
Project Checkpoint 1: Lexer
2/10/2025

39.75/50 Points

Review Feedback

2/10/2025

Attempt 1 Score:

39.75/50

Anonymous Grading:no

Unlimited Attempts Allowed

1/29/2025 to 2/13/2025

Attempt 1 View Feedback

Details

In this assignment, you will implement the lexer for our language. This is the first step in the

parsing process which takes input source code, represented as a sequence of characters, and

turns them into tokens - the building blocks of our grammar - for the parser to use in the next part.

Submission

You will submit a Zip file of the entire src folder (containing just the single src folder), which

should contain both your implementation (src/main/java) and tests (src/test/java). On Windows,

right-click on the src folder and "Compress to ZIP file" should have the expected behavior here.

• The test submission is Thursday, February 6: Project Checkpoint 1: Lexer (TEST) (https://

ufl.instructure.com/courses/523541/assignments/6419670) .

• The final submission is Monday, February 10.

Project Setup

See the following links for provided code and setup instructions:

• PlcProject.zip (https://ufl.instructure.com/courses/523541/files/94402171?wrap=1) (https://

ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1)

• Project Setup (IntelliJ & Gradle) (https://ufl.instructure.com/courses/523541/pages/project-

setup-intellij-and-gradle)

Lexer Overview

The Lexer is a common preliminary step in the parsing process that breaks up the source input into

tokens. These tokens group together categories of inputs, such as integers, that can then be used

by the parser without having to deal with individual characters. For example, the input 1234 has

four characters - ['1', '2', '3', '4'] - that represent a single INTEGER token. More complex input,

Project Checkpoint 1: Lexer https://ufl.instructure.com/courses/523541/assignments/6418563

1 of 5 3/13/2025, 6:04 PM

https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/files/94402171?wrap=1
https://ufl.instructure.com/courses/523541/files/94402171?wrap=1
https://ufl.instructure.com/courses/523541/files/94402171?wrap=1
https://ufl.instructure.com/courses/523541/files/94402171?wrap=1
https://ufl.instructure.com/courses/523541/files/94402171?wrap=1
https://ufl.instructure.com/courses/523541/files/94402171?wrap=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle

such as LET x = 5 , will produce multiple tokens of varying types to be handled by the Parser later

on.

Crafting Interpreters

The Scanning (https://www.craftinginterpreters.com/scanning.html) section of Crafting Interpreters

provides a good overview of the lexing process. The architecture used is similar to our project, but

not strictly identical. I highly recommend reading it to help with your understanding of the lexer

process and this assignment.

Grammar

A grammar for our lexer is defined below, which is written in a specific form optimal for our

approach. You can view a graphical form of our grammar on the following website:

• https://www.bottlecaps.de/rr/ui (https://www.bottlecaps.de/rr/ui) : Paste into "Edit Grammar",

then "View Diagram".

◦ Important: Escape characters (e.g. \n for newline) aren't supported by the tool and will

display weirdly.

tokens ::= (skipped* token)* skipped*

//these rules do not emit tokens; input is skipped by the lexer
skipped := whitespace | comment
whitespace ::= [\b\n\r\t]+
comment ::= '/' '/' [^\n\r]*

//these rules do emit tokens
token ::= identifier | number | character | string | operator
identifier ::= [A-Za-z_] [A-Za-z0-9_-]*
number ::= [+-]? [0-9]+ ('.' [0-9]+)? ('e' [+-]? [0-9]+)?
character ::= ['] ([^'\n\r\\] | escape) [']
string ::= '"' ([^"\n\r\\] | escape)* '"'
escape ::= '\' [bnrt'"\]
operator ::= [<>!=] '='? | [^A-Za-z_0-9'" \b\n\r\t]

Notice that each rule corresponds to one of the provided lex methods. You should ensure that all

lexing for a rule is entirely within that rule's lex method - specifically, the lexToken method should

never change the state of the char stream itself; it's only job is to delegate to the proper rule.

Maintaining this separation of concerns will reduce the likelihood of bugs in your lexer.

