
Exercise 1: Regex Testing
1/27/2025

36.75/40 Points

Review Feedback

1/27/2025

Attempt 1 Score:

36.75/40

Anonymous Grading:no

Unlimited Attempts Allowed

1/17/2025 to 1/31/2025

Attempt 1 View Feedback

Details

In this assignment, you will test and implement scenarios for regular expressions to practice

testing, working with specifications, and regular expressions (which are an introduction to

grammars for later on).

Submission

You will submit a Zip file of the entire src folder (containing just the single src folder), which

should contain both your implementation ( src/main/java ) and tests ( src/test/java ). On Windows,

right-click on the src folder and "Compress to ZIP file" should have the expected behavior here.

• The test submission is Thursday, January 23: Exercise 1: Regex Testing (TEST) (https://

ufl.instructure.com/courses/523541/assignments/6419669)

• The final submission is Monday, January 27.

Project Setup

See the following links for provided code and setup instructions:

• RegexTesting.zip (https://ufl.instructure.com/courses/523541/files/94092097?wrap=1) (https://

ufl.instructure.com/courses/523541/files/94092097/download?download_frd=1)

• Project Setup (IntelliJ & Gradle) (https://ufl.instructure.com/courses/523541/pages/project-

setup-intellij-and-gradle)

Regex Overview

A Regex (REGular EXpression) defines a grammar that can be used to pattern match strings.

There are many flavors of regex (some that break the "regular" piece), but for this course we'll

focus on the main features of regex which are standard across nearly all implementations.

Regexes are an incredibly useful too in their own right, but are also a great stepping stone into the

Exercise 1: Regex Testing https://ufl.instructure.com/courses/523541/assignments/6418562

1 of 7 3/13/2025, 5:59 PM



concept of grammars/parsing that will kickoff our language project this semester. Some useful links

for working with regex regex:

• RegExr (https://regexr.com/) : Realtime regex matching and reference sheet

• regexper (https://regexper.com/#(%3F%3ARailroad%7CRegex)) : Railroad diagram visualization

of regexes

• Java Regex Cheat Sheet (https://www.jrebel.com/blog/java-regular-expressions-cheat-sheet)

: Java-specific reference sheet

JUnit Overview

JUnit is a testing framework for Java. For this course, we'll be using JUnit 5 (Jupiter) which

includes a couple new features that will be helpful to us - in particular, parameterized tests. Here

are some helpful links on JUnit - while you can probably get by for now with just copying the

examples, you should make sure you have an understanding of what's happening as we'll be using

JUnit throughout the course.

• JUnit5 User Guide (https://junit.org/junit5/docs/current/user-guide/)

• (https://junit.org/junit5/docs/current/user-guide/) JUnit5 Parameterized Tests Tutorial (https://

www.baeldung.com/parameterized-tests-junit-5)

Part 1. Testing Regex

First, you will write test cases for a regex has been implemented for you. This part will have

component of the grade based on test coverage, i.e. how well do your tests verify the intended

behavior of the regex. You must include at least 5 matching and 5 non-matching tests, however

you will likely need more for full credit on coverage.

Regex Description Examples

EMAIL

Matches an email, or something close enough. This

does not cover all valid emails (and may include some

invalid ones!) - the point is to use this as the definition

of correctness and build tests around what it does/

doesn't match.

• [A-Za-z0-9._\-]+@[A-Za-z0-9-]*\.[a-z]{2,3}

• email@example.com

• thelegend27@gmail.com

• email@missingdot : invalid;

missing dot

• #$%@example.com : invalid;

illegal chars

Example

Note: This example was reviewed and discussed in M0L3: Regex & Testing.

Regex Description Examples

Exercise 1: Regex Testing https://ufl.instructure.com/courses/523541/assignments/6418562

2 of 7 3/13/2025, 5:59 PM



URL

Matches a URL, or something close enough. Note

that the domain piece here is very similar to th

• https?:\/\/[A-Za-z]*\.[a-z]{2,3}

◦ https?:\/\/ : matches the protocol, e.g

http:// .

