Project Checkpoint 2: Parser

1of7

Project Checkpoint 2: Parser 75 Points

2/28/2025

O Review Feedback Attempt 1 Score:

EN View Feedback
2/28/2025 75

Attempt 1

Anonymous Grading: no

Unlimited Attempts Allowed
2/12/2025 to 3/3/2025

v Details

In this assignment, you will implement the parser for our language. This is the second step in the
parsing process which takes the tokens emitted by the lexer and parses them into the AST, giving
us a structured representation of our language.

Submission

You will submit a Zip file of the entire src folder (containing just the single src folder), which
should contain both your implementation (src/main/java) and tests (src/test/java). On Windows,
right-click on the src folder and "Compress to ZIP file" should have the expected behavior here.

e The first test submission is Thursday, February 20: Project Checkpoint 2: Parser (TEST 1 -
o This covers only expression rules, with the exception of object_expression (which involves
statements).
¢ The second test submission is Monday, February 24: Project Checkpoint 2: Parser (TEST 2
= All) (https://ufl.instructure.com/courses/523541/assignments/6451480)_.
o This covers all rules, statements included.
¢ The final submission is Wednesday, February 26.

Project Setup

See the following links for provided code and setup instructions:

wrap=1)_ | (https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1)
: Contains only new parser files and main.java updates. These files should be added to your
existing project (i.e. the Lexer) following the same folder structure as provided.

setup-intellij-and-gradie)

3/13/2025, 6:06 PM

https://ufl.instructure.com/courses/523541/assignments/64 18564

https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle

Project Checkpoint 2: Parser https://ufl.instructure.com/courses/523541/assignments/64 18564

Parser Overview

The job of the parser is to convert the tokens emitted by the lexer into an Abstract Syntax Tree
(AST), which represents the structural meaning of the code. For example, the expressions 1 + 2 *
3 and 1 * 2 + 3 are similar, but their AST's are quite different due to operator precedence (see

below).

1+2*3 1*2+3
+ +
/\ /\
1 * * 3
/\ /\
2 3 1 2

first: Binary(+, 1, Binary(*, 2, 3))
second: Binary(+, Binary(*, 1, 2), 3)

Our parser will be implemented using a method called recursive descent, which means each
reference to another rule in our grammar corresponds with a call to the appropriate parse function.
The grammar for our language has been written in a way that supports this.

Crafting Interpreters

The Parsing_(https://www.craftinginterpreters.com/parsing-expressions.html) section of Crafting

Interpreters provides a good overview for the parsing process and was a starting point for the
parser architecture we have provided. Their parser is slightly more complex as their language has
more functionality, so make sure you only account for what is defined in our grammar. | highly
recommend reading it to help with your understanding of the parsing process and this assignment.

Grammar

A grammar for our language is defined below, which is written in a specific form optimal for
recursive descent parsing. You can view a graphical form of our grammar on the following website:

e https://www.bottlecaps.de/rr/ui (https://www.bottlecaps.de/rr/ui)_: Paste into "Edit Grammar",

then "View Diagram".
o Important: Escape characters (e.g. \n for newline) aren't supported by the tool and will

display weirdly.
source ::= stmt*
stmt::= let_stmt | def_stmt | if_stmt | for_stmt | return_stmt | expression_or_assignment_stmt
let_stmt ::= 'LET' identifier ('=' expr)? ';'
def_stmt ::= 'DEF' identifier '(' (identifier (',' identifier)*)? ')' 'DO' stmt* 'END'
if _stmt ::= 'IF' expr 'DO' stmt* ('ELSE' stmt*)? 'END'
for_stmt ::= 'FOR' identifier '"IN' expr 'DO' stmt* 'END'
return_stmt ::= 'RETURN' expr? ';'
expression_or_assignment_stmt ::= expr ('=' expr)? ';'

2 of 7 3/13/2025, 6:06 PM

https://www.craftinginterpreters.com/parsing-expressions.html
https://www.craftinginterpreters.com/parsing-expressions.html
https://www.craftinginterpreters.com/parsing-expressions.html
https://www.craftinginterpreters.com/parsing-expressions.html
https://www.craftinginterpreters.com/parsing-expressions.html
https://www.craftinginterpreters.com/parsing-expressions.html
https://www.craftinginterpreters.com/parsing-expressions.html
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui

