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Due to the development of next-generation sequencing technology and an increased appreciation of their role in 
modulating host immunity and their potential as therapeutic agents, the human microbiome has emerged as a 
key area of interest in various biological investigations of human health and disease. However, microbiome data 
present a number of statistical challenges not addressed by existing methods, such as the varying sequencing 
depth, the compositionality, and zero inflation. Solutions like scaling and transformation methods help to 
mitigate heterogeneity and release constraints, but often introduce biases and yield inconsistent results on the 
same data. To address these issues, we conduct a systematic review of compositional data transformation, 
with a particular focus on the connection and distinction of existing techniques. Additionally, we create a 
new framework that enables the development of new transformations by combining proportion conversion 
with contrast transformations. This framework includes well-known methods such as Additive Log Ratio (ALR) 
and Centered Log Ratio (CLR) as special cases. Using this framework, we develop two novel transformations—
Centered Arcsine Contrast (CAC) and Additive Arcsine Contrast (AAC)—which show enhanced performance in 
scenarios with high zero-inflation. Moreover, our findings suggest that ALR and CLR transformations are more 
effective when zero values are less prevalent. This comprehensive review and the innovative framework provide 
microbiome researchers with a significant direction to enhance data transformation procedures and improve 
analytical outcomes.

1. Introduction

The vast family of microorganisms, including bacteria, fungi, and 
viruses, outnumbers human cells by approximately ten to one, and 
is integral to human physiology, affecting various bodily functions 
and maintaining homeostasis. Unique microorganisms inhabit differ-
ent sites on the body, each adapted to the specific environment and 
function needs of its location. Eating certain foods, like farmed ani-
mal meat, dairy products, refined vegetable oils, and processed cereals, 
changes the oral microbiota composition, increasing acid-producing, 

* Corresponding author at: Department of Population and Quantitative Health Sciences, Case Western Reserve University, 2109 Adelbert Rd, Cleveland, 44106, 
OH, USA.

E-mail address: lxz716@case.edu (L. Zhang).
URL: https://cwru-cinema.com/author/lianglianglyon-zhang (L. Zhang).

acid-tolerant organisms, and periodontal pathogens [1]. The gut micro-
biome, for instance, is essential for breaking down complex carbohy-
drates, synthesizing vitamins, and modulating immune responses [2,3]. 
The significance of these microbes has been further highlighted by the 
Human Microbiome Project, which demonstrates their contributing role 
in metabolic functions that extend beyond the scope of human genetics 
alone [3–5].

Research on human microbiome is revolutionizing our understand-
ing of its pivotal role in sustaining health and influencing the progres-
sion of diseases such as cancer, cardiovascular diseases, allergies, and 
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obesity [6]. When the balance of microbiota is disrupted, a condition 
known as dysbiosis, can lead to various health issues. For example, 
changes in gut microbiota composition are associated with diseases such 
as colorectal cancer, where microbial metabolites can influence car-
cinogenesis [7]. Similarly, cardiovascular diseases have been linked to 
microbial metabolites like Trimethylamine N-oxide (TMAO), which can 
contribute to atherosclerosis [8]. Furthermore, the microbiota plays a 
crucial role in immune system development and regulation, with early-
life microbiota influencing long-term immune health [2]. A cancer re-
search study reveals that higher alpha-diversity of the tumor microbiota 
in long-term pancreatic adenocarcinoma survivors is linked to improved 
survival [9].

Despite these critical roles, analyzing microbiome data presents 
several statistical challenges due to the complexities introduced by 
high-throughput sequencing (HTS) techniques used to generate these 
datasets. First, differences in sequencing depth across samples make 
comparisons challenging. Variations in the number of sequences rep-
resenting the microbial community often result from differences in 
sequencing efficiency rather than true biological variations. Addition-
ally, because the full diversity of bacterial species is rarely captured, 
more species are discovered as sequencing efforts are increased [10–13]. 
Second, microbiome read counts, obtained through 16S rRNA marker 
gene sequencing or metagenomic shotgun sequencing, often exhibit 
high sparsity, with as many as 95% zeros. This high level of spar-
sity introduces uncertainty in the detection and quantification of rare 
taxa [13–15]. Moreover, existing methods struggle to distinguish be-
tween different types of zeros, which are categorized as biological zeros 
(when a taxon is truly absent), sampling zeros (due to sequencing depth 
limitations), and technical zeros (resulting from sample preparation er-
rors) [16]. Third, HTS datasets inherently provide only relative abun-
dances of microbial populations, constrained by the sequencing instru-
ment’s capacity, rather than absolute counts [13,17]. Adding sequences 
from one taxon reduces sequences from another, causing misinterpreta-
tions if the compositional nature is ignored. Using compositional data 
analysis methods such as log-ratio transformations is crucial to avoid 
spurious correlations and gain accurate insights into microbial commu-
nities [18].

Preprocessing microbiome data through scaling and transformation 
is critical to prepare it for downstream analyses, helping to reduce biases 
and recover true biological signals. Scaling involves dividing read counts 
by a scale factor to adjust for discrepancies in sequencing depth and 
other technical variations, ensuring comparability across samples [19]. 
Total sum scaling (TSS) is a specific scaling method that divides read 
counts by the total count in each sample [14,20], producing relative 
abundances that are both proportional and compositional. Transforma-
tion of relative abundance data involves removing the constant sum 
constraint [21]. This constraint introduces interdependence between 
variables, which can mislead statistical analyses if traditional multivari-
ate methods are used without adjustment [22,23].

Over the past decade, various scaling and transformation techniques, 
along with differential abundance (DA) analyses have been developed 
to identify key microbial taxa in host-health-microbiome association 
studies. However, analyses of the same microbiome data often yield 
divergent findings, highlighting the lack of consensus and resulting in 
heterogeneous conclusions [24–26]. In addition, debates between count 
data analysis [27–30] and compositional data analysis (CoDA) [31–34]
in the context of microbiome research are ongoing and touch upon sev-
eral key methodological and theoretical aspects. The field still faces 
significant gaps, including a lack of comprehensive statistical validation 
and consistent framework to produce robust results.

To address these questions, we will conduct a systematic review of 
count data scaling and compositional data transformation, with a par-
ticular focus on the connection and distinction of existing techniques. 
Our goal is to unify and refine compositional data transformation ap-
proaches, developing new methods to manage within-sample compo-
sitionality and across-sample variability. We will create a framework 

for proposing novel compositional transformations by combining pro-
portion conversion and contrast transformation. As shown in Fig. 1, 
proportion conversion stabilizes variance and reduces the influence of 
outliers, while contrast transformation handles compositionality. The 
framework includes Additive Log Ratio (ALR) and Centered Log Ratio 
(CLR) as special cases, while enriching the range of potential options. We 
will study the statistical properties of different combinations in terms of 
variance stabilization, handling zero values, and sensitivity to outliers. 
These novel transformations strive to achieve a normal or quasi-normal 
distribution of the transformed data, allowing the use of basic statisti-
cal tests, such as the t-test, to assess their effectiveness. This innovative 
approach provides microbiome researchers with a significant direction 
to enhance data transformation procedures and improve analytical out-
comes.

2. Methods

Microbial sequence abundance has intrinsic data characteristics that 
prevent accurate recovery of the population composition within its 
original environment. Different samples often yield different total read 
counts due to variations in sequencing depth. To mitigate sequencing 
depth variability, researchers often adopt rarefaction methods [35], 
originally proposed in ecology. These methods involve subsampling 
to a uniform depth to control the effects of uneven sequencing. Al-
ternatively, scaling preserves all the data and is employed to ensure 
that inherent differences do not bias results, thereby facilitating accu-
rate comparisons across samples. However, the effectiveness of scaling 
methods can vary depending on the context, leading to differing inter-
pretations of community structure and composition, which may limit 
the generalizability of results derived from the same dataset. Total sum 
scaling (TSS) [36] is a popular scaling method that preserves relative 
abundance information, making it suitable for comparing the microbial 
community composition across samples. Relative abundances are both 
proportional and compositional in nature [13,37]. Therefore, there are 
two aspects to consider when transforming compositional data. First, 
converting proportional data enhances the symmetry of the distribution, 
stabilizes variance, and controls the effects of outliers. Second, contrast 
transformation constructs relative changes between compositions, fa-
cilitating unconstrained analysis in Euclidean space. In the following 
section, we provide an in-depth review of these methods, highlighting 
their specific advantages and disadvantages. We analyze various propor-
tion conversion techniques, contrast transformations, and their practical 
implications. Additionally, we explore potential alternative solutions 
that could address existing limitations and improve the accuracy and 
reliability of microbiome data analysis.

2.1. Rarefaction of read counts

Rarefaction was first developed by Howard Sanders in 1968 to com-
pare species richness data among sets with different sample sizes in 
marine ecology research [35]. The primary motivation behind its de-
velopment was to create a method that would allow fair comparisons 
between datasets with unequal sampling efforts. This method is essential 
for assessing the diversity of sequencing data, as it standardizes sampling 
depth, allowing for accurate comparisons of diversity between environ-
ments. Without rarefaction, deeper sequencing can artificially inflate 
diversity by detecting rare taxa that might be missed in shallower-
sequenced samples, leading to biased alpha (within-sample) and beta 
(between-sample) diversity estimates [13].

Rarefaction works by selecting a fixed number of samples, equal 
to or less than the smallest sample in the dataset, and randomly sub-
sampling the larger datasets by discarding reads until the sample sizes 
match this threshold [38]. This subsampling to a common depth also 
maintains the exchangeability of observations under the null hypoth-
esis, thereby controlling the Type I error rate in permutation-based 
statistical tests [39]. Rarefaction curves are valuable for assessing both 
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Fig. 1. An integrated framework for microbiome data transformation. This framework addresses critical challenges in microbiome data analysis by combining 
proportional conversion with contrast transformation techniques. The goal is to achieve normal or quasi-normal distributions, facilitating robust statistical analysis 
and ensuring the reliability and validity of the results.

sample coverage and the adequacy of threshold for reliable diversity es-
timates [40]. Moreover, rarefaction is straightforward to implement and 
widely supported in various bioinformatics tools, making it accessible 
for researchers [40,41].

When determining rarefaction depth, researchers must balance sam-
pling breadth and sequencing depth. Greater breadth increases sta-
tistical power for comparing treatment groups, while greater depth 
improves the resolution of microbial community characterization [42]. 
Lower sequencing depth, however, may result in significant data loss 
through rarefaction, reducing statistical power and increasing variance, 
which decreases the sensitivity of analyses and makes it harder to detect 

true differences in microbial composition [25,39,43]. While McMurdie 
and Holmes [43] argued that rarefaction could increase false positives 
and reduce analysis sensitivity due to data reduction and added variabil-
ity [25,39], more recent studies support its continued use in microbiome 
research. Schloss [42,44] countered these claims, emphasizing that rar-
efaction remains the most reliable method for controlling sequencing 
depth variation in both alpha and beta diversity analyses. Their simu-
lations show that rarefaction preserves statistical power and limits false 
positives, particularly when sequencing effort is confounded with treat-
ment groups.
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In the context of differential abundance analysis, rarefaction might 
not be necessary unless there’s a strong correlation between sequenc-
ing depth and the variables of interest. Instead, scaling techniques are 
generally preferred for differential abundance analysis because they re-
tain the full data set and provide more reliable results in the context of 
compositional data.

2.2. Scaling of count data

Scaling is a straightforward and commonly used statistical method 
that corrects observed counts by dividing them by sample-specific scale 
factors, aiming to mitigate discrepancies in sequencing depth [45]. The 
rationale behind scaling lies in its ability to correct for technical variabil-
ity while preserving the biological integrity of the data. By normalizing 
counts using total reads or other summary statistics, scaling ensures that 
comparisons between samples reflect true biological variation rather 
than artifacts from uneven sequencing.

