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Personal computer (includes workstation and laptop): Personal computers
emphasize delivery of good performance to single users at low cost and usually
execute third-party software.

Personal mobile device (PMD, includes tablets): PMDs are battery operated
with wireless connectivity to the Internet and typically cost hundreds of
dollars, and, like PCs, users can download software (“apps”) to run on them.
Unlike PCs, they no longer have a keyboard and mouse, and are more likely
to rely on a touch-sensitive screen or even speech input.

Server: Computer used to run large problems and usually accessed via a
network.

Warehouse-scale computer: Thousands of processors forming a large cluster.

Supercomputer: Computer composed of hundreds to thousands of processors
and terabytes of memory.

Embedded computer: Computer designed to run one application or one set
of related applications and integrated into a single system.

. Performance via Pipelining

. Dependability via Redundancy
. Performance via Prediction

. Make the Common Case Fast

. Hierarchy of Memories

Performance via Parallelism

. Design for Moore’s Law
. Use Abstraction to Simplify Design

The program is compiled into an assembly language program, which is then
assembled into a machine language program.

. 1280 x 1024 pixels = 1,310,720 pixels => 1,310,720 X 3 = 3,932,160 bytes/

frame.

. 3,932,160 bytes X (8 bits/byte) /100E6 bits/second = 0.31 seconds

. performance of P1 (instructions/sec) = 3 X 10°/1.5 =2 X 10°

performance of P2 (instructions/sec) = 2.5 X 10°/1.0 =2.5 X 10°
performance of P3 (instructions/sec) =4 X 10%/2.2 = 1.8 X 10°
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b. cycles(P1) =10x3x10°=30x10%s
cycles(P2) =10x2.5% 10°=25% 10°s
cycles(P3) =10x4x 10°=40x% 10°s

¢. No. instructions(P1) =30 x 10°/1.5=20 X 10°
No. instructions(P2) =25 % 10°/1 =25 X 10°
No. instructions(P3) =40 X 10°/2.2 =18.18 X 10°
CPI _=CPI, x 1.2, then CPI(P1) = 1.8, CPI(P2) = 1.2, CPI(P3) = 2.6
f=No. instr. X CPI/time, then
f(P1)=20x10°x 1.8/7 =5.14GHz
f(P2) =25x10°x 1.2/7 = 4.28 GHz
f(P1)=18.18 X 10° X 2.6/7 = 6.75GHz

1.6

a. Class A: 10° instr. Class B: 2 x 10° instr. Class C: 5 X 10° instr. Class D: 2 X 10°
instr.

Time = No. instr. X CPI/clock rate

Total time P1 = (10° + 2 X 10°X 2 + 5 X 105X 3 + 2 X 10° X 3)/(2.5 X 10°) =
104X 10 s

Total time P2 = (10° X 2 + 2 X 10X 2 4+ 5 X 10° X 2 + 2 X 10° X 2)/(3 X 10°) =
6.66X10~*s

CPI(P1) =10.4X 107*x2.5% 10°/10°=2.6
CPI(P2) = 6.66 X 104 X 3 X 10°/10° = 2.0

b. clock cycles(P1) =10°X14+2X10°X2+5X10°X3+2X10°X 3 =26 X 10°
clock cycles(P2) =10°X2+2X 10°X2+5%X 10°X2+2 X 10°X2=20 X 10°

1.7
a. CPI=T__x f/No.instr.
Compiler ACPI=1.1
Compiler B CPI=1.25
b. f /f, = (No.instr.(B) x CPI(B))/(No. instr.(A) x CPI(A)) =1.37
c. T/T =167
T,/T =227
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1.8
1.8.1 C=2xDP/(V?x F)

Pentium 4: C=3.2E-8F

Core i5 Ivy Bridge: C = 2.9E-8F
1.8.2 Pentium 4: 10/100 =10%

Core i5 Ivy Bridge: 30/70 = 42.9%

1.83 (S_ +D_)/(S,+D,)=0.90
D =CxV 2xF
Sa=V . XI
S,..,=V..XI
Therefore:
=[D, /(CxF)]1/2
D . =090x(S,,+D )-S
Spew = Vaew X 8/ V )
Pentium 4:

S,..=V._ x(10/125)=V_ x8

D_=090x100-V _x8=90-V x8
V_=[(90—V__ x8)/(3.2E8 x 3.6E9)]"
V. =085V

Core i5:
S..=V,.. Xx3009)=V x333

ne

Dnew =0.90x 70— VnEW X 333=63 — Vnew %333
V. =[(63—V_ x333)/(2.9E8 x 3.4E9)]"

V =064V

new

1.9
1.9.1

e e A e

1 2.56E9 1.28E9 2.56E8 7.94E10 39.7

2 1.83E9 9.14E8 2.56E8 5.67E10 28.3 1.4
4 9.12E8 4.57E8 2.56E8 2.83E10 14.2 2.8
8 4.57E8 2.29E8 2.56E8 1.42E10 7.10 5.6
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1.9.2
b | ex.time.

1 41.0

2 29.3

4 14.6

8 7.33
1.9.3 3
1.10

1.10.1 diearea, = waferarea/dies per wafer=mx7.5?/84=2.10cm’
yield .= 1/(1+(0.020 x 2.10/2))* = 0.9593
die area, = wafer area/dies per wafer = x 10°/100 = 3.14 cm’
yield, = 1/(1+(0.031 x 3.14/2))* = 0.9093

1.10.2 cost/die, = 12/(84% 0.9593) = 0.1489
cost/die, = 15/(100 x 0.9093) = 0.1650

1.10.3 diearea, = waferarea/dies per wafer=mx7.5?/(84 x 1.1) =1.91 cm’
yield .= 1/(1+(0.020 X 1.15 X 1.91/2))> = 0.9575
diearea, = wafer area/dies per wafer = x 10%/(100 X 1.1) = 2.86 cm’
yield, = 1/(1+ (0.03 x 1.15 x 2.86/2))* = 0.9082

1.10.4 defects perarea ,, = (1-y?)/(y* X die_area/2) = (1 —0.92°)/
(0.92° % 2/2) = 0.043 defects/cm?

defects perarea .. = (1-y°)/(y* X die_area/2) = (1 — 0.95°)/

0.95

(0.95° x 2/2) = 0.026 defects/cm?

1.11
1.11.1 CPI=clock rate X CPU time/instr. count
clock rate = 1/cycle time = 3 GHz
CPI(bzip2) = 3 X 10° X 750/(2389 X 10°) = 0.94
1.11.2 SPEC ratio = ref. time/execution time
SPEC ratio(bzip2) =9650/750 = 12.86
1.11.3 CPU time = No. instr. X CPI/clock rate

If CPI and clock rate do not change, the CPU time increase is equal to the
increase in the number of instructions, that is 10%.
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1.11.4

1.11.5

1.11.6

1.11.7

1.11.8
1.11.9

CPU time(before) = No. instr. X CPI/clock rate
CPU time(after) = 1.1 X No. instr. X 1.05 X CPI/clock rate

CPU time(after)/CPU time(before) = 1.1 X 1.05 = 1.155. Thus, CPU time is
increased by 15.5%.

SPECratio = reference time/CPU time

SPECratio(after)/SPECratio(before) = CPU time(before)/CPU time(after)
=1/1.1555 = 0.86. The SPECratio is decreased by 14%.

CPI = (CPU time X clock rate)/No. instr.
CPI=700x4x%10°(0.85% 2389 x 10°) =1.37

Clock rate ratio = 4 GHz/3 GHz = 1.33
CPI@4GHz=1.37,CPl @ 3 GHz = 0.94, ratio = 1.45

They are different because, although the number of instructions has been
reduced by 15%, the CPU time has been reduced by a lower percentage.

700/750 = 0.933. CPU time reduction: 6.7%
No. instr. = CPU time X clock rate/CPI
No. instr. =960 X 0.9 X 4 X 10°/1.61 =2146 x 10°

1.11.10 Clock rate = No. instr. X CPI/CPU time.

Clock rate_ = No. instr. X CP1/0.9 X CPU time = 1/0.9 clock rate_, =
3.33GHz

1.11.11 Clock rate = No. instr. X CPI/CPU time.

1.12
1.12.1

1.12.2

1.12.3

Clock rate . = No. instr. X 0.85 X CPI/0.80 CPU time = 0.85/0.80, clock
rate , = 3.18 GHz

T(P1)=5%10°%0.9/(4%x 10°) =1.125s

T(P2) = 10° X 0.75/(3 X 10°) = 0.25s

clock rate(P1) > clock rate(P2), performance(P1) < performance(P2)
T(P1) = No. instr. X CPI/clock rate

T(P1)=2.25310215s

T(P2) 5N X 0.75/(3 X 10°), then N = 9 x 10°

MIPS = Clock rate x 10~¢/CPI

MIPS(P1) =4x10°x 1076/0.9 = 4.44 x 10°
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1.12.4

1.13
1.13.1
1.13.2

1.13.3

1.14
1.14.1

1.14.2

1.14.3

MIPS(P2) =3 x 10°x 107%/0.75 = 4.0 X 10°

MIPS(P1) > MIPS(P2), performance(P1) < performance(P2) (from 11a)
MFLOPS = No. FP operations X 107%/T

MFLOPS(P1) = .4 X 5E9 x 1E-6/1.125 = 1.78E3
MFLOPS(P2) = .4 X 1E9 X 1E-6/.25 = 1.60E3

MFLOPS(P1) > MFLOPS(P2), performance(P1) < performance(P2) (from
11a)

T =70%X0.8=56s. T L, =56+85+55+40=236s. Reduction: 5.6%

Tn =250x%0.8=200s, T + T T =165s, T, =35s. Reduction time
INT 58.8%

T, =250%0.8=200s,T, +T, +T, =210s.NO

Clock cycles = CPI. X No. FP instr. + CPL, X No. INT instr. + CPI, X No.
L/Sinstr. + CPI, . X No.branch instr.

T, = clock cycles/clock rate = clock cycles/2 x 10°
clock cycles =512 x 10 T, =0.256s
To have the number of clock cycles by improving the CPI of FP instructions:

CPIImPmve a5, X No. FPinstr. + CPL_ x No. INT instr. + CPI, x No. L/S instr. +
CPL_ . % No. branch instr. = clock cycles/2

CPI = (clock cycles/2 — (CPI x No. INT instr. + CPL, x No. L/S

improved f]
instr. + CPT , X No. branch instr.)) / No. FP instr.
CPLoveary = (256 —462)/50 < 0 = => not possible

Using the clock cycle data from a.
To have the number of clock cycles improving the CPI of L/S instructions:

CPL_ X No. FP instr. + CPL,_ X No. INT instr. + CPL
+ C}glbramh x No. branch instr. = clock cycles/2

CPL = (clock cycles/2 — (CPI. X No. FP instr. + CPI x No. INT

improved 1/s

instr. + CPI, . X No. branch instr.)) f No. L/S instr.
CPL = (256 —198)/80=0.725

improved1/s

Clock cycles = CPI_ X No. FP instr. + CPL, X No. INT instr. + CPI, X No.
L/Sinstr. + CPI, . X No.branch instr.

X No. L/S instr.

improved I/s
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Ty, = clock cycles/clock rate = clock cycles/2 x 10°

CPI, =0.6X1=0.6;CPI, =0.6 X 1=0.6; CPI, =0.7 x4=2.8; CPI
0.7x2=14

branch —

T, (before improv.) = 0.256s; T, (after improv.) =0.171s
1.15
exec. time/ time actual speedup/ideal
processors processor | w/overhead speedup speedup

1 100

2 50 54 100/54 = 1.85 1.85/2 = .93

4 25 29 100/29 = 3.44 3.44/4 = 0.86

8 12.5 16.5 100/16.5 = 6.06 6.06/8 = 0.75

16 6.25 10.25 100/10.25 = 9.76 9.76/16 = 0.61
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2.1 addi x5, x7,-5
add x5, x5, x6
[addi f,h,-5 (note, no subi) add f,f,q]

2.2 f = g+h+i
2.3 sub x30, x28, x29 // compute i-]
sT1i x30, x30, 3 // multiply by 8 to convert the
word offset to a byte offset
1d x30, 0(x3) // Toad A[1-j]
sd x30, 64(x11) // store in B[8]

2.4 B[gl= A[f] + ALf+1]

s111 x30, x5, 3 /] x30 = f*8

add x30, x10, x30 // x30 = &A[f]

s111 x31, x6, 3 // x31 = g*8

add x31, x11, x31 // x31 = &B[g]

1d x5, 0(x30) /] f = A[f]

addi x12, x30, 8 /] x12 = &A[F]+8 (i.e. &A[f+11)
1d x30, 0(x12) // x30 = A[f+1]

add x30, x30, x5 // x30 = A[f+1] + A[f]

sd x30, 0(x31) // BL[gl = x30 (i.e. A[f+1] + ALf])

2.5

Little-Endian Big-Endian
“Address | Data | Addross | Data |
ab 1 12

12 2
8 cd 8 ef
4 ef 4 cd
0 12 0 ab

2.6 2882400018
2.7 sl1li x28, x28, 3 /] x28 = i*8

1d x28, 0(x10) /] x28 = A[i]
s11i x29, x29, 3 /] x29 = j*8
1d x29, 0(x11) /] x29 = BLJ]

add x29, x28, x29 // Compute x29 = A[i] + B[J]
sd x29, 64(x11) // Store result in B[8]
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2.8 f =

2% (&A)

addi x30, x10, 8 // x30 = &A[1]

addi  x31, x10, O // x31

sd
1d

&A
x31, 0(x30) /1 ALL] =
x30, 0(x30) // x30 = A[1] =

add x5, x30, x31 /] f = &A + &A = 2% (&A)

opcode,
funct3,7

addi x30,x10,8 I-type 0x13, 0x0, - 8
addi x31,x10,0 R-type 0x13, 0x0, - 10 - 31 0
sd x31,0(x30) S-type 0x23, 0x3, - 31 30 - 0
1d x30,0(x30) I-type 0x3, 0x3, - 30 - 30 0
add x5, x30, x31 R-type 0x33, 0x0, 0x0 30 31 5 -
2.10

2.10.1 0x5000000000000000

2.10.2 overflow

2.10.3 0xB000000000000000

2.10.4 no overflow

2.10.5 0xD000000000000000

2.10.6 overflow

211

2.11.1 There is an overflow if 128 + x6 > 2% — 1.

2.11.2

2.11.3

In other words, if x6 > 2% — 129.

There is also an overflow if 128 + x6 < —2%,

In other words, if x6 < —2% — 128 (which is impossible given the
range of x6).

There is an overflow if 128 — x6 > 2% — 1.

In other words, if x6 < —2% + 129.

There is also an overflow if 128 — x6 < —2%.

In other words, if x6 > 2% + 128 (which is impossible given the
range of x6).

There is an overflow if x6 — 128 > 2% — 1.

In other words, if x6 < 2% + 127 (which is impossible given the
range of x6).

There is also an overflow if x6 — 128 < —2%,

In other words, if x6 < —2% + 128.

2.12 R-type: add x1, x1, x1
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2.13 S-type: 0x25F3023 (0000 0010 0101 1111 0011 0000 0010
0011)

2.14 R-type: sub x6, x7, x5 (0x40538333: 0100 0000 0101 0011
1000 0011 0011 0011)

2.15 I-type: 1d x3, 4(x27) (0x4DB183: 0000 0000 0100 1101
1011 0001 1000 0011)

2.16
2.16.1 The opcode would expand from 7 bits to 9.

The rs1, rs2, and rd fields would increase from 5 bits to 7 bits.
2.16.2 The opcode would expand from 7 bits to 12.

The rs1 and rd fields would increase from 5 bits to 7 bits. This change
does not affect the imm field per se, but it might force the ISA designer to
consider shortening the immediate field to avoid an increase in overall
instruction size.

2.16.3 * Increasing the size of each bit field potentially makes each instruction
longer, potentially increasing the code size overall.

* However, increasing the number of registers could lead to less register
spillage, which would reduce the total number of instructions, possibly
reducing the code size overall.

2.17

2.17.1 0x1234567ababefef8
2.17.2 0x2345678123456780
2.17.3 0x545

2.18 It can be done in eight RISC-V instructions:

addi x7, x0, O0x3f // Create bit mask for bits 16 to 11

s11i x7, x7, 11 // Shift the masked bits

and x28, xb, x7 // Apply the mask to x5

s11i x7, x6, 15 // Shift the mask to cover bits 31
to 26

xori x7, x7, -1 // This is a NOT operation

and x6, x6, x7 // “Zero out” positions 31 to
26 of x6

s11i x28, x28, 15 // Move selection from x5 into
positions 31 to 26

or X6, x6, x28 // Load bits 31 to 26 from x28

2.19 xori xb, x6, -1



Chapter 2 Solutions

2.20 1d x6, 0(x17)
s11i x6, x6, 4

2.21 x6 = 2
2.22
2.22.1 [0x1ff00000, Ox200FFFFE]
2.22.2 [0x1FFFF000, 0x20000ffe]
2.23
2.23.1 The UJ instruction format would be most appropriate because it would
allow the maximum number of bits possible for the “Toop” parameter,
thereby maximizing the utility of the instruction.
2.23.2 It can be done in three instructions:
loop:
addi  x29, x29, -1 // Subtract 1 from x29
bgt x29, x0, loop // Continue if x29 not
negative
addi  x29, x29, 1 // Add back 1 that shouldn’t
have been subtracted.
2.24
2.24.1 The final value of xs is 20.
2.24.2 acc = 0;
i=10;
while (i ! = 0) {
acc += 2;
i--;
}
2.24.3 4*N + 1 instructions.
2.24.4 (Note: change condition ! = to > = in the while loop)

acc = 0;

i=10;

while (i >= 0) {
acc += 2;
iy
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2.25

The C code can be implemented in RISC-V assembly as follows.

LOOPI:

addi  x7, x0, 0O // Init 1 =0
bge X7, x5, ENDI // While i < a
addi x30, x10, O // x30 = &D

addi x29, x0, 0 // Init j =20

LOOPJ:

ENDJ:

ENDI:

2.26

2.27

bge  x29, x6, ENDJ // While j < b

add  x31, x7, x29 // x31 = i+]

sd x31, 0(x30) // D[4*j]1 = x31

addi x30, x30, 32 // x30 = &D[4*(j+1)]
addi  x29, x29, 1 /] j+t

jal x0, LOOPJ

addi x7, x7, 1 /] i+t
jal x0, LOOPI

The code requires 13 RISC-V instructions. When a = 10 and b = 1, this
results in 123 instructions being executed.

// This C code corresponds most directly to the given
assembly.
int i;
for (i = 0; 1 < 100; i++) {
result += *MemArray;
MemArray++;

J

return result;

// However, many people would write the code this way:
int 1;
for (i = 0; 1 < 100; i++) {
result += MemArrayl[i]l;
}

return result;
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2.28 The address of the Tast element of MemArray can be
used to terminate the Tloop:

/'l

// x29 = &MemArray[101]

Loop until MemArray points
to one-past the Tast element

// IMPORTANT! Stack pointer must reamin a multiple

add x29, x10, 800
LOOP:
1d x7, 0(x10)
add x5, x5, x7
addi x10, x10, 8
b1t  x10, x29, LOOP
2.29
of 16!!!1!
fib:
beq x10, x0, done
addi x5, x0, 1
beq x10, xb, done
addi  x2, x2, -16
sd x1, 0(x2)
sd x10, 8(x2)
addi  x10, x10, -1
jal x1, fib
1d x5, 8(x2)
sd x10, 8(x2)
addi  x10, x5, -2
jal x1, fib
1d x5, 8(x2)
add x10, x10, x5
// Clean up:
1d x1, 0(x2)
addi X2, x2, 16
done:
jalr  x0, x1

2.30 [answers will vary]

/!

/!
/!

/!
/!
/1
/!
/!
/!
/!
/!
/1
/1

/1
/1

If n==0, return 0

If n==1, return 1
Allocate 2 words of stack
space

Save the return address
Save the current n

x10 = n-1

fib(n-1)

Load old n from the stack
Push fib(n-1) onto the stack
x10 = n-2

Call fib(n-2)

x5 = fib(n-1)

x10 = fib(n-1)+fib(n-2)

Load saved return address
Pop two words from the stack
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2.31

2.32

2.33

// IMPORTANT! Stack pointer must remain a multiple of 16!!!
f:
addi x2, x2, -16 // Allocate stack space for 2 words

sd x1, 0(x2) // Save return address

add x5, x12, x13 // x5 = c+d

sd x5, 8(x2) // Save c+d on the stack

jal  x1, g // Call x10 = g(a,b)

1d x11, 8(x2) // Reload x11= c+d from the stack
jal  x1, g // Call x10 = g(g(a,b), c+d)

1d x1, 0(x2) // Restore return address

addi x2, x2, 16 // Restore stack pointer
jalr x0, x1

We can use the tail-call optimization for the second call to g, saving one
instruction:

// IMPORTANT! Stack pointer must remain a multiple of 16!!!
f:
addi  x2, x2, -16 // Allocate stack space for 2 words

sd x1, 0(x2) // Save return address

add xb, x12, x13 // x5 = c+d

sd x5, 8(x2) // Save c+d on the stack

jal x1, g // Call x10 = g(a,b)

1d x11, 8(x2) // Reload x11 = c+d from the stack
1d x1, 0(x2) // Restore return address

addi  x2, x2, 16 // Restore stack pointer

jal x0, g // Call x10 = g(g(a,b), c+d)

*We have no idea what the contents of x10-x14 are, g can set them as it
g
pleases.

*We don’t know what the precise contents of x8 and sp are; but we do know
that they are identical to the contents when f was called.

*Similarly, we don’t know what the precise contents of x1 are; but, we do
know that it is equal to the return address set by the “jal x1, f”instruction
that invoked f.
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2.34
a_to_i:
addi x28, x0, 10 # Just stores the constant 10
addi x29, x0, 0 # Stores the running total
addi x5, x0, 1 # Tracks whether input is positive

or negative
# Test for initial ‘+° or “-~°

Tbu x6, 0(x10) # Load the first character
addi x7, x0, 45 # ASCIT “-~
bne x6, X7, noneg
addi x5, x0, -1 # Set that input was negative
addi x10, x10, 1 # str++
jal x0, main_atoi_loop
noneg:
addi x7, x0, 43 # ASCII “+°
bne X6, x7, main_atoi_loop
addi x10, x10, 1 # str++
main_atoi_Tloop:
Tbu x6, 0(x10) # Load the next digit
beq x6, x0, done # Make sure next char is a digit,
or fail
addi x7, x0, 48 ## ASCIT ‘0~

sub X6, x6, x7
b1t x6, x0, fail # *str < 07
bge X6, x28, fail # *str >= ‘9’

J# Next char is a digit, so accumulate it into x29

mul x29, x29, x28 # x29 *= 10
add x29, x29, x6 # x29 += *str - ‘0’

addi x10, x10, 1 # str++
jal x0, main_atoi_loop
done:
addi  x10, x29, 0 # Use x29 as output value
mul x10, x10, xb # Multiply by sign
jalr x0, x1 # Return result
fail:

addi x10, x0, -1
jalr x0, x1

2.35

2.35.1 0x11

2.35.2 0x88
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2.36 Tui x10, 0x11223
addi x10, x10, 0x344
s11i  x10, x10, 32
Tui x5, 0x55667
addi x5, x5, 0x788
add x10, x10, xb

2.37

setmax:
try:
Tr.d x5, (x10) # Load-reserve *shvar
bge x5, x11, release # Skip update if *shvar > x
addi x5, x11, 0

release:
sc.d x7, x5, (x10)
bne x7, x0, try # If store-conditional failed,

try again
jalr x0, «x1

2.38 When two processors A and B begin executing this loop at the same time, at
most one of them will execute the store-conditional instruction successfully,
while the other will be forced to retry the loop. If processor A’s store-conditional
successds initially, then B will re-enter the try block, and it will see the new
value of shvar written by A when it finally succeeds. The hardware guarantees
that both processors will eventually execute the code completely.

2.39

2.39.1 No. The resulting machine would be slower overall.
Current CPU requires (num arithmetic * 1 cycle) + (num load/store * 10
cycles) + (num branch/jump * 3 cycles) = 500*1 + 300*10 + 100*3 = 3800
cycles.
The new CPU requires (.75*num arithmetic * 1 cycle) + (num load/store
* 10 cycles) + (num branch/jump * 3 cycles) = 375%1 + 300*10 + 100*3
= 3675 cycles.
However, given that each of the new CPU’s cycles is 10% longer than the
original CPU’s cycles, the new CPU’s 3675 cycles will take as long as 4042.5
cycles on the original CPU.

2.39.2 If we double the performance of arithmetic instructions by reducing their
CPI to 0.5, then the the CPU will run the reference program in (500*.5) +
(300*10) + 100*3 = 3550 cycles. This represents a speedup of 1.07.

If we improve the performance of arithmetic instructions by a factor of
10 (reducing their CPI to 0.1), then the the CPU will run the reference
program in (500*.1) + (300%10) + 100*3 = 3350 cycles. This represents a
speedup of 1.13.
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2.40
2.40.1 Take the weighted average: 0.7*2 + 0.1%6 + 0.2*3 = 2.6

2.40.2 For a 25% improvement, we must reduce the CPU to 2.6*.75 = 1.95. Thus,
we want 0.7*x + 0.1*6 + 0.2*3 < = 1.95. Solving for x shows that the
arithmetic instructions must have a CPI of at most 1.07.

2.40.3 For a 50% improvement, we must reduce the CPU to 2.6*.5 = 1.3. Thus, we
want 0.7*x + 0.1¥6 + 0.2*3 < = 1.3. Solving for x shows that the arithmetic
instructions must have a CPI of at most 0.14

2.41
1dr x28, x5(x10), 3 // Load x28=A[f]
addi x5, xb, 1 /] f++
Tdr x29, x5(x10), 3 // Load x29=A[f+1]
add x29, x29, x28 // Add x29 = A[f] + A[f+1]
sdr x12, x6(x11), 3 // Store B[g] = x29

2.42 1dr x28, x28, (x10), 3 // Load x28=A[1]
1dr x29, x29, (x11), 3 // Load x29=B[j]
add x29, x28, x29
sd x29, 64(x11) // Store B[8]=x29 (don’t
need scaled store here)
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3.1 5730
3.2 5730
3.3 0101111011010100

The attraction is that each hex digit contains one of 16 different characters
(0-9, A-E). Since with 4 binary bits you can represent 16 different patterns,
in hex each digit requires exactly 4 binary bits. And bytes are by definition 8
bits long, so two hex digits are all that are required to represent the contents

of 1 byte.
3.4 753
3.5 7777 (—=3777)
3.6 Neither (63)
3.7 Neither (65)
3.8 Overflow (result = —179, which does not fit into an SM 8-bit format)
3.9 —105— 42 =—128 (-147)
3.10 -105+42=-63
3.11 151 + 214 = 255 (365)

3.12 62x12
mmmm
Initial Vals 001 010 000 000 110 010 000 000 000 000
1sb=0, no op 001 010 000 000 110 010 000 000 000 000
1 Lshift Mcand 001 010 000 001 100 100 000 000 000 000
Rshift Mplier 000 101 000 001 100 100 000 000 000 000
Prod=Prod+Mcand 000 101 000 001 100 100 000 001 100 100
2 Lshift Mcand 000 101 000 011 001 000 000 001 100 100
Rshift Mplier 000 010 000 011 001 000 000 001 100 100
1sb=0, no op 000 010 000 011 001 000 000 001 100 100
3 Lshift Mcand 000 010 000 110 010 000 000 001 100 100
Rshift Mplier 000 001 000 110 010 000 000 001 100 100
Prod=Prod+Mcand 000 001 000 110 010 000 000 111 110 100
4 Lshift Mcand 000 001 001 100 100 000 000 111 110 100
Rshift Mplier 000 000 001 100 100 000 000 111 110 100
1sb=0, no op 000 000 001 100 100 000 000 111 110 100
5 Lshift Mcand 000 000 011 001 000 000 000 111 110 100
Rshift Mplier 000 000 011 001 000 000 000 111 110 100
1sb=0, no op 000 000 110 010 000 000 000 111 110 100
6 Lshift Mcand 000 000 110 010 000 000 000 111 110 100
Rshift Mplier 000 000 110 010 000 000 000 111 110 100
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3.13 62x 12
| step | Action | _ Multiplicand | _Product/Multiplier |
0 Initial Vals 110 010 000 000 001 010
1 1sb=0, no op 110 010 000 000 001 010
Rshift Product 110 010 000 000 000 101
5 Prod=Prod+Mcand 110 010 110 010 000 101
Rshift Mplier 110 010 011 001 000 010
3 1sb=0, no op 110 010 011 001 000 010
Rshift Mplier 110 010 001 100 100 001
Prod=Prod+Mcand 110 010 111 110 100 001
4 Rshift Mplier 110 010 011 111 010 000
5 1sb=0, no op 110 010 011 111 010 000
Rshift Mplier 110 010 001 111 101 000
6 1sb=0, no op 110 010 001 111 101 000
Rshift Mplier 110 010 000 111 110 100

3.14

3.15

3.16

3.17

For hardware, it takes one cycle to do the add, one cycle to do the shift, and
one cycle to decide if we are done. So the loop takes (3 X A) cycles, with each
cycle being B time units long.

