
Project Checkpoint 2: Parser
2/28/2025

57.75/75 Points

Review Feedback

2/28/2025

Attempt 1 Score:

57.75/75

Anonymous Grading:no

Unlimited Attempts Allowed

2/12/2025 to 3/3/2025

Attempt 1 View Feedback

Details

In this assignment, you will implement the parser for our language. This is the second step in the

parsing process which takes the tokens emitted by the lexer and parses them into the AST, giving

us a structured representation of our language.

Submission

You will submit a Zip file of the entire src folder (containing just the single src folder), which

should contain both your implementation (src/main/java) and tests (src/test/java). On Windows,

right-click on the src folder and "Compress to ZIP file" should have the expected behavior here.

• The first test submission is Thursday, February 20: Project Checkpoint 2: Parser (TEST 1 -

Expr) (https://ufl.instructure.com/courses/523541/assignments/6419671) .

◦ This covers only expression rules, with the exception of object_expression (which involves

statements).

• The second test submission is Monday, February 24: Project Checkpoint 2: Parser (TEST 2

- All) (https://ufl.instructure.com/courses/523541/assignments/6451480) .

◦ This covers all rules, statements included.

• The final submission is Wednesday, February 26.

Project Setup

See the following links for provided code and setup instructions:

• PlcProject (Parser Patch).zip (https://ufl.instructure.com/courses/523541/files/94912034?

wrap=1) (https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1)

: Contains only new parser files and Main.java updates. These files should be added to your

existing project (i.e. the Lexer) following the same folder structure as provided.

• Project Setup (IntelliJ & Gradle) (https://ufl.instructure.com/courses/523541/pages/project-

setup-intellij-and-gradle)

Project Checkpoint 2: Parser https://ufl.instructure.com/courses/523541/assignments/6418564

1 of 7 3/13/2025, 6:06 PM

https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6419671
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/assignments/6451480
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle

Parser Overview

The job of the parser is to convert the tokens emitted by the lexer into an Abstract Syntax Tree

(AST), which represents the structural meaning of the code. For example, the expressions 1 + 2 *

3 and 1 * 2 + 3 are similar, but their AST's are quite different due to operator precedence (see

below).

1 + 2 * 3 1 * 2 + 3

 + +
 / \ / \
 1 * * 3
 / \ / \

2 3 1 2

first: Binary(+, 1, Binary(*, 2, 3))
second: Binary(+, Binary(*, 1, 2), 3)

Our parser will be implemented using a method called recursive descent, which means each

reference to another rule in our grammar corresponds with a call to the appropriate parse function.

The grammar for our language has been written in a way that supports this.

Crafting Interpreters

The Parsing (https://www.craftinginterpreters.com/parsing-expressions.html) section of Crafting

Interpreters provides a good overview for the parsing process and was a starting point for the

parser architecture we have provided. Their parser is slightly more complex as their language has

more functionality, so make sure you only account for what is defined in our grammar. I highly

recommend reading it to help with your understanding of the parsing process and this assignment.

Grammar

A grammar for our language is defined below, which is written in a specific form optimal for

recursive descent parsing. You can view a graphical form of our grammar on the following website:

• https://www.bottlecaps.de/rr/ui (https://www.bottlecaps.de/rr/ui) : Paste into "Edit Grammar",

then "View Diagram".

◦ Important: Escape characters (e.g. \n for newline) aren't supported by the tool and will

display weirdly.

source ::= stmt*

stmt::= let_stmt | def_stmt | if_stmt | for_stmt | return_stmt | expression_or_assignment_stmt
let_stmt ::= 'LET' identifier ('=' expr)? ';'
def_stmt ::= 'DEF' identifier '(' (identifier (',' identifier)*)? ')' 'DO' stmt* 'END'
if_stmt ::= 'IF' expr 'DO' stmt* ('ELSE' stmt*)? 'END'
for_stmt ::= 'FOR' identifier 'IN' expr 'DO' stmt* 'END'
return_stmt ::= 'RETURN' expr? ';'
expression_or_assignment_stmt ::= expr ('=' expr)? ';'

Project Checkpoint 2: Parser https://ufl.instructure.com/courses/523541/assignments/6418564

