Exercise 1: Regex Testing

1of7

Exercise 1: Regex Testing 40 Points
1/27/2025
Attempt 1 O 1RIZ\;i/ezv(\;2FseedbaCk Attempt 1 Score: E—“"_J View Feedback

Anonymous Grading: no

Unlimited Attempts Allowed
1/17/2025 to 1/31/2025

v Details

In this assignment, you will test and implement scenarios for regular expressions to practice
testing, working with specifications, and regular expressions (which are an introduction to
grammars for later on).

Submission

You will submit a Zip file of the entire src folder (containing just the single src folder), which
should contain both your implementation (src/main/java) and tests (src/test/java). On Windows,
right-click on the src folder and "Compress to ZIP file" should have the expected behavior here.

e The test submission is Thursday, January 23: Exercise 1: Regex Testing (TEST) (https://
ufl.instructure.com/courses/523541/assignments/6419669)
e The final submission is Monday, January 27.

Project Setup

See the following links for provided code and setup instructions:

o RegexTesting.zip (https://ufl.instructure.com/courses/523541/files/940920972wrap=1)_ | (https://
ufl.instructure.com/courses/523541/files/94092097/download?download_frd=1)

setup-intellij-and-gradie)

Regex Overview

A Regex (REGular EXpression) defines a grammar that can be used to pattern match strings.
There are many flavors of regex (some that break the "regular" piece), but for this course we'll
focus on the main features of regex which are standard across nearly all implementations.
Regexes are an incredibly useful too in their own right, but are also a great stepping stone into the

3/13/2025, 5:59 PM

https://ufl.instructure.com/courses/52354 1/assignments/64 18562

Exercise 1: Regex Testing https://ufl.instructure.com/courses/523541/assignments/6418562

concept of grammars/parsing that will kickoff our language project this semester. Some useful links
for working with regex regex:

o RegEXxr (https://regexr.com/)_: Realtime regex matching and reference sheet
e regexper (https://iregexper.com/#(%3F%3ARailroad%7CRegex))_: Railroad diagram visualization
of regexes

o Java Regex Cheat Sheet = (https://www.jrebel.com/blog/java-regular-expressions-cheat-sheet)

: Java-specific reference sheet

JUnit Overview

JUnit is a testing framework for Java. For this course, we'll be using JUnit 5 (Jupiter) which
includes a couple new features that will be helpful to us - in particular, parameterized tests. Here
are some helpful links on JUnit - while you can probably get by for now with just copying the
examples, you should make sure you have an understanding of what's happening as we'll be using
JUnit throughout the course.

e JUnit5 User Guide (https://junit.orgl/junit5/docs/current/user-guide/)
¢ (https://junit.org/junit5/docs/current/user-guide/) JUnit5 Parameterized Tests Tutorial (https:/

www.baeldung.com/parameterized-tests-junit-5)

Part 1. Testing Regex

First, you will write test cases for a regex has been implemented for you. This part will have
component of the grade based on test coverage, i.e. how well do your tests verify the intended
behavior of the regex. You must include at least 5 matching and 5 non-matching tests, however
you will likely need more for full credit on coverage.

Regex |Description Examples

Matches an email, or something close enough. This ® email@example.com
does not cover all valid emails (and may include some| e thelegend27@gmail.com

invalid ones!) - the point is to use this as the definition | e email@missingdot : invalid;
EMAIL

of correctness and build tests around what it does/ missing dot
doesn't match. ® i#$%@example.com : invalid;
® [A-Za-z0-9. \-]+@[A-Za-z0-9-]*\.[a-z]{2,3} illegal chars
Example

Note: This example was reviewed and discussed in MOL3: Regex & Testing.

Regex |Description Examples

2 of 7 3/13/2025, 5:59 PM

Exercise 1: Regex Testing https://ufl.instructure.com/courses/523541/assignments/6418562

Matches a URL, or something close enough. Note
that the domain piece here is very similar to th
® https?:\/\/[A-Za-z]*\.[a-2]{2,3}
o ' https?:\/\/ : matches the protocol, e.g

http:// . ® http://example.com
URL o | [A-za-z]* : matches the website name, e.g. e example.com : invalid;
example . missing protocol
o \. : matches the literal dot before the top-level
domain.

© [a-z]{2, 3} : matches the top-level domain,

€.g. com.

Our general strategy is the following:

1. Start with a baseline test, which is the simplest working example.

2. Next, methodically create test variations that test specific functionality and edge cases. Each
variation should make a minimal number of changes from the baseline to better isolate the
specific feature being tested.

e The better our variations isolate and test different functionality, the easier it will be to identify
the causes of test failures.

A good baseline test is http://example.com - it's simple, and example.com is reserved for testing &

(https://lwww.iana.org/help/example-domains) as well (which makes it's purpose clear and also

reduces any unintentional overlaps with real services. Another reasonable option might be
https://example.com (http secure), if you think the baseline should be the "secure" version under the
idea of secure-by-default. In the context of regex, using the "ignore" case for an optional s
generally makes the most sense.

Next, let's start with the protocol nttps?:\/\/ . The easy first candidate is https://example.com,
testing the optional 's? being present in the protocol. It's important that the rest of the example
remains identical to the baseline to ensure our test is actually testing what we want (' s?) and not
other functionality. For example; https://ufl.edu is effectively the same, but it's less clear what's
being testing as both the website and domain change at the same time.