For a software implementation, it takes one cycle to decide what to add, one
cycle to do the add, one cycle to do each shift, and one cycle to decide if we are
done. So the loop takes (5 X A) cycles, with each cycle being B time units long.

(3 X 8) X 4tu = 96 time units for hardware

(5 X 8) X 4tu = 160 time units for software

It takes B time units to get through an adder, and there will be A — 1 adders.
Word is 8 bits wide, requiring 7 adders. 7 X 4tu = 28 time units.

It takes B time units to get through an adder, and the adders are arranged in
a tree structure. It will require log2(A) levels. An 8 bit wide word requires
seven adders in three levels. 3 X 4tu = 12 time units.

0x33 x 0x55 = 0x10EF. 0x33 = 51, and 51 = 32 + 16 + 2 + 1. We can shift
0x55 left five places (0xAAO0), then add 0x55 shifted left four places (0x550),
then add 0x55 shifted left once (0xAA), then add 0x55. 0xAAO0 + 0x550 +
0xAA + 0x55 = 0x10EF. Three shifts, three adds.

(Could also use 0x55, which is 64 + 16 + 4 + 1, and shift 0x33 left six times,
add to it 0x33 shifted left four times, add to that 0x33 shifted left two times,
and add to that 0x33. Same number of shifts and adds.)
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3.18 74/21 = 3 remainder 9

S ——

Initial Vals 000 000 010 001 000 000 000 000 111 100
Rem=Rem-Div 000 000 010 001 000 000 101 111 111 100

1 Rem<0, R+D, Q<< 000 000 010 001 000 000 000 000 111 100
Rshift Div 000 000 001 000 100 000 000 000 111 100
Rem=Rem-Div 000 000 001 000 100 000 111 000 011 100

2 Rem<0, R+D, Q<< 000 000 001 000 100 000 000 000 111 100
Rshift Div 000 000 000 100 010 000 000 000 111 100
Rem=Rem-Div 000 000 000 100 010 000 111 100 101 100

3 Rem<0, R+D, Q<< 000 000 000 100 010 000 000 000 111 100
Rshift Div 000 000 000 010 001 000 000 000 111 100
Rem=Rem-Div 000 000 000 010 001 000 111 110 110 100

4 Rem<0,R+D, Q<< 000 000 000 010 001 000 000 000 111 100
Rshift Div 000 000 000 001 000 100 000 000 111 100
Rem=Rem-Div 000 000 000 001 000 100 111 111 111 000

5 Rem<0, R+D, Q<< 000 000 000 001 000 100 000 000 111 100
Rshift Div 000 000 000 000 100 010 000 000 111 100
Rem=Rem-Div 000 000 000 000 100 010 000 000 011 010

6 Rem>0, Q<<1 000 001 000 000 100 010 000 000 011 010
Rshift Div 000 001 000 000 010 001 000 000 011 010
Rem=Rem-Div 000 001 000 000 010 001 000 000 001 001

7 Rem>0,Q<<1 000 011 000 000 010 001 000 000 001 001
Rshift Div 000 011 000 000 001 000 000 000 001 001

3.19 In these solutions a 1 or a 0 was added to the Quotient if the remainder
was greater than or equal to 0. However, an equally valid solution is to shift
in a 1 or 0, but if you do this you must do a compensating right shift of
the remainder (only the remainder, not the entire remainder/quotient
combination) after the last step.

74/21 = 3 remainder 11

mmm

Initial Vals 010 001 000 000 111 100
R<K 010 001 000 001 111 000
1 Rem=Rem-Div 010 001 111 000 111 000
Rem<0, R+D 010 001 000 001 111 000
R<K 010 001 000 011 110 000
2 Rem=Rem-Div 010 001 110 010 110 000
Rem<0,R+D 010 001 000 011 110 000
R<K 010 001 000 111 100 000
3 Rem=Rem-Div 010 001 110 110 110 000
Rem<0,R+D 010 001 000 111 100 000
R<< 010 001 001 111 000 000
4 Rem=Rem-Div 010 001 111 110 000 000
Rem<0,R+D 010 001 001 111 000 000
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|_Step | Action | Divisor | Remainder/Quotient |

R<K 010 001 011 110 000 000
Rem=Rem-Div 010 001 111 110 000 000
Rem>0,R0=1 010 001 001 101 000 001
R<K 010 001 011 010 000 010
Rem=Rem-Div 010 001 001 001 000 010
Rem>0, R0=1 010 001 001 001 000 011

3.20

3.21

3.22

3.23

3.24

201326592 in both cases.

jal 0x00000000

0x0C000000 = 0000 1100 0000 0000 0000 0000 0000 0000
= 00001 1000 0000 0000 0000 0000 0000 000

sign is positive

exp=0Xx18=24—127=-103

there is a hidden 1

mantissa = 0

answer = 1.0 x 2719

63.25x 10°=111111.01 x 2°

normalize, move binary point five to the left

1.1111101 x 2°

sign = positive, exp = 127 + 5 =132

Final bit pattern: 0 1000 0100 1111 1010 0000 0000 0000 000
= (010000100111 1101 0000 0000 0000 0000 = 0x427D0000

63.25x 10°=111111.01 x 2°

normalize, move binary point five to the left
1.1111101 x 2°

sign = positive, exp = 1023 + 5= 1028
Final bit pattern:

0100 0000 0100 1111 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000

= 0x404FA00000000000
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3.25

3.26

3.27

3.28

3.29

63.25x10°=111111.01 X 2° = 3E40 X 16°

move hex point two to the left

0.3F40 x 162

sign = positive, exp = 64 + 2

Final bit pattern: 01000010001111110100000000000000
—1.5625 % 107 = —0.15625 % 10°

= —0.00101 x 2°

move the binary point two to the right

=-0.101 x 272

exponent = —2, fraction = —0.101000000000000000000000
answer: 111111111110101100000000000000000000
—1.5625 % 107 = —0.15625 % 10°

=—0.00101 x 2°

move the binary point three to the right, = —=1.01 x 27
exponent = —3 = —3 + 15 = 12, fraction = —0.0100000000
answer: 1011000100000000

—1.5625 % 107 = —0.15625 x 10°

=—0.00101 x 2°

move the binary point two to the right

=-0.101 x 272

exponent = —2, fraction = —0.1010000000000000000000000000
answer: 10110000000000000000000000000101

2.6125 x 10* + 4.150390625 X 107!

2.6125 x 10' =26.125 =11010.001 = 1.1010001000 x 2*

4.150390625 x 107 = 0.4150390625 = 0.011010100111 = 1.1010100111 X 22

Shift binary point six to the left to align exponents,
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GR
1.1010001000 00

1.0000011010 10 0111 (Guard 5 1, Round 5 0,
Sticky 5 1)

1.1010100010 10
In this case the extra bit (G,R,S) is more than half of the least significant bit (0).

Thus, the value is rounded up.
1.1010100011 x 2* =11010.100011 X 2° = 26.546875 = 2.6546875 X 10"
3.30 —8.0546875 X —1.79931640625 x 107!
—8.0546875 = —1.0000000111 x 2°
—1.79931640625 x 10~ = —1.0111000010 % 23
Exp: —3+3=0,0+ 16 =16 (10000)
Signs: both negative, result positive

Fraction:

1.0000000111
x 1.0111000010
00000000000
10000000111
00000000000
00000000000
00000000000
00000000000
10000000111
10000000111
10000000111
00000000000
10000000111
1.01110011000001001110

1.0111001100 00 01001110 Guard = 0, Round = 0, Sticky = 1:NoRnd
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1.0111001100 X 2° = 0100000111001100 (1.0111001100 = 1.44921875)
—8.0546875 X —0.179931640625 = 1.4492931365966796875

Some information was lost because the result did not fit into the available 10-bit
field. Answer (only) off by 0.0000743865966796875

3.31 8.625x 10"/ — 4.875 x 10°
8.625x 10' = 1.0101100100 x 2°
—4.875 = —1.0011100000 x 2*
Exponent=6—-2=4,4+15=19(10011)
Signs: one positive, one negative, result negative

Fraction:

1.00011011000100111
10011100000. | 10101100100.0000000000000000
—10011100000.
10000100.0000
—1001110.0000

1100110.
—100111.

00000
00000

.0000000
.1100000
.01000000
.11100000

.011000000000
.010011100000

.000100100000000

.000010011100000

.0000100001000000

.0000010011100000

.00000011011000000

.00000010011100000

.00000000110000000
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1.000110110001001111 Guard = 0, Round = 1, Sticky = 1: No Round, fix
sign

—1.0001101100 X 2* =1101000001101100 = 10001.101100 = —17.6875
86.25/ — 4.875 = —17.692307692307
Some information was lost because the result did not fit into the available 10-bit
field. Answer off by 0.00480769230
3.32 (3.984375x 107! + 3.4375 x 107!) + 1.771 x 10°)
3.984375 x 107" = 1.1001100000 x 22
3.4375 x 107! = 1.0110000000 x 272
1.771 X 10° = 1771 = 1.1011101011 x 2%
shift binary point of smaller left 12 so exponents match

(A) 1.1001100000
(B) +1.0110000000

10.1111100000 Normalize,

(A+B) 1.0111110000x 27!
(C) +1.1011101011
(A+B) .0000000000 10 111110000 Guard =1,

Round = 0, Sticky =1

(A+B)+C +1.1011101011 10 1 Round up
(A+B)+C =1.1011101100x%x 2! = 0110101011101100 = 1772

3.33 3.984375 % 107! 4 (3.4375 X 107! + 1.771 X 10°)
3.984375 % 107 = 1.1001100000 x 272
3.4375 % 107' = 1.0110000000 x 272
1.771 X 10° = 1771 = 1.1011101011 x 2

shift binary point of smaller left 12 so exponents match
(B) .0000000000 01 0110000000 Guard
Round = 1, Sticky =

=0,
1
(C) +1.1011101011

(B+C) +1.1011101011
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3.34

3.35

3.36

(A) .0000000000 011001100000

A+ (B+C)+ 1.1011101011 No round
A+ (B+C)+ 1.1011101011 x2=0110101011101011 =1771

No, they are not equal: (A+B)+C = 1772, A+(B+C) = 1771 (steps shown
above).

Exact: 0.398437 + 0.34375 + 1771 = 1771.742187

(3.41796875 X 107 X 6.34765625 X 107°) X 1.05625 X 10?
(A) 3.41796875 x 10~* = 1.1100000000 X 2~°

(B) 4.150390625 x 10~* = 1.0001000000 % 2~*

(C) 1.05625 x 10* = 1.1010011010 x 2°

Exp: —=9-8=-17

Signs: both positive, result positive

Fraction:
(A) 1.1100000000
(B) x 1.0001000000
11100000000
11100000000

1.11011100000000000000
AXB 1.1101110000 00 00000000
Guard = 0, Round = 0, Sticky = 0: No Round

AXB 1.1101110000 x 277 UNDERFLOW: Cannot represent number

3.41796875 x 107* X (6.34765625 x 107* X 1.05625 X 10%)
(A) 3.41796875 x 10~* = 1.1100000000 x 2~°

(B)  4.150390625 x 10~* = 1.0001000000 x 2~*

(C) 1.05625 % 10>=1.1010011010 X 2¢
Exp:—8+6=-2
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Signs: both positive, result positive

Fraction:

(B) 1.0001000000

(C) x 1.1010011010

10001000000
10001000000
10001000000
10001000000
10001000000
10001000000
1.110000001110100000000

1.1100000011 10 100000000 Guard 5 1, Round 5 0, Sticky
5 1: Round

Bx C 1.1100000100 x 272
Exp: —9-2=-11
Signs: both positive, result positive

Fraction:
(A) 1.1100000000
(B x C)x 1.1100000100
11100000000
11100000000
11100000000
11100000000
11.00010001110000000000 Normalize, add 1 to exponent

1.1000100011 10 0000000000 Guard=1, Round=0, Sticky=0:
Round to even

A X (B x C) 1.1000100100 X 2710
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3.37 b) No:
A xB=1.1101110000 x 277 UNDERFLOW: Cannot represent
A X (B x C) = 1.1000100100 X 21
A and B are both small, so their product does not fit into the
16-bit floating point format being used.

3.38 1.666015625 % 10° X (1.9760 x 10* — 1.9744 x 10%)
(A) 1.666015625 % 10°=1.1010101010 x 2°
(B) 1.9760 x 10*=1.0011010011 x 2™
(C) —1.9744 x 10*=-1.0011010010 x 2'*

Exponents match, no shifting necessary
(B) 1.0011010011

() —1.0011010010

(B+C) 0.0000000001x 2
(B+C) 1.0000000000 x 2*

Exp:0+4=4

Signs: both positive, result positive

Fraction:

(A) 1.1010101010
(B+C) x 1.0000000000

1.10101010100000000000
Ax (B+C) 1.1010101010 0000000000 Guard = 0, Round =
0, sticky = 0: No round

AXx(B+C) 1.1010101010 x 2*

3.39 1.666015625 X 10° X (1.9760 x 10* — 1.9744 x 10%)
(A) 1.666015625 x 10° = 1.1010101010 x 2°
(B) 1.9760 x 10* = 1.0011010011 x 2**
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(C) —1.9744 x 10* = —1.0011010010 x 2™
Exp:0+14=14
Signs: both positive, result positive

Fraction:
(A) 1.1010101010
(B) x 1.0011010011
11010101010
11010101010
11010101010
11010101010
11010101010
11010101010
10.0000001001100001111 Normalize, add 1 to
exponent

AXxB 1.0000000100 11 00001111 Guard = 1, Round =1,

Sticky = 1: Round
AXB 1.0000000101 x 2'°

Exp:0+14=14
Signs: one negative, one positive, result negative

Fraction:
(A) 1.1010101010
(C) x 1.0011010010
11010101010
11010101010
11010101010
11010101010
11010101010
10.0000000111110111010
Normalize, add 1 to exponent

AxC 1.0000000011 11 101110100
Guard = 1, Round = 1, Sticky = 1: Round

AxC —1.0000000100 x 2'°

AXB 1.0000000101 x 2'°

AxC —1.0000000100 x 2'°

A X B+A X C .0000000001 x 2%°

AxB+AXC 1.0000000000 x 2°
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3.40 b) No:

AX(B+C) = 1.1010101010 x 2* = 26.65625, and (AXB)+(AXC) =
1.0000000000 x 2° = 32

Exact: 1.666015625 X (19,760 — 19,744) = 26.65625

3.41
“mmm
‘ 101111101 00000000000000000000000 ‘ ‘ -2 ‘ Yes ‘

3.42 b+b+b+b=-1
bx4=-1

They are the same

3.43 01010101 0101 0101 0101 0101
No

3.44 00110011 001100110011 0011
No

3.45 0101 0000 0000 0000 0000 0000
0.5
Yes

3.46 01010 00000 00000 00000
0.A
Yes

3.47 Instruction assumptions:
(1) 8-lane 16-bit multiplies
(2) sum reductions of the four most significant 16-bit values
(3) shift and bitwise operations
(4) 128-, 64-, and 32-bit loads and stores of most significant bits
Outline of solution:

load register F[bits 127:0] = f[3..0] & f[3..0] (64-bit
load)
load register A[bits 127:0] = sig_in[7..0] (128-bit Toad)
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for i = 0 to 15 do
load register B[bits 127:0] = sig_in[(i*8+7..1*8]
(128-bit load)
for j = 0 to7 do
(1) eight-lane multiply C[bits 127:0] = A*F
(eight 16-bit multiplies)
(2) set D[bits 15:0] = sum of the four 16-bit values
in C[bits 63:0] (reduction of four 16-bit values)
(3) set D[bits 31:16] = sum of the four 16-bit
values in C[bits 127:64] (reduction of four 16-
bit values)
(4) store D[bits 31:0] to sig_out (32-bit store)
(5) set A = A shifted 16 bits to the Teft
(6) set E =B shifted 112 shifts to the right
(7) set A=A OR E
(8) set B =B shifted 16 bits to the Teft
end for

end for
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4.1
411

4.1.2
413

4.2

4.3
43.1
4.3.2

4.3.3

4.3.4

4.4

44.1

4.4.2

4.5
45.1

The value of the signals is as follows:

‘ true ‘ 0 ‘ “and” ‘ false ‘ false ‘

oReg
0

Mathematically, the MemRead control wire is a “don’t care”: the instruction
will run correctly regardless of the chosen value. Practically, however,
MemRead should be set to false to prevent causing a segment fault or cache
miss.

Registers, ALUsrc mux, ALU, and the MemToReg mux.
All blocks produce some output. The outputs of DataMemory and Imm

Gen are not used.

Reg2Loc for 1d: When executing 1d, it doesn’t matter which value is passed
to “Read register 27, because the ALUSrc mux ignores the resulting “Read
data 2” output and selects the sign extended immediate value instead.

MemToReg for sd and beq: Neither sd nor beq write a value to the register
file. It doesn’t matter which value the MemToReg mux passes to the register
file because the register file ignores that value.

254 10 =35%. Only Load and Store use Data memory.

100% Every instruction must be fetched from instruction memory before
it can be executed.

28 425+ 10 + 11 + 2 = 76%. Only R-type instructions do not use the Sign
extender.

The sign extend produces an output during every cycle. If its output is not
needed, it is simply ignored.

Only Toads are broken. MemToRegq is either 1 or “don’t care” for all other
instructions.

I-type, 10ads, stores are all broken.

For context: The encoded instruction is sd x12, 20(x13)

L Atues ALU Control Lines

\ 00 \ 0010 \
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4.5.2 The new PC is the old PC + 4. This signal goes from the PC, through the
“PC + 4” adder, through the “branch” mux, and back to the PC.

4.5.3 AlUsrc: Inputs: Reg[x12] and 0x0000000000000014; Output:
0x0000000000000014

MemToReg: Inputs: Reg[x13] + 0x14 and <undefined>; output
<undefined>

Branch: Inputs: PC+4 and 0x000000000000000A
4.5.4 ALU inputs: Reg[x13] and 0x0000000000000014

PC + 4 adder inputs: PC and 4

Branch adder inputs: PC and 0x0000000000000028

4.6
4.6.1 No additional logic blocks are needed.

4.6.2 Branch: false
MemRead: false (Seefootnote from solution to problem 4.1.1.)
MemToReg: 0
ALUop: 10 (or simply saying “add” is sufficient for this problem)
MemWrite: false
ALUsrc: 1
RegWrite: 1

4.7

4.7.1 R-type:30+ 250 + 150 + 25 + 200 + 25 + 20 = 700ps
4.7.2 1d:30+ 250 + 150 + 25 4+ 200 + 250 + 25 + 20 = 950 ps
4.7.3 sd:30+ 250 + 150 + 200 + 25 + 250 = 905

4.7.4 beq: 30 + 250 + 150 + 25 4+ 200 + 5 + 25 + 20 = 705
4.7.5 [-type:30+ 250 + 150 + 25 + 200 + 25 + 20 = 700ps
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4.7.6

4.8

4.9
4.9.1
4.9.2

4.9.3

4.10
4.10.1

950ps

Using the results from Problem 4.7, we see that the average time per
instruction is

.52*700 4 .25%950 + .11*905 + .12 * 705 = 785.6ps

In contrast, a single-cycle CPU with a “normal” clock would require a
clock cycle time of 950.

Thus, the speedup would be 925/787.6 = 1.174

Without improvement: 950; With improvement: 1250

The running time of a program on the original CPU is 950*n. The running
time on the improved CPU is 1250*(0.95)*n = 1187.5. Thus, the “speedup”
is 0.8. (Thus, this “improved” CPU is actually slower than the original).

Because adding a multiply instruction will remove 5% of the instructions,
the cycle time can grow to as much as 950/(0.95) = 1000. Thus, the time
for the ALU can increase by up to 50 (from 200 to 250).

The additional registers will allow us to remove 12% of the loads and
stores, or (0.12)*(0.25 + 0.1) = 4.2% of all instructions. Thus, the time to
run n instructions will decrease from 950*n to 960*.958*n = 919.68*n.
That corresponds to a speedup of 950/895.73 = 1.03.

4.10.2 The cost of the original CPU is 4507; the cost of the improved CPU is 4707.

PC:5

[-Mem: 1000
Register file: 200
ALU: 100
D-Mem: 2000
Sign Extend: 1002
Controls: 10002
adders: 30*24
muxes: 4¥102
single gates: 2*1

Thus, for a 3% increase in performance, the cost of the CPU increases by
about 4.4%.
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4.10.3

4.11

4.11.1
4.11.2
4.11.3
4.11.4

4.12
4.12.1
4.12.2

4.12.3

4.12.4
4.12.5

4.13

4.13.1
4.13.2
4.13.3

4.13.4

4.13.5

From a strictly mathematical standpoint it does not make sense to add
more registers because the new CPU costs more per unit of performance.
However, that simple calculation does not account for the utility of the
performance. For example, in a real-time system, a 3% performance may
make the difference between meeting or missing deadlines. In which case,
the improvement would be well worth the 4.4% additional cost.

No new functional blocks are needed.
Only the control unit needs modification.
No new data paths are needed.

No new signals are needed.

No new functional blocks are needed.

The register file needs to be modified so that it can write to two registers
in the same cycle. The ALU would also need to be modified to allow read
data 1 or 2 to be passed through to write data 1.

The answer depends on the answer given in 4.12.2: whichever input was
not allowed to pass through the ALU above must now have a data path to
write data 2.

There would need to be a second RegWrite control wire.

Many possible solutions.

We need some additional muxes to drive the data paths discussed in 4.13.3.
No functional blocks need to be modified.

There needs to be a path from the ALU output to data memory’s write
data port. There also needs to be a path from read data 2 directly to Data
memory’s Address input.

These new data paths will need to be driven by muxes. These muxes will
require control wires for the selector.

Many possible solutions.
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4.14

4.15
4.15.1

4.15.2

4.15.3

4.15.4

4.16

4.16.1
4.16.2
4.16.3
4.16.4
4.16.5

4.17

4.18

4.19

None: all instructions that use sign extend also use the register file, which
is slower.

The new clock cycle time would be 750. ALU and Data Memory will now
run in parallel, so we have effectively removed the faster of the two (the
ALU with time 200) from the critical path.

Slower. The original CPU takes 950*n picoseconds to run n instructions.
The same program will have approximately 1.35*n instructions when
compiled for the new machine. Thus, the time on the new machine will be
750*1.35n = 1012.5*n. This represents a “speedup” of .93.

The number of loads and stores is the primary factor. How the loads and
stores are used can also have an effect. For example, a program whose
loads and stores tend to be to only a few different address may also run
faster on the new machine.

This answer is a matter of opinion.

Pipelined: 350; non-pipelined: 1250

Pipelined: 1250; non-pipelined: 1250

Split the ID stage. This reduces the clock-cycle time to 300ps.

35%.

65%

n + k — 1. Let’s look at when each instruction is in the WB stage. In a
k-stage pipeline, the 1st instruction doesn’t enter the WB stage until cycle

k. From that point on, at most one of the remaining n — 1 instructions is
in the WB stage during every cycle.

This gives us a minimum of k 4+ (n — 1) =n + k — 1 cycles.
x13 =33 and x14 = 36

x15 = 54 (The code will run correctly because the result of the first
instruction is written back to the register file at the beginning of the 5th
cycle, whereas the final instruction reads the updated value of x1 during
the second half of this cycle.)
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4.20

4.21
4.21.1

4.21.2

4.21.3

4.21.4

4.21.5

4.22
4.22.1

4.22.2

addi x11, x12, 5
NOP
NOP
add x13, x11, x12
addi x14, x11, 15
NOP
add x15, x13, x12

Pipeline without forwarding requires 1.4*n*250ps. Pipeline with
forwarding requires 1.05*n*300ps. The speedup is therefore (1.4*250)/
(1.05*300) = 1.11.

Our goal is for the pipeline with forwarding to be faster than the
pipeline without forwarding. Let y be the number of stalls remaining
as a percentage of “code” instructions. Our goal is for 300*(1+y)*n
< 250*1.4*n. Thus, y must be less than 16.7%.

This time, our goal is for 300(1 + y)*n < 250(1 + x)*n. This happens when
y < (250x — 50)/300.

It cannot. In the best case, where forwarding eliminates the need for
every NOP, the program will take time 300*n to run on the pipeline with
forwarding. This is slower than the 250%1.075*n required on the pipeline
with no forwarding.

Speedup is not possible when the solution to 4.21.3 is less than 0. Solving
0< (250x — 50)/300 for x gives that x must be at least 0.2.

Stalls are marked with **:

sd x29, 12(x16) IF ID EX ME WB

1d x29, 8(x16) IF ID EX ME WB

sub x17, x15, x14 IF ID EX ME WB

bez x17, Tabel #*% ** TF ID EX ME WB

add x15, x11, x14 IF ID EX ME WB
sub x15,x30,x14 IF ID EX ME WB

Reordering code won’t help. Every instruction must be fetched; thus,
every data access causes a stall. Reordering code will just change the pair
of instructions that are in conflict.



Chapter 4 Solutions S-9

4.22.3 You can’t solve this structural hazard with NOPs, because even the NOPs

must be fetched from instruction memory.
4.22.4 35%. Every data access will cause a stall.
4.23
4.23.1 The clock period won't change because we aren’t making any changes to

the slowest stage.
4.23.2 Moving the MEM stage in parallel with the EX stage will eliminate the

need for a cycle between loads and operations that use the result of the

loads. This can potentially reduce the number of stalls in a program.
4.23.3 Removing the offset from 1d and sd may increase the total number of

instructions because some 1d and sd instructions will need to be replaced

withaaddi/1d or addi/sd pair.
4.24  The second one. A careful examination of Figure 4.59 shows that the need

for a stall is detected during the ID stage. It is this stage that prevents the

fetch of a new instruction, effectively causing the add to repeat its ID stage.
4.25
4.25.1 ... indicates a stall. ! indicates a stage that does not do useful work.
1d x10, 0(x13) IF ID EX ME | WB
1d x11, 8(x13) IF ID EX | ME WB
add x12, x10, x11 IF ID | .. EX ME! WB
addi x13, x13, -16 IF | .. ID EX ME! WB
bnez x12, LOOP | .. IF ID EX ME! WB!
1d x10, 0(x13) IF ID EX ME WB
1d x11, 8(x13) IF ID EX ME WB
add x12, x10, x11 IF ID .. EX | ME! WB
addi x13, x13, -16 IF .. ID | EX ME! WB
bnez x12, LOOP IF | ID EX ME! WB!
Completely busy [ N NN N N N N N |

4.25.2 In a particular clock cycle, a pipeline stage is not doing useful work if it
is stalled or if the instruction going through that stage is not doing any
useful work there. As the diagram above shows, there are not any cycles
during which every pipeline stage is doing useful work.
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4.26

4.26.1 // EX to 1st only:
add x11, x12, x13
add x14, x11, x15
add x5, x6, x7

// MEM to 1st only:
1d x11, 0(x12)

add x15, x11, x13
add x5, x6, x7

// EX to 2nd only:
add x11, x12, x13
add x5, x6, x7

add x14, x11, x12

// MEM to 2nd only:
1d x11, 0(x12)

add x5, x6, x7

add x14, x11, x13

// EX to 1st and EX to 2nd:
add x11, x12, x13
add x5, x11, x15
add x16, x11, x12

4.26.2 // EX to 1st only: 2 nops
add x11, x12, x13
nop
nop
add x14, x11, x15
add x5, x6, x7

// MEM to 1st only: 2 stalls
1d x11, 0(x12)

nop

nop

add x15, x11, x13

add x5, x6, x7

// EX to 2nd only: 1 nop
add x11, x12, x13

add x5, x6, x7

nop

add x14, x11, x12
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4.26.3

4.26.4

4.26.5

4.26.6

// MEM to 2nd only: 1 nop
1d x11, 0(x12)

add x5, x6, x7

nop

add x14, x11, x13

// EX to 1st and EX to 2nd: 2 nops
add x11, x12, x13

nop

nop

add x5, x11, x15

add x16, x11, x12

Consider this code:

1d x11, 0(x5) # MEM to 2nd --- one stall
add x12, x6, x7 # EX to 1st --- two stalls
add x13, x11, x12

add x28, x29, x30

If we analyze each instruction separately, we would calculate that we need
to add 3 stalls (one for a “MEM to 2nd” and two for an “EX to 1st only”.
However, as we can see below, we need only two stalls:

1d x11, 0(x5)

add x12, x6, x7
nop

nop

add x13, x11, x12
add x28, x29, x30

Taking a weighted average of the answers from 4.26.2 gives 0.05*2 4 0.2*2
+ 0.05*1 + 0.1*1 + 0.1*2 = 0.85 stalls per instruction (on average) for a
CPI of 1.85. This means that 0.85/1.85 cycles, or 46%, are stalls.

