Project Checkpoint 1: Lexer https://ufl.instructure.com/courses/523541/assignments/64 18563

Project Checkpoint 1: Lexer 50 Points

2/10/2025

O Review Feedback Attempt 1 Score:

EN View Feedback
2/10/2025

Attempt 1

Anonymous Grading: no

Unlimited Attempts Allowed
1/29/2025 to 2/13/2025

v Details

In this assignment, you will implement the lexer for our language. This is the first step in the
parsing process which takes input source code, represented as a sequence of characters, and
turns them into tokens - the building blocks of our grammar - for the parser to use in the next part.

Submission

You will submit a Zip file of the entire src folder (containing just the single src folder), which
should contain both your implementation (src/main/java) and tests (src/test/java). On Windows,
right-click on the src folder and "Compress to ZIP file" should have the expected behavior here.

ufl.instructure.com/courses/523541/assignments/6419670)._.
¢ The final submission is Monday, February 10.

Project Setup
See the following links for provided code and setup instructions:

setup-intellij-and-gradle)

Lexer Overview

The Lexer is a common preliminary step in the parsing process that breaks up the source input into
tokens. These tokens group together categories of inputs, such as integers, that can then be used
by the parser without having to deal with individual characters. For example, the input 1234 has
four characters - ['1', '2', '3', '4'] -thatrepresent a single 1nTEGER token. More complex input,

1of5 3/13/2025, 6:04 PM

https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/assignments/6419670
https://ufl.instructure.com/courses/523541/files/94402171?wrap=1
https://ufl.instructure.com/courses/523541/files/94402171?wrap=1
https://ufl.instructure.com/courses/523541/files/94402171?wrap=1
https://ufl.instructure.com/courses/523541/files/94402171?wrap=1
https://ufl.instructure.com/courses/523541/files/94402171?wrap=1
https://ufl.instructure.com/courses/523541/files/94402171?wrap=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94402171/download?download_frd=1
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle

Project Checkpoint 1: Lexer https://ufl.instructure.com/courses/523541/assignments/6418563

2 0of5

such as LeT x = 5, will produce multiple tokens of varying types to be handled by the Parser later
on.

Crafting Interpreters

The Scanning (https://www.craftinginterpreters.com/scanning.html) section of Crafting Interpreters
provides a good overview of the lexing process. The architecture used is similar to our project, but
not strictly identical. | highly recommend reading it to help with your understanding of the lexer
process and this assignment.

Grammar

A grammar for our lexer is defined below, which is written in a specific form optimal for our
approach. You can view a graphical form of our grammar on the following website:

o https://www.bottlecaps.de/rr/ui (https://www.bottlecaps.de/rr/ui)_: Paste into "Edit Grammar",
then "View Diagram".
o Important: Escape characters (e.g. \n for newline) aren't supported by the tool and will

display weirdly.
tokens ::= (skipped* token)* skipped*

//these rules do not emit tokens; input is skipped by the lexer

skipped := whitespace | comment
whitespace ::= [\b\n\r\t]+
comment ::= '/' '/' [Mn\r]*

//these rules do emit tokens

token ::= identifier | number | character | string | operator
identifier ::= [A-Za-z_] [A-Za-z0-9_-]*

number ::= [+-]? [0-9]+ ('." [0-9]+)? ('e' [+-]? [0-9]+)°?
character ::= ['] ([*'\n\r\\] | escape) [']

string ::= """ ([*"\n\r\\] | escape)* '"'

escape ::= "\"' [bnrt'"\]

operator ::= [<>!=] '='? | [*A-Za-z_0-9'" \b\n\r\t]

Notice that each rule corresponds to one of the provided 1ex methods. You should ensure that all
lexing for a rule is entirely within that rule's ' 1ex method - specifically, the 1extoken method should
never change the state of the char stream itself; it's only job is to delegate to the proper rule.
Maintaining this separation of concerns will reduce the likelihood of bugs in your lexer.