Before delving into specific scaling methods, we suggest categorizing 
scaling methods into two main types to enhance clarity. This classifica-
tion structure is shown in Fig. 1. The first type of scaling, which we refer 
to as Depth-Adjusted Abundance, retains the data in a count-like format 
after scaling, such as Cumulative Sum Scaling (CSS) [14], Upper Quartile 
(UQ) [20], Trimmed Mean of M-values (TMM) [46], Counts Per Million 
(CPM) [29,30], and Geometric Mean of Pairwise Ratios (GMPR) [47]. 
The second type, which we refer to as Relative Abundance, transforms 
the data into proportions where the sum of all taxa within each sample 
equals one [27]. This scaling provides a true compositional view of the 
data. Total Sum Scaling (TSS) [36] is a common method in this cate-
gory, as it directly scales count data into relative abundances. Given the 
complexity and variability inherent in microbiome data, choosing the 
appropriate scaling method is crucial for ensuring accurate and reliable 
analysis. We will begin by examining the first type of scaling.

Cumulative Sum Scaling (CSS), which is used in metagenome-
Seq [14], assumes that observed abundances are roughly independent 
and identically distributed up to a specific quantile [14]. This method 
was originally proposed to better separate samples based on biological 
factors while controlling within-group variance [14]. The motivation be-
hind CSS was to create a scaling technique that minimizes the influence 
of highly abundant taxa, which can skew results in datasets with a wide 
range of microbial abundances. Traditional scaling techniques, such as 
TSS, are heavily influenced by a few highly abundant taxa, leading to 
biased estimates of relative abundance. By focusing on the cumulative 
sum up to a certain quantile, CSS provides a more stable and represen-
tative scaling factor that is less sensitive to extreme values [27,45,48]. 
However, determining the optimal quantile can be challenging due to 
high count variability, potentially affecting the scaling process [14,45].

Upper Quartile (UQ) Scaling uses the upper quartile of observed 
abundances as the scaling factor, aiming to capture the invariant seg-
ment of the count distribution [20,49,50]. Like CSS, the motivation 
behind UQ Scaling is to develop a scaling method that minimizes the 
influence of highly abundant taxa, which can skew the scaling factor 
in traditional methods like Total Sum Scaling (TSS). By focusing on the 
upper quartile, UQ Scaling ensures that the scaling process remains sta-
ble even in the presence of extreme values. UQ Scaling is robust as it 
reduces the impact of extremely high counts from a few taxa. How-
ever, as CSS, selecting the most effective quantile remains nontrivial and 
can influence the scaling’s effectiveness [27]. This challenge is particu-
larly evident in datasets with high count variability, where a suboptimal 
choice of quantile can lead to under- or over-adjustment of abundances. 
Additionally, the study by Pereira et al. [51] indicates that for shotgun 
metagenomic data, TSS method has been evaluated and shown to per-
form on par with or surpass the UQ method.

Trimmed Mean of M-values (TMM) scaling adjusts for library sizes 
by selecting a reference sample, typically with a median library size, 
and calculating log-fold changes (M-values) between this reference and 
each other sample for each gene. The motivation behind TMM scaling is 

to provide a robust method that accounts for compositional differences 
between samples, especially in datasets with varying library sizes and 
potential biases introduced by highly expressed genes. TMM assumes 
that most OTUs (ASVs/genes) are not differentially abundant, and that 
overall abundances between samples should be similar on average. The 
process involves filtering OTUs based on their mean abundance and fold-
change relative to the reference, effectively trimming extreme M-values 
to avoid outliers. This trimming helps to reduce the impact of highly 
expressed genes and extreme values, leading to more reliable scaling. 
A weighted mean of the remaining log-fold changes is then calculated, 
where weights are the inverse of the variance [27,46,50]. However, the 
assumptions underlying TMM scaling, such as the belief that most OTUs 
are not differentially abundant, may not be suitable for highly diverse 
microbial environments [13].

Counts Per Million (CPM) scaling, or called Reads Per Million 
(RPM) scaling, is a simpler scaling technique where raw counts are 
scaled by the total number of reads in each sample, then multiplied 
by one million. This method adjusts for sequencing depth differences by 
expressing counts on a per-million-reads basis, allowing straightforward 
comparisons across samples [29,30]. However, CPM does not account 
for compositional biases, which can be significant in microbiome data.

Geometric Mean of Pairwise Ratios (GMPR) scaling, builds on the 
concept of Relative Log Expression (RLE) used for RNA-seq data [47,52], 
provides a robust alternative by using the geometric mean of pairwise 
ratios of counts between samples to calculate scaling factors. GMPR is 
particularly effective for microbiome data as it accounts for compo-
sitional differences and handles zeros and varying sequencing depths 
robustly [47,53]. By focusing on pairwise comparisons, GMPR reduces 
the impact of outliers and rare taxa, resulting in more reliable normaliza-
tion across diverse microbial communities. This method enhances tra-
ditional approaches by using the median count ratio of nonzero counts 
between samples to calculate the geometric mean for size factors, and it 
is based on the moderated estimation of dispersion (MED) in the DESeq2 
method [28].

The second type of scaling, Total Sum Scaling (TSS), proposed 
by Bergemann and Wilson [36] in RNA-seq data, is a method that 
scales individual read counts by the total number of reads. This pro-
cess transforms absolute abundances into relative abundances, which 
are compositional and sum to 1. According to McKnight et al. [54], 
TSS outperformed other scaling methods in producing accurate Bray-
Curtis dissimilarities [55,56], principal coordinates analysis, and PER-
MANOVAs, avoiding spurious correlations [52]. This makes TSS highly 
effective for community-level comparisons in microbiome studies. Many 
biological interpretations and downstream analyses, such as diversity 
indices and ecological modeling, are based on these proportions rather 
than absolute counts [57]. By focusing on the proportionate presence 
of taxa, TSS mitigates biases introduced by overdispersion or sequenc-
ing errors. Additionally, TSS adjusts for differences in sequencing efforts 
and efficiencies between samples, providing a more accurate reflection 
of the microbial community structure [52]. However, TSS has limita-
tions, including potential biases in differential abundance estimates and 
a high rate of false positives due to the influence of highly abundant 
taxa [13,45,47,50].

In summary, while extensive discussion has focused on count data in 
microbiome research, there has been limited review and systematic eval-
uation of relative abundance transformations, such as TSS. TSS actually 
connects count data scaling with compositional data transformation. 
TSS scales each count by the total number of reads in the sample, effec-
tively reconstructing count data into relative abundance, which ensures 
comparability across samples and studies and reducing biases. To ana-
lyze relative abundance effectively, compositional data approaches are 
required to transform data on the simplex to Euclidean space. In the 
following paper, we will focus on TSS and relative abundance. Since 
microbial relative abundance is both proportional and compositional, 
our review will be structured into two parts: conversion of proportions 
and transformation of compositions.
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Table 1
Distributions and corresponding conversion methods, formulas, and intervals.
Conversion Method Formula Interval Corresponding Distribution Distribution in Mathematical Formula Reference
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2.3. Conversion of proportional data

In microbiome research, each column of a relative abundance table 
represents a proportional variable. Proportional data, expressed as per-
centages or fractions of a whole, are scale-independent and commonly 
analyzed across various biological subfields, making them suitable for 
studying many biological phenomena. Proportional data can be formally 
understood as the division of a total * (e.g., counts, area, time, mass) 
into + parts or categories [58]. Statistical analysis of proportional data 
presents numerous challenges due to their bounded nature between 0 
and 1. The variability in the observed proportions usually varies sys-
tematically with the mean of response [58]. To address these issues, 
mathematical functions such as logarithm or logit are often applied to 
the proportional data—a process we refer to as “conversion”. However, 
applying these conversions can lead to biased estimates and interpreta-
tion difficulties [58]. We chose the term “conversion” instead of “trans-
formation” to avoid confusion with contrast transformations, which we 
will discuss later in our manuscript.

We begin by exploring several common conversion methods for pro-
portional data, including log, logit, arcsine, and power conversion. Each 
conversion is detailed with its mathematical formula, along with its ad-
vantages and disadvantages. Table 1 provides a detailed summary of the 
distributions used for traditional proportional data conversion. After de-
tailing the conversion, we simulate proportional data using zero-inflated 
beta regression, which is well-suited for modeling proportions, to eval-
uate the power of each conversion method. Additionally, we employ 
simple linear regression to generate data with varying levels of variance 
and outliers and evaluate the efficiency of these traditional conver-
sion (log, logit, arcsine, Box-Cox) in reducing variance and managing 
outliers. By comparing these conversions, we aim to identify the most 
effective methods for stabilizing variance in proportional data and im-
proving its interpretability, which will serve as a basis for more complex 
compositional data transformation.

From 2021 to 2024, the popularity and usage trends of different con-
version methods in microbiome research were examined through Google 
Scholar searches. In 2021, Log conversion was the most widely used, 
with 17,400 results, followed by Logit conversion with 6,150 results, 
and Arcsine and Box-Cox conversions with 641 and 464 results, respec-
tively. The trend continued in 2022, with Log conversion reaching a 
peak of 24,700 results, Logit conversion increasing to 7,030 results, Arc-
sine conversion rising to 723 results, and Box-Cox conversion going up 
to 496 results. In 2023, usage slightly declined, with Log conversion at 
17,000 results, Logit conversion at 5,420 results, Arcsine conversion at 
548 results, and Box-Cox conversion at 378 results. By 2024, Log con-
version decreased to 4,480 results, Logit conversion dropped to 1,820 
results, Arcsine conversion had 181 results, and Box-Cox conversion had 
122 results.

Overall, Log conversion is the most widely used method, followed 
by Logit conversion, while Arcsine and Box-Cox conversions are less 
common, with Box-Cox being the least used. These trends suggest that 
researchers in microbiome studies favor certain conversion methods, 
possibly because they effectively fit the nature of the data. The peak 

usage of most conversion methods in 2022 may indicate particularly 
high research activity or publications in that year.

2.3.1. Log conversion
The history of logarithms dates back to John Napier’s invention in 

1614, as detailed in his work “Mirifici Logarithmorum Canonis De-
scriptio,” which represents one of the greatest scientific discoveries, 
providing a significant advancement in mathematical science and a 
labor-saving tool for extensive numerical calculations [62].

The log conversion transforms multiplicative relationships into addi-
tive ones, thereby simplifying the analysis of multiplicative models. Fol-
lowing the conversion, exponential growth patterns may appear linear, 
facilitating the implementation of simpler linear modeling techniques. 
This is particularly advantageous when dealing with data where the 
variance is proportional to the square of the mean or where the effects 
are multiplicative, conditions commonly found in biological data such 
as growth measurements or insect counts [63].

Mathematical form of log conversion, defined as ! = log("), assum-
ing " represents the proportional data, is commonly used to shape right 
skewed data by making the distribution more symmetric. However, if 
the data is left-skewed, log conversion will worsen the left skew, mov-
ing it further away from a normal distribution.

It is important to note that when " ranges from 0 to 1, the log con-
version log(") ranges from −∞ to 0. This means that the log conversion 
cannot handle zero values because log(0) is undefined (it tends towards 
negative infinity). Therefore, a small positive constant is often used to 
replace 0 in " before applying the log conversion to avoid this issue. 
The selection of this small constant is crucial, as even minor variations 
can lead to significant differences in the transformed data. For example, 
log(10−5) = −5 and log(10−2) = −2. This issue is particularly pertinent 
in microbiome data, where a high proportion of zeros is common. Select-
ing a replacement value that, after conversion, becomes a small negative 
number far removed from other data values can lead to potential issues 
in data conversion. As highlighted by Changyong et al. [64], the p-value 
of the test can depend on the value added before applying the log conver-
sion, potentially making conclusions about differences between groups 
reliant on the arbitrary decision regarding the size of the constant used 
in the analysis.