The only dependency that cannot be handled by forwarding is from the
MEM stage to the next instruction. Thus, 20% of instructions will generate
one stall for a CPI of 1.2. This means that 0.2 out of 1.2 cycles, or 17%, are
stalls.

If we forward from the EX/MEM register only, we have the following
stalls/NOPs

EX to 1st: 0
MEM to 1st: 2
EX to 2nd: 1
MEM to 2nd: 1
EX to 1st and 2nd: 1
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This represents an average of 0.05%0 + 0.2*2 + 0.05*1 4+ 0.10*1 4 0.10*1 =
0.65 stalls/instruction. Thus, the CPI is 1.65

IF we forward from MEM/WB only, we have the following stalls/NOPs

EX to Ist: 1
MEM to 1st: 1
EX to 2nd: 0
MEM to 2nd: 0
EX to 1st and 2nd: 1

This represents anaverage of 0.05%1 +0.2*1+40.1*1 =0.35 stalls/instruction.
Thus, the CPI is 1.35.

4.26.7
CPI 1.85 1.65 1.35 1.2
Period 120 120 1.20 130
Time 222n 198n 162n 156n

Speedup - 1.12 1.37 1.42

4.26.8 CPI for full forwarding is 1.2
CPI for “time travel” forwarding is 1.0
clock period for full forwarding is 130
clock period for “time travel” forwarding is 230
Speedup = (1.2*130)/ (1*230) = 0.68 (That means that “time travel”
forwarding actually slows the CPU.)

4.26.9 When considering the “EX/MEM” forwarding in 4.26.6, the “EX to 1st”
generates no stalls, but “EX to 1st and EX to 2nd” generates one stall.
However, “MEM to 1st” and “MEM to 1st and MEM to 2nd” will always
generate the same number of stalls. (All “MEM to 1st” dependencies
cause a stall, regardless of the type of forwarding. This stall causes the 2nd
instruction’s ID phase to overlap with the base instruction’s WB phase, in
which case no forwarding is needed.)

4.27

4.27.1 add x15, x12, x11
nop
nop

1d x13, 4(x15)
1d x12, 0(x2)
nop

or x13, x1b5, x13
nop

nop

sd x13, 0(x15)
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4.27.2 It is not possible to reduce the number of NOPs.

4.27.3 The code executes correctly. We need hazard detection only to insert a
stall when the instruction following a load uses the result of the load. That
does not happen in this case.

4.27.4
BTN : | 2 | 3 | 4 | s | e [ 7 [ 8 | |
add IF ID EX ME wB
1d IF ID EX ME 1
1d IF ID EX ME WB
or IF ID EX ME WB
sd IF ID EX ME | WB

Because there are no stalls in this code, PCWrite and IF/IDWrite are
always 1 and the mux before ID/EX is always set to pass the control values
through.

(1) ForwardA = X; ForwardB = X (no instruction in EX stage yet)
(2) ForwardA =X; ForwardB =X (no instruction in EX stage yet)

(3) ForwardA = 0; ForwardB = 0 (no forwarding; values taken from
registers)

(4) ForwardA = 2; ForwardB = 0 (base register taken from result of
previous instruction)

(5) ForwardA = 1; ForwardB = 1 (base reguster taken from result of two
instructions previous )

(6) ForwardA = 0; ForwardB = 2 (rsl = x15 taken from register;
rs2 = x13 taken from result of 1st ld—two instructions ago)

(7) ForwardA = 0; ForwardB = 2 (base register taken from register file.
Data to be written taken from previous instruction)

4.27.5 The hazard detection unit additionally needs the values of rd that comes
out of the MEM/WB register. The instruction that is currently in the ID
stage needs to be stalled if it depends on a value produced by (or forwarded
from) the instruction in the EX or the instruction in the MEM stage. So
we need to check the destination register of these two instructions. The
Hazard unit already has the value of rd from the EX/MEM register as
inputs, so we need only add the value from the MEM/WB register.

No additional outputs are needed. We can stall the pipeline using the three
output signals that we already have.

The value of rd from EX/MEM is needed to detect the data hazard
between the add and the following 1d. The value of rd form MEM/WB is
needed to detect the data hazard between the first 1d instruction and the
or instruction.
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4.27.6

4.28
4.28.1

4.28.2
4.28.3
4.28.4

4.28.5

YT+ | 2 | 3 | 4 | s | 6 |
add IF ID EX ME WB

1d IF ID - - EX
1d IF - - ID

(1) PCWrite = 1; IF/IDWrite = 1; control mux = 0
(2) PCWrite = 1; IF/IDWrite = 1; control mux = 0
(3) PCWrite = 1; IF/IDWrite = 1; control mux = 0
(4) PCWrite = 0; IF/IDWrite = 0; control mux = 1
(5) PCWrite = 0; IF/IDWrite = 0; control mux = 1

The CPI increases from 1 to 1.4125.

Anincorrectly predicted branch will cause three instructions to be flushed: the
instructions currently in the IE ID, and EX stages. (At this point, the branch
instruction reaches the MEM stage and updates the PC with the correct next
instruction.) In other words, 55% of the branches will result in the flushing of
three instructions, giving us a CPI of 1 + (1 — 0.45)(0.25)3 = 1.4125. (Just to
be clear: the always-taken predictor is correct 45% of the time, which means,
of course, that it is incorrect 1 — 0.45 = 55% of the time.)

The CPI increases from 1 to 1.3375. (1 + (.25)(1 — .55) = 1.1125)
The CPI increases from 1 to 1.1125. (1 + (.25)(1 — .85) = 1.0375)
The speedup is approximately 1.019.

Changing half of the branch instructions to an ALU instruction reduces
the percentage of instructions that are branches from 25% to 12.5%.
Because predicted and mispredicted branches are replaced equally, the
misprediction rate remains 15%. Thus, the new CPU is 1 + (.125)(1 — .85)
= 1.01875. This represents a speedup of 1.0375/ 1.01875 = 1.0184

The “speedup” is .91.

There are two ways to look at this problem. One way is to look at the
two ADD instruction as a branch with an “extra” cycle. Thus, half of the
branches have 1 extra cycle; 15% of the other half have 1 extra cycles
(the pipeline flush); and the remaining branches (those correctly
predicted) have no extra cycles. This gives us a CPI of 1 + (.5)(.25)*1 +
(.5)(.25)(.15)*1 = 1.14375 and a speedup of 1.0375 / 1.14375 = .91.

We can also treat the ADD instructions as separate instructions. The
modified program now has 1.125n instructions (half of 25% produce
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4.28.6

4.29
4.29.1

4.29.2

4.29.3

4.29.4

4.29.5

4.29.6

an extra instruction). .125n of these 1.125n instruction (or 11.1%) are
branches. The CPI for this new program is 1 + (.111)(.15)*1 = 1.01665.
When we factor in the 12.5% increase in instructions, we get a speedup of
1.0375/(1.125 ¥ 1.01665) = .91.

The predictor is 25% accurate on the remaining branches. We know that
80% of branches are always predicted correctly and the overall accuracy is
0.85. Thus, 0.8*1 4 0.2*x = 0.85. Solving for x shows that x = 0.25.

Always Taken Always not-taken
\ 3/5=60% \ 2/5 = 40% \
Predictor value at time Correct of Accuracy
of prediction Incorrect
| TNTTT | 0,1,0,1 \ LMl [ 25% |

The first few recurrences of this pattern do not have the same accuracy
as the later ones because the predictor is still warming up. To determine
the accuracy in the “steady state”, we must work through the branch
predictions until the predictor values start repeating (i.e. until the predictor
has the same value at the start of the current and the next recurrence of
the pattern).

Predictor value at time Correct of Incorrect Accuracy
of prediction (in steady state)
TNT, T, T, NT 1st occurrence: 0,1,0,1,2 C,I,C,C,l 60%
2nd occurrence: 1,2,1,2,3

3rd occurrence: 2,3,2,3,3
4th occurrence: 2,3,2,3,3

The predictor should be an N-bit shift register, where N is the number
of branch outcomes in the target pattern. The shift register should be
initialized with the pattern itself (0 for NT, 1 for T), and the prediction is
always the value in the leftmost bit of the shift register. The register should
be shifted after each predicted branch.

Since the predictor’s output is always the opposite of the actual outcome of
the branch instruction, the accuracy is zero.

The predictor is the same as in part d, except that it should compare its
prediction to the actual outcome and invert (logical NOT) all the bits in
the shift register if the prediction is incorrect. This predictor still always
perfectly predicts the given pattern. For the opposite pattern, the first
prediction will be incorrect, so the predictor’s state is inverted and after
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4.30
4.30.1

4.30.2

4.30.3

4.30.4

4.30.5

that the predictions are always correct. Overall, there is no warm-up
period for the given pattern, and the warm-up period for the opposite
pattern is only one branch.

| Invalid target address (EX) | Invalid data address (MEM)

The Mux that selects the next PC must have inputs added to it. Each input
is a constant address of an exception handler. The exception detectors
must be added to the appropriate pipeline stage and the outputs of these
detectors must be used to control the pre-PC Mux, and also to convert to
NOPs instructions that are already in the pipeline behind the exception-
triggering instruction.

Instructions are fetched normally until the exception is detected.
When the exception is detected, all instructions that are in the pipeline
after the first instruction must be converted to NOPs. As a result, the
second instruction never completes and does not affect pipeline state.
In the cycle that immediately follows the cycle in which the exception
is detected, the processor will fetch the first instruction of the exception
handler.

This approach requires us to fetch the address of the handler from memory.
We must add the code of the exception to the address of the exception
vector table, read the handler’s address from memory, and jump to that
address. One way of doing this is to handle it like a special instruction that
puts the address in EX, loads the handler’s address in MEM, and sets the
PCin WB.

We need a special instruction that allows us to move a value from the
(exception) Cause register to a general-purpose register. We must first
save the general-purpose register (so we can restore it later), load the
Cause register into it, add the address of the vector table to it, use the
result as an address for a load that gets the address of the right exception
handler from memory, and finally jump to that handler.
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4.31.2 The original code requires 10 cycles/loop on a 1-issue machine (stalls
shown below) and 10 cycles/loop on the 2-issue machine. This gives no
net speedup. (That’s a terrible result considering we nearly doubled the

hardware.) We know that the code takes 10 cycles/iteration

on the 2-issue machine because the first instruction in loop 1 (The slli)
begins execution in cycle 6 and the first instruction in iteration 3 begins

n cycle 26, so (26-6)/2 = 10.

amount of

execution i

1i x12,0
jal ENT
TOP:
sT1i xb,
add x6,
1d x7, 0
1d x29,
<stall>
sub x30,
add x31,
sd x30,
addi x12
ENT:
bne x12,

x12, 3
x10, x5
(x6)
8(x6)

x7, x29

x11, x5
0(x31)

, x12, 2

x13, TOP

4.31.3 Here is one possibility:

beqz x13, DONE
11 x12, O
jal ENT
TOP:
sT1i xb, x12, 3
add x6, x10, xb
1d x7, 0(x6)
1d x29, 8(x6)
addi x12, x12, 2
sub x30, x7, x29
add x31, x11, x5
sd x30, 0(x31)
ENT:
bne x12, x13, TOP
DONE:

If we switch to a “pointer-based” approach, we can save one cycle/loop.
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The code below does this:

for (i =0; 1 ! =73; i+ =2) {
*a - *(atl);

bez x13, DONE

1i x12, 0
jal ENT
TOP:

1d x7, 0(x10)

1d x29, 8(x10)

addi x12, x12, 2

sub x30, x7, x29

sd x30, 0(x11)

addi x10, x10, 16

addi x11, x11, 16
ENT:

bne x12,x13,TOP
DONE:

4.31.4 Here is one possibility:

beqz x13, DONE
1i x12, 0

TOP:
s11i xb, x12, 3

add x6, x10, x5

1d x7, 0(x6)
add x31, x11, x5

1d x29, 8(x6)
addi x12, x12, 2

sub x30, x7, x29

sd x30, 0(x31)

bne x12, x13, TOP
DONE:

If we switch to a “pointer-based” approach, we can save one cycle/loop.
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begz x13, DONE
19 x12, 0

s11i x5, x12, 3
add x6, x10, x5

1d x7, 0(x6)
add x31, x11, x5

1d x29, 8(x6)
addi x12, xlz2, 2

sub x30, x7, x29
sd x30, 0(x31)

bne x12, x13, TOP
s11i x5, x12, 3

add x6, x10, x5
1d x7, 0(x6)

add x31, x11, x5
1d x29, 8(x6)

addi x12, x12, 2
sub x30, x7, x29

sd x30, 0(x31)
bne x12, x13, TOP

s111i x5, x12, 3
add x6, x10, x5

The code below does this:
for (i =0; i ! =73; it =2) {
*b *a - *(a+l);
b=
at=<;

[SEOSIN]

beqz x13, DONE

1i x12, 0

TOP:
1d x7, 0(x6)
addi x12, x12, 2

1d x29, 8(x6)
addi x6, x6, 16

sub x30, x7, x29
sd x30, 0(x31)

bne x12, x13, TOP
DONE:

4.31.5

1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23
IF ID EX ME WB
IF ID .. EX ME WB

IF .. ID EX ME WB
IF .. ID .. EX ME WB

IF .. ID EX ME WB
IF .. ID EX ME WB

IF ID EX ME WB
IF ID EX ME WB

IF ID .. EX ME WB

IF ID .. .. EX ME WB
IF .. .. ID EX ME WB
IF .. .. ID .. EX ME WB

IF .. ID EX ME WB
IF .. ID .. EX ME WB

IF .. ID EX ME WB
IF .. ID EX ME WB

IF ID EX ME WB
IF ID .. EX ME WB

IF .. ID EX ME WB
IF .. ID EX ME WB

IF ID EX ME WB
IF ID .. EX ME WB

4.31.6 The code from 4.31.3 requires 9 cycles per iteration. The code from 4.31.5

requires 7.5 cycles per iteration. Thus, the speedup is 1.2.
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4.31.7 Here is one possibility:
beqz x13, DONE

1i x12, 0
TOP:
s11i xb, x12, 3
add x6, x10, x5
add x31, x11, x5
1d x7, 0(x6)
1d x29, 8(x6)
1d x5, 16(x6)
1d x15, 24(x6)
addi x12, x12, 4
sub x30, x7, x29
sub x14, x5, x15
sd x30, 0(x31)
sd x14, 16(x31)
bne x12, x13, TOP
DONE:

4.31.8 Here is one possibility:
beqz x13, DONE

1i x12, 0
addi x6, x10, O
TOP:
1d x7, 0(x6)
add x31, x11, x5
1d x29, 8(x6)
addi x12, x12, 4
1d x16, 16(x6)
s11i xb, x12, 3
1d x15, 24(x6)
sub x30, x7, x29
sd x30, 0(x31)
sub x14, x16, x15
sd x14, 16(x31)
add x6, x10, x5
bne x12,x13,TOP
DONE:

4.31.9 The code from 4.31.7 requires 13 cycles per unrolled iteration. This is equivalent to 6.5 cycles per
original iteration. The code from 4.30.4 requires 7.5 cycles per unrolled iteration. This is equivalent
to 3.75 cycles per original iteration. Thus, the speedup is 1.73.
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4.31.10 Using the same code as in 4.31.8, the new data path provides no net

4.32
4.32.1

4.32.2

4.32.3

4.32.4

4.32.5

4.32.6

improvement, because there are no stalls due to structural hazards.

The energy for the two designs is the same: I-Mem is read, two registers
are read, and a register is written. We have: 140p]J + 2*70p]J + 60j = 340p].

The instruction memory is read for all instructions. Every instruction also
results in two register reads (even if only one of those values is actually
used). A load instruction results in a memory read and a register write;
a store instruction results in a memory write; all other instructions result
in at most a single register write. Because the sum of memory read and
register write energy is larger than memory write energy, the worst-case
instruction is a load instruction. For the energy spent by a load, we have:
140p] + 2*70p] + 60p] + 140p] = 480p].

Instruction memory must be read for every instruction. However, we can
avoid reading registers whose values are not going to be used. To do this,
we must add RegRead1 and RegRead2 control inputs to the Registers unit
to enable or disable each register read. We must generate these control
signals quickly to avoid lengthening the clock cycle time. With these new
control signals, a load instruction results in only one register read (we still
must read the register used to generate the address), so our change saves
70p] (one register read) per load. This is a savings of 70/480 = 14.6%.

jal will benefit, because it need not read any registers at all. I-type
instructions will also benefit because they need only read one register. If
we add logic to detect x0 as a source register, then instructions such as
beqz (i.e. beq x0,...)and 11 (addi xn, xO0,...) could benefit as well.

Before the change, the Control unit decodes the instruction while
register reads are happening. After the change, the latencies of Control
and Register Read cannot be overlapped. This increases the latency of the
ID stage and could affect the processor’s clock cycle time if the ID stage
becomes the longest-latency stage. However, the sum of the latencies for
the register read (90ps) and control unit (150ps) are less than the current
250ps cycle time.

If memory is read in every cycle, the value is either needed (for a load
instruction), or it does not get past the WB Mux (for a non-load instruction
that writes to a register), or it does not get written to any register (all
other instructions, including branches and stalls). This change does not
affect clock cycle time because the clock cycle time must already allow
enough time for memory to be read in the MEM stage. It can affect overall
performance if the unused memory reads cause cache misses.
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4.33
4.33.1

4.33.2

4.33.3

4.33.4

The change also affects energy: A memory read occurs in every cycle
instead of only in cycles when a load instruction is in the MEM stage. This
increases the energy consumption by 140p]J during 75% of the 250ps clock
cycles. This corresponds to a consumption of approximately 0.46 Watts
(not counting any energy consumed as a result of cache misses).

To test for a stuck-at-0 fault on a wire, we need an instruction that puts
that wire to a value of 1 and has a different result if the value on the wire
is stuck at zero.

If the least significant bit of the write register line is stuck at zero, an
instruction that writes to an odd-numbered register will end up writing to
the even-numbered register. To test for this (1) place a value of 10 in x1,
35in x2, and 45 in x3, then (2) execute add x3, x1, x1.The value of
x3 is supposed to be 20. If bit 0 of the Write Register input to the registers
unit is stuck at zero, the value is written to x2 instead, which means that
x2 will be 40 and x3 will remain at 45.

The test for stuck-at-zero requires an instruction that sets the signal to 1;
and the test for stuck-at-1 requires an instruction that sets the signal to 0.
Because the signal cannot be both 0 and 1 in the same cycle, we cannot
test the same signal simultaneously for stuck-at-0 and stuck-at-1 using
only one instruction.

The test for stuck-at-1 is analogous to the stuck-at-0 test: (1) Place a value
of 10 in x1, 35 in x2, and 45 in x3, then (2) execute add x2, x1, xI.
The value of x2 is supposed to be 20. If bit 0 of the Write Register input
to the registers unit is stuck at 1, the value is written to x3 instead, which
means that x3 will be 40 and x2 will remain at 35.

The CPU is still usable. The “simplest” solution is to re-write the compiler
so that it uses odd-numbered registers only (not that writing compliers is
especially simple). We could also write a “translator” that would convert
machine code; however, this would be more complicated because the
translator would need to detect when two “colliding” registers are used
simultaneously and either (1) place one of the values in an unused register,
or (2) push that value onto the stack.

To test for this fault, we need an instruction for which MemRead is
set to 1, so it has to be 1d. The instruction also needs to have branch
set to 0, which is the case for ld. Finally, the instruction needs to have
a different result MemRead is incorrectly set to 0. For a load, setting
MemRead to 0 results in not reading memory. When this happens, the
value placed in the register is “random” (whatever happened to be at
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4.33.5

the output of the memory unit). Unfortunately, this “random” value
can be the same as the one already in the register, so this test is not
conclusive.

Only R-type instructions set RegRd to 1. Most R-type instructions
would fail to detect this error because reads are non-destructive—the
erroneous read would simply be ignored. However, suppose we issued this
instruction: add x1, x0, xO0.In this case, if MemRead were incorrectly
set to 1, the data memory would attempt to read the value in memory
location 0. In many operating systems, address 0 can only be accessed by
a process running in protected/kernel mode. If this is the case, then this
instruction would cause a segmentation fault in the presence of this error.
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5.1
5.1.1 2.

5.1.2 I, ], and B[I][0].

5.1.3 A[I][]].

5.1.4 I,],and B[I][0].
5.1.5 A(J,I) and B[I][0].

5.1.6 32,004 with Matlab. 32,008 with C.
The code references 88000 = 64,000 integers from matrix A. At two integers

per 16-byte block, we need 32,000 blocks.

The code also references the first element in each of eight rows of Matrix B.
Matlab stores matrix data in column-major order; therefore, all eight
integers are contiguous and fit in four blocks. C stores matrix data in row-
major order; therefore, the first element of each row is in a different block.

5.2
5.2.1
| Word Address | Binary Address | Tag | Index | Hit/Miss |

0x03 0000 0011 0 3 M
Oxb4 1011 0100 b 4 M
Ox2b 0010 1011 2 b M
0x02 0000 0010 0 2 M
Oxbf 1011 1111 b f M
0x58 0101 1000 5 8 M
Oxbe 1011 1110 b e M
OxOe 0000 1110 0 e M
Oxb5 1011 0101 b 5 M
Ox2c 0010 1100 2 c M
Oxba 1011 1010 b a M
Oxfd 1111 1101 f d M

5.2.2

| Word Address | Binary Address | Tag | Index | Offset | Hit/Miss |

0x03 0000 0011 0 1 1 M
Oxb4 1011 0100 b 2 0 M
0x2b 0010 1011 2 5 1 M
0x02 0000 0010 0 1 0 H
Oxbf 1011 1111 b 7 1 M
0x58 0101 1000 5 4 0 M
Oxbe 1011 1110 b 6 0 H
0x0e 0000 1110 0 7 0 M
O0xb5 1011 0101 b 2 1 H
O0x2¢ 0010 1100 2 6 0 M
Oxba 1011 1010 b 5 0 M
Oxfd 1111 1101 f 6 1 M
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5.2.3

Cache 1 Cache 2 Cache 3
Word Binary
Address Address Hit/miss Hit/miss Hit/miss
M M M

0x03 0000 0011 | Ox00
Oxb4 1011 0100 | Ox16
Ox2b 0010 1011 | Ox05
0x02 0000 0010 | Ox00
Oxbf 1011 1111 | Ox17
0x58 0101 1000 | OxOb
Oxbe 1011 1110 | Ox17
0x0e 0000 1110 | Ox01
0xb5 1011 0101 | Ox16
Ox2c 0010 1100 | Ox05
Oxba 1011 1010 | Ox17
Oxfd 1111 1101 | Ox1F

NIPINNWWO|W(FL,|FP,INP

RrlOo|kr|kr|kr|kr|O|Rr|O|lO|R| O

OIN ||| |0 NN W|d| W
N EAEAED ED EED EY E
T 2T Z|ZNIZIZIEIZEIZ
FHEAEdEAEd AR RS

Cache 1 miss rate = 100%

Cache 1 total cycles=12x 25+ 12X 2 =324
Cache 2 miss rate = 10/12 = 83%

Cache 2 total cycles =10 X 25 + 12 X 3 =286
Cache 3 missrate =11/12=92%

Cache 3 total cycles =11 X 25+ 12 X 5=335

Cache 2 provides the best performance.

5.3
5.3.1 Total size is 364,544 bits = 45,568 bytes

Each word is 8 bytes; each block contains two words; thus, each block contains
16 = 274 bytes.

The cache contains 32KiB = 2/\1f data. Thus, it has 2A15/2A4 = 2A11
lines of data. N\A

Each 64-bit address is divided into: (IW) a 1-bit block offset,
(3) an 11-bit index (because there are 1 lines), and (4) a 49-bit tag (64 —3 — 1
— 11 =49).

The cache is composed of: 2415 * 8 bits of data + 2/11*49 bits of tag + 2A11*1
valid bits = 364,544 bits.
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5.3.2 549,376 bits = 68,672 bytes. This is a 51% increase.

Each word is 8 bytes; each block contains 16 words; thus, each block contains
128 = 2A7 bytes.

The cache contains 64KiB = 2716 bytes of data. Thus, it has 2A16/2A7 = 29 lines
of data.

Each 64-bit address is divided into: (1) a 3-bit word offset, (2) a 4-bit block offset,
(3) a9-bit index (because there are 279 lines), and (4) a 48-bit tag (64 —3 -4 -9
=48).

The cache is composed of: 216 * 8 bits of data + 2/9*48 bits of tag + 2A9*1 valid
bits = 549,376 bits

5.3.3 The larger block size may require an increased hit time and an increased
miss penalty than the original cache. The fewer number of blocks may cause a higher
conflict miss rate than the original cache.

5.3.4 Associative caches are designed to reduce the rate of conflict misses. As such,
a sequence of read requests with the same 12-bit index field but a different tag field
will generate many misses. For the cache described above, the sequence 0, 32768, 0,
32768, 0, 32768, ..., would miss on every access, while a two-way set associate cache
with LRU replacement, even one with a significantly smaller overall capacity, would
hit on every access after the first two.

5.4 Yes it is possible. To implement a direct-mapped cache, we need only a
function that will take an address as input and produce a 10-bit output. Although
it is possible to implement a cache in this manner, it is not clear that such an
implementation will be beneficial. (1) The cache would require a larger tag and (2)
there would likely be more conflict misses.

5.5

5.5.1 Each cache block consists of four 8-byte words. The total offset is 5 bits.
Three of those 5 bits is the word offset (the offset into an 8-byte word). The
remaining two bits are the block offset. Two bits allows us to enumerate 2A2 = 4
words.

5.5.2 There are five index bits. This tells us there are 2A5 = 32 lines in the cache.

5.5.3 Theratio is 1.21. The cache stores a total of 32 lines * 4 words/block * 8 bytes/
word = 1024 bytes = 8192 bits.

In addition to the data, each line contains 54 tag bits and 1 valid bit. Thus,
the total bits required = 8192 4 54*32 + 1*32 = 9952 bits.
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Bytes
Byte Address | Binary Address Offset | Hit/Miss | Replaced

0x00 0000 0000 0000 0x00 0x00

0x04 0000 0000 0100 0x0 0x00 0x04 H

0x10 0000 0001 0000 0x0 0x00 0x10 H

0x84 0000 1000 0100 0x0 0x04 0x04 M

0xe8 0000 1110 1000 0x0 0x07 0x08 M

0xa0 0000 1010 0000 0x0 0x05 0x00 M

0x400 0100 0000 0000 Ox1 0x00 0x00 M 0x00-0x1F
Oxle 0000 0001 1110 0x0 0x00 Oxle M 0x400-0x41F
0x8¢c 0000 1000 1100 0x0 0x04 0x0c H

Oxclc 1100 0001 1100 0x3 0x00 Oxlc M 0x00-Ox1F
Oxb4 0000 1011 0100 0x0 0x05 0x14 H

0x884 1000 1000 0100 0x2 0x04 0x04 M 0x80-0x9f

5.5.5 4/12=33%.