◦ [A-Za-z]* : matches the website name, e.g.

example .

◦ \. : matches the literal dot before the top-level

domain.

◦ [a-z]{2, 3} : matches the top-level domain,

e.g. com .

• http://example.com

• example.com : invalid;

missing protocol

Our general strategy is the following:

1. Start with a baseline test, which is the simplest working example.

2. Next, methodically create test variations that test specific functionality and edge cases. Each

variation should make a minimal number of changes from the baseline to better isolate the

specific feature being tested.

• The better our variations isolate and test different functionality, the easier it will be to identify

the causes of test failures.

A good baseline test is http://example.com - it's simple, and example.com is reserved for testing

(https://www.iana.org/help/example-domains) as well (which makes it's purpose clear and also

reduces any unintentional overlaps with real services. Another reasonable option might be

https://example.com (http secure), if you think the baseline should be the "secure" version under the

idea of secure-by-default. In the context of regex, using the "ignore" case for an optional s?

generally makes the most sense.

Next, let's start with the protocol https?:\/\/ . The easy first candidate is https://example.com ,

testing the optional s? being present in the protocol. It's important that the rest of the example

remains identical to the baseline to ensure our test is actually testing what we want ( s? ) and not

other functionality. For example; https://ufl.edu is effectively the same, but it's less clear what's

being testing as both the website and domain change at the same time.

Continuing, the website name is represented by [A-Za-z0-9-]* . Notice that this uses * , which

means zero or more. It's always a good idea to test zero, one, and multiple cases, so let's add

http://.com and http://e.com to our tests (multiple is covered by our baseline already, though in

some cases it may not hurt to add it for clarity in complex scenarios). Next, we should consider the

characters allowed - we already have tests covering lowercase letters, so one with uppercase letter

like http://EXAMPLE.com is a good choice. Finally, we should also consider the characters not allowed

(digits, symbols, whitespace, emojis...) and add non-matching tests for those as we want to ensure

Exercise 1: Regex Testing https://ufl.instructure.com/courses/523541/assignments/6418562

3 of 7 3/13/2025, 5:59 PM



it's not just accepting anything. This isn't completely foolproof, but does a decent enough job of

covering common test scenarios.

The same process continues for the rest of the regex, which is part of the email example in your

assignment.

Part 2. Writing (and Testing) Regex

Second, you will write your own regexes for the scenarios given and corresponding test cases.

This part is primarily graded based on how accurate your interpretation of the specification is - in a

certain sense, the regex itself is the easy part! You must still provide 5 matching and 5 non-

matching test cases (and should probably have more for your own testing), however we will not

grade coverage like in Part 1.

Important: As tempting as it may be to start by writing regex, you should start with the tests

(continuing the ideas from above) for practice with testing and to help you think through the edge

cases involved. There will be tasks that are harder than regex!

Regex Description Examples

DISCOUNT_CSV

Matches a bare-minimum version of CSV that can

be used to frustrate developers trying to parse

actual CSV.

• A CSV consists of one or more values.

• Values consists of one or more non-comma,

non-whitespace (as defined by the \s

character class) characters.

• Values are separated by a single comma, which

may itself be optionally surrounded by zero or

more whitespace characters.

• single

• one,two,three

• first , second

• first,,third : invalid;

missing value

DICE_NOTATION Matches a simplified version of dice notation. All

dice notations begin with <count>d<faces> , e.g. 1d6 ,

encoding the count of dice to roll and how many

faces those dice should have. Additionally, an

optional "bonus" value (or penalty) can be included

at the end, e.g. 1d6+4 .

• count , faces , and bonus are named capturing

groups.

◦ Hint: See test cases for a clearer idea of

how this should work.

