

Running times of DLRawTriggerReader

All the times are measured for the triggerless (>20 Cherenkov p.e.) file of gammas:
"/gamma3/users/jbuces/software/mc_data/trigerless_gammas/reduced_ctapipe/corsi
ka_run1.dl1b.h5" (11044 events, only 1 tel). When the output option implies more
than a row (multiple patches) for each event, the example identifiers file is modified,
i.e. not done in the append features function. The time for batch generation is for
multiples of 49 (number of patches) in the output.

RawTriggerReader inherits all the settings from the WaveformReader, with some
extra settings as:
- output_settings, to select which type of output we want in the batch generator:
["waveform", "random_patch", "balanced_patches", "hot_patch",
"all_patches", "double_random"]

-trigger_settings, dictionary to set the number of trigger patches (7 if we want 7x7),
the cpe_threshold: threshold in Cherenkov p.e. above which patches are labeled
cosmic, and where other trigger settings as the characteristics of trigger patches are
saved.

-”hot_pixel_from_simulation”

The principal output settings are:

-​ “balanced_patches”: in order to get the maximum amount of data to train.
Introduces the same and maximum amount of nsb and cosmic patches per
event. If one event has no nsb or cosmic patches the value of true Cherenkov
and patch index in the table is -1, appends an all -1 waveform.

-​ “all_patches”: generate in the ex identifiers file number of trigger patches **2

of new lines per event with the patch index in each one. Maybe useful for
inference.

-​ If balanced options are too long for initialising (7 seconds for 11000 events)

and need an equilibrated dataset, there is the “double_random” option where
we create 2 extra lines for each event, one for each patch type, cosmic and
nsb, and append a random of the corresponding type for each.

Initialisation time for waveform is:
1.13 s ± 1.29 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for waveform, for a 4 * 49 batch size is:
638 ms ± 4.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for waveform, for a 5 * 49 batch size is:
797 ms ± 4.02 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for waveform, for a 6 * 49 batch size is:
982 ms ± 12.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Initialisation time for random_patch is:
1.21 s ± 6.41 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for random_patch, for a 4 * 49 batch size is:
727 ms ± 3.22 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for random_patch, for a 5 * 49 batch size is:
921 ms ± 2.73 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for random_patch, for a 6 * 49 batch size is:
1.13 s ± 10.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Initialisation time for balanced_patches is:
7.19 s ± 70.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for balanced_patches, for a 4 * 49 batch size is:
304 ms ± 1.18 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for balanced_patches, for a 5 * 49 batch size is:
389 ms ± 642 μs per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for balanced_patches, for a 6 * 49 batch size is:
468 ms ± 1.67 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Initialisation time for hot_patch is:
1.35 s ± 10.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for hot_patch, for a 4 * 49 batch size is:
771 ms ± 2.48 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for hot_patch, for a 5 * 49 batch size is:
974 ms ± 6.13 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Batch generation time for hot_patch, for a 6 * 49 batch size is:
1.17 s ± 7.13 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Initialisation time for all_patches is:
1.38 s ± 4.32 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for all_patches, for a 4 * 49 batch size is:
311 ms ± 1.11 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for all_patches, for a 5 * 49 batch size is:
391 ms ± 808 μs per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for all_patches, for a 6 * 49 batch size is:
473 ms ± 893 μs per loop (mean ± std. dev. of 7 runs, 1 loop each)
Initialisation time for double_random is:
1.36 s ± 9.16 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for double_random, for a 4 * 49 batch size is:
565 ms ± 4.33 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for double_random, for a 5 * 49 batch size is:
719 ms ± 7.78 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Batch generation time for double_random, for a 6 * 49 batch size is:
872 ms ± 4.53 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Generated batch for each “output_settings”:

-​ ”waveform” (default):

-​ “random_patch”:

When the random variable hits True takes a random nsb patch, when it hits False
takes the nearest patch to the hot pixel (most Cherenkov p.e. if
hot_pixel_from_simulation = True, highest integrated charge if
hot_pixel_from_simulation = False)

-​ “hot_patch”:
Gives the patch which center is the nearest to the hot pixel. Same
“hot_pixel_from_simulation” option as “random_patch”.

-​ “balanced_patches”
Gives min(nsb_patches, cosmic_patches) number of random patches of each class
per event. Randomise the selection of patches to avoid selecting always the same
patches for nsb, e.g. mostly showers with 10 cosmic patches, so it doesn’t always
take the first 10 nsb patches.

-​ “double_random”:
For each event we generate 2 rows in the “example_identifiers”: 1 for nsb
(“patch_class” = 1) another for cosmic (“patch_class” = 0). In the “_append_features”
select a random nsb and cosmic patch.

-​ “all_patches”:

For each event we generate (number_of_trigger_patches)**2 rows in the example
identifiers. Then append for each “patch_index” its corresponding “waveform”,
“patch_class”, and number of “cherenkov_pe”