5.5.6 <index, tag, data>
<0, 3, Mem[0xCO0J-Mem[OxCI1FI>
<4, 2, Mem[0x880]1-Mem[0x89f]>
<5, 0, Mem[Ox0AQ]-Mem[OxO0Bf]>
<7, 0, Mem[0x0e0]-Mem[0xO0ff]>

5.6

5.6.1 The L1 cache has alow write miss penalty while the L2 cache has a high write
miss penalty. A write buffer between the L1 and L2 cache would hide the write miss
latency of the L2 cache. The L2 cache would benefit from write buffers when
replacing a dirty block, since the new block would be read in before the dirty block
is physically written to memory.

5.6.2 On an L1 write miss, the word is written directly to L2 without bringing its
block into the L1 cache. If this results in an L2 miss, its block must be brought into
the L2 cache, possibly replacing a dirty block, which must first be written to memory.

5.6.3 Afteran L1 write miss, the block will reside in L2 but not in L1. A subsequent
read miss on the same block will require that the block in L2 be written back to
memory, transferred to L1, and invalidated in L2.
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5.7

5.7.1 When the CPI is 2, there are, on average, 0.5 instruction accesses per cycle.
0.3% of these instruction accesses cause a cache miss (and subsequent memory
request). Assuming each miss requests one block, instruction accesses generate an
average of 0.5*.003*64 = 0.096 bytes/cycle of read traffic.

25% of instructions generate a read request. 2% of these generate a cache miss;
thus, read misses generate an average of 0.5%0.25%0.02*64 = 0.16 bytes/cycle of
read traffic.

10% of instructions generate a write request. 2% of these generate a cache miss.
Because the cache is a write-through cache, only one word (8 bytes) must be
written back to memory; but, every write is written through to memory (not just
the cache misses). Thus, write misses generate an average of 0.5%0.1*8 = 0.4 bytes/
cycle of write traffic. Because the cache is a write-allocate cache, a write miss also
makes a read request to RAM. Thus, write misses require an average of
0.5*0.1*0.02*64 = 0.064 bytes/cycle of read traffic.

Hence: The total read bandwidth = 0.096 + 0.16 + 0.064 = 0.32 bytes/cycle, and
the total write bandwidth is 0.4 bytes/cycle.
5.7.2 Theinstruction and data read bandwidth requirement is the same as in 5.4.4.

With a write-back cache, data are only written to memory on a cache miss. But, it
is written on every cache miss (both read and write), because any line could have
dirty data when evicted, even if the eviction is caused by a read request. Thus, the
data write bandwidth requirement becomes 0.5%(0.25 + 0.1)*0.02*0.3*64 =
0.0672 bytes/cycle.

5.8

5.8.1 The addresses are given as word addresses; each 32-bit block contains four
words. Thus, every fourth access will be a miss (i.e., a miss rate of 1/4). All misses are
compulsory misses. The miss rate is not sensitive to the size of the cache or the size
of the working set. It is, however, sensitive to the access pattern and block size.

5.8.2 The missratesare 1/2,1/8,and 1/16, respectively. The workload is exploiting
spatial locality.

5.8.3 In this case the miss rate is 0: The pre-fetch buffer always has the next request
ready.

5.9

5.9.1 AMAT for B = 8:0.040 X (20 X 8) = 6.40
AMAT for B = 16: 0.030 X (20 X 16) = 9.60
AMAT for B = 32: 0.020 X (20 X 32) = 12.80
AMAT for B=64:0.015 X (20 X 64) = 19.20
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AMAT for B=128:0.010 x (20 X 128) = 25.60
B =8 is optimal.

5.9.2 AMAT for B = 8:0.040 X (24 + 8) = 1.28
AMAT for B=16:0.030 X (24 + 16) = 1.20
AMAT for B = 32:0.020 X (24 +32) = 1.12
AMAT for B = 64: 0.015 X (24 + 64) = 1.32
AMAT for B = 128: 0.010 X (24 + 128) = 1.52
B =32 is optimal

5.9.3 B = 128 is optimal: Minimizing the miss rate minimizes the total miss
latency.

5.10
5.10.1
P1 1.515GHz
P2 1.11GHz
5.10.2
P1 6.31ns 9.56 cycles
P2 5.11ns 5.68 cycles

For P1 all memory accesses require at least one cycle (to access L1). 8% of memory
accesses additionally require a 70ns access to main memory. This is 70/0.66 =
106.06 cycles. However, we can’t divide cycles; therefore, we must round up to 107

cycles. Thus, the Average Memory Access time is 1 + 0.08*107 = 9.56 cycles, or
6.31ps.

For P2, a main memory access takes 70 ns. This is 70/0.66 = 77.78 cycles. Because
we can’t divide cycles, we must round up to 78 cycles. Thus the Average Memory
Access time is 1 + 0.06%78 = 5.68 cycles, or 6.11 ps.

5.10.3
P1 12.64 CPI 8.34ns per inst
P2 7.36 CPI 6.63ns per inst

For P1, every instruction requires at least one cycle. In addition, 8% of all
instructions miss in the instruction cache and incur a 107-cycle delay.
Furthermore, 36% of the instructions are data accesses. 8% of these 36% are cache
misses, which adds an additional 107 cycles.

1+.08*107 +.36*.08%107 = 12.64
With a clock cycle of 0.66 ps, each instruction requires 8.34 ns.

Using the same logic, we can see that P2 has a CPI of 7.36 and an average of only
6.63 ns/instruction.
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5.10.4

|AMAT = 9.85 cycles | Worse |

An L2 access requires nine cycles (5.62/0.66 rounded up to the next integer).

All memory accesses require at least one cycle. 8% of memory accesses miss in the
L1 cache and make an L2 access, which takes nine cycles. 95% of all L2 access are
misses and require a 107 cycle memory lookup.

1 +.08[9+0.95%107] =9.85

5.10.5

Notice that we can compute the answer to 5.6.3 as follows: AMAT + %memory *
(AMAT-1).

Using this formula, we see that the CPI for P1 with an L2 cache is 9.85* 0.36*8.85 =
13.04

5.10.6 Because the clock cycle time and percentage of memory instructions is the
same for both versions of P1, it is sufficient to focus on AMAT. We want

AMAT with L2 < AMAT with L1 only
1+0.08[9+ m*107] <9.56
This happens when m< .916.

5.10.7 We want PI’s average time per instruction to be less than 6.63ns. This
means that we want

(CPI_P1*0.66) < 6.63. Thus, we need CPI_P1 < 10.05

CPI_P1=AMAT_PI + 0.36(AMAT_P1 - 1)

Thus, we want

AMAT_P1+ 0.36(AMAT_P1-1) < 10.05

This happens when AMAT_P1< 7.65.

Finally, we solve for

1+ 0.08[9+ m*107] < 7.65

and find that

m< 0.693

This miss rate can be at most 69.3%.

5.11

5.11.1 Each line in the cache will have a total of six blocks (two in each of three
ways). There will be a total of 48/6 = 8 lines.
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5.11.2 T(x) is the tag at index x.

Word Binary
Address | Address Hit/Miss
M

ox03 | 00000011 | ox0 [ 1] ] [1 ) T(1)=0
Oxb4 | 10110100 | Oxb (y /]| w T(1)=0
T(2)=b
0x2b | 00101011 | Ox2 1 M T(1)=0
T(2)=b
T(5)=2
0x02 | 00000010 | Ox0 1 0 H T(1)=0
T(2)=b
T(5)=2
T(1)=0
Oxbe | 10111110 | Oxb 7 0 M o
T(5)=2
T(7)=b
0x58 | 01011000 | Ox5 4 0 M T(1)=0
T(2)=b
T(5)=2
T(7)=b
T(4)=5
Oxbf | 10111111 | Oxb 7 1 H T(1)=0
T(2)=b
T(5)=2
T(7)=b
T(4)=5
0x0e | 00001110 | OxO 7 0 M T(1)=0 | T(7)=0
T(2)=b
T(5)=2
T(7)=b
T(4)=5
oxif | 00011111 | OxL 7 1 M TW)=0 | T(7)=0 | T(7)=1
T(2)=b
T(5)=2
T(7)=b
T(4)=5
0xb5 | 10110101 | Oxb 2 1 H T1)=0 | T(7)=0 | T(7)=1
T(2)=b
T(5)=2
T(7)=b
T(4)=5
Oxbf | 1011 1111 | Oxb 7 1 H TW)=0 | T(7)=0 | T(7)=1
T(2)=b
T(5)=2
T(7)=b
T(4)=5
Oxba | 10111010 | Oxb 5 0 M TW)=0 | T(7)=2 | T(7)=1
T2)=b | T(5)=b
T(5)=2
T(7)=b
T(4)=5
Ox2e | 00101110 | Ox2 7 0 M TW=0 | T(7)=2 | T(7)=1
T2)=b | T(B)=b
T(5)=2
T(7)=b
T(4)=5
Oxce | 11001110 | Oxc 7 0 M TW)=0 | T(7)=2 | T(7)=c
T2)=b | T(5)=b
T(5)=2
T(7)=b
T(4)=5
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5.11.3 No solution given.

5.11.4 Because this cache is fully associative and has one-word blocks, there is no

index and no offset. Consequently, the word address is equivalent to the tag.

Word
Address Binary Address Hit/Miss

5.11.5 No solution given.

5.11.6 Because this cache is fully associative, there is no index. (Contents shown

0x03 0000 0011 0x03

Oxb4 1011 0100 Oxb4 M 3, b4

0x2b 0010 1011 0x2b M 3, b4, 2b

0x02 0000 0010 0x02 M 3,b4,2b,2

Oxbe 1011 1110 Oxbe M 3, b4, 2b, 2, be
0x58 0101 1000 0x58 M 3, b4, 2b, 2, be, 58
Oxbf 1011 1111 Oxbf M 3, b4, 2b, 2, be, 58, bf
Ox0e 0000 1110 Ox0e M 3, b4, 2b, 2, be, 58, bf, e
Ox1f 0001 1111 Ox1f M b4, 2b, 2, be, 58, bf, e, 1f
Oxb5 1011 0101 Oxb5 M 2b, 2, be, 58, bf, e, 1f, b5
Oxbf 1011 1111 Oxbf H 2b, 2, be, 58, e, 1f, b5, bf
Oxba 1011 1010 Oxba M 2, be, 58, e, 1f, b5, bf, ba
Ox2e 0010 1110 Ox2e M be, 58, e, 1f, b5, bf, ba, 2e
Oxce 1100 1110 Oxce M 58, e, 1f, b5, bf, ba, 2e, ce

in the order the data were accessed. Order does not imply physical location.)

Word Binary
Address Address Offset | Hit/Miss Contents

0x03 0000 0011 0x01 [2,3]
Oxb4 10111 0100 0%5a 0 M [2,3], [b4,b5]

0x2b 0010 1011 ox15 1 M [2,3], [b4,b5], [2a,2b]

0x02 0000 0010 0x01 0 H [b4,b5], [2a,2b], [2,3]

Oxbe 1011 1110 Ox5f 0 M [b4,b5], [2a,2b], [2,3], [be, bf]
0x58 0101 1000 0x2¢ 0 M [2a,2b], [2,3], [be, bf], [68, 59]
Oxbf 1011 1111 Ox5f 1 H [2a,2b], [2,3], [58, 591, [be, bf]
0x0e 0000 1110 0x07 0 M [2,3], [58, 59], [be, bf], [e,f]
ox1f 0001 1111 0xOf 1 M [58, 59], [be, bf], [,f], [1e,1f]
0xb5 1011 0101 Ox5a 1 M [be, bf], [e,f], [1e,1f], [b4, b5]
Oxbf 1011 1111 Ox5f 1 H le,f], [1e,1f], [b4, b5], [be, bf]
Oxba 1011 1010 0x5d 0 M [1e,1f], [b4, b5], [be, bf], [ba, bb]
ox2e 0010 1110 ox17 0 M [b4, b5], [be, bf], [ba, bb], [2e, 2f]
Oxce 1100 1110 0x67 0 M [be, bfl, [ba, bb], [2e, 2f], [ce,cf]
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5.11.7 (Contents shown in the order the data were accessed. Order does not
imply physical location.)

Word Binary
Address Address Hit/Miss

0x03 0000 0011 0x01 1 [2,3]
Oxb4 1011 0100 Ox5a 0 M [2,3], [b4,b5]

0x2b 0010 1011 ox15 1 M [2,3], [b4,b5], [2a,2b]
0x02 0000 0010 0x01 0 H [b4,b5], [2a,2b], [2,3]
Oxbe 1011 1110 Ox5f 0 M [b4,b5], [2a,2b], [2,3], [be, bf]
0x58 0101 1000 0x2c 0 M [b4,b5], [2a,2b], [2,3], [58, 59]
Oxbf 1011 1111 Ox5f 1 M [b4,b5], [2a,2b], [2,3], [be, bf]
0x0e 0000 1110 0x07 0 M [b4,b5], [2a,2b], [2,3], [e, f]
ox1f 0001 1111 oxof 1 M [b4,b5], [2a,2b], [2,3], [1e, 1f]
0xb5 1011 0101 Ox5a 1 H [2a,2b], [2,3], [1e, 1f], [b4,b5]
Oxbf 1011 1111 Ox5f 1 M [2a,2b], [2,3], [1e, 1f], [be, bf]
Oxba 1011 1010 0x5d 0 M [2a,2b], [2,3], [1e, 1f], [ba, bb]
Ox2e 0010 1110 0x17 0 M [2a,2b], [2,3], [Le, 1f], [2e, 2f]
Oxce 1100 1110 0x67 0 M [2a,2b], [2,3], [1e, 1f],, [ce, cf]

5.11.8 Because this cache is fully associative, there is no index.

Word Binary
Address Address Hit/Miss

0x03 0000 0011 0x01 1 12,3]
Oxb4 1011 0100 Ox5a 0 M [2,3], [b4,b5]
0x2b 0010 1011 ox15 1 M [2,3], [4,b5], [2a,2b]
0x02 0000 0010 0x01 0 H [2,3], [b4,b5], [2a,2b]
Oxbe 1011 1110 Ox5f 0 M [2,3], [b4,b5], [2a,2b], [be, bf]
_0x58 0101 1000 0x2¢ 0 M [58,59], [b4,b5], [2a,2b], [be, bf]
Sedpy | 10111112 Ox5f 1 H [58,59], [b4,b5], [2a,2b], [be, bf]
0x0e 0000 1110 0x07 0 M le,f], [b4,b5], [2a,2b], [be, bf]
Ot | 00011111 0x0f 1 M [1e,1f], [b4,b5], [2a,2b], [be, bf]
0xb5 1011 0101 Ox5a 1 H [1e,1f], [b4,b5], [2a,2b], [be, bf]
Oxbf ) | 10111111 Ox5f 1 H [1e,1f], [b4,b5], [2a,2b], [be, bf]
“Oxba 1011 1010 Ox5d 0 M [1e,1f], [b4,b5], [ba,bb], [be, bf]
0x2e 0010 1110 0x17 0 M [1e,1f], [b4,b5], [2e,2f], [be, bf]
Oxce 1100 1110 0x87 0 M [1e,1f], [b4,b5], [ce,cf], [be, bf]
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5.12

5.12.1 Standard memory time: Each cycle on a 2-Ghz machine takes 0.5 ps. Thus,
a main memory access requires 100/0.5 = 200 cycles.

m LI only: 1.5 4+ 0.07%200 = 15.5
m Direct mapped L2: 1.5 + .07 X (12 4+ 0.035 X 200) = 2.83
B 8-way set associated L2: 1.5 4 .07 X (28 + 0.015 X 200) = 3.67.
Doubled memory access time (thus, a main memory access requires 400 cycles)
m LI only: 1.5 4 0.07*400 = 29.5 (90% increase)
m Direct mapped L2: 1.5 + .07 X (12 + 0.035 X 400) = 3.32 (17% increase)
B 8-way set associated L2: 1.5+ .07 X (28 4+ 0.015 X 400) = 3.88 (5% increase).

5.12.2 1.5=0.07 X (12 + 0.035 X (50 + 0.013 X 100)) = 2.47

Adding the L3 cache does reduce the overall memory access time, which is the main
advantage of having an L3 cache. The disadvantage is that the L3 cache takes real
estate away from having other types of resources, such as functional units.

5.12.3 No size will achieve the performance goal.

We want the CPI of the CPU with an external L2 cache to be at most 2.83. Let x be
the necessary miss rate.

1.5+ 0.07*(50 + x*200) < 2.83

Solving for x gives that x < — 0.155. This means that even if the miss rate of the L2
cache was 0, a 50-ns access time gives a CPI of 1.5 + 0.07*(50 + 0*200) = 5, which is
greater than the 2.83 given by the on-chip L2 caches. As such, no size will achieve
the performance goal.

5.13
5.13.1

(3yearsand 1day | 1096 days | 26304 hours
5.13.2

1095/1096 = 99.90875912% |

5.13.3 Availability approaches 1.0. With the emergence of inexpensive drives,
having a nearly 0 replacement time for hardware is quite feasible. However, replacing
file systems and other data can take significant time. Although a drive manufacturer
will not include this time in their statistics, it is certainly a part of replacing a disk.

5.13.4 MTTRbecomes the dominant factor in determining availability. However,
availability would be quite high if MTTF also grew measurably. If MTTF is 1000
times MTTR, it the specific value of MTTR is not significant.
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5.14

5.14.1 9.For SEC, we need to find minimum p such that 2P > =p + d + 1 and then
add one. That gives us p = 8. We then need to add one more bit for SEC/DED.

5.14.2 The (72,64) code described in the chapter requires an overhead of 8/64 =
12.5% additional bits to tolerate the loss of any single bit within 72 bits, providing a
protection rate of 1.4%. The (137,128) code from part a requires an overhead of
9/128 = 7.0% additional bits to tolerate the loss of any single bit within 137 bits,
providing a protection rate of 0.73%. The cost/performance of both codes is as
follows:

(72,64) code = >12.5/1.4 = 8.9

(136,128) code = >7.0/0.73 = 9.6

The (72,64) code has better cost/performance ratio.
5.14.3 Using the bit numbering from Section 5.5, bit 8 is in error so the value
would be corrected to 0x365.
5.15 Instructors can change the disk latency, transfer rate and optimal page size
for more variants. Refer to Jim Gray’s paper on the 5-minute rule 10 years later.
5.15.1 32KB.

To solve this problem, I used the following gnuplot command and looked for the
maximum.

plot [16:128] Tog((x*1024/128) *0.7)/(Tog(2)*(10 + 0.1*x))

5.15.2 Still 32 KB. (Modify the gnuplot command above by changing 0.7 to 0.5.)

5.15.3 64 KB. Because the disk bandwidth grows much faster than seek latency,
future paging cost will be more close to constant, thus favoring larger pages.

1987/1997/2007: 205/267/308 seconds. (or roughly five minutes).
1987/1997/2007: 51/533/4935 seconds. (or 10 times longer for every 10 years).

5.15.4 (1) DRAM cost/MB scaling trend dramatically slows down; or (2) disk
$/access/sec dramatically increase. (2) is more likely to happen due to the emerging
flash technology.
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5.16
5.16.1

Virtual Page | TLB H/M

— o T

TLB
Physical Page
12

TLB mi L °

4669 bThit E ! 4
0x123d PF 1 3 6
1 (last access 0) 1 13

1 (last access 1) 0 5

2227 TLB miss 1 ’ 4
0x08b3 PT hit 1 3 6
1 (last access 0) 1 13

1 (last access 1) 0 5

13916 TLB miss 1 ! 4
0x365¢c PT hit 1 (last access 2) 3 6
1 (last access 0) 1 13

1 (last access 1) 0 5

34587 TLB miss | 1 (jast access 3) 8 14
0x871b PTPE't 1 (last access 2) 3 6
1 (last access 0) 1 13

1 (last access 1) 0 5

48870 TLB miss | 1 (last access 3) 8 14
Oxbee6 PT hit 1 (last access 2) 3 6
1 (last access 4) b 12

1 (last access 1) 0 5

12608 TLB miss | 1 (last access 3) 8 14
0x3140 PT hit 1 (last access 5) 3 6
1 (last access 4) b 12

1 (last access 6) c 15

49225 TLB miss | 1 (jast access 3) 8 14
0xc040 PTP?'t 1 (last access 5) 3 6
1 (last access 4) b 12
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5.16.2
I TR
1.8 H/M [ Valid | Tag | Physical Pago
1 11 12
4669 1 TLB miss 1 7 4
0x123d PT hit 1 3 6
1 (last access 0) 0 5
1 11 12
2227 o TLB hit 1 7 4
0x08b3 1 3 6
1 (last access 1) 0 5
1 11 12
13916 0 TLB hit 1 7 4
0x365¢ PT hit 1 3 6
1 (last access 2) 0 5
1 (last access 3) 2 13
34587 ) TLB miss 1 7 4
0x871b it 1 3 6
PF
2 0 5
1 (last access 4) 2 13
48870 5 TLB hit 1 ! 4
Oxbee6 PT hit 1 3 6
1 (last access 2) 0 5
1 (last access 4) 2 13
12608 o TLB hit 1 ! 4
0x3140 PT hit 1 3 6
5 0 5
1 (last access 4) 2 13
49225 3 TLB hit 1 ’ 4
0xc040 PT hit 1 (last access 6) 3 6
1 (last access 5) 0 5

A larger page size reduces the TLB miss rate but can lead to higher fragmentation
and lower utilization of the physical memory.
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5.16.3 Two-way set associative

Physical
Page

Virtual
Address Page

0
4669 TLB miss 1 7 4 1
0x123d 1 0 1 P'Llr;it 1 3 5 0
1 (last access 0) | O 13 1
1 (lastaccess 1) | O 5 0
2227 TLB miss 1 7 4 1
0x08b3 0 0 0 PT hit 1 3 6 0
1 (lastaccess 0) | O 13 1
1 (lastaccess 1) | O 5 0
13916 TLB miss | 1 (lastaccess 2) | 1 6 1
0x365¢ 3 1 1 PT hit 1 3 6 0
1 (lastaccess 0) | 1 13 1
1 (lastaccess 1) | O 5 0
34587 TLB miss | 1 (last access 2) | 1 6 1
0x871b 8 4 0 PTPEit 1 (last access 3) | 4 14 0
1 (lastaccess 0) | 1 13 1
1 (lastaccess 1) | O 5 0
48870 b 5 . TLB miss | 1 (lastaccess 2) | 1 6 1
Oxbee6 PT hit |1 (last access 3) | 4 14 0
1 (lastaccess 4)| 5 12 1
1 (lastaccess 1) | O 5 0
12608 TLB hit | 1 (lastaccess 5) | 1 6 1
0x3140 3 1 1 PThit |1 (lastaccess3)| 4 14 0
1 (lastaccess 4) | 5 12 1
1 (last access 6) | 6 15 0
49225 TLB miss | 1 (jast access 5) | 1 6 1
0xc049 ¢ 6 0 PT:]Fi s (last access 3) | 4 14 0
1 (lastaccess 4)| 5 12 1
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5.16.4 Direct mapped

Virtual TLB Physical
Address Page H/M Page
12

1 b 0
4669 TLB miss 1 0 13 1

0x123d 1 0 1 PTP lr:m 1 3 6 5
0 4 9 3

1 0 5 0

2227 TLB miss 1 Y 13 1

0x08b3 0 0 0 PT hit 1 3 6 2
0 4 9 3

1 0 5 0

13916 3 o 3 | TLBmiss 1 Y 13 1
0x365¢ PT hit 1 3 6 2
1 0 6 3

1 2 14 0

34587 TLB miss 1 0 13 1
0x871b 8 2 0 PLE” 1 3 6 >
1 0 6 3

1 2 14 0

48870 X ) 5 | TLBmiss 1 0 13 1
Oxbee6 PT hit 1 3 6 2
1 2 12 3

1 2 14 0

12608 3 o 3 TLB hit 1 0 13 1
0x3140 PT hit 1 3 6 2
1 0 6 3

1 3 15 0

49225 TLB miss 1 0 13 1
0xc049 c 3 0 PT l;n':iss 1 3 6 >
1 0 6 3

5.16.5 Withouta TLB, almost every memory access would require two accesses to
RAM: An access to the page table, followed by an access to the requested data.

5.17

5.17.1 The tagsize is 32-10g2(8192) = 32-13 = 19 bits. All five page tables would
require 5 X (2719 x 4) bytes = 10 MB.

5.17.2 In the two-level approach, the 2719 page table entries are divided into 256
segments that are allocated on demand. Each of the second-level tables contains
2/ (19 — 8) = 2048 entries, requiring 2048 X 4 = 8 KB each and covering 2048 x 8 KB
=16 MB (2/24) of the virtual address space.
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If we assume that “half the memory” means 2/ 31 bytes, then the minimum amount of
memory required for the second-level tables would be 5 x (2431/2/24)*8 KB = 5 MB.
The first-level tables would require an additional 5 X 128 X 6 bytes = 3840 bytes.

The maximum amount would be if all 1st-level segments were activated, requiring
the use of all 256 segments in each application. This would require 5 X 256 X 8 KB =
10 MB for the second-level tables and 7680 bytes for the first-level tables.

5.17.3 The page index is 13 bits (address bits 12 down to 0).

A 16 KB direct-mapped cache with two 64-bit words per block would have 16-byte
blocks and thus 16 KB/16 bytes = 1024 blocks. Thus, it would have 10 index bits and
4 offset bits and the index would extend outside of the page index.

The designer could increase the cache’s associativity. This would reduce the number
of index bits so that the cache’s index fits completely inside the page index.

5.18
5.18.1 Worst case is 2/A(43 — 12) = 2/31 entries, requiring 2/(31) X 4 bytes =
2733 =8 GB.

5.18.2 Withonlytwolevels, the designer can select the size of each page table segment.
In a multi-level scheme, reading a PTE requires an access to each level of the table.

5.18.3 Yes, if segment table entries are assumed to be the physical page numbers
of segment pages, and one bit is reserved as the valid bit, then each one has an
effective reach of (2°') * 4KiB = 8TiB, which is more than enough to cover the
physical address space of the machine (16 GiB).

5.18.4 Each page table level contains 4KiB/4B = 1024 entries, and so translates
log2(1024) = 10 bits of virtual address. Using 43-bit virtual addresses and 4KiB
pages, we need ceil((43 — 12)/10) = 4 levels of translation.

5.18.5 Inan inverted page table, the number of PTEs can be reduced to the size of
the hash table plus the cost of collisions. In this case, serving a TLB miss requires an
extra reference to compare the tag or tags stored in the hash table.

5.19

5.19.1 It would be invalid if it was paged out to disk.

5.19.2 A write to page 30 would generate a TLB miss. Software-managed TLBs are
faster in cases where the software can pre-fetch TLB entries.

5.19.3 When an instruction writes to VA page 200, an interrupt would be
generated because the page is marked as read only.

5.20

5.20.1 There are no hits.
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5.20.2 Direct mapped

o |2 |2 |3 |4 |5 |6 |7 |0 |1 |2 |3 |4 |5 |6 |7 |0
M M M MM M |M|M|H|H MM M M|H |H M

5.20.3 Answers will vary.
5.20.4 MRU is an optimal policy.

5.20.5 The best block to evict is the one that will cause the fewest misses in the
future. Unfortunately, a cache controller cannot know the future! Our best alternative
is to make a good prediction.

5.20.6 Ifyouknew thatan address had limited temporal locality and would conflict
with another block in the cache, choosing not to cache it could improve the miss rate.
On the other hand, you could worsen the miss rate by choosing poorly which
addresses to cache.