People believe that the log conversion can reduce variance and the 
impact of outliers [63]. However, for proportional data, things are dif-
ferent. Contrary to popular belief, the log conversion can sometimes 
increase the variability of data, whether or not there are outliers [64]. 
This is particularly true for data with a small mean, such as propor-
tional data. Changyong et al. [64] recommend caution when applying 
log conversion and emphasize that researchers must be mindful about 
its limitations when using this method.

Despite its many shortcomings, the log conversion is a foundational 
method in microbiome data analysis, underpinning many commonly 
used techniques such as ALR and CLR [22]. These methods help in deal-
ing with compositional data and making it suitable for various statistical 
analyses.
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Fig. 2. Probability density functions (PDFs) of the arcsine normal distribution for various parameter settings, illustrating their behavior and suitability for different 
types of proportion data.

2.3.2. Logit conversion
While the log conversion can merely handle right-skewed data, logit 

conversion is capable of managing both left-skewed and right-skewed 
data. The logit conversion is defined as the natural logarithm of the odds 
of an event occurring, expressed as ! = log

(
"

1−"

)
, where " is the pro-

portion of interest and must lie within the domain 0 < " < 1. The logit 
conversion has its roots in the work of Pierre-François Verhulst [65], 
who first introduced the logistic function in 1838 to describe population 
growth. Verhulst’s work remained largely unnoticed until the early 20th 
century when Raymond Pearl and Lowell Reed revived interest in the 
logistic function, fitting it to U.S. Census data to model population dy-
namics [66]. However, the development of logit conversion as we know 
it today owes much to Joseph Berkson [67]. In 1944, Berkson proposed 
using the logistic function in bio-assay and coined the term “logit” [67]. 
He advocated for the logit model as a simpler and more computation-
ally efficient alternative to the probit model, which was prevalent at 
the time [68,69]. The primary purpose of the logit model is to facili-
tate the analysis of binary outcomes, such as survival versus death or 
success versus failure, by transforming probabilities into log-odds. This 
conversion is essential in logistic regression, enabling the modeling of 
relationships between a binary dependent variable and multiple inde-
pendent variables.

However, it is crucial to recognize that the logit conversion has lim-
itations at the boundaries of the proportion scale. Specifically, it cannot 
directly handle proportions of exactly 0 or 1. Berkson [67] addresses this 
limitation by noting that for proportions, such as observed mortalities 
at zero or 100 percent, logit conversion becomes infinite. This limita-
tion arises due to the mathematical implications of division by zero and 
taking the logarithm of zero in these cases. Consequently, in practical 
applications, the values of " are typically assumed to be within the open 
interval (0, 1) to avoid these undefined operations.

Both log and logit conversion share the common objective of re-
constructing skewed data into a more symmetric distribution, facili-
tating subsequent statistical analyses [70]. They are particularly useful 
in handling data with wide ranges and mitigating the impact of val-
ues close to 0 and 1 [70]. Despite their differences in handling data 
at the boundaries, both transformations convert multiplicative relation-
ships into additive ones, aiding in linear regression and other parametric 
analyses [71]. Moreover, both methods are grounded in the principle of 
converting proportions and probabilities to a scale that enhances the 
interpretability and robustness of the data [70].

2.3.3. Arcsine conversion
Log and logit conversions can transform proportional data but strug-

gle at the boundaries of 0 or 1. To circumvent this, small value replace-
ments are often used, however, may introduce biases and reduce the ro-
bustness of the analysis. Alternatively, the arcsine conversion is well de-
fined on boundaries and presents a viable solution. The arcsine conver-
sion, proposed by Sokal and Rohlf [72], is defined as ! = 2

& arcsin(
√
"). It 

has been widely used in the analysis of proportional data due to its abil-
ity to stabilize variances. This conversion converts proportions, which 
are bounded between 0 and 1, into values between 0 and 1. One of the 
key advantages of the arcsine conversion is its ability to handle bound-
ary values of 0 and 1, making it particularly useful for datasets that 
include lots of such boundary values. Specifically, 2& arcsin(

√
0) = 0 and 

2
& arcsin(

√
1) = 1. This ensures that the conversion is applicable across 

the entire range of proportion data, providing a robust method for sta-
tistical analysis [73].

However, the arcsine conversion has been criticized for its lack of 
interpretability and the fact that it can produce nonsensical predic-
tions [74]. The criticism mainly stems from the fact that while the 
arcsine conversion stabilizes variances, it does not necessarily normal-
ize the data well, and its predictions can be difficult to interpret in a 
meaningful way. One key issue is that the arcsine conversion maps 0 
to 0. So when there is a high proportion of 0 in the data, the zeros 
remain unchanged after the conversion. This results in fewer nonzero 
values, limiting the transformed data’s ability to approximate a nor-
mal distribution. However, zero-inflation poses similar challenges for 
all conversions.

To facilitate the normality of transformed data, we propose and de-
rive the arcsine normal distribution as a new method to transform and 
analyze proportion data. As noted in Table 1, the arcsine conversion 
results in a normal distribution when applied to data following an arc-
sine normal distribution. To illustrate the characteristics of the arcsine 
normal distribution, we plot the probability density functions (PDFs) of 
the arcsine normal distribution under various parameter settings. Fig. 2
shows these distributions, highlighting their flexibility and suitability 
for different types of proportion data. This visualization demonstrates 
that the arcsine normal distribution can provide a valuable tool for ana-
lyzing proportion data, particularly when dealing with boundary values. 
For the full derivation of the arcsine normal distribution, refer to Sup-
plementary Section 1.

As we can summarize from Table 1 and Fig. 2, as " approaches 
0, the density of the arcsine normal distribution can tend to infin-
ity. Because arcsine function is well defined at 0 and converts 0 to 0 
(with a probability of 1). This behavior is primarily influenced by the 
Beta kernel 1

&
√
"
√
1−"

, which always tends to infinity as " approaches 
0. However, the overall density is moderated by the Gaussian kernel 

exp
(
−

(
2
& arcsin

(√
"
)
−$

)2

2%2

)
. When $ is low and % is high, this term does 

not significantly reduce the density, leading to a sharp increase near 0. 
Conversely, when $ is high or % is low, the exponential term becomes 
very small, causing the density to approach extremely large values near 
0—values that are too small to observe effectively. Similarly, as " ap-
proaches 1, the density can also go to infinity, but if $ is small and %
is small, the exponential part can moderate it, resulting in the density 
approaching extremely large values very close to 1. This behavior is in 
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stark contrast to the log-normal and logit-normal distributions, where 
the density approaches 0 as " approaches 0. This indicates that when a 
dataset has a high percentage of zero values, or is highly skewed to the 
left (with most data points being extremely small), the arcsine normal 
distribution may perform better in representing the data’s distribution. 
This property makes the arcsine conversion particularly suitable for an-
alyzing datasets with these characteristics.

2.3.4. Power conversion
The power conversion, often referred to as the Box-Cox conver-

sion [75], is widely used in various fields, including economics, engi-
neering, and the natural sciences, due to its flexibility and ability to 
handle different types of data distributions. Its application has been 
shown to improve the performance of statistical models by making the 
data more closely conform to the assumptions of normality and ho-
moscedasticity [76,75,77]. It is defined as follows:

! =
{

"'−1
' if ' ≠ 0

log(") if ' = 0

where ! is the transformed variable, " is the original variable (which 
must be positive), and ' is the conversion parameter. The power con-
version can take various forms depending on the value of '. When ' = 0, 
the conversion is equivalent to a logarithmic conversion. When ' = 1, 
it becomes an identity conversion, meaning no conversion is applied. 
Other values of ' result in different power conversions of the original 
variable. The choice of ' is critical and is typically selected to maxi-
mize the normality of the transformed data. This selection is often done 
empirically or through optimization techniques.

The power conversion is especially useful in transforming non-
normal data into a normal distribution, which is a common prerequisite 
for many statistical methods such as regression analysis, analysis of 
variance, and t-tests [76,78]. The transformation helps in stabilizing 
variance and making the data more symmetric, which enhances the va-
lidity of statistical inferences [77].

However, the power conversion has limitations, particularly when 
dealing with values of " that include zero. Since when ' = 0, log(0) is 
undefined and the conversion requires " to be positive, a common ap-
proach is to use a small positive constant to replace zero in all values of 
" before applying the conversion to avoid this issue. These adjustments 
ensure that the conversion can be applied to datasets that include zero, 
although they may introduce some bias [76]. The small constant added 
or used to replace zeros may also influence the ' for Box-Cox; for the 
same dataset, choosing different constants may result in different ' val-
ues.

2.3.5. Other traditional conversion
In addition to the commonly used conversion techniques, there are 

several other transformations frequently employed for normalizing and 
analyzing proportion data. These include the Anscombe, probit, inverse 
hyperbolic sine, and tangent transformations. We provide a brief intro-
duction to these methods without delving into detailed explanations.

The Anscombe conversion [79], expressed as ! = 2
√

"+ 3
8 , plays a 

pivotal role in statistical analysis, especially in scenarios involving bi-
nomially distributed data. This transformation is frequently utilized in 
linear regression and Analysis of Variance (ANOVA) to satisfy key as-
sumptions such as homogeneity of variance and normality of residuals. 
A notable feature of the Anscombe transformation is its inclusion of the 
adjustment term 38 , which ensures appropriate behavior across the en-tire [0, 1] interval, including boundary values [80].

The probit conversion [68], defined as ! =Φ−1("), where Φ(") repre-
sents the cumulative distribution function (CDF) of the standard normal 
distribution, is another key statistical transformation. This conversion
transforms a variable ", which follows a uniform distribution between 
0 and 1, into a variable ! that follows a standard normal distribution. 

However, the probit transformation is undefined at the boundary values 
of " = 0 and " = 1, which can pose challenges in practical applications.

The inverse hyperbolic sine (IHS) conversion, defined as ! =
log

(
"+

√
1 + "2

)
, can handle zero and negative values. For most val-

ues of !, it is approximately equal to log(2"), making it interpretable 
similarly to a standard logarithmic variable. Unlike the log conversion, 
the IHS is defined at zero, making it a robust alternative for certain 
datasets [81,82].

The tangent conversion, expressed as ! = tan(&(" − 0.5)), is another 
transformation used in statistical analysis. Suppose " follows a uniform 
distribution from 0 to 1, then ! = tan(&(" − 0.5)) will follow a Cauchy 
distribution. The Cauchy distribution does not have a mean or variance, 
which precludes the use of traditional statistical methods such as the 
two-sample t-test. However, the Cauchy combination test can be ap-
plied [83,84].

2.3.6. Proposed new conversion for proportions
Microbiome data, which often exhibit zero inflation, present signif-

icant challenges for traditional conversion methods like log and logit. 
These methods typically cannot handle zero values, as they are unde-
fined for zero. Using small constants to replace zeros introduces bias 
and distorts data distribution, as there is no mathematical justification 
for the chosen constant’s magnitude. To address this issue, we propose 
a truncated Logit conversion with adjustable parameters, defined as 
! = log

(
"+)

1−"+,

)
. Here, ) > 0 and , > 0 ensure that logit conversion 

remains well-defined even when " = 0 or " = 1, thus accommodating 
the zero-inflation often observed in microbiome data. This introduc-
tion of adjustable parameters is inspired by the Box-Cox transforma-
tion [77,78], where the power parameter ' is varied to adjust data 
distribution characteristics. We expect that the transformed data will 
approximate a normal distribution, denoted as  ($, %2). Given the four 
parameters in the joint likelihood function, we optimize and estimate 
the adjustable parameters through profile likelihood maximization. This 
new conversion enhances flexibility by incorporating adjustable param-
eters, refining small constant selection to ensure a well-defined and 
robust conversion.