• count and faces are both positive integers,

• 1d6

◦ count = "1"

◦ faces = "6"

• 1d6+4

◦ count = "1"

◦ faces = "6"

◦ bonus = "+4"

• 1d : invalid; missing faces

• -1d6 : invalid; negative

count

Exercise 1: Regex Testing https://ufl.instructure.com/courses/523541/assignments/6418562

4 of 7 3/13/2025, 5:59 PM



without leading zeros.

• bonus , if present, is any signed integer (zero

included), without leading zeros. Hence, the

sign should be included in the capturing group.

NUMBER

Matches an integer or decimal number, including

exponents.

• A number contains a required integer part, an

optional decimal part (starting with . ), and an

optional exponent part (starting with e ).

• All numeric parts consist of one or more

decimal digits (0-9) and, for simplicity, allow

leading/trailing zeros.

• The integer and exponents parts may have an

optional + / - sign.

Note: This is the same format for numbers that will

be used in the lexer.

• 1

• 123.456

• 1e5

• .5 : invalid; missing

integer part

• 10e : invalid; missing

exponent digits

STRING Matches a string literal, as defined below.

• A string starts and ends with a double quote

( " ).

• A string contains zero or more characters,

which may not be a double quote ( " ) or a line

ending (the actual ␤ / ␍ , written in Java strings

as "\n" / "\r" ), since these will end the string

prematurely.

• Escape characters start with \ and must be

followed by one of bfnrt'"\ .

◦ Important: Remember that Java and Regex

have escape characters! If you want a string

with the value "1\\2" , you need to escape

these with "\"1\\\\2\"" . If you want a regex

matching "1\\2" , the backslash must be

escaped again with "\"1\\\\\\\\2\"" (which

• ""

• "string"

• "1\\2"

• "unterminated : invalid;

missing end quote

• "invalid\escape" : invalid;

\e is not a valid escape

character

Exercise 1: Regex Testing https://ufl.instructure.com/courses/523541/assignments/6418562

5 of 7 3/13/2025, 5:59 PM



looks ridiculous, but is correct) because it's

also a special character in regex! This will

occur frequently in this course, so make

sure to understand this idea!

Note: This is the same format for strings that will be

used in the lexer.

Example

Note: This example was reviewed and discussed in M0L3: Regex & Testing.

HEX_COLOR

Matches a hexadecimal color, as defined below.

• A color always starts with # .

• A color contains either 3 or 6 case-insensitive

hexadecimal digits.

◦ 3 digits is a common shorthand; #123 means

#112233 .

• #FFA500

• #abc

• FFA500 : invalid; missing #

• #ghi : invalid; illegal digits

• #123456789 : invalid; too

many digits

We can start with a regex for any case-insensitive hexadecimal digit, [0-9A-Fa-f] . There is a clever

trick worth showing to handle either 3 or 6 digits by matching 3 digits either once (3 total) or twice

(6 total), which looks like ([0-9A-Fa-f]{3}){1,2} (this probably isn't good practice, but... it's cool).

Following that, don't forget the leading hashtag for the final solution #([0-9A-Fa-f]{3}){1,2} .

Next, test cases. The examples ones provide a good mix of behavior, but it may be better to split

them up for better separation (e.g. #123456 , #abcdef , and #ABCDEF for each kind of digit). Other

useful tests might be #aBcDeF (mixed case) and #123 (short numbers) for matching cases, and then

#$&* (other characters) and # (hashtag only) for non-matching.

Changelog

Jan. 23

• Fix minor syntax error in URL example regex ( {2, 3} instead of {2,3} )

• Clarify line ending characters in string specification refer to the "real" characters

and not escapes using ␤ / ␍ - these are visual representations for the otherwise

"invisible" characters.

Jan. 25
• Clarified zero is included for the dice notation bonus (as in test submission) and

removed confusing wording.

Exercise 1: Regex Testing https://ufl.instructure.com/courses/523541/assignments/6418562

6 of 7 3/13/2025, 5:59 PM