5.21
5.21.1 CPI=1.5+120/10000 % (15+ 175)=3.78
If VMM overhead doubles = >CPI = 1.5+ 120/10000 X (15 + 350) = 5.88

If VMM overhead halves = >CPI = 1.5+ 120/10000 X (15 + 87.5) =2.73

The CPI of a machine running on native hardware is 1.5 + 120/10000*15 = 1.68.
To keep the performance degradation to 10%, we need

1.5+ 120/10000%(15 + x) < 1.1*1.68
Solving for x shows that a trap to the VMM can take at most 14 cycles.

5.21.2 Non-virtualized CPI = 1.5+ 120/10000 X 15 + 30/10000 X 1100 = 4.98
Virtualized CPI= 1.5+ 120/10000 X (154 175) 4+ 30/10000 X (1100 + 175) = 7.60

Non-virtualized CPI with half I/O = 1.5 + 120/10000 X 15 + 15/10000 x 1100 =
3.33

Virtualized CPI with halfI/O = 1.5 + 120/10000 X (15 + 175) 4+ 15/10000 X (1100
+175) = 5.69.

5.22 Virtual memory aims to provide each application with the illusion of the
entire address space of the machine. Virtual machines aim to provide each operating
system with the illusion of having the entire machine at its disposal. Thus they both
serve very similar goals, and offer benefits such as increased security. Virtual
memory can allow for many applications running in the same memory space to not
have to manage keeping their memory separate.

5.23 Emulating a different ISA requires specific handling of that ISAs API. Each
ISA has specific behaviors that will happen upon instruction execution, interrupts,
trapping to kernel mode, etc. that therefore must be emulated. This can require many
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more instructions to be executed to emulate each instruction than was originally
necessary in the target ISA. This can cause a large performance degradation and
make it difficult to properly communicate with external devices. An emulated
system can potentially run faster than on its native ISA if the emulated code can be
dynamically examined and optimized. For example, if the underlying machine’s
ISA has a single instruction that can handle the execution of several of the emulated
system’s instructions, then potentially the number of instructions executed can be
reduced. This is similar to the recent Intel processors that do micro-op fusion,
allowing several instructions to be handled by fewer instructions.

5.24

5.24.1 The cache should be able to satisfy the request since it is otherwise idle
when the write buffer is writing back to memory. If the cache is not able to satisfy
hits while writing back from the write buffer, the cache will perform little or no
better than the cache without the write buffer, since requests will still be serialized
behind writebacks.

5.24.2 Unfortunately, the cache will have to wait until the writeback is complete
since the memory channel is occupied. Once the memory channel is free, the cache
is able to issue the read request to satisfy the miss.

5.24.3 Correct solutions should exhibit the following features:
1. The memory read should come before memory writes.

2. The cache should signal “Ready” to the processor before completing the write.

5.25
5.25.1 There are six possible orderings for these instructions.

Ordering 1:

X[O]++;
X[1]=3;

X[0]=5
X[1] +=2;

Results: (5,5)

Ordering 2:

X[O]++;

X[0]=5

X[1] += 2;
Results: (5,5)
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Ordering 3:

X[0]=5

X[O]++;

X[1] += 2;

X[1] = 3;
Results: (6,3)

Ordering 4:

X[O]++;

X[0]=5
X[1] += 2;

X[1] = 3;
Results: (5,3)

Ordering 5:

X[0]=5

X[O]++;
X[1] = 3;

X[1] += 2;
Results: (6,5)

Ordering 6:

X[0]=5
X[1]+=2;

X[0]++;
X[1]=3;

(6,3)

If coherency isn’t ensured:
P2’s operations take precedence over P1’s: (5,2).

5.25.2 Direct mapped

“ P1 cache status/action “ P2 cache status/action

X[0]=5 invalidate X on other caches, read X in
exclusive state, write X block in cache
X[1] +=2; read and write X block in cache
X[O]++; read value of X into cache X block enters shared state
send invalidate message X block is invalided
write X block in cache
X[1] = 3; write X block in cache
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5.25.3 Bestcase:
Orderings 1 and 6 above, which require only two total misses.
Worst case:

Orderings 2 and 3 above, which require four total cache misses.

5.25.4
Ordering 1:

C=B
D=A

Result: (3,3)

Ordering 2:

C=B

D=A
Result: (2,3)

Ordering 3:

D=A
Result: (2,3)
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Ordering 4:

B=2
A+=2;
B++;

D=A
Result: (0,3)

Ordering 5:

D=A

Result: (0,3)

Ordering 6:

B++;

Result: (2,3)

Ordering 7:

A+=2;

B++;
Result: (2,3)
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Ordering 8:

B++;

Result: (0,3)

Ordering 9:

B++;

Result: (0,3)

Ordering 10:

A=1
B=2
C=B
D=A
A+=2;
B++;

Result: (2,1)

Ordering 11:

A=1

C=8B
B=2

D=A
A+=2;
B++;

Result: (0,1)
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Ordering 12:

C=B
A=1
B=2

D=A
A+=2;
B++;

Result: (0,1)

Ordering 13:

A=1
C=B
D=A
B=2
A+=2;
B++;

Result: (0,1)

Ordering 14:

A=1

B=2
A+=2;
B++;

Result: (0,1)

Ordering 15:

Result: (0,0)
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5.25.5 Assume B =0isseen by P2 but not preceding A =1
Result: (2,0).

5.25.6 Write back is simpler than write through, since it facilitates the use of
exclusive access blocks and lowers the frequency of invalidates. It prevents the use of
write-broadcasts, but this is a more complex protocol.

The allocation policy has little effect on the protocol.

5.26

5.26.1 Benchmark A
AMATprivate = 1+ 0.03*[5 + 0.1*180] = 1.69
AMATshared = 1 + 0.03*[20 + 0.04*180] = 1.82
Benchmark B
AMATprivate = 1+ 0.03*[5 + 0.02*180] = 1.26
AMATshared = 1+ 0.03*[20 + 0.01*180] = 1.65
Private cache is superior for both benchmarks.

5.26.2 In a private cache system, the first link of the chip is the link from the
private L2 caches to memory. Thus, the memory latency doubles to 360. In a shared
cache system, the first link off the chip is the link to the L2 cache. Thus, in this case,
the shared cache latency doubles to 40.

Benchmark A
AMAT,  =1+.03*[5+.1*360] =2.23
AMAT, =1+ .03*[40+.04*180] =2.416
Benchmark B
AMAT  =1+.03%[5+.02*360] = 1.37
AMAT,  =1+.03*[40+.01*180] =2.25
Private cache is superior for both benchmarks.
5.26.3
_ Shared L2 Private L2

Single threaded No advantage. No disadvantage. No advantage. No disadvantage.

Multi-threaded Shared caches can perform better | Threads often have private working
for workloads where threads are sets, and using a private L2 prevents
tightly coupled and frequently cache contamination and conflict
share data. misses between threads.

No disadvantage.

Multiprogrammed No advantage except in rare Caches are kept private, isolating
cases where processes data between processes. This works
communicate. The disadvantage | especially well if the OS attempts
is higher cache latency. to assign the same CPU to each

process.
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Having private L2 caches with a shared L3 cache is an effective compromise for
many workloads, and this is the scheme used by many modern processors.

5.26.4 A non-blocking shared L2 cache would reduce the latency of the L2 cache
by allowing hits for one CPU to be serviced while a miss is serviced for another
CPU, or allow for misses from both CPUs to be serviced simultaneously. A non-
blocking private L2 would reduce latency assuming that multiple memory
instructions can be executed concurrently.

5.26.5 Four times.

5.26.6 Additional DRAM bandwidth, dynamic memory schedulers, multi-
banked memory systems, higher cache associativity, and additional levels of cache.

5.27
5.27.1 srclPand refTime fields. Two misses per entry.

5.27.2 Groupthe srcIPand refTime fieldsinto a separate array. (I.e., create two
parallel arrays. One with srcIP and refTime, and the other with the remaining
fields.)

5.27.3 peak_hour (int status); // peak hours of a given status

Group srcIP, refTimeand status together.

5.28
5.28.1 Answers will vary depending on which data set is used.

Conflict misses do not occur in fully associative caches.
Compulsory (cold) misses are not affected by associativity.

Capacity miss rate is computed by subtracting the compulsory miss rate and the
tully associative miss rate (compulsory + capacity misses) from the total miss
rate. Conflict miss rate is computed by subtracting the cold and the newly
computed capacity miss rate from the total miss rate.

The values reported are miss rate per instruction, as opposed to miss rate per
memory instruction.

5.28.2 Answers will vary depending on which data set is used.
5.28.3 Answers will vary.
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5.29

5.29.1 Shadow page table: (1) VM creates page table, hypervisor updates shadow
table; (2) nothing; (3) hypervisor intercepts page fault, creates new mapping, and
invalidates the old mapping in TLB; (4) VM notifies the hypervisor to invalidate the
processs TLB entries. Nested page table: (1) VM creates new page table, hypervisor
adds new mappings in PA to MA table. (2) Hardware walks both page tables to
translate VA to MA; (3) VM and hypervisor update their page tables, hypervisor
invalidates stale TLB entries; (4) same as shadow page table.

5.29.2 Native: 4; NPT: 24 (instructors can change the levels of page table)
Native: L; NPT: L X (L + 2).

5.29.3 Shadow page table: page fault rate.
NPT: TLB miss rate.

5.29.4 Shadow page table: 1.03
NPT: 1.04.

5.29.5 Combining multiple page table updates.

5.29.6 NPT caching (similar to TLB caching).
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6.1

6.1.1
6.1.2
6.1.3
6.1.4

6.2
6.2.1

6.2.2

There is no single right answer for this question. The purpose is to get
students to think about parallelism present in their daily lives. The answer
should have at least 10 activities identified.

Any reasonable answer is correct here.
Any reasonable answer is correct here.
Any reasonable answer is correct here.

The student is asked to quantify the savings due to parallelism. The answer
should consider the amount of overlap provided through parallelism and
should be less than or equal to (if no parallelism was possible) the original
time computed if each activity was carried out serially.

For this set of resources, we can pipeline the preparation. We assume that
we do not have to reheat the oven for each cake.

Preheat Oven
Mix ingredients in bowl for Cake 1

Fill cake pan with contents of bowl and bake Cake 1. Mix ingredients for
Cake 2 in bowl.

Finish baking Cake 1. Empty cake pan. Fill cake pan with bowl contents for
Cake 2 and bake Cake 2. Mix ingredients in bowl for Cake 3.

Finish baking Cake 2. Empty cake pan. Fill cake pan with bowl contents for
Cake 3 and bake Cake 3.

Finish baking Cake 3. Empty cake pan.

Now we have 3 bowls, 3 cake pans and 3 mixers. We will name them A, B,
and C.

Preheat Oven
Mix incredients in bowl A for Cake 1

Fill cake pan A with contents of bowl A and bake for Cake 1. Mix ingredients
for Cake 2 in bowl A.

Finish baking Cake 1. Empty cake pan A. Fill cake pan A with contents of
bowl A for Cake 2. Mix ingredients in bowl A for Cake 3.

Finish baking Cake 2. Empty cake pan A. Fill cake pan A with contents of
bowl A for Cake 3.
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6.2.3

6.2.4

6.3
6.3.1

6.3.2

6.4

Finish baking Cake 3. Empty cake pan A.

The point here is that we cannot carry out any of these items in parallel
because we either have one person doing the work, or we have limited
capacity in our oven.

Each step can be done in parallel for each cake. The time to bake 1 cake, 2
cakes or 3 cakes is exactly the same.

The loop computation is equivalent to the steps involved to make one
cake. Given that we have multiple processors (or ovens and cooks), we can
execute instructions (or cook multiple cakes) in parallel. The instructions
in the loop (or cooking steps) may have some dependencies on prior
instructions (or cooking steps) in the loop body (cooking a single cake).

Data-level parallelism occurs when loop iterations are independent (i.e., no
loop carried dependencies).

Task-level parallelism includes any instructions that can be computed on
parallel execution units, similar to the independent operations involved in
making multiple cakes.

While binary search has very good serial performance, it is difficult to
parallelize without modifying the code. So part A asks to compute the
speedup factor, but increasing X beyond 2 or 3 should have no benefits.
While we can perform the comparison of low and high on one core, the
computation for mid on a second core, and the comparison for A[mid] on
a third core, without some restructuring or speculative execution, we will
not obtain any speedup. The answer should include a graph, showing that
no speedup is obtained after the values of 1, 2, or 3 (this value depends
somewhat on the assumption made) for Y.

In this question, we suggest that we can increase the number of cores (to
each of the number of array elements). Again, given the current code, we
really cannot obtain any benefit from these extra cores. But if we create
threads to compare the N elements to the value X and perform these
in parallel, then we can get ideal speedup (Y times speedup), and the
comparison can be completed in the amount of time to perform a single
comparison.

This problem illustrates that some computations can be done in parallel if
serial code is restructured. But, more importantly, we may want to provide
for SIMD operations in our ISA, and allow for data-level parallelism when
performing the same operation on multiple data items.
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6.4.1 Asshown below, each iteration of the loop requires 16 cycles. The loop runs
999 times. Thus, the total number of cycles is 16 X 999 + 3 = 15984.

LOOP:

11 x5, 8000

add x12, x10, x5
addi x11, x10, 16
f1d f0, -16(x11)
f1d f1, -1(x11)
stall

stall

stall

stall

stall

stall

fadd.d fz2, f0, fl
stall

stall

stall

stall

fsd fe, 0(x11)
addi x11, x11, 8
ble x11, x12, LOOP

6.4.2 The following code removes one stall per iteration:

a.

LOOP:

11 x5, 8000

add x12, x10, x5
addi x11, x10, 16
f1d f0, -16(x11)
f1d f1, -1(x11)
stall

stall

stall

stall

stall

stall

fadd.d fz2, f0, fl
addi x11, x11, 8
stall

stall

stall

fsd f2, -8(x11)
ble x11, x12, LOOP

b. Thus, the new loop takes 15x999=14958 cycles.
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6.4.3 Array elements D[j] and D[ j—1] will have loop carried dependencies.
The value loaded into DO during iteration i was produced during iteration
i-1.

6.4.4 11 x5, 8000

add x12, x10, x5
f1d f0, 0(x11)
f1d f1, 8(x11)
addi x11, x11, 8
stall
stall
stall
stall
stall

LOOP: fadd.d fz, f0, f1
addi x11, x11, 8
fmv.d f0, f1
fmv.d f1, f2
stall
fsd fe, 0(x11)
ble x11, x12, LOOP

This loop takes seven cycles and runs 999 times. Thus, the total number of
cyclesis 7 X 999 + 10 = 7003.

6.4.5 f1d f0, 0(x11)
f1d f1, 8(x11)
11 x5, 8000
add x12, x10, x5
addi x11, x11, 16
stall
stall
stall

LOOP: fadd.d fz, f0, f1l
stall
stall
stall
stall
fadd.d f0, f2, f1l
fsd f2, 0(x11)
stall
stall
stall
fadd.d f1, f2, f0
fsd f0, 8(x11)
addi x11, x11, 24

stall
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6.4.6

6.4.7

6.5
6.5.1

6.5.2

6.6
6.6.1

stall
fsd f1, -8(x11)
bne x11, x12, LOOP

The unrolled loop takes 17 cycles, but runs only 333 times. Thus, the total
number of cycles is 17 X 333 4+ 10 = 5671.

Include two copies of the loop: The unrolled loop and the original loop.
Suppose you unrolled the loop U times. Run the unrolled loop until the
number of iterations left is less than U. (In some sense your unrolled loop
will be doing this: for (i = 0; i + U < MAX; i+= U).) At this
point, switch to the unrolled loop. (In some sense, your original loop will
be doing this: for (; i < MAX; i++).)

It is not possible to use message passing to improve performance—even
if the message passing system has no latency. There is simply not enough
work that can be done in parallel to benefit from using multiple CPUs. All
the work that can be done in parallel can be scheduled between dependent
floating point instructions.

This problem is again a divide and conquer problem, but utilizes recursion
to produce a very compact piece of code. In part A the student is asked to
compute the speedup when the number of cores is small. When forming
the lists, we spawn a thread for the computation of left in the MergeSort
code, and spawn a thread for the computation of the right. If we consider
this recursively, for m initial elements in the array, we can utilize 1 + 2 +
4+ 8+ 16+ ....log, (m) processors to obtain speedup.

In this question, log, (m) is the largest value of Y for which we can obtain
any speedup without restructuring. But if we had m cores, we could
perform sorting using a very different algorithm. For instance, if we have
greater than m/2 cores, we can compare all pairs of data elements, swap
the elements if the left element is greater than the right element, and then
repeat this step m times. So this is one possible answer for the question. It
is known as parallel comparison sort. Various comparison sort algorithms
include odd-even sort and cocktail sort.

This problem presents an “embarrassingly paralle]” computation and
asks the student to find the speedup obtained on a four-core system. The
computations involved are: (m X p X n) multiplicationsand (m X p X (n— 1))
additions. The multiplications and additions associated with a single
element in C are dependent (we cannot start summing up the results of the
multiplications for an element until two products are available). So in this
question, the speedup should be very close to 4.
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6.6.2

6.6.3

6.7
6.7.1

6.7.2

6.8
6.8.1

6.8.2

6.8.3

This question asks about how speedup is affected due to cache misses
caused by the four cores all working on different matrix elements that map
to the same cache line. Each update would incur the cost of a cache miss,
and so will reduce the speedup obtained by a factor of 3 times the cost of
servicing a cache miss.

In this question, we are asked how to fix this problem. The easiest way to
solve the false sharing problem is to compute the elements in C by traversing
the matrix across columns instead of rows (i.e., using index-j instead of
index-i). These elements will be mapped to different cache lines. Then we
just need to make sure we process the matrix index that is computed (i, j)
and (i + 1, j) on the same core. This will eliminate false sharing.

x=2,y=2,w=1,2=0
x=2,y=2,w=3,2=0
Xx=2,y=2,w=5,2=0
x=2,y=2,w=1,z=2
X=2,y=2,w=3,2=2
X=2,y=2,w=5,2=2
x=2,y=2,w=1,2=4
Xx=2,y=2,w=3,2=4
x=3,y=2,w=5,2=4

We could set synchronization instructions after each operation so that all
cores see the same value on all nodes.

If every philosopher simultaneously picks up the left fork, then there will
be no right fork to pick up. This will lead to starvation.

The basic solution is that whenever a philosopher wants to eat, she checks
both forks. If they are free, then she eats. Otherwise, she waits until a
neighbor contacts her. Whenever a philosopher finishes eating, she checks
to see if her neighbors want to eat and are waiting. If so, then she releases
the fork to one of them and lets them eat. The difficulty is to first be able to
obtain both forks without another philosopher interrupting the transition
between checking and acquisition. We can implement this a number of
ways, but a simple way is to accept requests for forks in a centralized queue,
and give out forks based on the priority defined by being closest to the head
of the queue. This provides both deadlock prevention and fairness.

There are a number or right answers here, but basically showing a case
where the request of the head of the queue does not have the closest forks
available, though there are forks available for other philosophers.
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6.8.4

6.9
6.9.1

6.9.2
6.9.3

6.9.4

6.10
6.10.1

6.10.2

6.11
6.11.1

By periodically repeating the request, the request will move to the head of
the queue. This only partially solves the problem unless you can guarantee
that all philosophers eat for exactly the same amount of time, and can use
this time to schedule the issuance of the repeated request.

A3 B1, B4

AL, A2 B1, B4

Al A4 B2
Al B3

Answer is same as 6.9.1.

Al A2
Al
Al
B1 B2
B1
A3
A4
B2
B4
|_Fui | Fu2 |
Al B1
Al B1
Al B2
A2 B3
A3 B4
A4

This is an open-ended question.

There is no solution to this problem (it is an open-ended question-no
need to change the solutions document).

There is no solution to this problem (it is an open-ended question-no
need to change the solutions document).

The answer should include an RISC-V program that includes four different
processes that will compute % of the sums. Assuming that memory latency
is not an issue, the program should get linear speed when run on the four
processors (there is no communication necessary between threads). If
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6.11.2

6.12

6.12.1

6.12.2

6.13

6.13.1

6.14

6.14.1

6.14.2

6.15

6.15.1

6.16
6.16.1

memory is being considered in the answer, then the array blocking should
consider preserving spatial locality so that false sharing is not created.

Sincethis programishighly dataparalleland therearenodatadependencies,
an 8 X speedup should be observed. In terms of instructions, the SIMD
machine should have fewer instructions (though this will depend upon
the SIMD extensions).

This is an open-ended question that could have many possible answers.
The key is that the student learns about MISD and compares it to an SIMD
machine.

There is no solution to this problem (it is an open-ended question-no
need to change the solutions document).

There is no solution to this problem (it is an open-ended question-no
need to change the solutions document).

This is an open-ended question that could have many answers. The key is
that the students learn about warps.

There is no solution to this problem (it is an open-ended question-no
need to change the solutions document).

This is an open-ended programming assignment. The code should be
tested for correctness.

There is no solution to this problem (it is an open-ended question-no
need to change the solutions document).

There is no solution to this problem (it is an open-ended question-no
need to change the solutions document).

This question will require the students to research on the Internet both the
AMD Fusion architecture and the Intel QuickPath technology. The key is
that students become aware of these technologies. The actual bandwidth
and latency values should be available right off the company websites, and
will change as the technology evolves.

There is no solution to this problem (it is a lab-based question-no need to
change the solutions document).

For an n-cube of order N (2 nodes), the interconnection network can
sustain N — 1 broken links and still guarantee that there is a path to all
nodes in the network.
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6.16.2 The plot below shows the number of network links that can fail and still

Number of faulty links

6.17
6.17.1

6.17.2

6.18
6.18.1

6.18.2

6.18.3

6.18.4

guarantee that the network is not disconnected.

100000

10000 //j
1000
—l— n-cube
—O— fully connected
100 /
10 —

Network order

Major differences between these suites include:
Whetstone—designed for floating point performance specifically
PARSEC—these workloads are focused on multithreaded programs.

Only the PARSEC benchmarks should be impacted by sharing and
synchronization. This should not be a factor in Whetstone.

Any reasonable C program that performs the transformation should be
accepted.

The storage space should be equal to (R+ R) times the size of a single
precision floating point number+ (m+1) times the size of the index,
where R is the number of non-zero elements and m is the number of rows.
We will assume each floating-point number is 4 bytes, and each index is a
short unsigned integer that is 2 bytes. For Matrix X this equals 111 bytes.

The answer should include results for both a brute-force and a computation
using the Yale Sparse Matrix Format.

There are a number of more efficient formats, but their impact should be
marginal for the small matrices used in this problem.
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6.19
6.19.1

6.19.2

6.20

6.20.1

This question presents three different CPU models to consider when
executing the following code:

if (XC110g1 > YOi10g1)
count++;

There are a number of acceptable answers here, but they should consider
the capabilities of each CPU and also its frequency. What follows is one
possible answer:

Since X and Y are FP numbers, we should utilize the vector processor
(CPU C) to issue two loads, eight matrix elements in parallel from A and
eight matrix elements from B, into a single vector register and then
perform a vector subtract. We would then issue two vector stores to put the
result in memory.

Since the vector processor does not have comparison instructions, we
would have CPU A perform two parallel conditional jumps based on
floating point registers. We would increment two counts based on the
conditional compare. Finally, we could just add the two counts for the
entire matrix. We would not need to use core B.

This question looks at the amount of queuing that is occurring in the
system given a maximum transaction processing rate, and the latency
observed on average by a transaction. The latency includes both the service
time (which is computed by the maximum rate) and the queue time.

So for a max transaction processing rate of 5000/sec, and we have four
cores contributing, we would see an average latency of 0.8 ms if there was
no queuing taking place. Thus, each core must have 1.25 transactions
either executing or in some amount of completion on average.

So the answers are:

m Max TP rate Avg. # requests per core

1ms 5000/sec 1.25
2 ms 5000/sec 2.5
1 ms 10,000/sec 2.5
2ms 10,000/sec 5

6.20.2

6.20.3

We should be able to double the maximum transaction rate by doubling
the number of cores.

The reason this does not happen is due to memory contention on the
shared memory system.






Imagination is more
important than
knowledge.

Albert Einstein
On Science, 1930s

Graphics and
Computing GPUs

John Nickolls
Director of Architecture
NVIDIA

David Kirk
Chief Scientist
NVIDIA



B.1 Introduction

B-3

B.1 Introduction B-3

B.2 GPU System Architectures B-7

B.3 Programming GPUs B-12

B.4 Multithreaded Multiprocessor Architecture B-25
B.5 Parallel Memory System B-36

B.6 Floating-point Arithmetic B-41

B.7 Real Stuff: The NVIDIA GeForce 8800 B-46

B.8 Real Stuff: Mapping Applications to GPUs B-55
B.9 Fallacies and Pitfalls B-72

B.10 Concluding Remarks B-76

B.11 Historical Perspective and Further Reading B-77

Introduction

This appendix focuses on the GPU—the ubiquitous graphics processing unit
in every PC, laptop, desktop computer, and workstation. In its most basic form,
the GPU generates 2D and 3D graphics, images, and video that enable Window-
based operating systems, graphical user interfaces, video games, visual imaging
applications, and video. The modern GPU that we describe here is a highly parallel,
highly multithreaded multiprocessor optimized for visual computing. To provide
real-time visual interaction with computed objects via graphics, images, and video,
the GPU has a unified graphics and computing architecture that serves as both a
programmable graphics processor and a scalable parallel computing platform. PCs
and game consoles combine a GPU with a CPU to form heterogeneous systems.

A Brief History of GPU Evolution

Fifteen years ago, there was no such thing as a GPU. Graphics on a PC were
performed by a video graphics array (VGA) controller. A VGA controller was
simply a memory controller and display generator connected to some DRAM. In
the 1990s, semiconductor technology advanced sufficiently that more functions
could be added to the VGA controller. By 1997, VGA controllers were beginning
to incorporate some three-dimensional (3D) acceleration functions, including

graphics processing
unit (GPU) A processor
optimized for 2D and 3D
graphics, video, visual
computing, and display.

visual computing A mix
of graphics processing
and computing that lets
you visually interact with
computed objects via
graphics, images, and
video.

heterogeneous

system A system
combining different
processor types. A PCisa
heterogeneous CPU-GPU
system.
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application
programming interface
(API) A set of function
and data structure
definitions providing an
interface to a library of
functions.

hardware for triangle setup and rasterization (dicing triangles into individual
pixels) and texture mapping and shading (applying “decals” or patterns to pixels
and blending colors).

In 2000, the single chip graphics processor incorporated almost every detail of
the traditional high-end workstation graphics pipeline and, therefore, deserved a
new name beyond VGA controller. The term GPU was coined to denote that the
graphics device had become a processor.

Over time, GPUs became more programmable, as programmable processors
replaced fixed-function dedicated logic while maintaining the basic 3D graphics
pipeline organization. In addition, computations became more precise over time,
progressing from indexed arithmetic, to integer and fixed point, to single-precision
floating-point, and recently to double-precision floating-point. GPUs have become
massively parallel programmable processors with hundreds of cores and thousands
of threads.

Recently, processor instructions and memory hardware were added to support
general purpose programming languages, and a programming environment was
created to allow GPUs to be programmed using familiar languages, including C
and C++. This innovation makes a GPU a fully general-purpose, programmable,
manycore processor, albeit still with some special benefits and limitations.

GPU Graphics Trends

GPUs and their associated drivers implement the OpenGL and DirectX
models of graphics processing. OpenGL is an open standard for 3D graphics
programming available for most computers. DirectX is a series of Microsoft
multimedia programming interfaces, including Direct3D for 3D graphics. Since
these application programming interfaces (APIs) have well-defined behavior,
it is possible to build effective hardware acceleration of the graphics processing
functions defined by the APIs. This is one of the reasons (in addition to increasing
device density) why new GPUs are being developed every 12 to 18 months that
double the performance of the previous generation on existing applications.