Project Checkpoint 2: Parser https://ufl.instructure.com/courses/523541/assignments/64 18564

expr ::= logical_expr

logical_expr ::= comparison_expr (('AND' | 'OR') comparison_expr)*

comparison_expr ::= additive_expr (('<' | '<=" | '>" | '>=' | '==' | 'l=') additive_expr)*
additive_expr ::= multiplicative_expr (('+' | '-') multiplicative_expr)*
multiplicative_expr ::= secondary_expr (('*' | '/') secondary_expr)*

secondary_expr ::= primary_expr ('.' identifier ('(' (expr (',' expr)*)? ')")?)*
primary_expr ::= literal_expr | group_expr | object_expr | variable_or_function_expr
literal_expr ::= 'NIL' | 'TRUE' | 'FALSE' | integer | decimal | character | string
group_expr ::= '(' expr')'

object_expr ::= 'OBJECT' identifier? 'DO' let_stmt* def_stmt* 'END'
variable_or_function_expr ::= identifier ('(' (expr (',' expr)*)? ')')?

//these rules correspond to lexer tokens

token ::= identifier | number | character | string | operator
identifier ::= [A-Za-z_] [A-Za-z0-9_-]*

number ::= [+-]? [0-9]+ ('." [0-9]+)? ('e' [+-]? [0-9]+)?
character ::= ['] ([*'\n\r\\] | escape) [']

string ::= """ ([*"\n\r\\] | escape)* '"'

escape ::= "\"' [bnrt'"\]

operator ::= [<>!=] '='? | [*A-Za-z_0-9'" \b\n\r\t]

Notice that each rule corresponds to one of the provided parse methods. As in the lexer, you
should ensure rules that "delegate" to other rules (e.g. stmt / primary_expr) do not change the state
of the token stream; it's only job is to delegate to the proper rule. Maintaining this separation of
concerns will reduce the likelihood of bugs in your lexer.

AST Representation

The following table lists all AST types and example inputs. Pay particularly attention to error
behavior: A grammar can often be ambiguous whether input should be considered an error (and if
so where) or simply lexed/parsed in a different way. For example:

e LET = 5; , @s a statement, could be considered an invalid LeT statement, but could also be
parsed as an assignment to the variable 'Let . Our language will use the former to provide more
descriptive error messages to users (namely, missing variable name).

e LET, as an expression, could be considered invalid as the keyword is also used for LeT
statements, but could also be parsed as the variable Let . Our language will use the later as for
simplicity we do not have a concept of "reserved words" that limits which identifiers are allowed
to be used.

If an error should be thrown, this should use the provided prarseexception class. This class takes a
string message - this should be a descriptive message to help identify the issue on your side; tests
will not use this message.

AST Type Description Examples

Represents a full source file containing multiple first: second: third:
Source ? ? ’

statements.

3of7 3/13/2025, 6:06 PM

Project Checkpoint 2: Parser

https://ufl.instructure.com/courses/523541/assignments/64 18564

Represents a statement, which performs a side effect

stmt; //Ast.Stmt.Expressi

Stmt . . . on
as opposed to evaluating to a value like expressions.
Represents a Ler statement, which defines a LET name;
Stmt.Let i LET name = value;
variable.
. . DEF name() DO END
ot Det Represents a per statement, which defines a DEF name(parameter) DO EN
function. D
Represents an 1F statement. An absent ELsE IF cond DO then; END
stmt.Tf branch is represented as an empty list, same as it IF cond DO then; ELSE els
were present without statements.
FOR name IN expr DO stmt;
Sstmt.For Represents a ror statement. END

Stmt.Return

Represents a rReTurn statement.