In studies comparing two groups to identify differential features, we 
introduce and clarify the concept of dual group conversion method. 
Instead of assuming a single normal distribution, we assume the 
transformed data will approximate two distinct normal distributions:  ($(, %2() for group A and  ($- , %2-) for group B, while using same adjustable parameters across both groups. More specifically, given two 
groups ( and -, we apply the truncated logit conversion to data from 
two groups "( and "- as follows:

!( = log
(

"( + )
1− "( +,

)
, !- = log

(
"- + )

1− "- +,

)
,

where ) > 0, , > 0 are the shared truncation parameters at 0 and 1 
respectively. Given the six parameters in the joint likelihood function, 
we estimate the adjustable parameters through profile likelihood maxi-
mization. Since our approach aims to approximate distinct normal dis-
tributions across two groups, we have named our method as the Dual-
Group Truncated Logit conversion (DGTL). For a detailed derivation 
of DGTL, please refer to Supplementary Section 3.2. This dual-group 
conversion structure offers a valuable and streamlined approach for dif-
ferential abundance analysis in microbiome studies, yet it has rarely 
been systematically explored or clearly defined.

This technique can also be applied to other conversions, such as 
the Box-Cox conversion (detailed in the Supplementary Section 3.3 as 
the Dual-Group Box-Cox Conversion (DGBC)). By incorporating dual 
group considerations and maintaining the same adjustable parameters, 
this framework achieves an effective balance between preserving pre-
conversion information and enhancing the power to detect differential 
abundance.
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2.3.7. Comparison of conversions
We compare the effectiveness of various conversion methods using 

simulated data from a zero-inflated beta regression model. The perfor-
mance of each transformation is evaluated based on power, false discov-
ery rate (FDR), and standard deviation (SD) when applied to two-group 
comparisons using the two-sample t-test and the Wilcoxon rank sum 
test [85]. This approach assesses both parametric and non-parametric 
methods in handling transformed data and their ability to detect signif-
icant differences between groups.

Data simulation is conducted using a zero-inflated beta regression 
model, with significant variables influenced by the covariate " (set to 
1 and 2) with specified coefficients, while non-significant variables are 
influenced by " with a coefficient set to zero. The coefficient for sig-
nificant variables represents the effect size, determining how strongly 
the covariate " influences their outcomes. Larger absolute values indi-
cate a stronger effect, making it easier to detect significant differences 
between groups. The study considers a sample size of 100, with 50 vari-
ables in total, of which 25 are significant. For significant variables, we 
use two different coefficients: . = −0.7 and . = −0.5. The reduction in 
the magnitude of the coefficient from -0.7 to -0.5 represents a decrease 
in effect size, making it harder to detect significant differences between 
groups. For non-significant variables, we set . = 0, indicating no effect 
of the covariate " on these outcomes. Additionally, the intercept is set 
to be -2.

Zero-inflation is modeled by multiplying the original data in both 
groups with data simulated from a Bernoulli distribution based on the 
specified probability /, referring to the occurrence of excess zeros in 
the data beyond what is expected from the beta distribution alone. 
Higher values of / result in more zeros in the data, posing greater chal-
lenges in detecting significant differences. The simulation is performed 
for both values of . and for the same set of zero-inflation probabilities 
(/ = 0%, 30%, 50%, 70%), where different values of / represent different 
scenarios: for example, / = 0% may correspond to datasets aggregated 
to class level, while higher / values indicate increasing levels of zero-
inflation typically found in species-level data. For details and the algo-
rithm for this Zero Inflated Beta Regression Simulation, please refer to 
Supplementary Section 4.

Conversion methods applied to the simulated data include Log con-
version, Logit conversion, Arcsine conversion, Box-Cox conversion, Tan-
gent conversion, DGTL conversion, DGBC conversion. The two-sample 
t-test is used to assess the significance of differences between groups. 
Our motivation for using the two-sample t-test is that it assumes the data 
follow a normal distribution, allowing us to evaluate the effectiveness 
of the conversion methods in achieving this assumption. Additionally, 
the Wilcoxon rank-sum test [85] is used as a non-parametric reference 
method. The power, FDR, and their standard deviations are calculated 
for each transformation method.

Conversions like log, logit, Box-Cox, and DGBC cannot handle zeros, 
so we replace zeros with a very small number, 1 × 10−10. This replace-
ment allows the transformations to be applied without encountering 
undefined values.

The results of our simulations, including the power, false discovery 
rate (FDR), and their standard deviations for each conversion method, 
are presented in Table 2. Several key observations can be made from 
the table regarding the effectiveness of different conversion.

The DGTL conversion consistently demonstrates high power across 
various levels of zero-inflation while maintaining a low FDR, indicating 
robustness and reliability. The Logit and Log conversion also exhibit 
relatively high power, but only when zero-inflation is low. The Arc-
sine conversion performs inadequately when zero-inflation is 0%, but 
as the percentage of zeros increases, its power becomes more compet-
itive, ranking just behind the DGTL conversion at 70% zero-inflation, 
which also makes it a stable choice when zero-inflation is high. The 
Tangent conversion generally shows the worst power, indicating it is 
not suitable for this analysis. Ta
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Fig. 3. Intercept and Standard Error Estimates for Different Conditions (No Outliers, Right Outliers, Left Outliers). The plots compare the performance of different 
conversion (Original, Log, Logit, Arcsine, Box-Cox) in terms of their intercepts and standard errors across various .0 values. Right outliers represent larger outliers 
(0.9, 0.99, 0.999, 0.9999, 0.99999, 0.99999), while left outliers represent smaller outliers (0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001). The results highlight the 
robustness of the arcsine conversion in managing variance and handling outliers.

Beyond comparing the power of each conversion method, analyzing 
their skewness and kurtosis is important to determine which one has 
the highest conversion ability. Our table in Supplementary Section 5 
provides a comprehensive summary of skewness and kurtosis statistics 
for various conversions applied to datasets with different . values and 
percentages of zero values.

The dual group conversion, specifically the DGTL and DGBC conver-
sion, generally outperform their traditional counterparts. Dual group 
conversion not only helps transform the data to a normal distribution 
using optimization but also has better efficiency in preserving signals 
after conversion. Although the DGTL conversion does not always re-
sult in significant improvements in conversion compared to the tradi-
tional logit conversion, it consistently demonstrates better power and 
relatively lower false discovery rate. Table 2 further supports this by 
showing the enhanced power of the DGTL conversion, which is notably 
higher than that of the traditional logit conversion, indicating its supe-
rior ability to detect true effects in the data, especially in the presence 
of zeros.

Besides understanding which conversion has higher power, manag-
ing outliers is another critical aspect that requires our attention. Outliers 
often result from variations in sample collection, processing, sequenc-
ing, and biological differences between individuals. These discrepancies 
introduce significant noise, which can overshadow genuine biological 
signals and negatively impact the effectiveness and accuracy of analy-
sis [25,48,86,87]. Therefore, we conducted a detailed simulation study. 
The goal was to compare the performance of different traditional con-
versions (Log, Logit, Arcsine, Box-Cox) under various conditions. Using 
simple linear regression, the simulations involved generating data with 
different .0 values and adding random noise uniformly distributed in 
the range from -0.18 to 0.18. Three scenarios were considered: no out-
liers, left outliers (smaller outliers: 0.1, 0.01, 0.001, 0.0001, 0.00001, 
0.000001), and right outliers (larger outliers: 0.9, 0.99, 0.999, 0.9999, 
0.99999, 0.99999). For each scenario, intercepts and standard errors 
were estimated using linear models. The mean and standard error of 
the intercept estimates were calculated across 100,000 simulations for 
each .0 value, and the results were compiled into a combined plot to vi-
sualize the performance of each conversion in managing variance and 
handling outliers.

The analysis depicted in Fig. 3 provides several critical insights into 
the effectiveness of different conversion methods in managing variance 
and handling outliers. Log conversion is particularly sensitive to left out-
liers (smaller outliers) but is less sensitive to right outliers. However, it 

tends to expand the variance compared to the original data. Logit con-
version is sensitive to both right and left outliers and also fails to control 
variance effectively. Box-Cox conversion, which selects the parameter '
based on the data, is highly influenced by right outliers and less so by 
left outliers, and similarly cannot control variance. This contradicts the 
common belief that log, logit, and Box-Cox conversion can reduce vari-
ance and mitigate the influence of outliers.

Notably, for Box-Cox conversion, the influence of right outliers is 
particularly severe when .0 is small. As .0 increases, the influence of 
right outliers becomes relatively smaller. Additionally, the standard er-
ror for log and Box-Cox conversions is reduced as .0 increases. However, 
it is important to highlight that for microbiome data, which is typically 
compositional and right-skewed, these conversion methods may not be 
as effective in reducing variance and handling outliers due to the inher-
ent characteristics of the data.

In contrast, the arcsine conversion demonstrates robustness to out-
liers. The intercepts for the arcsine-converted data remain relatively 
stable, even in the presence of outliers. Additionally, the standard er-
rors for the arcsine conversion are consistently lower, indicating that it 
effectively reduces variance.

2.4. Contrast transformations for compositional data

Compositional data were defined traditionally as constrained data 
with a fixed constant sum constraint (1 or 100) [88]. The microbial se-
quence read counts carry relative information, because the total number 
of counts is fixed and different across samples. TSS transforms them to 
relative abundances, imposing the simplex constraint where the com-
ponents sum to one. Thus, the degree of freedom is reduced by one. 
The unit-sum constraint can induce spurious correlations among com-
ponents, complicating the interpretation of statistical measures such 
as correlation and variance [22]. This inherent interdependence poses 
unique challenges for statistical analysis since traditional multivariate 
techniques, designed for unconstrained data, can produce misleading 
results when applied to compositional data [22,23].

Appropriate transformations are essential to preserving the same 
degree of freedom for both the original and transformed data, and to 
improving the properties of the transformed data by relaxing the simplex 
constraint. To address these challenges, John Aitchison laid the ground-
work for compositional data analysis (CoDA) by developing methods 
that respect the relative nature of compositional data. He introduced 
the concept of log-ratios to handle compositional data appropriately, 
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arguing that the ratios between components are more meaningful than 
their absolute values [89]. This approach transforms the data out of the 
simplex, breaking the sample space of the compositional data out of a 
constrained hyperplane and into the real vector space. This transforma-
tion allows for the application of standard statistical techniques while 
maintaining the relative nature of the data, as the product of a log ratio is 
transformed to real space, making the data appear independent [90,91].

We derive the contrast transformation from the log-ratio transfor-
mation by omitting the univariate log conversion. For now, we focus 
on contrast transformation and we give its definition as follows. A con-
trast transformation for compositional data is a linear transformation 
used to analyze the relative differences between components in a com-
position, while respecting the inherent sum constraint of the data (i.e., 
the components sum to a constant, typically 1). In contrast transforma-
tions, each contrast is constructed to compare parts of the composition, 
ensuring that the sum of the coefficients for each component in the con-
trast equals zero. This approach eliminates the influence of the total 
sum or size, focusing solely on the relative relationships between the 
components. Let ! = ("1, "2, … , "0) represent a 0 × 0 dimensional con-
trast transformation matrix, where each column vector is orthogonal to 
the vectors of one’s, denoted by !, implying that "12 ! = ". The orthog-
onality is necessary to transform the simplex into a new space that is 
uncorrelated with the original simplex. Based on this simple and gen-
eral condition, various contrast transformations can be designed. Several 
well-known examples and realizations are provided below.