Frequent doubling of GPU performance enables new applications that were
not previously possible. The intersection of graphics processing and parallel
computing invites a new paradigm for graphics, known as visual computing. It
replaces large sections of the traditional sequential hardware graphics pipeline
model with programmable elements for geometry, vertex, and pixel programs.
Visual computing in a modern GPU combines graphics processing and parallel
computing in novel ways that permit new graphics algorithms to be implemented,
and opens the door to entirely new parallel processing applications on pervasive
high-performance GPUs.

Heterogeneous System

Although the GPU is arguably the most parallel and most powerful processor in
a typical PC, it is certainly not the only processor. The CPU, now multicore and
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soon to be manycore, is a complementary, primarily serial processor companion
to the massively parallel manycore GPU. Together, these two types of processors
comprise a heterogeneous multiprocessor system.

The best performance for many applications comes from using both the CPU
and the GPU. This appendix will help you understand how and when to best split
the work between these two increasingly parallel processors.

GPU Evolves into Scalable Parallel Processor

GPUs have evolved functionally from hardwired, limited capability VGA controllers
to programmable parallel processors. This evolution has proceeded by changing
the logical (API-based) graphics pipeline to incorporate programmable elements
and also by making the underlying hardware pipeline stages less specialized and
more programmable. Eventually, it made sense to merge disparate programmable
pipeline elements into one unified array of many programmable processors.

In the GeForce 8-series generation of GPUs, the geometry, vertex, and pixel
processing all run on the same type of processor. This unification allows for
dramatic scalability. More programmable processor cores increase the total system
throughput. Unifying the processors also delivers very effective load balancing,
since any processing function can use the whole processor array. At the other end
of the spectrum, a processor array can now be built with very few processors, since
all of the functions can be run on the same processors.

Why CUDA and GPU Computing?

This uniform and scalable array of processors invites a new model of programming
for the GPU. The large amount of floating-point processing power in the GPU
processor array is very attractive for solving nongraphics problems. Given the large
degree of parallelism and the range of scalability of the processor array for graphics
applications, the programming model for more general computing must express
the massive parallelism directly, but allow for scalable execution.

GPU computing is the term coined for using the GPU for computing via a
parallel programming language and API, without using the traditional graphics
API and graphics pipeline model. This is in contrast to the earlier General Purpose
computation on GPU (GPGPU) approach, which involves programming the GPU
using a graphics API and graphics pipeline to perform nongraphics tasks.

Compute Unifed Device Architecture (CUDA) isascalable parallel programming
model and software platform for the GPU and other parallel processors that allows
the programmer to bypass the graphics API and graphics interfaces of the GPU
and simply program in C or C++. The CUDA programming model has an SPMD
(single-program multiple data) software style, in which a programmer writes a
program for one thread that is instanced and executed by many threads in parallel
on the multiple processors of the GPU. In fact, CUDA also provides a facility for
programming multiple CPU cores as well, so CUDA is an environment for writing
parallel programs for the entire heterogeneous computer system.

GPU computing Using
a GPU for computing via
a parallel programming
language and API.

GPGPU Using a GPU
for general-purpose
computation via a
traditional graphics API
and graphics pipeline.

CUDA A scalable
parallel programming
model and language based
on C/C++. It is a parallel
programming platform
for GPUs and multicore
CPUs.
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GPU Unifes Graphics and Computing

With the addition of CUDA and GPU computing to the capabilities of the GPU,
it is now possible to use the GPU as both a graphics processor and a computing
processor at the same time, and to combine these uses in visual computing
applications. The underlying processor architecture of the GPU is exposed in two
ways: first, as implementing the programmable graphics APIs, and second, as a
massively parallel processor array programmable in C/C++ with CUDA.

Although the underlying processors of the GPU are unified, it is not necessary
that all of the SPMD thread programs are the same. The GPU can run graphics
shader programs for the graphics aspect of the GPU, processing geometry, vertices,
and pixels, and also run thread programs in CUDA.

The GPU is truly a versatile multiprocessor architecture, supporting a variety of
processing tasks. GPUs are excellent at graphics and visual computing as they were
specifically designed for these applications. GPUs are also excellent at many general-
purpose throughput applications that are “first cousins” of graphics, in that they
perform a lot of parallel work, as well as having a lot of regular problem structure.
In general, they are a good match to data-parallel problems (see Chapter 6),
particularly large problems, but less so for less regular, smaller problems.

GPU Visual Computing Applications

Visual computing includes the traditional types of graphics applications plus many
new applications. The original purview of a GPU was “anything with pixels,” but it
now includes many problems without pixels but with regular computation and/or
data structure. GPUs are effective at 2D and 3D graphics, since that is the purpose
for which they are designed. Failure to deliver this application performance would
be fatal. 2D and 3D graphics use the GPU in its “graphics mode,” accessing the
processing power of the GPU through the graphics APIs, OpenGL™, and DirectX™.
Games are built on the 3D graphics processing capability.

Beyond 2D and 3D graphics, image processing and video are important
applications for GPUs. These can be implemented using the graphics APIs or as
computational programs, using CUDA to program the GPU in computing mode.
Using CUDA, image processing is simply another data-parallel array program. To
the extent that the data access is regular and there is good locality, the program
will be efficient. In practice, image processing is a very good application for GPUs.
Video processing, especially encode and decode (compression and decompression
according to some standard algorithms), is quite efficient.

The greatest opportunity for visual computing applications on GPUs is to “break
the graphics pipeline” Early GPUs implemented only specific graphics APIs, albeit at
very high performance. This was wonderful if the API supported the operations that
you wanted to do. If not, the GPU could not accelerate your task, because early GPU
functionality was immutable. Now, with the advent of GPU computing and CUDA,
these GPUs can be programmed to implement a different virtual pipeline by simply
writing a CUDA program to describe the computation and data flow that is desired. So,
all applications are now possible, which will stimulate new visual computing approaches.
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GPU System Architectures

In this section, we survey GPU system architectures in common use today. We
discuss system configurations, GPU functions and services, standard programming
interfaces, and a basic GPU internal architecture.

Heterogeneous CPU-GPU System Architecture

A heterogeneous computer system architecture using a GPU and a CPU can be
described at a high level by two primary characteristics: first, how many functional
subsystems and/or chips are used and what are their interconnection technologies
and topology; and second, what memory subsystems are available to these
functional subsystems. See Chapter 6 for background on the PC I/O systems and
chip sets.

The Historical PC (circa 1990)

Figure B.2.1 shows a high-level block diagram of a legacy PC, circa 1990. The north
bridge (see Chapter 6) contains high-bandwidth interfaces, connecting the CPU,
memory, and PCI bus. The south bridge contains legacy interfaces and devices:
ISA bus (audio, LAN), interrupt controller; DMA controller; time/counter. In
this system, the display was driven by a simple framebuffer subsystem known

CPU
\ .
I Front Side Bus
North
Bridge Memory
A
y PClBus
A
\
South Framebuffer
Bridge Memory

VGA

LAN UART _ﬂ Display

FIGURE B.2.1 Historical PC. VGA controller drives graphics display from framebuffer memory.
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PCI-Express (PCle)

A standard system I/O
interconnect that uses
point-to-point links.
Links have a configurable
number of lanes and
bandwidth.

as a VGA (video graphics array) which was attached to the PCI bus. Graphics
subsystems with built-in processing elements (GPUs) did not exist in the PC
landscape of 1990.

Figure B.2.2 illustrates two confgurations in common use today. These are
characterized by a separate GPU (discrete GPU) and CPU with respective memory
subsystems. In Figure B.2.2a, with an Intel CPU, we see the GPU attached via a
16-lane PCI-Express 2.0 link to provide a peak 16 GB/s transfer rate (peak of
8 GB/s in each direction). Similarly, in Figure B.2.2b, with an AMD CPU, the GPU

Intel
CPU

A
Front Side Bus
\

x16 PCI-Express Link

NQrTh DDR2
display Bridge Memory
t x4 PCI-Express Link 4 128-bit
derivative y 667 MT/s
Mgr';gry South
Bridge
(a)
AMD
CPU
CPU
core
internal bus 4 128-bit
Y 667 MT/s
North DDR2
Bridge Memory
A
x16 PCl-Express Link y HyperTransport 1.03
< Chipset
display

(b)

GPU
Memory

FIGURE B.2.2 Contemporary PCs with Intel and AMD CPUs. Sce Chapter 6 for an explanation of

the components and interconnects in this figure.
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is attached to the chipset, also via PCI-Express with the same available bandwidth.
In both cases, the GPUs and CPUs may access each other’s memory, albeit with less
available bandwidth than their access to the more directly attached memories. In
the case of the AMD system, the north bridge or memory controller is integrated
into the same die as the CPU.

A low-cost variation on these systems, a unified memory architecture (UMA)
system, uses only CPU system memory, omitting GPU memory from the system.
These systems have relatively low-performance GPUs, since their achieved
performance is limited by the available system memory bandwidth and increased
latency of memory access, whereas dedicated GPU memory provides high
bandwidth and low latency.

A high-performance system variation uses multiple attached GPUs, typically
two to four working in parallel, with their displays daisy-chained. An example
is the NVIDIA SLI (scalable link interconnect) multi-GPU system, designed for
high-performance gaming and workstations.

The next system category integrates the GPU with the north bridge (Intel) or
chipset (AMD) with and without dedicated graphics memory.

Chapter 5 explains how caches maintain coherence in a shared address space.
With CPUs and GPUg, there are multiple address spaces. GPUs can access their
own physical local memory and the CPU system’s physical memory using virtual
addresses that are translated by an MMU on the GPU. The operating system kernel
manages the GPU’s page tables. A system physical page can be accessed using either
coherent or noncoherent PCI-Express transactions, determined by an attribute in
the GPU’s page table. The CPU can access GPU’s local memory through an address
range (also called aperture) in the PCI-Express address space.

Game Consoles

Console systems such as the Sony PlayStation 3 and the Microsoft Xbox 360
resemble the PC system architectures previously described. Console systems are
designed to be shipped with identical performance and functionality over a lifespan
that can last five years or more. During this time, a system may be reimplemented
many times to exploit more advanced silicon manufacturing processes and thereby
to provide constant capability at ever lower costs. Console systems do not need
to have their subsystems expanded and upgraded the way PC systems do, so the
major internal system buses tend to be customized rather than standardized.

GPU Interfaces and Drivers

In a PC today, GPUs are attached to a CPU via PCI-Express. Earlier generations
used AGP. Graphics applications call OpenGL [Segal and Akeley, 2006] or Direct3D
[Microsoft DirectX Specifcation] API functions that use the GPU as a coprocessor.
The APIs send commands, programs, and data to the GPU via a graphics device
driver optimized for the particular GPU.

unified memory
architecture (UMA)

A system architecture in
which the CPU and GPU
share a common system
memory.

AGP An extended
version of the original PCI
I/O bus, which provided
up to eight times the
bandwidth of the original
PCI bus to a single card
slot. Its primary purpose
was to connect graphics
subsystems into PC
systems.



B-10 Appendix B Graphics and Computing GPUs
Graphics Logical Pipeline
The graphics logical pipeline is described in Section B.3. Figure B.2.3 illustrates
the major processing stages, and highlights the important programmable stages
(vertex, geometry, and pixel shader stages).
Input Vertex Geometry Setup & Pixel Raster Operations/
Assembler Shader > Shader > Rasterizer — Shader Output Merger

FIGURE B.2.3 Graphics logical pipeline. Programmable graphics shader stages are blue, and fixed-function blocks are white.

Mapping Graphics Pipeline to Unified GPU Processors

Figure B.2.4 shows how the logical pipeline comprising separate independent
programmable stages is mapped onto a physical distributed array of processors.

Basic Unified GPU Architecture

Unified GPU architectures are based on a parallel array of many programmable
processors. They unify vertex, geometry, and pixel shader processing and parallel
computing on the same processors, unlike earlier GPUs which had separate
processors dedicated to each processing type. The programmable processor array is
tightly integrated with fixed function processors for texture filtering, rasterization,
raster operations, anti-aliasing, compression, decompression, display, video
decoding, and high-definition video processing. Although the fixed-function
processors significantly outperform more general programmable processors in
terms of absolute performance constrained by an area, cost, or power budget, we
will focus on the programmable processors here.

Compared with multicore CPUs, manycore GPUs have a different architectural
design point, one focused on executing many parallel threads efficiently on many

Vertex
Shader

Input
Assembler

Setup &

( Rasterizer

Raster Operations/
Output Merger

FIGURE B.2.4 Logical pipeline mapped to physical processors. The programmable shader
stages execute on the array of unified processors, and the logical graphics pipeline dataflow recirculates
through the processors.
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processor cores. By using many simpler cores and optimizing for data-parallel
behavior among groups of threads, more of the per-chip transistor budget is
devoted to computation, and less to on-chip caches and overhead.

Processor Array

A unified GPU processor array contains many processor cores, typically organized
into multithreaded multiprocessors. Figure B.2.5 shows a GPU with an array of
112 streaming processor (SP) cores, organized as 14 multithreaded streaming
multiprocessors (SMs). Each SP core is highly multithreaded, managing 96
concurrent threads and their state in hardware. The processors connect with
four 64-bit-wide DRAM partitions via an interconnection network. Each SM
has eight SP cores, two special function units (SFUs), instruction and constant
caches, a multithreaded instruction unit, and a shared memory. This is the basic
Tesla architecture implemented by the NVIDIA GeForce 8800. It has a unified
architecture in which the traditional graphics programs for vertex, geometry, and
pixel shading run on the unified SMs and their SP cores, and computing programs
run on the same processors.

GPU
Host Interface [ T
Viewport/Clip/ _
Setup/Raster/
Input Assembler ZCull
I I /)
Vertex Work Pixel Work Compute Work /
| Distribution | | Distribution | | Distribution | 4
I I I /
I I | I I I ] Y
TPC TPC TPC TPC TPC TPC TPC ¢ /]
Il Il Il 11|l VA 4
[ ] | ] | Il Il Il 11|l 7/ T
SM SM SM SM SM SM SM SM SM SM SM SM SM SM
o e e e e e e e e
I {{ | o e e o o e o
55 (S | (| | (| (S| (S (S | (S (S
[5EI G (S | (5 e I | | (| (| (| (S
(55 G (S | I e I || (| (| (| (S
15 [ | I | | (| (| (5 | (S [
00 00 B0 Ody| B0 B0 B0 OO Bd OO B0 OO ad ac
| N O 1 e e = | £ 1 |
Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit | Texture Uni N I~
Tex L1 Tex L1 Tex L1 Tex L1 Tex L1 Tex L1 Tex L1 S \-~
( Interconnectiorl\ Network : : \>\
| ROP | | L2 | | ROP | | L2 | | ROP | | L2 | | ROP | | L2 | | Display Interface |
I I I
| | | | | | | [ |
DRAM | DRAM | | DRAM | | DRAM | Display .

FIGURE B.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 streaming
multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors
connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM has eight SP cores, two special function units (SFUs),

instruction and constant caches, a multithreaded instruction unit, and a shared memory.

@
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The processor array architecture is scalable to smaller and larger GPU
configurations by scaling the number of multiprocessors and the number of
memory partitions. Figure B.2.5 shows seven clusters of two SMs sharing a texture
unit and a texture L1 cache. The texture unit delivers filtered results to the SM
given a set of coordinates into a texture map. Because filter regions of support
often overlap for successive texture requests, a small streaming L1 texture cache is
effective to reduce the number of requests to the memory system. The processor
array connects with raster operation processors (ROPs), L2 texture caches, external
DRAM memories, and system memory via a GPU-wide interconnection network.
The number of processors and number of memories can scale to design balanced
GPU systems for different performance and market segments.

Programming GPUs

Programming multiprocessor GPUs is qualitatively different than programming
other multiprocessors like multicore CPUs. GPUs provide two to three orders of
magnitude more thread and data parallelism than CPUs, scaling to hundreds of
processor cores and tens of thousands of concurrent threads. GPUs continue
to increase their parallelism, doubling it about every 12 to 18 months, enabled
by Moore’s law [1965] of increasing integrated circuit density and by improving
architectural efficiency. To span the wide price and performance range of different
market segments, different GPU products implement widely varying numbers of
processors and threads. Yet users expect games, graphics, imaging, and computing
applications to work on any GPU, regardless of how many parallel threads it
executes or how many parallel processor cores it has, and they expect more
expensive GPUs (with more threads and cores) to run applications faster. As a
result, GPU programming models and application programs are designed to scale
transparently to a wide range of parallelism.

The driving force behind the large number of parallel threads and cores in a
GPU is real-time graphics performance—the need to render complex 3D scenes
with high resolution at interactive frame rates, at least 60 frames per second.
Correspondingly, the scalable programming models of graphics shading languages
such as Cg (C for graphics) and HLSL (high-level shading language) are designed to
exploit large degrees of parallelism via many independent parallel threads and to
scale to any number of processor cores. The CUDA scalable parallel programming
model similarly enables general parallel computing applications to leverage large
numbers of parallel threads and scale to any number of parallel processor cores,
transparently to the application.

In these scalable programming models, the programmer writes code for a single
thread, and the GPU runs myriad thread instances in parallel. Programs thus scale
transparently over a wide range of hardware parallelism. This simple paradigm
arose from graphics APIs and shading languages that describe how to shade one
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vertex or one pixel. It has remained an effective paradigm as GPUs have rapidly
increased their parallelism and performance since the late 1990s.

This section briefly describes programming GPUs for real-time graphics
applications using graphics APIs and programming languages. It then describes
programming GPUs for visual computing and general parallel computing
applications using the C language and the CUDA programming model.

Programming Real-Time Graphics

APIs have played an important role in the rapid, successful development of GPUs
and processors. There are two primary standard graphics APIs: OpenGL and
Direct3D, one of the Microsoft DirectX multimedia programming interfaces.
OpenGL, an open standard, was originally proposed and defined by Silicon
Graphics Incorporated. The ongoing development and extension of the OpenGL
standard [Segal and Akeley, 2006; Kessenich, 2006] is managed by Khronos, an
industry consortium. Direct3D [Blythe, 2006], a de facto standard, is defined
and evolved forward by Microsoft and partners. OpenGL and Direct3D are
similarly structured, and continue to evolve rapidly with GPU hardware advances.
They define a logical graphics processing pipeline that is mapped onto the GPU
hardware and processors, along with programming models and languages for the
programmable pipeline stages.

Logical Graphics Pipeline

Figure B.3.1 illustrates the Direct3D 10 logical graphics pipeline. OpenGL has a
similar graphics pipeline structure. The API and logical pipeline provide a streaming
dataflow infrastructure and plumbing for the programmable shader stages, shown in
blue. The 3D application sends the GPU a sequence of vertices grouped into geometric
primitives—points, lines, triangles, and polygons. The input assembler collects
vertices and primitives. The vertex shader program executes per-vertex processing,

OpenGL An open-

standard graphics APL

Direct3D A graphics
API defined by Microsoft

and partners.

1
| Input ~ Vertex ~ Geometry _ | Setup & ~ Pixel Raster Operations/
| Assembler Shader Shader " | Rasterizer Shader Output Merger
T\ A * A * Ay A A A A
Stream

I [Sampler| [Sampler| Sampler
1 Out

A A GPU A
o o e [ e L e = = = == = | = 4 =
P I I I S I R A R A .
1 | Vertex Stream Depth Render
1 | Buffer Texture Texture Buffer Texture Z-Buffer v Target
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1 Memory

FIGURE B.3.1 Direct3D 10 graphics pipeline. Each logical pipeline stage maps to GPU hardware or to a GPU processor.
Programmable shader stages are blue, fixed-function blocks are white, and memory objects are gray. Each stage processes a vertex, geometric

primitive, or pixel in a streaming dataflow fashion.
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texture A 1D, 2D, or

3D array that supports
sampled and filtered
lookups with interpolated
coordinates.

shader A program that
operates on graphics data
such as a vertex or a pixel
fragment.

shading language

A graphics rendering
language, usually having
a dataflow or streaming
programming model.

including transforming the vertex 3D position into a screen position and lighting the
vertex to determine its color. The geometry shader program executes per-primitive
processing and can add or drop primitives. The setup and rasterizer unit generates
pixel fragments (fragments are potential contributions to pixels) that are covered by
a geometric primitive. The pixel shader program performs per-fragment processing,
including interpolating per-fragment parameters, texturing, and coloring. Pixel
shaders make extensive use of sampled and filtered lookups into large 1D, 2D, or
3D arrays called textures, using interpolated floating-point coordinates. Shaders use
texture accesses for maps, functions, decals, images, and data. The raster operations
processing (or output merger) stage performs Z-buffer depth testing and stencil
testing, which may discard a hidden pixel fragment or replace the pixel’s depth with
the fragments depth, and performs a color blending operation that combines the
fragment color with the pixel color and writes the pixel with the blended color.

The graphics API and graphics pipeline provide input, output, memory objects,
and infrastructure for the shader programs that process each vertex, primitive, and
pixel fragment.

Graphics Shader Programs

Real-time graphics applications use many different shader programs to model
how light interacts with different materials and to render complex lighting and
shadows. Shading languages are based on a dataflow or streaming programming
model that corresponds with the logical graphics pipeline. Vertex shader programs
map the position of triangle vertices onto the screen, altering their position, color,
or orientation. Typically a vertex shader thread inputs a floating-point (x, y, z, w)
vertex position and computes a floating-point (x, y, z) screen position. Geometry
shader programs operate on geometric primitives (such as lines and triangles)
defined by multiple vertices, changing them or generating additional primitives.
Pixel fragment shaders each “shade” one pixel, computing a floating-point red,
green, blue, alpha (RGBA) color contribution to the rendered image at its pixel
sample (x, y) image position. Shaders (and GPUs) use floating-point arithmetic
for all pixel color calculations to eliminate visible artifacts while computing the
extreme range of pixel contribution values encountered while rendering scenes with
complex lighting, shadows, and high dynamic range. For all three types of graphics
shaders, many program instances can be run in parallel, as independent parallel
threads, because each works on independent data, produces independent results,
and has no side effects. Independent vertices, primitives, and pixels further enable
the same graphics program to run on differently sized GPUs that process different
numbers of vertices, primitives, and pixels in parallel. Graphics programs thus scale
transparently to GPUs with different amounts of parallelism and performance.
Users program all three logical graphics threads with a common targeted high-
level language. HLSL (high-level shading language) and Cg (C for graphics) are
commonly used. They have C-like syntax and a rich set of library functions for
matrix operations, trigonometry, interpolation, and texture access and filtering,
but are far from general computing languages: they currently lack general memory
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access, pointers, file I/O, and recursion. HLSL and Cg assume that programs live
within a logical graphics pipeline, and thus I/O is implicit. For example, a pixel
fragment shader may expect the geometric normal and multiple texture coordinates
to have been interpolated from vertex values by upstream fixed-function stages and
can simply assign a value to the COLOR output parameter to pass it downstream to
be blended with a pixel at an implied (x, y) position.

The GPU hardware creates a new independent thread to execute a vertex,
geometry, or pixel shader program for every vertex, every primitive, and every pixel
fragment. In video games, the bulk of threads execute pixel shader programs, as
there are typically 10 to 20 times more pixel fragments than vertices, and complex
lighting and shadows require even larger ratios of pixel to vertex shader threads.
The graphics shader programming model drove the GPU architecture to efficiently
execute thousands of independent fine-grained threads on many parallel processor
cores.

Pixel Shader Example

Consider the following Cg pixel shader program that implements the “environment
mapping” rendering technique. For each pixel thread, this shader is passed five
parameters, including 2D floating-point texture image coordinates needed to
sample the surface color, and a 3D floating-point vector giving the refection of
the view direction off the surface. The other three “uniform” parameters do not
vary from one pixel instance (thread) to the next. The shader looks up color in
two texture images: a 2D texture access for the surface color, and a 3D texture
access into a cube map (six images corresponding to the faces of a cube) to obtain
the external world color corresponding to the refection direction. Then the final
four-component (red, green, blue, alpha) floating-point color is computed using a
weighted average called a “lerp” or linear interpolation function.

void refection(

float2 texCoord : TEXCOORDO,
float3 refection_dir : TEXCOORDI,
out float4d color : COLOR,
uniform float shiny,

uniform sampler2D surfaceMap,

uniform samplerCUBE envMap)

// Fetch the surface color from a texture
float4 surfaceColor = tex2D(surfaceMap, texCoord);

// Fetch reflected color by sampling a cube map
float4d reflectedColor = texCUBE(environmentMap, refection_dir);

// Output is weighted average of the two colors
color = lerp(surfaceColor, refectedColor, shiny);
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Although this shader program is only three lines long, it activates a lot of GPU
hardware. For each texture fetch, the GPU texture subsystem makes multiple
memory accesses to sample image colors in the vicinity of the sampling coordinates,
and then interpolates the final result with floating-point filtering arithmetic. The
multithreaded GPU executes thousands of these lightweight Cg pixel shader threads
in parallel, deeply interleaving them to hide texture fetch and memory latency.

Cg focuses the programmer’s view to a single vertex or primitive or pixel,
which the GPU implements as a single thread; the shader program transparently
scales to exploit thread parallelism on the available processors. Being application-
specific, Cg provides a rich set of useful data types, library functions, and language
constructs to express diverse rendering techniques.

Figure B.3.2 shows skin rendered by a fragment pixel shader. Real skin appears
quite different from flesh-color paint because light bounces around a lot before
re-emerging. In this complex shader, three separate skin layers, each with unique
subsurface scattering behavior, are modeled to give the skin a visual depth and
translucency. Scattering can be modeled by a blurring convolution in a fattened
“texture” space, with red being blurred more than green, and blue blurred less. The
compiled Cg shader executes 1400 instructions to compute the color of one skin pixel.

FIGURE B.3.2 GPU-rendered image. To give the skin visual depth and translucency, the pixel shader
program models three separate skin layers, each with unique subsurface scattering behavior. It executes 1400
instructions to render the red, green, blue, and alpha color components of each skin pixel fragment.
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As GPUs have evolved superior floating-point performance and very high
streaming memory bandwidth for real-time graphics, they have attracted highly
parallel applications beyond traditional graphics. At first, access to this power
was available only by couching an application as a graphics-rendering algorithm,
but this GPGPU approach was often awkward and limiting. More recently, the
CUDA programming model has provided a far easier way to exploit the scalable
high-performance floating-point and memory bandwidth of GPUs with the C
programming language.

Programming Parallel Computing Applications

CUDA, Brook, and CAL are programming interfaces for GPUs that are focused
on data parallel computation rather than on graphics. CAL (Compute Abstraction
Layer) is a low-level assembler language interface for AMD GPUs. Brook is a
streaming language adapted for GPUs by Buck et al. [2004]. CUDA, developed
by NVIDIA [2007], is an extension to the C and C+ + languages for scalable
parallel programming of manycore GPUs and multicore CPUs. The CUDA
programming model is described below, adapted from an article by Nickolls et al.
[2008].

With the new model the GPU excels in data parallel and throughput computing,
executing high-performance computing applications as well as graphics applications.

Data Parallel Problem Decomposition

To map large computing problems effectively to a highly parallel processing
architecture, the programmer or compiler decomposes the problem into many
small problems that can be solved in parallel. For example, the programmer
partitions a large result data array into blocks and further partitions each block into
elements, such that the result blocks can be computed independently in parallel,
and the elements within each block are computed in parallel. Figure B.3.3 shows
a decomposition of a result data array into a 3 X 2 grid of blocks, where each
block is further decomposed into a 5 X 3 array of elements. The two-level parallel
decomposition maps naturally to the GPU architecture: parallel multiprocessors
compute result blocks, and parallel threads compute result elements.

The programmer writes a program that computes a sequence of result data
grids, partitioning each result grid into coarse-grained result blocks that can be
computed independently in parallel. TOhe program computes each result block
with an array of fine-grained parallel threads, partitioning the work among threads
so that each computes one or more result elements.