Token Types

The following table lists all token types and example inputs. Pay particularly attention to error
behavior: A grammar can often be ambiguous whether input should be considered an error (and if
so where) or simply lexed/parsed in a different way. For example:

e 1. could be considered an invalid decimal, but could also be lexed as the tokens INTEGER 1

3/13/2025, 6:04 PM

https://www.craftinginterpreters.com/scanning.html
https://www.craftinginterpreters.com/scanning.html
https://www.craftinginterpreters.com/scanning.html
https://www.craftinginterpreters.com/scanning.html
https://www.craftinginterpreters.com/scanning.html
https://www.craftinginterpreters.com/scanning.html
https://www.craftinginterpreters.com/scanning.html
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui

Project Checkpoint 1: Lexer

3of5

and OPERATOR .

https://ufl.instructure.com/courses/523541/assignments/6418563

. Our language will use the later to allow inputs like 1.tostring() .

e 'char could be considered an invalid character literal, but could also be lexed as the tokens

OPERATOR '

(if * were allowed to be an operator by our grammar) and IDENTIFIER char . Our

language will use the former to provide a more descriptive error message to uses.

If an error should be thrown, this should use the provided Lexexception class. This class takes a

string message - this should be a descriptive message to help identify the issue on your side; tests
will not use this message.

Token Lo
Description Examples
Type
® getName
® 11508601
An identifier in our language, such as a variable * -five : not identifier;
PN L ame or keyword. leading hyphen
e 1fish2fish : not identifier;
leading digit
e 1
® 123
An integer literal. Note that this token type is handled e (1o10

INTEGER by 1exnumber , and the presence of a decimal part or e (1c): not integer: missing

not determines the token type. exponent digits (but
contains an integer)

A decimal literal. The presence of . /e does not

"commit" there to being a decimal or exponent value, | ® 1.0

and thus these are not considered errors. ¢ 123.456

DECIMAL ® 1l.0elé
Note that this token type is handled by '1exnumber |, e 1. : not decimal; missing
and the presence of a decimal part or not determines decimal digits
the token type.

A character literal, which supports escapes. Once a e ¢
character literal begins with ' , any non-matches to ¢ \n’

CHARACTER = [the grammar is an error (e.g. an unterminated literal e 'u:error; unterminated
or invalid escape). There is no other valid use of * in| ® ‘'abc' :error; too many
our grammar. characters

STRING A string literal, which supports escapes. Once a o

string literal begins with ", any non-matches to the
grammar is an error (e.g. an unterminated literal or

® ‘'string"

® "newline\nescape"

3/13/2025, 6:04 PM

Project Checkpoint 1: Lexer https://ufl.instructure.com/courses/523541/assignments/6418563

4 of 5

OPERATOR

invalid escape). There is no other valid use of " in e "invalid\escape" : €ITOI;
our grammar. invalid escape

e 4+

o <=

An operator character. This is a "catchall" token type
for all characters not covered by the above rules.

: not operator; empty
" . not operator;
unterminated string

Changelog

e Added productions for redacted rules (number/character/string/escape).
¢ Clarified that whitespace/comments are skipped by the lexer and do not emit
2/3 tokens.
¢ Clarified that 1e , while not itself an integer, does contain an integer.
e Fixed spec incorrectly saying Lexexception takes a Token.Type argument.
e Updated grammar to include top-level tokens rule (for multi-token lexing) and use
precise characters for operators.
219 ¢ Clarified that non-matches in character/string literals are considered errors (as now
clear from the grammar).
¢ Adding missing sign to exponents ((e [+-]? [@e-9]+)?) to match the RegexTesting
solution as originally intended.
2 o We will NOT grade these cases for this assignment, but may on the
resubmission at the end of the semester.
Test Cases

Note: Unprintable characters, such as newlines, may be represented with printable Unicode
control symbols (https://www.compart.com/en/unicode/block/U+2400) (-) or as a Java string

("\xn"). The input [=-«~1, for example, is the Java string "[\b\n\r\t]" .

» Lexer - Final (200):

3/13/2025, 6:04 PM

https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400
https://www.compart.com/en/unicode/block/U+2400