2.4.1. Additive contrast (AC)
Based on the comprehensive summary of compositional data analysis 

by Greenacre [92] and the detailed demonstration of Supplementary 
materials by Zhang et al. [93], the additive contrast matrix is defined 
by

! =

⎛
⎜
⎜
⎜
⎜
⎜
⎜⎝

1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 0
−1 −1 −1 ⋯ −1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟⎠0×0

,

= #0×0 −
(
"0×(0−1);!0

)1
0×0 ,

(1)

where #0×0 denotes a 0-dimensional diagonal matrix and ("0×(0−1);
!0
)1
0×0 denotes a 0-dimensional matrix with the last row consisting of 

1’s and all other elements set to 0.
Here is an intuitive explanation. Multiplying the data by the AC 

matrix ! means that each component of a sample is subtracted by 
the last component. We can modify the position of the row of 1’s in (
"0×(0−1);!0

)1
0×0. If the 1’s are placed in the 2-th row, then the 2-th 

component is chosen as the reference. The last column of the matrix 
! contains only zeros, because the reference component is subtracted 
from itself. This omission results in the transformed data having only 
0 −1 columns, thus preserving the same degrees of freedom as the origi-
nal compositional data. Researchers typically remove the last column of 
! as it does not affect the calculation. Utilizing the resulting 0 × (0 − 1)
matrix simplifies the transformation process.

2.4.2. Centered contrast (CC)
Similarly, the centered contrast matrix is defined by

! =

⎛
⎜
⎜
⎜
⎜
⎜
⎜⎝

1− 1
0 − 1

0 − 1
0 ⋯ − 1

0
− 1

0 1− 1
0 − 1

0 ⋯ − 1
0

− 1
0 − 1

0 1− 1
0 ⋯ − 1

0
⋮ ⋮ ⋮ ⋱ ⋮
− 1

0 − 1
0 − 1

0 ⋯ 1− 1
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟⎠0×0

= #0×0 −
1
0
(!1 !)0×0

. (2)

Multiplying the data by the CC matrix ! subtracts the average from each 
component of a sample. The centered contrast transformation treats 
all components symmetrically, but it introduces a new constraint: the 
sum of the transformed components is zero [94]. This means that the 
transformed sample lies on a plane passing through the origin of 3 , 
enabling the use of standard statistical techniques in Euclidean space. 
Additionally, this transformation preserves the degrees of freedom at 
0 − 1, maintaining consistency with the original sum-constrained data.

Beyond the additive and centered contrasts discussed, other contrast 
transformations, such as pairwise contrast (employed in pairwise logra-
tios) [92] and pivot contrast (utilized in pivot logratios) [88,92], are 
also commonly used. Additionally, nonlinear contrasts such as amalga-
mation (or summated) contrast offer another approach to compositional 
data analysis [92,95]. However, due to space constraints, this paper fo-
cuses primarily on the additive and centered contrasts.

Contrast transformations are not exclusive to compositional data 
analysis; they are widely used in the context of ANOVA and regression 
models to test specific hypotheses about group means. This application 
predates their use in compositional data analysis, with the theory behind 
ANOVA formalized by Ronald Fisher in the 1920s. A key reference for 
understanding contrast coding and transformations in statistical mod-
els is Kutner et al. [96], which offers a detailed explanation of contrast 
coding and transformations in linear models. The book covers impor-
tant concepts such as orthogonality and how contrast transformations 
facilitate comparisons of group means.

2.5. Revamp compositional data transformation

Suppose we have an 4 ×0 compositional data matrix $ = (%1, %2, … ,
%0), where each column vector %2 (for 2 = 1, 2, … , 0) denotes the 2-th 
variable. Without loss of generality, we assume that each row of $ lies 
on a simplex, where "52 > 0 and ∑0

2=1 "52 = 1 for 5 = 1, 2, … , 4. This 
structural property reduces the degrees of freedom of the data matrix 
to 0 − 1. The right multiplication of a contrast matrix ! defines the 
application of a contrast transformation. The transformed data can be 
represented as

$! =
( 0∑

2=1
"52627

)
, 5 = 1,2,… ,4;7 = 1,2,… ,0,

where 627 are the contrast coefficients, which satisfy ∑0
2=1 627 = 0. 

Therefore, each contrast actually extracts relative information and com-
pares the parts of the compositions.

Microbial relative abundance is both proportional and composi-
tional. Following Aitchison [89]’s seminal work on log-ratio transforma-
tions, a similar analogy for compositional data transformation typically 
involves two steps: first, applying conversion to the proportions, and 
then performing a contrast transformation. Based on this understand-
ing, we propose a new framework of compositional data analysis that 
combines univariate proportion conversion and multivariate contrast 
transformation (as shown in Fig. 1). We call this the CCT (Conversion 
and Contrast Transformation) framework. In this framework, we use 8
to represent a conversion function for proportional data. Afterwards, we 
apply the right multiplication of a contrast matrix ! . Then the frame-
work of compositional data transformation can be defined as

& = 8($)! . (3)
Within this framework, two commonly used methods, ALR and CLR, 

are special cases. This section reviews these two methods, along with 
other established methods, laying the groundwork for the novel trans-
formations proposed in subsequent sections. By revisiting these classical 
approaches, we aim to highlight both their strengths and areas where 
innovation can further enhance their utility.
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2.5.1. Additive log ratio transformation
If we use the #$% function to convert compositional data $ and then 

multiply it by the additive contrast matrix ! as defined in Equation (1), 
the application of Equation (3) yields the ALR transformation as a spe-
cial case in this new framework. The 2-th column of the transformed 
data can be calculated as

ALR2 = log($)"2 =log(%2 )− log(%3) = log
( %2
%3

)
,

for 2 = 1,2,… ,0,

where %3, 3 ∈ {1, 2, … , 0} represents a chosen reference. Introduced by 
Aitchison [22], the ALR transformation has several advantages, includ-
ing simplicity and ease of interpretation, especially when the reference 
component is biologically or chemically meaningful. For example, in 
microbiome studies, a stable and ubiquitous microbial species can serve 
as a reference, providing clear and interpretable results [97]. However, 
choosing different references may cause totally different results [89,98]. 
We ran a real data study to show the significant changes in abundance 
tests. As shown in Fig. 4a, we conducted two group t-tests on pancreatic 
tumor microbiome data [9] to evaluate the impact of selecting different 
references on the ALR transformation and differential analysis. Before 
we use the ALR transformation, we also filter the taxa. Initially, the data 
consisted of 2288 taxa, and we filtered out those taxa where more than 
90% of the data were zeros, leaving us with 310 taxa. Both x-axis and 
y-axis denote the variable positions in the data. The blue diagonal line 
in the figure represents the chosen reference, moving from the first to 
the last position in the data. The red dots along the y-axis indicate the 
variables identified as significant. In other words, the x-axis corresponds 
to the variables chosen as references, and a vertical examination reveals 
which variables become significant for each specific reference.

Horizontal red lines imply that these variables are consistently iden-
tified as significant regardless of the reference chosen. Vertical red lines 
indicate choosing these references result in the majority of the vari-
ables being identified as significant. We isolated references that cause a 
significant rate of over 80% across all variables. Specifically, “Variable 
98” resulted in 100% of variables being significant, “Variable 196” re-
sulted in 96.4% of variables being significant, “Variable 231” resulted 
in 89.6% of variables being significant, and “Variable 244” resulted in 
97.4% of variables being significant. We created boxplots for these four 
references in Fig. 4b and found them significantly differential between 
two groups. This result indicates that using different references leads to 
dramatically inconsistent testing outcomes. Utilizing highly significant 
references may produce lots of false positives.

Outliers in the reference (as shown in Fig. 4b) can potentially have a 
strong impact on ALR transformation. To investigate this, we removed 
the outliers and retested, creating a new figure (similar to Fig. 4a) in 
our paper’s Supplementary material section 2. We used interquartile 
range (IQR) filtering method [99] to remove outliers by filtering them 
based on log-converted values. Specifically, we log-converted the non-
zero values, calculated the IQR, and then filtered out values outside 
1.5 times the IQR from the first and third quartiles. We found that 
outliers negatively influenced detection. Additionally, using different 
values to replace zeros in ALR transformation also impacted differential 
abundance detection, which we illustrated in Fig. S1 in Supplementary 
material Section 2.

In general, for the ALR transformation, choosing a reference is cru-
cial. We recommend choosing a reference that is not significant and 
has little or no outliers. Moreover, selecting a value to replace zeros is 
important and needs careful consideration. As mentioned by Greenacre 
et al. [100], the reference can be chosen to maximize the Procrustes cor-
relation between the additive logratio geometry and the exact logratio 
geometry, as well as to minimize the variance of the reference com-
ponent’s log-transformed relative abundance values, making the subse-
quent interpretation of the logratios even easier [100]. Additionally, it 
is important to avoid references with low abundances or many zeros, as 
replacing zeros can impact the interpretation of ALRs and zeros cannot 

Fig. 4. Effects of reference variable selection on ALR transformation.

provide information, making it challenging to draw meaningful conclu-
sions from them [100].

Additionally, ALR transformation sacrifices one component to serve 
as the denominator, and the transformed variables are not isometric, 
meaning they do not preserve the original geometric relationships ex-
actly. These limitations are often acceptable in practice, given the ben-
efits of simplicity and interpretability [22,90]. Another significant issue 
is the presence of zeros in the data, which can complicate the trans-
formation and subsequent analysis. Various strategies, such as zero re-
placement or imputation, have been proposed, but they can introduce 
biases and affect the robustness of the results [22].

2.5.2. Centered log ratio transformation
If we use the #$% function to convert compositional data $ and then 

multiply it by the centered contrast matrix ! as defined in Equation (2), 
the application of Equation (3) yields the CLR transformation as a spe-
cial case in this new framework. The 2-th column of the transformed 
data can be calculated as
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CLR2 = log($)"2 = log(%2 )−
1
0
log(

0∑
2=1

%2 )

= log
( %2
# ($)

)
, for 2 = 1,2,… ,0,

Mathematically, # ($) is the geometric mean of the components of $ , 
defined as # ($) =

(∏0
2=1 %2

)1∕0
.

CLR is another fundamental technique in the analysis of composi-
tional data introduced by Aitchison [22]. This transformation projects 
the compositional data into a higher-dimensional space where the com-
ponents sum to zero (hyperplane passing through origin), ensuring that 
the data is appropriately scaled and enabling the application of Eu-
clidean geometry [22,90].

The CLR transformation has several advantages. Unlike ALR, CLR is 
invariant to the choice of reference. The geometric mean transformation 
ensures that the results are not affected by the selection of any particu-
lar component as the reference [101]. It often yields a more normal-like 
data distribution by centering around the geometric mean. It preserves 
the relative information among components, ensuring that no single 
component is disproportionately weighted or treated differently from 
others.

However, the CLR transformation is not without challenges, partic-
ularly its sensitivity to zeros, as log conversion is undefined for zero 
values. Therefore, the CLR transformation requires all components to be 
non-zero [102]. Zero-replacement techniques, although helpful, can in-
troduce biases and affect the analysis’s robustness [13,103]. CLR trans-
formation can smooth out variability across components by centering 
around the geometric mean. This may lead to a loss of important vari-
ability information in the data. Additionally, the transformed variables 
sum to zero, resulting in collinear data and an incomplete solution to 
the constant sum constraint problem, as the data matrix remains not full 
rank [104,105].

While ALR and CLR transformations are well-established and widely 
used in compositional data analysis, some alternative transformations 
like the Isometric Log-Ratio [106], 9-transformation [107] and the Box-
Cox transformation for compositional data [108] offer additional flexi-
bility and advantages in specific scenarios. Each of these transformations 
extends the traditional log ratio methods by introducing different per-
spectives on orthonormality, normality, and optimality.