Scalable Parallel Programming with CUDA

The CUDA scalable parallel programming model extends the C and C++
languages to exploit large degrees of parallelism for general applications on highly
parallel multiprocessors, particularly GPUs. Early experience with CUDA shows
that many sophisticated programs can be readily expressed with a few easily
understood abstractions. Since NVIDIA released CUDA in 2007, developers have
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FIGURE B.3.3 Decomposing result data into a grid of blocks of elements to be computed
in parallel.

rapidly developed scalable parallel programs for a wide range of applications,
including seismic data processing, computational chemistry, linear algebra, sparse
matrix solvers, sorting, searching, physics models, and visual computing. These
applications scale transparently to hundreds of processor cores and thousands of
concurrent threads. NVIDIA GPUs with the Tesla unified graphics and computing
architecture (described in Sections B.4 and B.7) run CUDA C programs, and are
widely available in laptops, PCs, workstations, and servers. The CUDA model is
also applicable to other shared memory parallel processing architectures, including
multicore CPUs.

CUDA provides three key abstractions—a hierarchy of thread groups, shared
memories, and barrier synchronization—that provide a clear parallel structure to
conventional C code for one thread of the hierarchy. Multiple levels of threads,
memory, and synchronization provide fine-grained data parallelism and thread
parallelism, nested within coarse-grained data parallelism and task parallelism. The
abstractions guide the programmer to partition the problem into coarse subproblems
that can be solved independently in parallel, and then into finer pieces that can be
solved in parallel. The programming model scales transparently to large numbers of
processor cores: a compiled CUDA program executes on any number of processors,
and only the runtime system needs to know the physical processor count.
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The CUDA Paradigm

CUDA is a minimal extension of the C and C++ programming languages. The
programmer writes a serial program that calls parallel kernels, which may be simple
functions or full programs. A kernel executes in parallel across a set of parallel
threads. The programmer organizes these threads into a hierarchy of thread blocks
and grids of thread blocks. A thread block is a set of concurrent threads that can
cooperate among themselves through barrier synchronization and through shared
access to a memory space private to the block. A grid is a set of thread blocks that
may each be executed independently and thus may execute in parallel.

When invoking a kernel, the programmer specifies the number of threads per
block and the number of blocks comprising the grid. Each thread is given a unique
thread ID number threadIdx within its thread block, numbered 0, 1, 2, ..,
blockDim-1, and each thread block is given a unique block ID number b1ockIdx
within its grid. CUDA supports thread blocks containing up to 512 threads. For
convenience, thread blocks and grids may have one, two, or three dimensions,
accessed via . X, .Y, and .z index fields.

As a very simple example of parallel programming, suppose that we are given
two vectors x and y of # floating-point numbers each and that we wish to compute
the result of y = ax + y for some scalar value a. This is the so-called SAXPY kernel
defined by the BLAS linear algebralibrary. Figure B.3.4 shows C code for performing
this computation on both a serial processor and in parallel using CUDA.

The __global__ declaration specifier indicates that the procedure is a kernel
entry point. CUDA programs launch parallel kernels with the extended function
call syntax:

kernel<<<dimGrid, dimBlock>>>(.. parameter 1list ..);

where dimGridand dimB1ock are three-element vectors of type d im3 that specify
the dimensions of the grid in blocks and the dimensions of the blocks in threads,
respectively. Unspecified dimensions default to one.

In Figure B.3.4, we launch a grid of n threads that assigns one thread to each
element of the vectors and puts 256 threads in each block. Each individual thread
computes an element index from its thread and block IDs and then performs the
desired calculation on the corresponding vector elements. Comparing the serial and
parallel versions of this code, we see that they are strikingly similar. This represents
a fairly common pattern. The serial code consists of a loop where each iteration is
independent of all the others. Such loops can be mechanically transformed into
parallel kernels: each loop iteration becomes an independent thread. By assigning
a single thread to each output element, we avoid the need for any synchronization
among threads when writing results to memory.

The text of a CUDA kernel is simply a C function for one sequential thread.
Thus, it is generally straightforward to write and is typically simpler than writing
parallel code for vector operations. Parallelism is determined clearly and explicitly
by specifying the dimensions of a grid and its thread blocks when launching a
kernel.

kernel A program or
function for one thread,
designed to be executed
by many threads.

thread block A set

of concurrent threads
that execute the same
thread program and may
cooperate to compute a
result.

grid A set of thread
blocks that execute the
same kernel program.
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Computing y = ax + y with a serial loop:
void saxpy_serial(int n, float alpha, float *x, float *y)
{
for(int i = 0; i<n; ++1)
y[i1 = alpha*x[i] + y[i];
}
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);
Computing y = ax + y in parallel using CUDA:
__global__
void saxpy_parallel(int n, float alpha, float *x, float *y)
{
int 1 = blockldx.x*blockDim.x + threadldx.x;
if(C i<n ) y[i] = alpha*x[i] + y[i];
}
// Invoke parallel SAXPY kernel (256 threads per block)
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);
FIGURE B.3.4 Sequential code (top) in C versus parallel code (bottom) in CUDA for SAXPY
(see Chapter 6). CUDA parallel threads replace the C serial loop—each thread computes the same result
as one loop iteration. The parallel code computes 7 results with n threads organized in blocks of 256 threads.
Parallel execution and thread management is automatic. All thread creation,
scheduling, and termination is handled for the programmer by the underlying
system. Indeed, a Tesla architecture GPU performs all thread management directly
in hardware. The threads of a block execute concurrently and may synchronize
synchronization at a synchronization barrier by calling the __syncthreads () intrinsic. This

barrier Threads wait at
a synchronization barrier
until all threads in the
thread block arrive at the
barrier.

guarantees that no thread in the block can proceed until all threads in the block
have reached the barrier. After passing the barrier, these threads are also guaranteed
to see all writes to memory performed by threads in the block before the barrier.
Thus, threads in a block may communicate with each other by writing and reading
per-block shared memory at a synchronization barrier.

Since threads in a block may share memory and synchronize via barriers, they
will reside together on the same physical processor or multiprocessor. The number
of thread blocks can, however, greatly exceed the number of processors. The CUDA
thread programming model virtualizes the processors and gives the programmer the
flexibility to parallelize at whatever granularity is most convenient. Virtualization
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into threads and thread blocks allows intuitive problem decompositions, as the
number of blocks can be dictated by the size of the data being processed rather than
by the number of processors in the system. It also allows the same CUDA program
to scale to widely varying numbers of processor cores.

To manage this processing element virtualization and provide scalability, CUDA
requires that thread blocks be able to execute independently. It must be possible to
execute blocks in any order, in parallel or in series. Different blocks have no means of
direct communication, although they may coordinate their activities using atomic
memory operations on the global memory visible to all threads—by atomically
incrementing queue pointers, for example. This independence requirement allows
thread blocks to be scheduled in any order across any number of cores, making
the CUDA model scalable across an arbitrary number of cores as well as across a
variety of parallel architectures. It also helps to avoid the possibility of deadlock.
An application may execute multiple grids either independently or dependently.
Independent grids may execute concurrently, given sufficient hardware resources.
Dependent grids execute sequentially, with an implicit interkernel barrier between
them, thus guaranteeing that all blocks of the first grid complete before any block
of the second, dependent grid begins.

Threads may access data from multiple memory spaces during their execution.
Each thread has a private local memory. CUDA uses local memory for thread-
private variables that do not fit in the thread’s registers, as well as for stack frames
and register spilling. Each thread block has a shared memory, visible to all threads
of the block, which has the same lifetime as the block. Finally, all threads have
access to the same global memory. Programs declare variables in shared and
global memory with the __shared__ and __device__ type qualifers. On a
Tesla architecture GPU, these memory spaces correspond to physically separate
memories: per-block shared memory is a low-latency on-chip RAM, while global
memory resides in the fast DRAM on the graphics board.

Shared memory is expected to be a low-latency memory near each processor,
much like an L1 cache. It can therefore provide high-performance communication
and data sharing among the threads of a thread block. Since it has the same lifetime
as its corresponding thread block, kernel code will typically initialize data in shared
variables, compute using shared variables, and copy shared memory results to
global memory. Thread blocks of sequentially dependent grids communicate via
global memory, using it to read input and write results.

Figure B.3.5 shows diagrams of the nested levels of threads, thread blocks,
and grids of thread blocks. It further shows the corresponding levels of memory
sharing: local, shared, and global memories for per-thread, per-thread-block, and
per-application data sharing.

A program manages the global memory space visible to kernels through calls
to the CUDA runtime, such as cudaMalloc() and cudaFree(). Kernels may
execute on a physically separate device, as is the case when running kernels on
the GPU. Consequently, the application must use cudaMemcpy () to copy data
between the allocated space and the host system memory.

atomic memory
operation A memory
read, modify, write
operation sequence that
completes without any
intervening access.

global memory Per-
application memory
shared by all threads.

shared memory Per-
block memory shared by
all threads of the block.

local memory Per-
thread local memory
private to the thread.
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single-program
multiple data

(SPMD) A style of
parallel programming
model in which all
threads execute the same
program. SPMD threads
typically coordinate with
barrier synchronization.
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FIGURE B.3.5 Nested granularity levels—thread, thread block, and grid—have
corresponding memory sharing levels—local, shared, and global. Per-thread local memory is
private to the thread. Per-block shared memory is shared by all threads of the block. Per-application global
memory is shared by all threads.

The CUDA programming model is similar in style to the familiar single-
program multiple data (SPMD) model—it expresses parallelism explicitly, and
each kernel executes on a fixed number of threads. However, CUDA is more flexible
than most realizations of SPMD, because each kernel call dynamically creates a
new grid with the right number of thread blocks and threads for that application
step. The programmer can use a convenient degree of parallelism for each kernel,
rather than having to design all phases of the computation to use the same number
of threads. Figure B.3.6 shows an example of an SPMD-like CUDA code sequence.
It first instantiates kernelF on a 2D grid of 3 X 2 blocks where each 2D thread
block consists of 5 X 3 threads. It then instantiates kernelG on a 1D grid of four
1D thread blocks with six threads each. Because kernelG depends on the results
of kernelF, they are separated by an interkernel synchronization barrier.

The concurrent threads of a thread block express fine-grained data parallelism and
thread parallelism. The independent thread blocks of a grid express coarse-grained
data parallelism. Independent grids express coarse-grained task parallelism. A
kernel is simply C code for one thread of the hierarchy.
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Sequence kernelF 2D Grid is 3 X 2 thread blocks; each block is 5 X 3 threads
Block 0,0 | Block 1,0 | Block 2, 0
kernelF<K<(3, 2), (5, 3)>>>(params); — -
Block 0,1 | Block 1, 1 | Block 2, 1
> )
A > 3
- X X
5 5
el Block 1, 1 NN
Thread 0, 0 Thread 1/, 0 Thread 2, 0 Thread 3, 0 Thread 4, 0
Thread 0, 1 Thread 1, 1 Thread 2, 1 Thread 3, 1 Thread 4, 1
Thread 0, 2 Thread 1, 2 Thread 2, 2 Thread 3, 2 Thread 4, 2

Interkernel Synchronization Barrier

kernelG 1D Grid is 4 thread blocks; each block is 6 threads

Block 0

Block 1

Block 2

Block 3

kern

el1G<<K<4, 6>>>(params);

Block 2

>Thread 0 | Thread1 | Thread2 | Thread3 | Thread4 | Thread 5

FIGURE B.3.6 Sequence of kernel F instantiated on a 2D grid of 2D thread blocks, an interkernel
synchronization barrier, followed by kernel G on a 1D grid of 1D thread blocks.

Restrictions

For efficiency, and to simplify its implementation, the CUDA programming model
has some restrictions. Threads and thread blocks may only be created by invoking
a parallel kernel, not from within a parallel kernel. Together with the required
independence of thread blocks, this makes it possible to execute CUDA programs
with a simple scheduler that introduces minimal runtime overhead. In fact, the
Tesla GPU architecture implements hardware management and scheduling of
threads and thread blocks.
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Task parallelism can be expressed at the thread block level but is difficult to
express within a thread block because thread synchronization barriers operate on
all the threads of the block. To enable CUDA programs to run on any number of
processors, dependencies among thread blocks within the same kernel grid are not
allowed—blocks must execute independently. Since CUDA requires that thread
blocks be independent and allows blocks to be executed in any order, combining
results generated by multiple blocks must in general be done by launching a second
kernel on a new grid of thread blocks (although thread blocks may coordinate their
activities using atomic memory operations on the global memory visible to all
threads—by atomically incrementing queue pointers, for example).

Recursive function calls are not currently allowed in CUDA kernels. Recursion
is unattractive in a massively parallel kernel, because providing stack space for the
tens of thousands of threads that may be active would require substantial amounts
of memory. Serial algorithms that are normally expressed using recursion, such as
quicksort, are typically best implemented using nested data parallelism rather than
explicit recursion.

To support a heterogeneous system architecture combining a CPU and a
GPU, each with its own memory system, CUDA programs must copy data and
results between host memory and device memory. The overhead of CPU-GPU
interaction and data transfers is minimized by using DMA block transfer engines
and fast interconnects. Compute-intensive problems large enough to need a GPU
performance boost amortize the overhead better than small problems.

Implications for Architecture

The parallel programming models for graphics and computing have driven
GPU architecture to be different than CPU architecture. The key aspects of GPU
programs driving GPU processor architecture are:

B Extensive use of fine-grained data parallelism: Shader programs describe how
to process a single pixel or vertex, and CUDA programs describe how to
compute an individual result.

B Highly threaded programming model: A shader thread program processes a
single pixel or vertex, and a CUDA thread program may generate a single
result. A GPU must create and execute millions of such thread programs per
frame, at 60 frames per second.

B Scalability: A program must automatically increase its performance when
provided with additional processors, without recompiling.

m Intensive floating-point (or integer) computation.

m Support of high-throughput computations.
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Multithreaded Multiprocessor
Architecture

To address different market segments, GPUs implement scalable numbers of multi-
processors—in fact, GPUs are multiprocessors composed of multiprocessors.
Furthermore, each multiprocessor is highly multithreaded to execute many fine-
grained vertex and pixel shader threads efficiently. A quality basic GPU has two to
four multiprocessors, while a gaming enthusiasts GPU or computing platform has
dozens of them. This section looks at the architecture of one such multithreaded
multiprocessor, a simplified version of the NVIDIA Tesla streaming multiprocessor
(SM) described in Section B.7.

Why use a multiprocessor, rather than several independent processors? The
parallelism within each multiprocessor provides localized high performance and
supports extensive multithreading for the fine-grained parallel programming
models described in Section B.3. The individual threads of a thread block execute
together within a multiprocessor to share data. The multithreaded multiprocessor
design we describe here has eight scalar processor cores in a tightly coupled
architecture, and executes up to 512 threads (the SM described in Section B.7
executes up to 768 threads). For area and power efficiency, the multiprocessor shares
large complex units among the eight processor cores, including the instruction
cache, the multithreaded instruction unit, and the shared memory RAM.

Massive Multithreading
GPU processors are highly multithreaded to achieve several goals:
m Cover the latency of memory loads and texture fetches from DRAM
m Support fine-grained parallel graphics shader programming models
m Support fine-grained parallel computing programming models
|

Virtualize the physical processors as threads and thread blocks to provide
transparent scalability

m Simplify the parallel programming model to writing a serial program for one
thread

Memory and texture fetch latency can require hundreds of processor clocks,
because GPUs typically have small streaming caches rather than large working-set
caches like CPUs. A fetch request generally requires a full DRAM access latency
plus interconnect and buffering latency. Multithreading helps cover the latency with
useful computing—while one thread is waiting for aload or texture fetch to complete,
the processor can execute another thread. The fine-grained parallel programming
models provide literally thousands of independent threads that can keep many
processors busy despite the long memory latency seen by individual threads.
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A graphics vertex or pixel shader program is a program for a single thread that
processes a vertex or a pixel. Similarly, a CUDA program is a C program for a
single thread that computes a result. Graphics and computing programs instantiate
many parallel threads to render complex images and compute large result arrays.
To dynamically balance shifting vertex and pixel shader thread workloads, each
multiprocessor concurrently executes multiple different thread programs and
different types of shader programs.

To support the independent vertex, primitive, and pixel programming model of
graphics shading languages and the single-thread programming model of CUDA
C/C+ +, each GPU thread has its own private registers, private per-thread memory,
program counter, and thread execution state, and can execute an independent code
path. To efficiently execute hundreds of concurrent lightweight threads, the GPU
multiprocessor is hardware multithreaded—it manages and executes hundreds
of concurrent threads in hardware without scheduling overhead. Concurrent
threads within thread blocks can synchronize at a barrier with a single instruction.
Lightweight thread creation, zero-overhead thread scheduling, and fast barrier
synchronization efficiently support very fine-grained parallelism.

Multiprocessor Architecture

A unified graphics and computing multiprocessor executes vertex, geometry, and
pixel fragment shader programs, and parallel computing programs. As Figure B.4.1
shows, the example multiprocessor consists of eight scalar processor (SP) cores each
with a large multithreaded register file (RF), two special function units (SFUs), a
multithreaded instruction unit, an instruction cache, a read-only constant cache,
and a shared memory.

The 16 KB shared memory holds graphics data buffers and shared computing
data. CUDA variables declared as __shared__ reside in the shared memory. To
map the logical graphics pipeline workload through the multiprocessor multiple
times, as shown in Section B.2, vertex, geometry, and pixel threads have independent
input and output buffers, and workloads arrive and depart independently of thread
execution.

Each SP core contains scalar integer and floating-point arithmetic units that
execute most instructions. The SP is hardware multithreaded, supporting up to
64 threads. Each pipelined SP core executes one scalar instruction per thread per
clock, which ranges from 1.2 GHz to 1.6 GHz in different GPU products. Each SP
core has a large RF of 1024 general-purpose 32-bit registers, partitioned among its
assigned threads. Programs declare their register demand, typically 16 to 64 scalar
32-bit registers per thread. The SP can concurrently run many threads that use
a few registers or fewer threads that use more registers. The compiler optimizes
register allocation to balance the cost of spilling registers versus the cost of fewer
threads. Pixel shader programs often use 16 or fewer registers, enabling each SP to
run up to 64 pixel shader threads to cover long-latency texture fetches. Compiled
CUDA programs often need 32 registers per thread, limiting each SP to 32 threads,
which limits such a kernel program to 256 threads per thread block on this example
multiprocessor, rather than its maximum of 512 threads.
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Multithreaded Multiprocessor
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FIGURE B.4.1 Multithreaded multiprocessor with eight scalar processor (SP) cores. The
eight SP cores each have a large multithreaded register file (RF) and share an instruction cache, multithreaded
instruction issue unit, constant cache, two special function units (SFUs), interconnection network, and a
multibank shared memory.

The pipelined SFUs execute thread instructions that compute special functions
and interpolate pixel attributes from primitive vertex attributes. These instructions
can execute concurrently with instructions on the SPs. The SFU is described later.

The multiprocessor executes texture fetch instructions on the texture unit via the
texture interface, and uses the memory interface for external memory load, store,
and atomic access instructions. These instructions can execute concurrently with
instructions on the SPs. Shared memory access uses a low-latency interconnection
network between the SP processors and the shared memory banks.

Single-Instruction Multiple-Thread (SIMT)

To manage and execute hundreds of threads running several different programs
efficiently, the multiprocessor employs a single-instruction multiple-thread
(SIMT) architecture. It creates, manages, schedules, and executes concurrent threads
in groups of parallel threads called warps. The term warp originates from weaving,
the first parallel thread technology. The photograph in Figure B.4.2 shows a warp of
parallel threads emerging from a loom. This example multiprocessor uses a SIMT
warp size of 32 threads, executing four threads in each of the eight SP cores over four

single-instruction
multiple-thread
(SIMT) A processor
architecture that applies
one instruction to
multiple independent
threads in parallel.

warp The set of parallel
threads that execute the
same instruction together
in a SIMT architecture.
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FIGURE B.4.2 SIMT multithreaded warp scheduling. The scheduler selects a ready warp and issues
an instruction synchronously to the parallel threads composing the warp. Because warps are independent,
the scheduler may select a different warp each time.

clocks. The Tesla SM multiprocessor described in Section B.7 also uses a warp size
of 32 parallel threads, executing four threads per SP core for efficiency on plentiful
pixel threads and computing threads. Thread blocks consist of one or more warps.

This example SIMT multiprocessor manages a pool of 16 warps, a total of 512
threads. Individual parallel threads composing a warp are the same type and start
together at the same program address, but are otherwise free to branch and execute
independently. At each instruction issue time, the SIMT multithreaded instruction
unit selects a warp that is ready to execute its next instruction, and then issues that
instruction to the active threads of that warp. A SIMT instruction is broadcast
synchronously to the active parallel threads of a warp; individual threads may be
inactive due to independent branching or predication. In this multiprocessor, each
SP scalar processor core executes an instruction for four individual threads of a
warp using four clocks, reflecting the 4:1 ratio of warp threads to cores.

SIMT processor architecture is akin to single-instruction multiple data (SIMD)
design, which applies one instruction to multiple data lanes, but differs in that
SIMT applies one instruction to multiple independent threads in parallel, not just
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to multiple data lanes. An instruction for a SIMD processor controls a vector of
multiple data lanes together, whereas an instruction for a SIMT processor controls
an individual thread, and the SIMT instruction unit issues an instruction to a warp
of independent parallel threads for efficiency. The SIMT processor finds data-level
parallelism among threads at runtime, analogous to the way a superscalar processor
finds instruction-level parallelism among instructions at runtime.

A SIMT processor realizes full efficiency and performance when all threads
of a warp take the same execution path. If threads of a warp diverge via a data-
dependent conditional branch, execution serializes for each branch path taken, and
when all paths complete, the threads converge to the same execution path. For equal
length paths, a divergent if-else code block is 50% efficient. The multiprocessor
uses a branch synchronization stack to manage independent threads that diverge
and converge. Different warps execute independently at full speed regardless of
whether they are executing common or disjoint code paths. As a result, SIMT
GPUs are dramatically more efficient and flexible on branching code than earlier
GPUs, as their warps are much narrower than the SIMD width of prior GPUs.

In contrast with SIMD vector architectures, SIMT enables programmers
to write thread-level parallel code for individual independent threads, as well
as data-parallel code for many coordinated threads. For program correctness,
the programmer can essentially ignore the SIMT execution attributes of warps;
however, substantial performance improvements can be realized by taking care that
the code seldom requires threads in a warp to diverge. In practice, this is analogous
to the role of cache lines in traditional codes: cache line size can be safely ignored
when designing for correctness but must be considered in the code structure when
designing for peak performance.

SIMT Warp Execution and Divergence

The SIMT approach of scheduling independent warps is more flexible than the
scheduling of previous GPU architectures. A warp comprises parallel threads of
the same type: vertex, geometry, pixel, or compute. The basic unit of pixel fragment
shader processing is the 2-by-2 pixel quad implemented as four pixel shader threads.
The multiprocessor controller packs the pixel quads into a warp. It similarly groups
vertices and primitives into warps, and packs computing threads into a warp. A
thread block comprises one or more warps. The SIMT design shares the instruction
fetch and issue unit efficiently across parallel threads of a warp, but requires a full
warp of active threads to get full performance efficiency.

This unified multiprocessor schedules and executes multiple warp types
concurrently, allowing it to concurrently execute vertex and pixel warps. Its warp
scheduler operates at less than the processor clock rate, because there are four thread
lanes per processor core. During each scheduling cycle, it selects a warp to execute
a SIMT warp instruction, as shown in Figure B.4.2. An issued warp-instruction
executes as four sets of eight threads over four processor cycles of throughput.
The processor pipeline uses several clocks of latency to complete each instruction.
If the number of active warps times the clocks per warp exceeds the pipeline
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cooperative thread
array (CTA) A set

of concurrent threads
that executes the same
thread program and may
cooperate to compute
aresult. A GPU CTA
implements a CUDA
thread block.

latency, the programmer can ignore the pipeline latency. For this multiprocessor, a
round-robin schedule of eight warps has a period of 32 cycles between successive
instructions for the same warp. If the program can keep 256 threads active per
multiprocessor, instruction latencies up to 32 cycles can be hidden from an
individual sequential thread. However, with few active warps, the processor pipeline
depth becomes visible and may cause processors to stall.

A challenging design problem is implementing zero-overhead warp scheduling
for a dynamic mix of different warp programs and program types. The instruction
scheduler must select a warp every four clocks to issue one instruction per clock
per thread, equivalent to an IPC of 1.0 per processor core. Because warps are
independent, the only dependences are among sequential instructions from the
same warp. The scheduler uses a register dependency scoreboard to qualify warps
whose active threads are ready to execute an instruction. It prioritizes all such ready
warps and selects the highest priority one for issue. Prioritization must consider
warp type, instruction type, and the desire to be fair to all active warps.

Managing Threads and Thread Blocks

The multiprocessor controller and instruction unit manage threads and thread
blocks. The controller accepts work requests and input data and arbitrates access
to shared resources, including the texture unit, memory access path, and I/O
paths. For graphics workloads, it creates and manages three types of graphics
threads concurrently: vertex, geometry, and pixel. Each of the graphics work
types has independent input and output paths. It accumulates and packs each of
these input work types into SIMT warps of parallel threads executing the same
thread program. It allocates a free warp, allocates registers for the warp threads,
and starts warp execution in the multiprocessor. Every program declares its per-
thread register demand; the controller starts a warp only when it can allocate the
requested register count for the warp threads. When all the threads of the warp
exit, the controller unpacks the results and frees the warp registers and resources.

The controller creates cooperative thread arrays (CTAs) which implement
CUDA thread blocks as one or more warps of parallel threads. It creates a CTA
when it can create all CTA warps and allocate all CTA resources. In addition to
threads and registers, a CTA requires allocating shared memory and barriers.
The program declares the required capacities, and the controller waits until it can
allocate those amounts before launching the CTA. Then it creates CTA warps at the
warp scheduling rate, so that a CTA program starts executing immediately at full
multiprocessor performance. The controller monitors when all threads of a CTA
have exited, and frees the CTA shared resources and its warp resources.

Thread Instructions

The SP thread processors execute scalar instructions for individual threads, unlike
earlier GPU vector instruction architectures, which executed four-component
vector instructions for each vertex or pixel shader program. Vertex programs
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generally compute (x, y, z, w) position vectors, while pixel shader programs compute
(red, green, blue, alpha) color vectors. However, shader programs are becoming
longer and more scalar, and it is increasingly difficult to fully occupy even two
components of a legacy GPU four-component vector architecture. In effect, the
SIMT architecture parallelizes across 32 independent pixel threads, rather than
parallelizing the four vector components within a pixel. CUDA C/C++ programs
have predominantly scalar code per thread. Previous GPUs employed vector
packing (e.g., combining subvectors of work to gain efficiency) but that complicated
the scheduling hardware as well as the compiler. Scalar instructions are simpler
and compiler-friendly. Texture instructions remain vector-based, taking a source
coordinate vector and returning a filtered color vector.

To support multiple GPUs with different binary microinstruction formats, high-
level graphics and computing language compilers generate intermediate assembler-
level instructions (e.g., Direct3D vector instructions or PTX scalar instructions),
which are then optimized and translated to binary GPU microinstructions.
The NVIDIA PTX (parallel thread execution) instruction set definition [2007]
provides a stable target ISA for compilers, and provides compatibility over several
generations of GPUs with evolving binary microinstruction-set architectures. The
optimizer readily expands Direct3D vector instructions to multiple scalar binary
microinstructions. PTX scalar instructions translate nearly one to one with scalar
binary microinstructions, although some PTX instructions expand to multiple
binary microinstructions, and multiple PTX instructions may fold into one binary
microinstruction. Because the intermediate assembler-level instructions use virtual
registers, the optimizer analyzes data dependencies and allocates real registers. The
optimizer eliminates dead code, folds instructions together when feasible, and
optimizes SIMT branch diverge and converge points.