Continuing, the website name is represented by [A-za-ze-9-1* . Notice that this uses * , which
means zero or more. It's always a good idea to test zero, one, and multiple cases, so let's add
http://.com and http://e.com to our tests (multiple is covered by our baseline already, though in
some cases it may not hurt to add it for clarity in complex scenarios). Next, we should consider the
characters allowed - we already have tests covering lowercase letters, so one with uppercase letter
like nhttp://ExaMPLE.com IS @ good choice. Finally, we should also consider the characters not allowed
(digits, symbols, whitespace, emojis...) and add non-matching tests for those as we want to ensure

3of7 3/13/2025, 5:59 PM

Exercise 1: Regex Testing https://ufl.instructure.com/courses/523541/assignments/6418562

4 of 7

it's not just accepting anything. This isn't completely foolproof, but does a decent enough job of
covering common test scenarios.

The same process continues for the rest of the regex, which is part of the email example in your
assignment.

Part 2. Writing (and Testing) Regex

Second, you will write your own regexes for the scenarios given and corresponding test cases.
This part is primarily graded based on how accurate your interpretation of the specification is - in a
certain sense, the regex itself is the easy part! You must still provide 5 matching and 5 non-
matching test cases (and should probably have more for your own testing), however we will not
grade coverage like in Part 1.

Important: As tempting as it may be to start by writing regex, you should start with the tests
(continuing the ideas from above) for practice with testing and to help you think through the edge
cases involved. There will be tasks that are harder than regex!

Regex Description Examples

Matches a bare-minimum version of CSV that can
be used to frustrate developers trying to parse
actual CSV.

. ® single
e A CSV consists of one or more values.

. ® one,two,three
e Values consists of one or more non-comma,

DISCOUNT_CSV . . ® first , second
= non-whitespace (as defined by the \s , ,
e first,,third : invalid;

character class) characters.

. . missing value
¢ Values are separated by a single comma, which

may itself be optionally surrounded by zero or

more whitespace characters.

pIce_NoTATION |Matches a simplified version of dice notation. All ® 1d6

dice notations begin with ' <count>d<faces> , €.9. 1ds6 | © [count = "1"
encoding the count of dice to roll and how many © |faces = "6"
faces those dice should have. Additionally, an * 1d6+4
optional "bonus" value (or penalty) can be included o count = "1"
atthe end, e.g. 1de+4 . o [faces = "6"

® count, faces ,and bonus are named capturing o bonus = "+4"

groups. e 1d : invalid; missing faces

o Hint: See test cases for a clearer idea of -1ds : invalid; negative
how this should work. count
e count and faces are both positive integers,

3/13/2025, 5:59 PM

Exercise 1: Regex Testing

50f7

https://ufl.instructure.com/courses/523541/assignments/6418562

without leading zeros.

e bonus , if present, is any signed integer (zero
included), without leading zeros. Hence, the

sign should be included in the capturing group.

NUMBER

Matches an integer or decimal number, including
exponents.

e A number contains a required integer part, an
optional decimal part (starting with .), and an
optional exponent part (starting with e).

¢ All numeric parts consist of one or more
decimal digits (0-9) and, for simplicity, allow

leading/trailing zeros.

¢ The integer and exponents parts may have an

Note: This is the same format for numbers that will
be used in the lexer.

1

123.456

le5

.5 > invalid; missing
integer part

1ee : invalid; missing
exponent digits

STRING

Matches a string literal, as defined below.
¢ A string starts and ends with a double quote
(")
¢ A string contains zero or more characters,
which may not be a double quote (") or a line
ending (the actual ' / « , written in Java strings
as "\n"/ "\r"), since these will end the string
prematurely.
e Escape characters start with \ and must be
followed by one of bfnrt "\ .
o Important: Remember that Java and Regex
have escape characters! If you want a string
with the value "1\\2", you need to escape

these with "\"1\\\\2\"" . If you want a regex
matching "1\\2" , the backslash must be
escaped again with | "\"1\\\\\\\\2\"" (which

"string"

"\\2"

"unterminated : invalid;
missing end quote
"invalid\escape" . invalid;
\e is not a valid escape
character

3/13/2025, 5:59 PM

Exercise 1: Regex Testing https://ufl.instructure.com/courses/523541/assignments/6418562

6 of 7

looks ridiculous, but is correct) because it's
also a special character in regex! This will
occur frequently in this course, so make
sure to understand this idea!

Note: This is the same format for strings that will be
used in the lexer.

Example

Note: This example was reviewed and discussed in MOL3: Regex & Testing.

Matches a hexadecimal color, as defined below. ® #FFA500
¢ A color always starts with '# . ® | #abc
¢ A color contains either 3 or e case-insensitive e FFAsee : invalid; missing #
HEXCOLOR T hexadecimal digits. o #ghi : invalid; illegal digits

o 3 digits is a common shorthand; #123 means | e #123456789 : invalid; too
#112233 . many digits

We can start with a regex for any case-insensitive hexadecimal digit, [e-9a-Fa-f] . There is a clever
trick worth showing to handle either 3 or 6 digits by matching 3 digits either once (3 total) or twice
(6 total), which looks like ' ([e-9a-Fa-f]{3}){1,2} (this probably isn't good practice, but... it's cool).
Following that, don't forget the leading hashtag for the final solution '#([e-9A-Fa-f]{3}){1,2} .

Next, test cases. The examples ones provide a good mix of behavior, but it may be better to split
them up for better separation (e.g. #123456 , #abcdef , and #ascoer for each kind of digit). Other
useful tests might be | #ascper (mixed case) and #123 (short numbers) for matching cases, and then
#¢&* (other characters) and # (hashtag only) for non-matching.

Changelog

¢ Fix minor syntax error in URL example regex ({2, 3} instead of {2,3})
¢ Clarify line ending characters in string specification refer to the "real" characters

Jan. 23 and not escapes using * / « - these are visual representations for the otherwise
"invisible" characters.
Jan. 25 o Clarified zero is included for the dice notation bonus (as in test submission) and
an.

removed confusing wording.

3/13/2025, 5:59 PM