2.5.3. Other transformations
Let’s view our proposed CCT framework from another perspective: 

it begins with an initial conversion of each component, followed by 
the application of contrasts on each compositional vector. These con-
trasts represent linear transformations, forming overall linear combi-
nations of converted components. With this in mind, we can examine 
whether other existing transformations can be incorporated into our 
CCT framework. The isometric log-ratio transformation [106] fits within 
our framework, as it can be viewed as the CLR transformation fol-
lowed by multiplication with an additional orthogonal contrast matrix, 
which remains linear combinations of converted components. In con-
trast, transformations such as the 9-transformation [107,109] and the 
Box–Cox transformation for compositional data [108] fall outside the 
scope of our framework. Both involve taking ratios between compo-
nents, which can not be expressed as linear combinations of converted 
components. These nonlinear approaches offer unique lens for composi-
tional data transformations, and we explore them in more detail below.

The Isometric Log-Ratio (ILR) transformation is a robust method 
for compositional data analysis, introduced by Egozcue et al. [106], 
which preserves the geometric properties of the original data in the sim-
plex by ensuring that distances and angles are maintained [110,111]. 
Mathematically, it uses an orthonormal basis in the simplex to map com-
positional data to real space, which is defined using orthonormal basis 
vectors :1, :2, … , :0−1:

ILR(;) =
(⟨;, :1⟩, ⟨;, :2⟩,… , ⟨;, :0−1⟩

)
,

where ⟨⋅, ⋅⟩ denotes the inner product [106]. Additionally, the ILR trans-
formation can be represented as ILR(;) = CLR(;) ⋅< , where < is an 
orthonormal contrast matrix of dimensions 0 × (0− 1), with rows that 
are orthogonal to the vector of ones, !0. A common choice for < is the 
transposed Helmert sub-matrix, which is derived by removing the first 
row from the Helmert matrix [107,112], as the Helmert matrix shown 
in the Supplementary material Section 6.

However, like ALR and CLR transformations, ILR is also sensitive to 
zeros. Additionally, selecting an appropriate orthonormal basis is cru-
cial, as different bases can lead to varying representations [101]. While 
ILR preserves geometric structure [106], it may have lower statistical 
power compared to ALR and CLR, particularly with high-dimensional 
data or small sample sizes due to the orthonormal basis selection and 
transformation process. Despite these challenges, the ILR transforma-
tion remains valuable for its geometric consistency and effectiveness in 
compositional data analysis [106].

The 9-transformation for compositional data generalizes traditional 
log-ratio transformations. Because the logarithm transformation is a spe-
cific case of the power transformation when the power parameter 9
equals zero [107,109]. To maintain consistency with the original lit-
erature, we use 3 instead of 0 to describe the dimension here. The 
transformation is defined as

=9(") =< ⋅
(3>9(")− 13

9

)
,

where 9 > 0, >9(") is the compositional power transformation, 13 is a 
vector of ones, and < is a matrix of orthonormal rows that are orthog-
onal to 13 . The power transformation >9(") is given by

>9(") =
(

"91∑0
2=1 "

9
2
,… ,

"90∑0
2=1 "

9
2

)1

.

When 9 is set to 0, the transformation behaves as a log-ratio trans-
formation, which is equivalent to performing log-ratio analysis. When 
9 is set to 1, it functions as a linear transformation of the data, par-
ticularly when applied with discriminant analysis and nearest-neighbor 
classification methods, corresponding to Euclidean data analysis [109].

This transformation is advantageous for its flexibility, handling ze-
ros and optimizing criteria like cross-validation in classification tasks, 
making it suitable for various fields such as geology, biology, and eco-
nomics [109]. However, a disadvantage is its mapping to a subset of 
ℝ3−1, potentially ignoring probabilities outside the simplex. The folded 
9-transformation addresses this by folding values back into the sim-
plex, improving fit and applicability, though it increases computational 
complexity and lacks a one-to-one inverse transformation [113].

The Box-Cox transformation for compositional data, as described 
by Rayens and Srinivasan [108], enhances the traditional log-ratio 
approach by incorporating the Box-Cox family of transformations to 
achieve better normality in the transformed data. This transformation 
involves a two-step process where compositional data are first trans-
formed into ratios and then subjected to a Box-Cox transformation. The 
ratios are formed as !2 =

"2
"0
for 2 = 1, 2, … , 0 −1, the divisor "0 is chosen 

without loss of generality (Rayens and Srinivasan [108]). The Box-Cox 
transformation is then applied to each ratio !2 :

-+(!2 ;'2 ) =
⎧
⎪
⎨
⎪⎩

!
'2
2 −1
'2

if '2 ≠ 0

log(!2 ) if '2 = 0

The parameter '2 is chosen to best fit the data to a normal distribu-
tion [108]. This transformation generalizes ALR and allows for further 
extensions, as it includes the logarithmic transformation as a special case 
when '2 = 0.

The main advantage of using the Box-Cox transformation in this con-
text is its ability to improve the fit to normality beyond what is achiev-
able with a simple log conversion. However, a limitation of the Box-Cox 
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transformation is that if different '2 parameters are used for different 
columns of the ratio-transformed data, it may change the covariance and 
compositionality among the columns of the original data. This could 
potentially mislead subsequent analyses. Additionally, like many tra-
ditional methods, the Box-Cox transformation for compositional data 
cannot handle zero values.

2.6. Novel transformations for compositional data

Statisticians have employed log-ratio transformations to handle mi-
crobiome data because it is compositional in nature. However, log-ratio 
transformations were not originally designed for data with a high preva-
lence of zeros, making them less appropriate for microbiome datasets. 
In fields like material science, chemistry, or ecology, zero inflation was 
not a significant issue in compositional data [52]. With the advent of 
omics data, particularly since the Human Genome Project launched in 
1986, the presence of excess zeros has become more common, posing 
additional challenges in sequencing data analysis.

When performing log-ratio transformations, a common strategy to 
handle zeros is to replace them with a small value (e.g., 0.5 in count 
data). However, this approach introduces bias and may distort the re-
sults [22,76,114]. To briefly demonstrate these issues, we defined a 
group effect and conducted a simulation using zero-inflated negative 
binomial (ZINB) models [115] by varying the percentage of zeros. We 
then applied different constants for zero-replacement and used both ALR 
and CLR transformations. For each transformed dataset, we performed 
t-tests to assess the power and false discovery rate (FDR) in differen-
tial testing. A two-way ANOVA was conducted to investigate the impact 
of zero-inflation and zero-replacement on both power and FDR. Ideally, 
power and FDR should remain consistent, but all resulting p-values are 
significant, indicating that both the proportion of zeros and the choice of 
values for zero-replacement have a substantial impact on the statistical 
significance of the tests. Further details are provided in Supplementary 
Section 11.

This inconsistency and distortion motivated us to replace the log 
function in log-ratio transformations. Therefore, we propose the arcsin
transformation as an alternative. It is well-defined at zero and does not 
require zero-replacement, making it a more suitable option.

2.6.1. Developed new transformations within this framework
Among the various extensions and options discussed, we focus on 

our proposed CCT framework for developing new compositional data 
transformations. Fig. 5 elucidates some existing and newly developed 
transformations. This framework integrates univariate conversion of 
proportions with contrast transformations for compositions. The uni-
variate conversion on the left stabilizes variance, manages zeros, and 
mitigates the impact of outliers. The contrast transformation in the 
middle releases the simplex constraint while preserving the degrees of 
freedom. The multivariate transformation on the right represents the 
newly developed compositional data transformations. This figure illus-
trates just a few examples of combinations, but it actually opens up a 
wide range of possibilities for researchers.

For compositional data ;, the Additive Arcsine Contrast (AAC) for 
the 2-th component is defined as:

AAC2 = arcsine(;)62 ,

for 2 = 1, 2, … , 0, where ! is the additive contrast matrix as defined in 
Equation (1). This approach demonstrates the versatility of the frame-
work in applying the arcsine transformation in combination with addi-
tive contrast.

Notably, compared with log conversion, arcsine conversion stands 
out as it effectively handles boundary values (0 and 1) without the need 
for zero replacement, thereby reducing bias and enhancing robustness. 
As shown in Section 2.3.7, the arcsine conversion also stabilizes vari-
ance and controls outliers more effectively than log, logit, or Box-Cox 
transformations.

Fig. 5. Diagram of framework for developing new compositional data transfor-
mations. This framework integrates proportion conversion with contrast trans-
formation to create innovative transformation methods.

The choice between contrast transformations, such as AC or CC, rep-
resents another important consideration in ensuring the accuracy of 
compositional data analysis. Both AC and CC transformations aim to 
shape the data, promoting symmetry. When choosing between these 
transformations for compositional data analysis, it is essential to con-
sider the structure and complexity of the data. This consideration is 
similar to selecting between Additive Logratio (ALR) and Centered Lo-
gratio (CLR) transformations after deciding to use log conversion as the 
univariate conversion.

The AC is particularly suitable for simpler data structures where 
a natural reference part exists. It reduces the dimensionality by one, 
making it more straightforward to interpret in models with fewer pa-
rameters. This approach is beneficial in regression and classification 
tasks where comparisons relative to a specific reference are meaning-
ful [116–118]. AC is frequently employed when researchers are specifi-
cally interested in a particular taxon, as it allows for direct comparison 
against a chosen reference component, making it valuable in micro-
biome studies focusing on a single taxonomic group.

On the other hand, the CC is preferred for more complex data struc-
tures where no single reference part is appropriate. It maintains the full 
dimensionality, providing a balanced representation of all components. 
This method is optimal for exploratory data analysis, Principal Compo-
nent Analysis (PCA), and other multivariate techniques where gaining 
insights into the overall data structure is essential [22,105,117].

Based on the Fig. 5, the transformations we proposed include Ad-
ditive Power Contrast (APC), Additive Logit Contrast (ALTC), Additive 
Arcsine Contrast (AAC), Centered Power Contrast (CPC), Centered Logit 
Contrast (CLTC), and Centered Arcsine Contrast (CAC). Additionally, we 
have combined the new proposed DGTL and DGBC proportional data 
conversion in Section 2.3.6 with contrast transformations. This results 
in new transformations such as Additive Dual Group Truncated Logit 
Contrast (ADGTLC), Additive Dual Group Box-Cox Contrast (ADGBCC), 
Contrast Dual Group Truncated Logit Contrast (CDGTLC), and Contrast 
Dual Group Box-Cox Contrast (CDGBCC). Details are provided in Sup-
plementary Material Section 12.

Moreover, these proposed transformations pave the way for many 
additional compositional data transformations through the combination 
of various proportional data conversion methods with contrast transfor-
mations. Researchers can further explore and propose new combina-
tions, enhancing the flexibility and applicability of compositional data 
analysis techniques in diverse fields.

3. Evaluating compositional data transformations through 
simulation

To thoroughly evaluate the performance of various compositional 
data transformations, we conducted extensive simulations using two pri-
mary methods: the Zero Inflated Negative Binomial (ZINB) regression 
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Table 3
Power comparisons of different transformations under various conditions using data 
simulated by a ZINB model. The coefficients indicate the impact of diverse data 
characteristics on the testing power of each method. The parameters are defined as 
follows: the intercept represents the baseline power for each transformation method. 
The 9 coefficient indicates how dispersion affects power, .0 shows the effect of the 
regression model intercept on power, . represents the influence of effect size, and /
reflects the impact of zero-inflation probability on power.
Transformation Intercept 9 .0 . /

ALR 0.5219 -0.0223 -0.0267 0.0733 -0.8272
CLR 0.3625 -0.0243 -0.0100 0.0367 -0.5650
ALTC 0.5240 -0.0225 -0.0265 0.0733 -0.8292
CLTC 0.3631 -0.0244 -0.0099 0.0366 -0.5643
AAC 0.5928 -0.0559 0.0014 0.0424 -0.6773
CAC 0.2654 -0.0293 0.0006 0.0133 -0.2758
APC 0.5711 -0.0299 -0.0210 0.0800 -0.7818
CPC 0.5211 -0.0380 -0.0137 0.0715 -0.6815
ADGTLC 0.5603 -0.0494 0.0020 0.0571 -0.7629
CDGTLC 0.3332 -0.0360 0.0023 0.0222 -0.4025
ADGBCC 0.3391 -0.0130 -0.0138 0.1015 -0.5881
CDGBCC 0.2351 -0.0089 -0.0118 0.0967 -0.4925
ILR 0.0223 -0.0005 -0.0017 0.0044 -0.0242
Box-Cox in Ratio 0.5047 -0.0229 -0.0192 0.0672 -0.8462
Dual Group Box-Cox in Ratio 0.5268 -0.0234 -0.0235 0.0716 -0.8490

model [115] and the SimulateMSeq function from the GUniFrac pack-
age [119]. These simulations are designed to mimic real-world scenarios 
in microbiome research, where data often exhibits complex characteris-
tics such as zero inflation, dispersion, and varying sequencing depths.