RETURN;

Stmt.Expression

Represents an expression as a statement. For
parsing, any expression here is allowed and these
will be validated later.

variable;
function();

Stmt.Assignment

Represents an assignment statement. For parsing,
any expression here is allowed and these will be
validated later.

variable = value;
object.property = value;

Expr

Represents an expression in our language, which
evaluates to a value.

expr //Ast.Expr.Variable

Expr.Literal

Represents a literal expression, one of:
e Nil (nIL): Uses null .
e Boolean (True / FaLse): Uses the Boolean class.
¢ Integer (e.g. 1): Uses the Biginteger class &
java.base/java/math/Biginteger.html)_, which
supports arbitrary precision.

o Hint: This one is a bit weird because new
BigInteger(String) doesn't support exponents.
Maybe there's a way to utilize Bigpecimal for
this?

o Note: Negative exponents may not be
representable as integers, so any non-integer
value in this case will just be returned as a

NIL

TRUE

1

1.0

e

"string"

"Hello, \nWorld!"

4 of 7

3/13/2025, 6:06 PM

https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html

Project Checkpoint 2: Parser

50f7

https://ufl.instructure.com/courses/523541/assignments/64 18564

Bigbecimal . We will exclude this test case from
grading as it was an oversight on the original
specification.

e Decimal (e.g. 1.0): Uses the Bigbecimal class &
java.base/java/math/BigDecimal.html)_, which
supports arbitrary precision.

o Hint: see new BigDecimal(String) .

e Character (e.g. 'c'): Uses the character class.
You will need to remove the surrounding quotes
and replace any escape characters (see String
below).

e String (e.g. "string"): Uses the string class. You
will need to remove the surrounding quotes and
replace any escape characters.

o Hint: There's a finite number of escape
characters, so string.replace IS a reasonable
option - just pay close attention to the order
that replacements happen!

o Note: String replacing may cause quirks with
inputs containing backslashes along with
multiple escapes (e.g "\\b" vs "\\\b"). We
will exclude any test involving backslashes
next to other escape sequences from grading
as it was an oversight on the original
specification.

= This bug has been in PLC for years

Represents a group expression, which can change

Expr.Group (expr)
operator precedence.
Represents a binary expression (logical, comparison,
additive, multiplicative). These are represented as
separate rules in our grammar to handle precedence,
but can be a single AST class because precedence 1+2
L. . . 1*2
Expr.Binary is instead represented by nesting in the AST (see 1+2%3//1+ (2%*3)
1*%24+3//(@*2)+3

overview above for details).
¢ Note: Logical expressions use anp /or as
operators (e.g. Python) - it doesn't just have to be
an actual operator symbol!

3/13/2025, 6:06 PM

https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html

Project Checkpoint 2: Parser https://ufl.instructure.com/courses/523541/assignments/64 18564

Expr.variable |Represents a variable access. variable

Represents a property access on an object (called receiver. property

B "receiver")

))) function()
Expr.Function |Represents a function invocation. function(argument)

Represents a method invocation on an object (called | oceiver.method()
Expr.Method " . "
the "receiver").

Represents an object literal, which defines an object

with fields/methods. OBJECT DO LET field; END
Expr.objectexpr | ® Note: This AST uniquely has the |expr suffix to gﬁ;EELDDO DEF method() DO

avoid confusion with Java's object . This isn't the

only way, but works fine for our purposes.

Changelog

files/94912034?wrap=1)_ {1 (https://ufl.instructure.com/courses/523541/

files/94912034/download?download_frd=1) with fixes for incorrect tests:
o testLetStmt Initialization missing new Ast.Expr.variable("expr") value.
o testExpressionStmt Function missing new Token(Token.Type.OPERATOR, ";")

2/15 semicolon token.

o testAssignmentStmt Variable having name expr instead of variable .

o testBinaryExpr Lower Precedence having operator + instead of * (inner
expression).

o testObjectExpr Field having an extraneous new Token(Token.Type.OPERATOR, ")")
parenthesis token.

¢ Defined behavior for negative integer exponents (which may result in decimals);
will be excluded from grading.

¢ Defined behavior for backslashes with string replacement, will be excluded from
grading.

¢ Note: These were both discussed in lecture previously and have been on test

2/25

submissions.

6 of 7 3/13/2025, 6:06 PM

https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1