2 of 7 3/13/2025, 6:06 PM

https://www.craftinginterpreters.com/parsing-expressions.html
https://www.craftinginterpreters.com/parsing-expressions.html
https://www.craftinginterpreters.com/parsing-expressions.html
https://www.craftinginterpreters.com/parsing-expressions.html
https://www.craftinginterpreters.com/parsing-expressions.html
https://www.craftinginterpreters.com/parsing-expressions.html
https://www.craftinginterpreters.com/parsing-expressions.html
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui
https://www.bottlecaps.de/rr/ui

expr ::= logical_expr
logical_expr ::= comparison_expr (('AND' | 'OR') comparison_expr)*
comparison_expr ::= additive_expr (('<' | '<=' | '>' | '>=' | '==' | '!=') additive_expr)*
additive_expr ::= multiplicative_expr (('+' | '-') multiplicative_expr)*
multiplicative_expr ::= secondary_expr (('*' | '/') secondary_expr)*

secondary_expr ::= primary_expr ('.' identifier ('(' (expr (',' expr)*)? ')')?)*
primary_expr ::= literal_expr | group_expr | object_expr | variable_or_function_expr
literal_expr ::= 'NIL' | 'TRUE' | 'FALSE' | integer | decimal | character | string
group_expr ::= '(' expr')'
object_expr ::= 'OBJECT' identifier? 'DO' let_stmt* def_stmt* 'END'
variable_or_function_expr ::= identifier ('(' (expr (',' expr)*)? ')')?

//these rules correspond to lexer tokens
token ::= identifier | number | character | string | operator
identifier ::= [A-Za-z_] [A-Za-z0-9_-]*
number ::= [+-]? [0-9]+ ('.' [0-9]+)? ('e' [+-]? [0-9]+)?
character ::= ['] ([^'\n\r\\] | escape) [']
string ::= '"' ([^"\n\r\\] | escape)* '"'
escape ::= '\' [bnrt'"\]
operator ::= [<>!=] '='? | [^A-Za-z_0-9'" \b\n\r\t]

Notice that each rule corresponds to one of the provided parse methods. As in the lexer, you

should ensure rules that "delegate" to other rules (e.g. stmt / primary_expr) do not change the state

of the token stream; it's only job is to delegate to the proper rule. Maintaining this separation of

concerns will reduce the likelihood of bugs in your lexer.

AST Representation

The following table lists all AST types and example inputs. Pay particularly attention to error

behavior: A grammar can often be ambiguous whether input should be considered an error (and if

so where) or simply lexed/parsed in a different way. For example:

• LET = 5; , as a statement, could be considered an invalid LET statement, but could also be

parsed as an assignment to the variable LET . Our language will use the former to provide more

descriptive error messages to users (namely, missing variable name).

• LET , as an expression, could be considered invalid as the keyword is also used for LET

statements, but could also be parsed as the variable LET . Our language will use the later as for

simplicity we do not have a concept of "reserved words" that limits which identifiers are allowed

to be used.

If an error should be thrown, this should use the provided ParseException class. This class takes a

String message - this should be a descriptive message to help identify the issue on your side; tests

will not use this message.

AST Type Description Examples

Source
Represents a full source file containing multiple

statements.
first; second; third;

Project Checkpoint 2: Parser https://ufl.instructure.com/courses/523541/assignments/6418564

3 of 7 3/13/2025, 6:06 PM

Stmt
Represents a statement, which performs a side effect

as opposed to evaluating to a value like expressions.

stmt; //Ast.Stmt.Expressi
on

Stmt.Let
Represents a LET statement, which defines a

variable.

LET name;
LET name = value;

Stmt.Def
Represents a DEF statement, which defines a

function.

DEF name() DO END
DEF name(parameter) DO EN
D

Stmt.If

Represents an IF statement. An absent ELSE

branch is represented as an empty list, same as it

were present without statements.

IF cond DO then; END
IF cond DO then; ELSE els
e; END

Stmt.For Represents a FOR statement.
FOR name IN expr DO stmt;
END

Stmt.Return Represents a RETURN statement. RETURN;

Stmt.Expression

Represents an expression as a statement. For

parsing, any expression here is allowed and these

will be validated later.

variable;
function();

Stmt.Assignment

Represents an assignment statement. For parsing,

any expression here is allowed and these will be

validated later.

variable = value;
object.property = value;

Expr
Represents an expression in our language, which

evaluates to a value.
expr //Ast.Expr.Variable

Expr.Literal Represents a literal expression, one of:

• Nil (NIL): Uses null .