3.1. Simulation with zero inflated negative binomial model [115]

We simulated microbiome count data using a zero-inflated negative 
binomial regression model [115], as this approach provides better con-
trol over zero-inflation. Then we conducted various transformations to 
the relative abundances. For differential testing, we mostly relied on 
a two-sample t-test, which assumes that the data follow a normal dis-
tribution, as the goal of these transformations is to achieve a more 
normal-like data distribution. Our decision to employ fundamental tests, 
such as the t-test and Wilcoxon rank-sum test, stems from their simplic-
ity, widespread use, and adaptability to more advanced methods like 
regression. Our goal was to demonstrate that if these basic tests per-
form well with our proposed transformations, then more sophisticated 
tests would also be applicable and potentially even more effective.

The simulation was conducted with the following parameters: a sam-
ple size of 100, 50 variables with 25 significant. The significant variables 
were influenced by the covariate ", which equals to 1 and 0, and the 
significant coefficient . ranging from 1 to 9 by increments of 2. The 
higher the coefficient, the more significant the variable. While the non-
significant coefficient . is zero, ensuring they are generated from the 
same distribution. The dispersion parameter 9 ranging from 1 to 9 by 
increments of 2, the intercept .0 ranging from 1 to 9 by increments of 2, 
and zero-inflation probabilities / ranging from 0 to 0.8 by increments of 
0.2. Zero-inflation is applied to both groups, with zeros generated from 
the Bernoulli distribution using a probability of zero, /. Each parame-
ter combination underwent 100 independent simulation runs to ensure 
robustness. Details of the full methodology and the algorithm for this 
zero-inflated negative binomial regression simulation can be found in 
Supplementary Section 7.

Because some transformations method cannot handle zeros, we re-
place zeros in the count data for these transformations with 0.5 before 
TSS. This replacement allows the transformations to be applied without 
encountering undefined values. Specifically, we replace zeros for the 
following transformations: ALR, CLR, APC, CPC, ALTC, CLTC, ADGBCC, 
CDGBCC, Box-Cox in Ratio, Dual Group Box-Cox in Ratio, and ILR.

The results of our simulations, including the coefficients for each 
transformation method derived from the linear regression model, are 
presented in Table 3. By training a linear regression model with mean 

power as the dependent variable and the transformation parameters (9, 
.0, ., and /) as the independent variables, we can directly assess the con-
tribution of each parameter to the transformation’s performance. This 
method allows us to identify which transformations are most effective 
under varying conditions, providing a clear advantage over traditional 
methods that do not account for these nuances. The intercept represents 
the baseline power for each transformation method, which is crucial for 
understanding the inherent effectiveness of each method.

We also created a linear regression model for FDR, using the same 
approach as the linear regression for power. The detailed results are pro-
vided in the Supplementary Section 8. Notably, the FDR for most of the 
transformations is inversely correlated with power, meaning that higher 
power for a transformation corresponds to a lower FDR. In particular, 
the coefficient of / value in the FDR table for the AAC is 0.021137927, 
the smallest among the transformations, indicating that an increase in 
the percentage of zeros in the data frame has the relatively smallest im-
pact on its FDR.

Among the various transformations evaluated, the AAC stands out 
with the highest intercept of 0.5928, indicating superior baseline power 
for compositional data analysis, especially in zero-inflated datasets. Its 
effectiveness is due to the arcsine normal distribution, where ! ap-
proaches infinity as " approaches 0, unlike traditional distributions like 
the logit normal distribution. However, in scenarios with less severe zero 
inflation, other transformations may outperform the AAC.

The APC also demonstrates significant baseline power with an inter-
cept of 0.5711, making it a robust option for compositional data. This 
transformation’s flexibility is balanced by the potential issue of differ-
ent variables choosing different ' values, which can disrupt variable 
correlations.

The ADGTLC shows strong baseline power with an intercept of 
0.5603689938, providing a viable alternative to the AAC, but shares 
the same issue as the APC.

Other methods like the ALTC and Dual Group Box-Cox in Ratio 
also demonstrate strong baseline power with intercepts of 0.5240 and 
0.5268, respectively, offering reliable alternatives for researchers.

The ILR method demonstrates the lowest intercept at 0.0223, sug-
gesting it may not be suitable for achieving high power in compositional 
data analysis.

However, Centered Contrast transformation methods like the CLR 
have a lower intercept of 0.3625416, indicating lower baseline power. 
Additionally, methods like CDGBCC and CAC exhibit even lower base-
line power compare with Additive Contrast transformation methods. 
This result contradicts the common belief that CLR transformation is 
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generally preferred. Aitchison’s recommendation of the CLR transfor-
mation underscores this belief. Additionally, this method has gained 
traction in the microbial literature, where it has been argued that the 
CLR transformation can effectively analyze microbiome data, RNA-seq 
data, and any next-generation sequencing data set [97,120]. Moreover, 
the CLR transformation is the most widely used and convenient for com-
positional data [10].

Our simulation serves as an illustrative example demonstrating that 
researchers cannot arbitrarily choose between AC methods like ALR and 
CC methods like CLR. The choice between these methods is highly de-
pendent on the data structure, necessitating a thorough exploration of 
the data prior to analysis. Although CC transformations like CLR are 
generally more robust and less sensitive to outliers, our simulation is a 
good example showing a situation where AC is better than CC. In count 
data, particularly in microbiome studies with multiple groups such as 
cancer patients and healthy controls, if variables in one group consis-
tently show higher or lower counts compared to another group, using 
AC transformations (such as the ALR) becomes more favorable over CC 
transformations (such as the CLR).

The CLR transformation averages all variables, which can dimin-
ish the signal of significant variables. This may result in the dilution 
of the impact of truly significant changes, while also amplifying noise. 
Consequently, this can introduce false signals to non-significant vari-
ables, thereby reducing statistical power and increasing the false dis-
covery rate (FDR). In contrast, ALR transformation compares variables 
directly to a chosen reference, preserving the relative differences be-
tween groups more effectively. Therefore, when analyzing microbiome 
count data with distinct group differences, ALR is a preferable transfor-
mation method to CLR. However, when the dataframe is complex and 
trends are difficult to discern, CLR transformation can also be a good 
choice, as it can help to standardize the data and reveal underlying pat-
terns.

In conclusion, the AAC and APC exhibit significantly better power 
compared to other transformations. The AAC is highly effective for zero-
inflated data, while the APC offers a robust alternative, though care must 
be taken with variable ' values to avoid disrupting data associations. 
These findings underscore the importance of selecting appropriate trans-
formation methods with high intercepts to ensure accurate and reliable 
results in microbiome research. Furthermore, the choice between AC 
and CC transformations should be guided by the specific data structure, 
as our findings indicate that AC methods like AAC are more advanta-
geous in certain contexts.

3.2. Simulation using the GUniFrac package [119]

We utilized the SimulateMSeq function from the GUniFrac pack-
age [119] to generate microbiome data simulations, using the human 
gut metagenome [121] as a reference. The simulation begins by fil-
tering real datasets to remove rare taxa, ensuring that the reference 
captures essential compositional variations. An empirical Bayes model 
then estimates the underlying microbial compositions, with Dirichlet hy-
perparameters derived from observed counts. These compositions are 
multiplied by a microbial load factor modeled with a log-normal dis-
tribution to compute absolute abundances. Covariate and confounder 
effects are integrated by applying specific coefficients to the absolute 
abundances, reflecting true biological variability. Sequencing depths are 
simulated using a negative binomial distribution, adjusting the compo-
sitions to produce realistic read counts. This comprehensive approach 
ensures that the simulated datasets reflect the variability, zero-inflation, 
and compositional characteristics typical of real microbiome data, mak-
ing them highly representative of actual scenarios in microbiome anal-
ysis [26].

The simulation study was designed with various configurations to 
represent different scenarios of OTU differential abundance and se-
quencing depth. We included both “unbalanced” and “balanced” con-
figurations to simulate skewed and evenly distributed differential abun-

dances of OTUs. Different abundance levels were represented by the 
“rare”, “mix”, and “abundant” modes. We varied the average number 
of sequences per sample, represented by the values 10, 100, 1,000, and 
10,000, and controlled sequencing depth dispersion with values set at 
5, 10, and 15. Additionally, we accounted for variability in covariate 
and confounder effects, with standard deviations set at 0 and 0.5, and 
controlled the dependence of sequencing depth on the covariate of in-
terest with factors also set at 0 and 0.5. Each parameter combination 
was subjected to 100 independent simulation runs to ensure statistical 
robustness and reliability.

To generate the table, we performed simulations using these param-
eters and calculated the mean power for each transformation. We then 
conducted linear regression analysis, using the mean power as the de-
pendent variable (y) and the other parameters as independent variables 
(x). The coefficients from these linear regressions are presented in Ta-
ble 4.

We also conducted a linear regression analysis for false discovery 
rate (FDR), following the same approach as for power. The coefficients 
from these FDR regressions are presented in a Supplementary table in 
Section 9. Interestingly, we observed that the FDR for each transforma-
tion is inversely correlated with power, indicating that transformations 
with higher power tend to have lower FDR.

The intercept values in the table indicate that the CAC transfor-
mation exhibits the highest intercept. Additionally, the CLTC and the 
Centered Log Ratio transformations also show relatively high intercepts 
compared to other transformations, suggesting their robustness.

An interesting observation is that the coefficient for sequencing 
depth is positive for both the AAC and CAC transformations. This con-
trasts with most other transformations, which generally have negative 
or negligible coefficients for sequencing depth. The positive coefficient 
implies that, for these transformations, an increase in the average num-
ber of sequences per sample is associated with a higher mean power. 
This may indicate that these transformations are particularly effective 
at high sequencing depths to improve statistical power.

Furthermore, the coefficient for the dispersion of sequencing depth is 
relatively smaller for both the AAC and CAC transformations compared 
to other transformations with similarly high intercepts. This suggests 
that these transformations are less sensitive to variability in sequencing 
depth, making them more robust in scenarios with variable sequencing 
depth.

In summary, the CAC transformation and CLTC transformation stand 
out due to their high intercepts, making them preferable choices in many 
practical microbiome data analysis scenarios. The AAC also merits at-
tention for its high intercept and robustness, particularly in its unique 
positive association with higher sequencing depths and lower sensitivity 
to sequencing depth variability.

4. Evaluation of transformation methods on human gut 
microbiota data [121]

Research has shown a strong link between the gut microbiome and 
inflammatory bowel disease (IBD), which includes chronic conditions 
like Crohn’s disease and ulcerative colitis that inflame the gastrointesti-
nal tract. Among recent studies, Mills et al. [121] examines how the gut 
bacterium Bacteroides vulgatus aggravates colitis, particularly through 
the role of its proteases in promoting inflammation and disrupting the 
gut barrier. Through a multi-omics approach combining metagenomics, 
metaproteomics, and microbiome data, the study identifies a subset of 
ulcerative colitis (UC) patients with elevated levels of B. vulgatus pro-
teases, which are linked to increased disease severity. In this section, 
we applied the discussed transformation methods to 16S rRNA sequenc-
ing data from this study to compare our proposed methods with existing 
ones, aiming to demonstrate the enhanced robustness of our methods in 
differential abundance analyses.