Token Types

The following table lists all token types and example inputs. Pay particularly attention to error

behavior: A grammar can often be ambiguous whether input should be considered an error (and if

so where) or simply lexed/parsed in a different way. For example:

• 1. could be considered an invalid decimal, but could also be lexed as the tokens INTEGER 1

Project Checkpoint 1: Lexer https://ufl.instructure.com/courses/523541/assignments/6418563

2 of 5 3/13/2025, 6:04 PM

https://www.craftinginterpreters.com/scanning.html
https://www.craftinginterpreters.com/scanning.html
https://www.craftinginterpreters.com/scanning.html
https://www.craftinginterpreters.com/scanning.html
https://www.craftinginterpreters.com/scanning.html
https://www.craftinginterpreters.com/scanning.html
https://www.craftinginterpreters.com/scanning.html
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui

and OPERATOR . . Our language will use the later to allow inputs like 1.toString() .

• 'char could be considered an invalid character literal, but could also be lexed as the tokens

OPERATOR ' (if ' were allowed to be an operator by our grammar) and IDENTIFIER char . Our

language will use the former to provide a more descriptive error message to uses.

If an error should be thrown, this should use the provided LexException class. This class takes a

String message - this should be a descriptive message to help identify the issue on your side; tests

will not use this message.

Token

Type
Description Examples

IDENTIFIER
An identifier in our language, such as a variable

name or keyword.

• getName

• iso8601

• -five : not identifier;

leading hyphen

• 1fish2fish : not identifier;

leading digit

INTEGER

An integer literal. Note that this token type is handled

by lexNumber , and the presence of a decimal part or

not determines the token type.

• 1

• 123

• 1e10

• 1e : not integer; missing

exponent digits (but

contains an integer)

DECIMAL

A decimal literal. The presence of . / e does not

"commit" there to being a decimal or exponent value,

and thus these are not considered errors.

Note that this token type is handled by lexNumber ,

and the presence of a decimal part or not determines

the token type.

• 1.0

• 123.456

• 1.0e10

• 1. : not decimal; missing

decimal digits

CHARACTER

A character literal, which supports escapes. Once a

character literal begins with ' , any non-matches to

the grammar is an error (e.g. an unterminated literal

or invalid escape). There is no other valid use of ' in

our grammar.

• 'c'

• '\n'

• 'u : error; unterminated

• 'abc' : error; too many

characters

STRING A string literal, which supports escapes. Once a

string literal begins with " , any non-matches to the

grammar is an error (e.g. an unterminated literal or

• ""

• "string"

• "newline\nescape"

Project Checkpoint 1: Lexer https://ufl.instructure.com/courses/523541/assignments/6418563

3 of 5 3/13/2025, 6:04 PM

invalid escape). There is no other valid use of " in

our grammar.

• "invalid\escape" : error;

invalid escape

OPERATOR
An operator character. This is a "catchall" token type

for all characters not covered by the above rules.

• +

• <=

• : not operator; empty

• " : not operator;

unterminated string

Changelog

2/3

• Added productions for redacted rules (number/character/string/escape).

• Clarified that whitespace/comments are skipped by the lexer and do not emit

tokens.

• Clarified that 1e , while not itself an integer, does contain an integer.

• Fixed spec incorrectly saying LexException takes a Token.Type argument.

2/9

• Updated grammar to include top-level tokens rule (for multi-token lexing) and use

precise characters for operators.

• Clarified that non-matches in character/string literals are considered errors (as now

clear from the grammar).

2/11

• Adding missing sign to exponents ((e [+-]? [0-9]+)?) to match the RegexTesting

solution as originally intended.

◦ We will NOT grade these cases for this assignment, but may on the

resubmission at the end of the semester.

Test Cases

Note: Unprintable characters, such as newlines, may be represented with printable Unicode

control symbols (https://www.compart.com/en/unicode/block/U+2400) (␊) or as a Java string

("\n"). The input [␈␊␍␉] , for example, is the Java string "[\b\n\r\t]" .

▸ Lexer - Final (200):

Project Checkpoint 1: Lexer https://ufl.instructure.com/courses/523541/assignments/6418563

4 of 5 3/13/2025, 6:04 PM

https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400

