaptability to more advanced methods like regres-
sion. Our goal was to demonstrate that if these basic tests perform well
with our proposed transformations, then more sophisticated tests would
also be applicable and potentially even more effective. We showed that
AAC and CAC outperformed traditional methods in differential abun-
dance testing. These results establish a pathway that makes the proposed
CCT framework readily adaptable for the size factor calculation step in
developing new differential analysis tools, even for those requiring non-
normal distributions.

Additionally, AAC and CAC, as compositional data transformations,
can be used beyond differential abundance testing, as demonstrated in
our manuscript, and are also suitable for other applications, such as
distance-based approaches. For instance, we explored the use of Eu-
clidean distance and found that replacing zeros and using CLR transfor-
mation before calculating the Euclidean distance significantly affected
the results, with different pseudo-counts leading to substantial varia-
tions in the calculated distances. Further details are provided in our Sup-
plementary Section 13. Importantly, unlike traditional methods, AAC
and CAC do not require the use of pseudo-counts, making them more
robust in handling zero-inflated data. Furthermore, our new framework
can also be applied in other areas, such as variable selection [123] (in
our Supplementary Section 14) or predictive modeling.

In summary, we provided a precise critique of the unsuitability of
compositional data analysis in omics applications, systematically eval-
uating the widespread but misguided practices that have persisted over
time. For microbial analysis, we presented and summarized numerous
existing analytical issues and misconceptions in thorough detail, offer-
ing a comprehensive assessment and proposing solutions. While this
framework addresses key challenges in compositional data analysis, its
limitations provide a roadmap for future improvements, particularly in
extending its use to raw count data, exploring ratio-preserving trans-
formations, and evaluating its performance using advanced statistical
methods.
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