Initially, the data, consisting of 206 samples, was reorganized by con-
solidating samples from various diagnostic groups into two categories—
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healthy controls and all other diagnoses. Before applying any prepro-
cessing methods, taxa containing more than 90% zero values were fil-
tered out, reducing the number of taxa from 7019 to 211.

DESeq2 is a popular tool used for analyzing count-based data from 
RNA sequencing (RNA-seq) experiments [28] and is also frequently ap-
plied in microbiome differential abundance analysis. It scales count data 
by a size factor calculated using the median count ratio across rows and 
columns, making it incompatible with zero values. To handle zero values 
in the data, two commonly used preprocessing methods were employed 
in DESeq2: (1) using the ‘poscounts’ estimator, which handles genes with 
zero values by calculating a modified geometric mean, specifically the 
n-th root of the product of the non-zero counts [49], which supported 
by Van den Berge et al. [122], and (2) replacing zero values with 1.

We applied DESeq2 to the amplicon sequence variant (ASV) count 
data using the two preprocessing methods for handling zeros described 
above. The first method resulted in the detection of 6 significant fea-
tures, while the second method detected 98 significant features. This 
variation suggests that DESeq2 does not handle zero values very well, 
producing inconsistent results. The choice of method for handling zeros 
can lead to significantly different results.

Next, we used Total Sum Scaling (TSS) to scale the count data 
into relative abundances. For transformations that cannot handle zeros, 
we replaced zeros with 0.5 prior to performing TSS. We then applied 
the transformation methods to the relative abundance data and con-
ducted two-sample t-tests to identify significant features. For the AC 
transformations, which require a reference, we first identified the most 
non-significant variable using a series of statistical tests (e.g., Wilcoxon 
test [85]) and used this variable as the reference. The results were then 
compared with the significant features identified by DESeq2 in both 
preprocessing methods. The overlap between DESeq2 and our transfor-
mation methods is summarized in Table 5.

From Table 5, different compositional transformations produce no-
tably varied results, illustrating a common phenomenon in microbiome 
analysis: various differential analysis tools often yield inconsistent out-
comes. Notably, the CAC method exhibits the highest overlap with 
DESeq2 results (3 overlaps using the ‘poscounts’ estimator, and 36 over-
laps when replacing zero values with 1), indicating strong concordance. 
While other transformations such as CLR and CLTC also show high 
overlaps, the CAC method stands out by having the lowest number of 
t-test-only significant features in both methods, suggesting a lower false 
discovery rate (FDR). However, relying solely on overlap may not pro-
vide a comprehensive evaluation, given the lack of a true ground truth 
in real data. We further analyzed the transformed data by calculating 
the mean and standard deviation (SD) of skewness and kurtosis for each 
transformation method across the two groups (healthy controls as A and 
all other diagnoses as B) to assess the normality and distribution char-
acteristics of the transformed data.

The table for skewness and kurtosis was included in our Supplemen-
tary materials in Section 10. Although the CAC transformation did not 
exhibit the best conversion skewness and kurtosis compared to others, 
such as the CPC, it demonstrates a good balance between conversion and 
maintaining the signal. This balance is crucial for reliable parametric 
statistical tests and the detection of significant features in microbiome 
data analysis.

5. Conclusion

When analyzing microbiome data, researchers often debate between 
two major approaches: count data analysis and compositional data anal-
ysis. Despite the argument for considering the compositional nature 
of microbiome data [18,10,100,70,97], a significant portion of micro-
biome data analysis still relies on count data, as seen with differen-
tial abundance tools like edgeR [29], LEfSe [30], DESeq2 [28] and 
ANCOM-BC [27]. Preprocessing microbiome data through count data 
scaling and compositional data transformation is critical to prepare the 
data for downstream analyses, helping to mitigate heterogeneity and 
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Table 5
Comparison of significant features detected by DESeq2 and various transformation methods using two-sample t-tests. 
The table lists the number of overlapping significant features, those detected only by DESeq2, and those detected only 
by the t-test for each transformation method.
Different Preprocessing Methods for DESeq2 Using Modified Geometric Mean Replace 0 With 1
Transformation Overlap DESeq2y T Test Only Overlap DESeq2y T Test Only
ALR 0 6 27 14 84 13
CLR 3 3 74 34 64 43
ALTC 0 6 27 14 84 13
CLTC 3 3 74 34 64 43
AAC 0 6 11 6 92 5
CAC 3 3 70 36 62 37
APC 0 6 0 0 98 0
CPC 0 6 11 4 94 7
ADGTLC 0 6 3 2 96 1
CDGTLC 1 5 26 13 85 14
ADGBCC 0 6 0 0 98 0
CDGBCC 0 6 2 0 98 2
ILR 0 6 54 0 98 54
Box-Cox in Ratio 0 6 23 11 87 12
Dual Group Box-Cox in Ratio 0 6 25 0 98 25

release constraints. But both count data and compositional data ap-
proaches introduce biases and yield inconsistent results on the same 
data. To address these discrepancies, we have systematically reviewed 
current transformation techniques for microbiome data analysis and 
introduced a novel framework that combines proportion conversion 
with contrast transformations. This innovative approach provides micro-
biome researchers with a significant direction to enhance data transfor-
mation procedures and improve analytical outcomes. Its impact extends 
beyond immediate research outcomes, shaping the evolution of micro-
biome data analysis and advancing accurate discoveries in the broader 
field of microbiome science.

Through extensive simulations using Zero-Inflated Negative Bino-
mial (ZINB) models and the GUniFrac simulation framework, we found 
that our proposed methods, particularly the Additive Arcsine Contrast 
(AAC) and Centered Arcsine Contrast (CAC) transformations, consis-
tently outperformed traditional approaches. These methods excel not 
only because they eliminate the need for biased zero replacement—
a common issue in highly zero-inflated datasets such as microbiome 
data—but also because they demonstrate remarkable stability across 
various conditions, including varying sequence depths and scenarios 
with subtle differential abundance signals.

Furthermore, our real data analyses revealed that DESeq2 produced 
markedly different results depending on the choice of size factor, under-
scoring the critical importance of the transformation step in differential 
analysis. This finding highlights that transformation is not merely a 
procedural necessity but a decisive factor that directly impacts analyt-
ical outcomes in real-world applications. While existing tools typically 
involve multi-step pipelines—including decisions on size factor selec-
tion, scaling, transformation, and methods to mitigate the influence of 
outliers—our proposed transformations, AAC and CAC, provide critical 
robustness in the initial steps, enhancing the reliability of subsequent 
analyses, particularly in zero-inflation scenarios. These transformations 
streamline the analytical process and have the potential to be integrated 
to enhance the reliability of results across various differential analysis 
tools.

In this paper, we unify and refine compositional data transformation 
approaches, developing new methods to manage within-sample compo-
sitionality and across-sample variability. Our framework offers a flexible 
solution for normalizing compositional data, allowing researchers to 
adapt proportional conversion methods and specific contrast transfor-
mations to their unique analytical needs. This adaptability ensures that 
the data meets the assumptions of common statistical methods, thereby 
enhancing the accuracy and reliability of subsequent analyses.

Our new framework for robust data transformation is indispensable
for unlocking the full quantitative potential of microbiome research. 

Given its interdisciplinary nature, adopting thoroughly justified, precise, 
and reliable biostatistical and computational methods will be critical 
in translating quantitative insights into tangible health benefits. This 
proposed framework offers a promising direction for future research 
focused on the development and validation of new transformation tech-
niques, ensuring meaningful and impactful progress in the field.

We encourage researchers to adopt and refine the methods and 
framework discussed in this review, contributing to the collective effort 
to improve data analysis in microbiome research. By addressing the limi-
tations and building on the strengths of current techniques, the scientific 
community can continue to make significant strides in understanding 
the intricate relationships within microbial ecosystems and their effects 
on human health.

6. Discussion

Our proposed framework, which combines the conversion of pro-
portional data with contrast transformations, presents significant ad-
vancements in compositional data analysis. By consolidating existing 
methods into a structured framework, akin to the periodic table, we sys-
tematically organize approaches to clarify relationships among current 
methods and lay a foundation for developing new methodologies within 
this structured context. This unified framework not only addresses key 
challenges but also offers a comprehensive assessment of existing ana-
lytical issues and misconceptions in microbial analysis.

A key limitation of our framework is its design specifically for com-
positional data, where values sum to one. In cases involving count data, 
methods like TSS are often required to scale counts into relative abun-
dances before application. This transformation may not fully capture 
the nuances of the original data, potentially reducing its accuracy. A fu-
ture direction would be adapting the framework to work directly with 
raw count data, broadening its applicability and enabling more direct 
microbiome analysis without prior transformations.

Additionally, the contrast transformation employed here is based on 
differences rather than ratios, emphasizing deviations between variables 
instead of fold changes. While this approach offers simplicity and in-
terpretability, it may overlook the multiplicative relationships between 
components in some datasets. The log conversion, a special case in pro-
portional data conversion due to its application of the Quotient Rule, 
preserves ratio-based relationships. Exploring alternative transforma-
tions that preserve ratio-based relationships could improve insights, 
especially in contexts where relative changes are critical.

Furthermore, while this paper focuses on additive and centered con-
trasts, other contrast transformations such as pairwise contrasts [92] and 
pivot contrasts [88,92] are also commonly employed in compositional 
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data analysis. Nonlinear contrasts like amalgamation contrasts offer ad-
ditional approaches as well [95,92]. Future research could explore these 
transformations within our framework, potentially enhancing flexibility 
and performance across diverse datasets.

Another aspect with room for future development in the paper is 
that we evaluated the performance of these transformations solely us-
ing the traditional t-test. Our decision to employ fundamental tests, such 
as the t-test and Wilcoxon rank-sum test, stems from their simplicity, 
widespread use, and adaptability to more advanced methods like regres-
sion. Our goal was to demonstrate that if these basic tests perform well 
with our proposed transformations, then more sophisticated tests would 
also be applicable and potentially even more effective. We showed that 
AAC and CAC outperformed traditional methods in differential abun-
dance testing. These results establish a pathway that makes the proposed 
CCT framework readily adaptable for the size factor calculation step in 
developing new differential analysis tools, even for those requiring non-
normal distributions.

Additionally, AAC and CAC, as compositional data transformations, 
can be used beyond differential abundance testing, as demonstrated in 
our manuscript, and are also suitable for other applications, such as 
distance-based approaches. For instance, we explored the use of Eu-
clidean distance and found that replacing zeros and using CLR transfor-
mation before calculating the Euclidean distance significantly affected 
the results, with different pseudo-counts leading to substantial varia-
tions in the calculated distances. Further details are provided in our Sup-
plementary Section 13. Importantly, unlike traditional methods, AAC 
and CAC do not require the use of pseudo-counts, making them more 
robust in handling zero-inflated data. Furthermore, our new framework 
can also be applied in other areas, such as variable selection [123] (in 
our Supplementary Section 14) or predictive modeling.

In summary, we provided a precise critique of the unsuitability of 
compositional data analysis in omics applications, systematically eval-
uating the widespread but misguided practices that have persisted over 
time. For microbial analysis, we presented and summarized numerous 
existing analytical issues and misconceptions in thorough detail, offer-
ing a comprehensive assessment and proposing solutions. While this 
framework addresses key challenges in compositional data analysis, its 
limitations provide a roadmap for future improvements, particularly in 
extending its use to raw count data, exploring ratio-preserving trans-
formations, and evaluating its performance using advanced statistical 
methods.
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