• Boolean (TRUE / FALSE): Uses the Boolean class.

• Integer (e.g. 1): Uses the BigInteger class

(https://docs.oracle.com/en/java/javase/23/docs/api/

java.base/java/math/BigInteger.html) , which

supports arbitrary precision.

◦ Hint: This one is a bit weird because new

BigInteger(String) doesn't support exponents.

Maybe there's a way to utilize BigDecimal for

this?

◦ Note: Negative exponents may not be

representable as integers, so any non-integer

value in this case will just be returned as a

NIL
TRUE
1
1.0
'c'
"string"
"Hello,\nWorld!"

Project Checkpoint 2: Parser https://ufl.instructure.com/courses/523541/assignments/6418564

4 of 7 3/13/2025, 6:06 PM

https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigInteger.html

BigDecimal . We will exclude this test case from

grading as it was an oversight on the original

specification.

• Decimal (e.g. 1.0): Uses the BigDecimal class

(https://docs.oracle.com/en/java/javase/23/docs/api/

java.base/java/math/BigDecimal.html) , which

supports arbitrary precision.

◦ Hint: see new BigDecimal(String) .

• Character (e.g. 'c'): Uses the Character class.

You will need to remove the surrounding quotes

and replace any escape characters (see String

below).

• String (e.g. "string"): Uses the String class. You

will need to remove the surrounding quotes and

replace any escape characters.

◦ Hint: There's a finite number of escape

characters, so String.replace is a reasonable

option - just pay close attention to the order

that replacements happen!

◦ Note: String replacing may cause quirks with

inputs containing backslashes along with

multiple escapes (e.g "\\b" vs "\\\b"). We

will exclude any test involving backslashes

next to other escape sequences from grading

as it was an oversight on the original

specification.

▪ This bug has been in PLC for years

Expr.Group
Represents a group expression, which can change

operator precedence.
(expr)

Expr.Binary

Represents a binary expression (logical, comparison,

additive, multiplicative). These are represented as

separate rules in our grammar to handle precedence,

but can be a single AST class because precedence

is instead represented by nesting in the AST (see

overview above for details).

• Note: Logical expressions use AND / OR as

operators (e.g. Python) - it doesn't just have to be

an actual operator symbol!

1 + 2
1 * 2
1 + 2 * 3 // 1 + (2 * 3)
1 * 2 + 3 // (1 * 2) + 3

Project Checkpoint 2: Parser https://ufl.instructure.com/courses/523541/assignments/6418564

5 of 7 3/13/2025, 6:06 PM

https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/math/BigDecimal.html

Expr.Variable Represents a variable access. variable

Expr.Property
Represents a property access on an object (called

the "receiver").
receiver.property

Expr.Function Represents a function invocation.
function()
function(argument)

Expr.Method
Represents a method invocation on an object (called

the "receiver").
receiver.method()

Expr.ObjectExpr

Represents an object literal, which defines an object

with fields/methods.

• Note: This AST uniquely has the Expr suffix to

avoid confusion with Java's Object . This isn't the

only way, but works fine for our purposes.

OBJECT DO LET field; END
OBJECT DO DEF method() DO
END END

Changelog

2/15

• Updated PlcProject (Parser Patch).zip (https://ufl.instructure.com/courses/523541/

files/94912034?wrap=1) (https://ufl.instructure.com/courses/523541/

files/94912034/download?download_frd=1) with fixes for incorrect tests:

◦ testLetStmt Initialization missing new Ast.Expr.Variable("expr") value.

◦ testExpressionStmt Function missing new Token(Token.Type.OPERATOR, ";")

semicolon token.

◦ testAssignmentStmt Variable having name expr instead of variable .

◦ testBinaryExpr Lower Precedence having operator + instead of * (inner

expression).

◦ testObjectExpr Field having an extraneous new Token(Token.Type.OPERATOR, ")")

parenthesis token.

2/25

• Defined behavior for negative integer exponents (which may result in decimals);

will be excluded from grading.

• Defined behavior for backslashes with string replacement, will be excluded from

grading.

• Note: These were both discussed in lecture previously and have been on test

submissions.

Project Checkpoint 2: Parser https://ufl.instructure.com/courses/523541/assignments/6418564

6 of 7 3/13/2025, 6:06 PM

https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034?wrap=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/94912034/download?download_frd=1