Instruction Set Architecture (ISA)

The thread ISA described here is a simplified version of the Tesla architecture
PTX ISA, a register-based scalar instruction set comprising floating-point, integer,
logical, conversion, special functions, flow control, memory access, and texture
operations. Figure B.4.3 lists the basic PTX GPU thread instructions; see the
NVIDIA PTX specification [2007] for details. The instruction format is:

opcode.type d, a, b, c;

where d is the destination operand, a, b, c are source operands, and .type is
one of:

e ype Spocitr

Untyped bits 8, 16, 32, and 64 bits .b8, .b16, .b32, .64
Unsigned integer 8, 16, 32, and 64 bits .u8, .ul6, .u32, .uc4
Signed integer 8, 16, 32, and 64 bits .88, .s16, .s32, .s64
Floating-point 16, 32, and 64 bits .f16, .f32, .f64
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Basic PTX GPU Thread Instructions

I I S ™ ™

arithmetic .type = .s32, .u32, .f3
add.type add.f32 d, a, b d=a+ b;
sub.type sub.f32 d, a, b d=a - b;
mul.type mul.f32 d, a, b d=a * b;
mad.type mad.f32 d, a, b, ¢ d=a*b+c; multiply-add
div.type div.f32 d, a, b d=a/ b; multiple microinstructions
rem.type rem.u32 d, a, b d=a % b; integer remainder
Arithmetic abs.type abs.f32 d, a d = |a]
neg.type neg.f32 d, a d=20 - a;
min.type min.f32 d, a, b d=(a < hb)? a:b; floating selects non-NaN
max.type max.f32 d, a, b d=(a > b)? a:b; floating selects non-NaN
setp.cmp.type setp.1t.f32 p, a, b p=1(a<b); compare and set predicate
numeric .cmp =eq, ne, 1t, le, gt, ge;unordered cmp=-equ, neu, 1tu, Teu, gtu, geu, num, nan
mov.type mov.b32 d, a d=a; move
selp.type selp.f32 d, a, b, p d =p? a: b; select with predicate
cvt.dtype.atype cvt.f32.s32 d, a d = convert(a); convert atype to dtype
special .type = . f32 (some . f64)
rcp.type rcp.f32 d, a d=1/a; reciprocal
sqrt.type sqrt.f32 d, a d = sqgrt(a); square root
Special rsqrt.type rsqrt.f32 d, a d = 1/sqrt(a); reciprocal square root
Function | sin.type sin.f32 d, a d = sin(a); sine
cos.type cos.f32 d, a d = cos(a); cosine
Ig2.type 1g2.f32 d, a d = log(a)/log(2) binary logarithm
ex2.type ex2.f32 d, a d =2 ** a; binary exponential
logic. type = .pred, .b32, .b64
and.type and.b32 d, a, b d=a & b;
or.type or.b32 d, a, b d=a | b;
. xor.type xor.b32 d, a, b d=a " b;
Logical
not.type not.b32 d, a, b d = ~a; one’s complement
cnot.type cnot.b32 d, a, b d = (a==0)? 1:0; C logical not
shl.type shl.b32 d, a, b d=a << b; shift left
shr.type shr.s32 d, a, b d=a > b; shift right
memory .space = .global, .shared, .local, .const; .type= .b8, .u8, .s8, .bl6, .b32, .b64
Id.space.type 1d.global.b32 d, [a+off] d = *(atoff); load from memory space
Memory st.space.type st.shared.b32 [d+off], a *(d+off) = store to memory space
Access tex.nd.dtyp.btype |tex.2d.v4.f32.f32 d, a, b d = tex2d(a, b); texture lookup
atom.spc.op.type | atom.global.add.u32 d,[al, b atomic { d = *a; atomic read-modify-write
atom.global.cas.b32 d,[al, b, ¢ *a = op(*a, b); } |operation
atom .op =and, or, xor, add, min, max, exch, cas; .spc=.global; .type=.b32
branch @p bra target if (p) goto conditional branch
target;
Control call call (ret), func, (params) ret = func(params); | call function
Flow ret ret return; return from function call
bar.sync bar.sync d wait for threads barrier synchronization
exit exit exit; terminate thread execution

FIGURE B.4.3 Basic PTX GPU thread instructions.
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Source operands are scalar 32-bit or 64-bit values in registers, an immediate
value, or a constant; predicate operands are 1-bit Boolean values. Destinations are
registers, except for store to memory. Instructions are predicated by prefixing them
with @p or @!p, where p is a predicate register. Memory and texture instructions
transfer scalars or vectors of two to four components, up to 128 bits in total. PTX
instructions specify the behavior of one thread.

The PTX arithmetic instructions operate on 32-bit and 64-bit floating-point,
signed integer, and unsigned integer types. Recent GPUs support 64-bit double-
precision floating-point; see Section B.6. On current GPUs, PTX 64-bit integer
and logical instructions are translated to two or more binary microinstructions
that perform 32-bit operations. The GPU special function instructions are limited
to 32-bit floating-point. The thread control flow instructions are conditional
branch, function call and return, thread exit, and bar.sync (barrier
synchronization). The conditional branch instruction @ bra target uses a
predicate register p (or !p) previously set by a compare and set predicate setp
instruction to determine whether the thread takes the branch or not. Other
instructions can also be predicated on a predicate register being true or false.

Memory Access Instructions

The tex instruction fetches and filters texture samples from 1D, 2D, and 3D
texture arrays in memory via the texture subsystem. Texture fetches generally use
interpolated floating-point coordinates to address a texture. Once a graphics pixel
shader thread computes its pixel fragment color, the raster operations processor
blends it with the pixel color at its assigned (x, y) pixel position and writes the final
color to memory.

To support computing and C/C++ language needs, the Tesla PTX ISA
implements memory load/store instructions. It uses integer byte addressing with
register plus offset address arithmetic to facilitate conventional compiler code
optimizations. Memory load/store instructions are common in processors, but are
a significant new capability in the Tesla architecture GPUs, as prior GPUs provided
only the texture and pixel accesses required by the graphics APIs.

For computing, the load/store instructions access three read/write memory
spaces that implement the corresponding CUDA memory spaces in Section B.3:

B Local memory for per-thread private addressable temporary data
(implemented in external DRAM)

m Shared memory for low-latency access to data shared by cooperating threads
in the same CTA/thread block (implemented in on-chip SRAM)

B Global memory for large data sets shared by all threads of a computing
application (implemented in external DRAM)

The memoryload/storeinstructions 1d.global,st.global,1d.shared,st.
shared, Td.local,and st.local access the global, shared, and local memory
spaces. Computing programs use the fast barrier synchronization instruction bar .
sync to synchronize threads within a CTA/thread block that communicate with
each other via shared and global memory.
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To improve memory bandwidth and reduce overhead, the local and global load/
store instructions coalesce individual parallel thread requests from the same SIMT
warp together into a single memory block request when the addresses fall in the
same block and meet alignment criteria. Coalescing memory requests provides a
significant performance boost over separate requests from individual threads. The
multiprocessor’s large thread count, together with support for many outstanding
load requests, helps cover load-to-use latency for local and global memory
implemented in external DRAM.

Thelatest Tesla architecture GPUs also provide efficient atomic memory operations
on memory with the atom. op.u32 instructions, including integer operations add,
min, max, and, or, xor, exchange, and cas (compare-and-swap) operations,
facilitating parallel reductions and parallel data structure management.

Barrier Synchronization for Thread Communication

Fast barrier synchronization permits CUDA programs to communicate frequently
via shared memory and global memory by simply calling __syncthreads(); as
part of each interthread communication step. The synchronization intrinsic function
generates a single bar.sync instruction. However, implementing fast barrier
synchronization among up to 512 threads per CUDA thread block is a challenge.
Grouping threads into SIMT warps of 32 threads reduces the synchronization
difficulty by a factor of 32. Threads wait at a barrier in the SIMT thread scheduler so
they do not consume any processor cycles while waiting. When a thread executes
a bar.sync instruction, it increments the barrier’s thread arrival counter and the
scheduler marks the thread as waiting at the barrier. Once all the CTA threads
arrive, the barrier counter matches the expected terminal count, and the scheduler
releases all the threads waiting at the barrier and resumes executing threads.

Streaming Processor (SP)

The multithreaded streaming processor (SP) core is the primary thread instruction
processor in the multiprocessor. Its register file (RF) provides 1024 scalar 32-
bit registers for up to 64 threads. It executes all the fundamental floating-point
operations, including add. f32,mul.f32,mad. f32 (floating multiply-add), min.
f32,max.f32,and setp.f32 (floating compare and set predicate). The floating-
point add and multiply operations are compatible with the IEEE 754 standard
for single-precision FP numbers, including not-a-number (NaN) and infinity
values. The SP core also implements all of the 32-bit and 64-bit integer arithmetic,
comparison, conversion, and logical PTX instructions shown in Figure B.4.3.

The floating-point add and mu1 operations employ IEEE round-to-nearest-even
as the default rounding mode. The mad . 32 floating-point multiply-add operation
performs a multiplication with truncation, followed by an addition with round-
to-nearest-even. The SP flushes input denormal operands to sign-preserved-zero.
Results that underflow the target output exponent range are flushed to sign-
preserved-zero after rounding.
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Special Function Unit (SFU)

Certain thread instructions can execute on the SFUs, concurrently with other
thread instructions executing on the SPs. The SFU implements the special function
instructions of Figure B.4.3, which compute 32-bit floating-point approximations
to reciprocal, reciprocal square root, and key transcendental functions. It also
implements 32-bit floating-point planar attribute interpolation for pixel shaders,
providing accurate interpolation of attributes such as color, depth, and texture
coordinates.

Each pipelined SFU generates one 32-bit floating-point special function result
per cycle; the two SFUs per multiprocessor execute special function instructions
at a quarter the simple instruction rate of the eight SPs. The SFUs also execute the
mul . f32 multiply instruction concurrently with the eight SPs, increasing the peak
computation rate up to 50% for threads with a suitable instruction mixture.

For functional evaluation, the Tesla architecture SFU employs quadratic
interpolation based on enhanced minimax approximations for approximating the
reciprocal, reciprocal square-root, log x, 2x, and sin/cos functions. The accuracy of
the function estimates ranges from 22 to 24 mantissa bits. See Section B.6 for more
details on SFU arithmetic.

Comparing with Other Multiprocessors

Compared with SIMD vector architectures such asx86 SSE, the SIMT multiprocessor
can execute individual threads independently, rather than always executing them
together in synchronous groups. SIMT hardware finds data parallelism among
independent threads, whereas SIMD hardware requires the software to express
data parallelism explicitly in each vector instruction. A SIMT machine executes a
warp of 32 threads synchronously when the threads take the same execution path,
yet can execute each thread independently when they diverge. The advantage is
significant because SIMT programs and instructions simply describe the behavior
of a single independent thread, rather than a SIMD data vector of four or more
data lanes. Yet the SIMT multiprocessor has SIMD-like efficiency, spreading the
area and cost of one instruction unit across the 32 threads of a warp and across the
eight streaming processor cores. SIMT provides the performance of SIMD together
with the productivity of multithreading, avoiding the need to explicitly code SIMD
vectors for edge conditions and partial divergence.

The SIMT multiprocessor imposes little overhead because it is hardware
multithreaded with hardware barrier synchronization. That allows graphics
shaders and CUDA threads to express very fine-grained parallelism. Graphics and
CUDA programs use threads to express fine-grained data parallelism in a per-
thread program, rather than forcing the programmer to express it as SIMD vector
instructions. It is simpler and more productive to develop scalar single-thread code
than vector code, and the SIMT multiprocessor executes the code with SIMD-like
efficiency.
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Coupling eight streaming processor cores together closely into a multiprocessor
and then implementing a scalable number of such multiprocessors makes a two-
level multiprocessor composed of multiprocessors. The CUDA programming model
exploits the two-level hierarchy by providing individual threads for fine-grained
parallel computations, and by providing grids of thread blocks for coarse-grained
parallel operations. The same thread program can provide both fine-grained and
coarse-grained operations. In contrast, CPUs with SIMD vector instructions must
use two different programming models to provide fine-grained and coarse-grained
operations: coarse-grained parallel threads on different cores, and SIMD vector
instructions for fine-grained data parallelism.

Multithreaded Multiprocessor Conclusion

The example GPU multiprocessor based on the Tesla architecture is highly
multithreaded, executing a total of up to 512 lightweight threads concurrently to
support fine-grained pixel shaders and CUDA threads. It uses a variation on SIMD
architecture and multithreading called SIMT (single-instruction multiple-thread)
to efficiently broadcast one instruction to a warp of 32 parallel threads, while
permitting each thread to branch and execute independently. Each thread executes
its instruction stream on one of the eight streaming processor (SP) cores, which are
multithreaded up to 64 threads.

The PTXISA isaregister-based load/store scalar ISA that describes the execution
of a single thread. Because PTX instructions are optimized and translated to binary
microinstructions for a specific GPU, the hardware instructions can evolve rapidly
without disrupting compilers and software tools that generate PTX instructions.

Parallel Memory System

Outside of the GPU itself, the memory subsystem is the most important
determiner of the performance of a graphics system. Graphics workloads demand
very high transfer rates to and from memory. Pixel write and blend (read-modify-
write) operations, depth buffer reads and writes, and texture map reads, as well
as command and object vertex and attribute data reads, comprise the majority of
memory traffic.

Modern GPUs are highly parallel, as shown in Figure B.2.5. For example, the
GeForce 8800 can process 32 pixels per clock, at 600 MHz. Each pixel typically
requires a color read and write and a depth read and write of a 4-byte pixel. Usually
an average of two or three texels of four bytes each are read to generate the pixel’s
color. So for a typical case, there is a demand of 28 bytes times 32 pixels = 896 bytes
per clock. Clearly the bandwidth demand on the memory system is enormous.
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To supply these requirements, GPU memory systems have the following
characteristics:

m They are wide, meaning there are a large number of pins to convey data
between the GPU and its memory devices, and the memory array itself
comprises many DRAM chips to provide the full total data bus width.

m They are fast, meaning aggressive signaling techniques are used to maximize
the data rate (bits/second) per pin.

B GPUs seek to use every available cycle to transfer data to or from the memory
array. To achieve this, GPUs specifically do not aim to minimize latency to the
memory system. High throughput (utilization efficiency) and short latency
are fundamentally in conflict.

m Compression techniques are used, both lossy, of which the programmer must
be aware, and lossless, which is invisible to the application and opportunistic.

m Caches and work coalescing structures are used to reduce the amount of oft-
chip traffic needed and to ensure that cycles spent moving data are used as
fully as possible.

DRAM Considerations

GPUs must take into account the unique characteristics of DRAM. DRAM chips
are internally arranged as multiple (typically four to eight) banks, where each bank
includes a power-of-2 number of rows (typically around 16,384), and each row
contains a power-of-2 number of bits (typically 8192). DRAMs impose a variety of
timing requirements on their controlling processor. For example, dozens of cycles
are required to activate one row, but once activated, the bits within that row are
randomly accessible with a new column address every four clocks. Double-data
rate (DDR) synchronous DRAMs transfer data on both rising and falling edges
of the interface clock (see Chapter 5). So a 1 GHz clocked DDR DRAM transfers
data at 2 gigabits per second per data pin. Graphics DDR DRAMs usually have 32
bidirectional data pins, so eight bytes can be read or written from the DRAM per
clock.

GPUs internally have a large number of generators of memory traffic. Different
stages of the logical graphics pipeline each have their own request streams: command
and vertex attribute fetch, shader texture fetch and load/store, and pixel depth and
color read-write. At each logical stage, there are often multiple independent units
to deliver the parallel throughput. These are each independent memory requestors.
When viewed at the memory system, there is an enormous number of uncorrelated
requests in flight. This is a natural mismatch to the reference pattern preferred by
the DRAMs. A solution is for the GPU’s memory controller to maintain separate
heaps of traffic bound for different DRAM banks, and wait until enough traffic for
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a particular DRAM row is pending before activating that row and transferring all
the traffic at once. Note that accumulating pending requests, while good for DRAM
row locality and thus efficient use of the data bus, leads to longer average latency
as seen by the requestors whose requests spend time waiting for others. The design
must take care that no particular request waits too long, otherwise some processing
units can starve waiting for data and ultimately cause neighboring processors to
become idle.

GPU memory subsystems are arranged as multiple memory partitions, each of
which comprises a fully independent memory controller and one or two DRAM
devices that are fully and exclusively owned by that partition. To achieve the best
load balance and therefore approach the theoretical performance of # partitions,
addresses are finely interleaved evenly across all memory partitions. The partition
interleaving stride is typically a block of a few hundred bytes. The number of
memory partitions is designed to balance the number of processors and other
memory requesters.

Caches

GPU workloads typically have very large working sets—on the order of hundreds
of megabytes to generate a single graphics frame. Unlike with CPUs, it is not
practical to construct caches on chips large enough to hold anything close to the
full working set of a graphics application. Whereas CPUs can assume very high
cache hit rates (99.9% or more), GPUs experience hit rates closer to 90% and must
therefore cope with many misses in flight. While a CPU can reasonably be designed
to halt while waiting for a rare cache miss, a GPU needs to proceed with misses and
hits intermingled. We call this a streaming cache architecture.

GPU caches must deliver very high-bandwidth to their clients. Consider the case
of a texture cache. A typical texture unit may evaluate two bilinear interpolations for
each of four pixels per clock cycle, and a GPU may have many such texture units all
operating independently. Each bilinear interpolation requires four separate texels,
and each texel might be a 64-bit value. Four 16-bit components are typical. Thus,
total bandwidth is 2 X 4 X 4 X 64 = 2048 bits per clock. Each separate 64-bit texel
is independently addressed, so the cache needs to handle 32 unique addresses per
clock. This naturally favors a multibank and/or multiport arrangement of SRAM
arrays.

Modern GPUs are capable of translating virtual addresses to physical addresses.
On the GeForce 8800, all processing units generate memory addresses in a
40-bit virtual address space. For computing, load and store thread instructions use
32-bit byte addresses, which are extended to a 40-bit virtual address by adding a
40-bit offset. A memory management unit performs virtual to physical address
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translation; hardware reads the page tables from local memory to respond to
misses on behalf of a hierarchy of translation lookaside buffers spread out among
the processors and rendering engines. In addition to physical page bits, GPU page
table entries specify the compression algorithm for each page. Page sizes range
from 4 to 128 kilobytes.

Memory Spaces

As introduced in Section B.3, CUDA exposes different memory spaces to allow the
programmer to store data values in the most performance-optimal way. For the
following discussion, NVIDIA Tesla architecture GPUs are assumed.

Global memory

Global memory is stored in external DRAM; it is not local to any one physical
streaming multiprocessor (SM) because it is meant for communication among
different CTAs (thread blocks) in different grids. In fact, the many CTAs that
reference a location in global memory may not be executing in the GPU at the
same time; by design, in CUDA a programmer does not know the relative order
in which CTAs are executed. Because the address space is evenly distributed
among all memory partitions, there must be a read/write path from any streaming
multiprocessor to any DRAM partition.

Access to global memory by different threads (and different processors) is not
guaranteed to have sequential consistency. Thread programs see a relaxed memory
ordering model. Within a thread, the order of memory reads and writes to the same
address is preserved, but the order of accesses to different addresses may not be
preserved. Memory reads and writes requested by different threads are unordered.
Within a CTA, the barrier synchronization instruction bar.sync can be used
to obtain strict memory ordering among the threads of the CTA. The membar
thread instruction provides a memory barrier/fence operation that commits prior
memory accesses and makes them visible to other threads before proceeding.
Threads can also use the atomic memory operations described in Section B.4 to
coordinate work on memory they share.

Shared memory

Per-CTA shared memory is only visible to the threads that belong to that CTA,
and shared memory only occupies storage from the time a CTA is created to the
time it terminates. Shared memory can therefore reside on-chip. This approach has
many benefits. First, shared memory traffc does not need to compete with limited
off-chip bandwidth needed for global memory references. Second, it is practical to
build very high-bandwidth memory structures on-chip to support the read/write
demands of each streaming multiprocessor. In fact, the shared memory is closely
coupled to the streaming multiprocessor.
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Each streaming multiprocessor contains eight physical thread processors. During
one shared memory clock cycle, each thread processor can process two threads’
worth of instructions, so 16 threads’ worth of shared memory requests must be
handled in each clock. Because each thread can generate its own addresses, and the
addresses are typically unique, the shared memory is built using 16 independently
addressable SRAM banks. For common access patterns, 16 banks are sufficient
to maintain throughput, but pathological cases are possible; for example, all 16
threads might happen to access a different address on one SRAM bank. It must be
possible to route a request from any thread lane to any bank of SRAM, so a 16-by-
16 interconnection network is required.

Local Memory

Per-thread local memory is private memory visible only to a single thread. Local
memory is architecturally larger than the thread’s register file, and a program
can compute addresses into local memory. To support large allocations of local
memory (recall the total allocation is the per-thread allocation times the number
of active threads), local memory is allocated in external DRAM.

Although global and per-thread local memory reside off-chip, they are well-
suited to being cached on-chip.

Constant Memory

Constant memory is read-only to a program running on the SM (it can be written
via commands to the GPU). It is stored in external DRAM and cached in the SM.
Because commonly most or all threads in a SIMT warp read from the same address
in constant memory, a single address lookup per clock is sufficient. The constant
cache is designed to broadcast scalar values to threads in each warp.

Texture Memory

Texture memory holds large read-only arrays of data. Textures for computing have
the same attributes and capabilities as textures used with 3D graphics. Although
textures are commonly two-dimensional images (2D arrays of pixel values), 1D
(linear) and 3D (volume) textures are also available.

A compute program references a texture using a tex instruction. Operands
include an identifier to name the texture, and one, two, or three coordinates
based on the texture dimensionality. The floating-point coordinates include a
fractional portion that specifies a sample location, often in-between texel locations.
Noninteger coordinates invoke a bilinear weighted interpolation of the four closest
values (for a 2D texture) before the result is returned to the program.

Texture fetches are cached in a streaming cache hierarchy designed to optimize
throughput of texture fetches from thousands of concurrent threads. Some
programs use texture fetches as a way to cache global memory.
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Surfaces

Surface is a generic term for a one-dimensional, two-dimensional, or three-
dimensional array of pixel values and an associated format. A variety of formats
are defined; for example, a pixel may be defined as four 8-bit RGBA integer
components, or four 16-bit floating-point components. A program kernel does
not need to know the surface type. A tex instruction recasts its result values as
floating-point, depending on the surface format.

Load/Store Access

Load/store instructions with integer byte addressing enable the writing and
compiling of programs in conventional languages like C and C++. CUDA
programs use load/store instructions to access memory.

To improve memory bandwidth and reduce overhead, the local and global load/
store instructions coalesce individual parallel thread requests from the same warp
together into a single memory block request when the addresses fall in the same
block and meet alignment criteria. Coalescing individual small memory requests
into large block requests provides a significant performance boost over separate
requests. The large thread count, together with support for many outstanding load
requests, helps cover load-to-use latency for local and global memory implemented
in external DRAM.

ROP

As shown in Figure B.2.5, NVIDIA Tesla architecture GPUs comprise a scalable
streaming processor array (SPA), which performs all of the GPU’s programmable
calculations, and a scalable memory system, which comprises external DRAM
control and fixed function Raster Operation Processors (ROPs) that perform color
and depth framebuffer operations directly on memory. Each ROP unit is paired
with a specific memory partition. ROP partitions are fed from the SMs via an
interconnection network. Each ROP is responsible for depth and stencil tests and
updates, as well as color blending. The ROP and memory controllers cooperate
to implement lossless color and depth compression (up to 8:1) to reduce external
bandwidth demand. ROP units also perform atomic operations on memory.

Floating-point Arithmetic

GPUs today perform most arithmetic operations in the programmable processor
cores using IEEE 754-compatible single precision 32-bit floating-point operations
(see Chapter 3). The fixed-point arithmetic of early GPUs was succeeded by 16-bit,
24-bit, and 32-bit floating-point, then IEEE 754-compatible 32-bit floating-point.
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half precision A 16-bit
binary floating-point
format, with 1 sign bit,
5-bit exponent, 10-bit
fraction, and an implied
integer bit.

multiply-add (MAD)

A single floating-point
instruction that performs
a compound operation:
multiplication followed by
addition.

Some fixed-function logic within a GPU, such as texture-filtering hardware,
continues to use proprietary numeric formats. Recent GPUs also provide IEEE 754-
compatible double-precision 64-bit floating-point instructions.

Supported Formats

The IEEE 754 standard for floating-point arithmetic specifies basic and storage
formats. GPUs use two of the basic formats for computation, 32-bit and 64-bit
binary floating-point, commonly called single precision and double precision. The
standard also specifies a 16-bit binary storage floating-point format, half precision.
GPUs and the Cg shading language employ the narrow 16-bit half data format for
efficient data storage and movement, while maintaining high dynamic range. GPUs
perform many texture filtering and pixel blending computations at half precision
within the texture filtering unit and the raster operations unit. The OpenEXR high
dynamic-range image file format developed by Industrial Light and Magic [2003]
uses the identical half format for color component values in computer imaging and
motion picture applications.

Basic Arithmetic

Common single-precision floating-point operations in GPU programmable cores
include addition, multiplication, multiply-add, minimum, maximum, compare,
set predicate, and conversions between integer and floating-point numbers.
Floating-point instructions often provide source operand modifiers for negation
and absolute value.

The floating-point addition and multiplication operations of most GPUs today
are compatible with the IEEE 754 standard for single precision FP numbers,
including not-a-number (NaN) and infinity values. The FP addition and
multiplication operations use IEEE round-to-nearest-even as the default rounding
mode. To increase floating-point instruction throughput, GPUs often use a
compound multiply-add instruction (mad). The multiply-add operation performs
FP multiplication with truncation, followed by FP addition with round-to-nearest-
even. It provides two floating-point operations in one issuing cycle, without
requiring the instruction scheduler to dispatch two separate instructions, but the
computation is not fused and truncates the product before the addition. This makes
it different from the fused multiply-add instruction discussed in Chapter 3 and
later in this section. GPUs typically flush denormalized source operands to sign-
preserved zero, and they flush results that underflow the target output exponent
range to sign-preserved zero after rounding.

Specialized Arithmetic

GPUs provide hardware to accelerate special function computation, attribute
interpolation, and texture filtering. Special function instructions include cosine,
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sine, binary exponential, binary logarithm, reciprocal, and reciprocal square root.
Attribute interpolation instructions provide efficient generation of pixel attributes,
derived from plane equation evaluation. The special function unit (SFU)
introduced in Section B.4 computes special functions and interpolates planar
attributes [Oberman and Siu, 2005].

Several methods exist for evaluating special functions in hardware. It has been
shown that quadratic interpolation based on Enhanced Minimax Approximations
is a very efficient method for approximating functions in hardware, including
reciprocal, reciprocal square-root, log x, 2% sin, and cos.

We can summarize the method of SFU quadratic interpolation. For a binary
input operand X with »-bit significand, the significand is divided into two parts:
X is the upper part containing m bits, and X is the lower part containing n-m bits.
The upper m bits X _are used to consult a set of three lookup tables to return three
finite-word coefficients C, C , and C,. Each function to be approximated requires
a unique set of tables. These coeflicients are used to approximate a given function
f(X) in the range X <X <X + 27 by evaluating the expression:

f(X) = C, + C,X, + C,X;

The accuracy of each of the function estimates ranges from 22 to 24 significand
bits. Example function statistics are shown in Figure B.6.1.

The IEEE 754 standard specifies exact-rounding requirements for division
and square root; however, for many GPU applications, exact compliance is not
required. Rather, for those applications, higher computational throughput is more
important than last-bit accuracy. For the SFU special functions, the CUDA math
library provides both a full accuracy function and a fast function with the SFU
instruction accuracy.

Another specialized arithmetic operation in a GPU is attribute interpolation.
Key attributes are usually specified for vertices of primitives that make up a scene
to be rendered. Example attributes are color, depth, and texture coordinates. These
attributes must be interpolated in the (x,y) screen space as needed to determine the

Input Accuracy % exactly
interval (good bits) rounded
1/x 87 Yes

[1,2) 24.02 0.98
1/sqrt(x) [1, 4) 23.40 1.52 78 Yes
2% [0, 1) 22.51 1.41 74 Yes
log,x [1,2) 22.57 N/A* N/A Yes
sin/cos [0, m/2) 22.47 N/A N/A No

“ULP: unit in the last place.”"N/A: not applicable.

FIGURE B.6.1 Special function approximation statistics. For the NVIDIA GeForce 8800 special
function unit (SFU).

special function unit
(SFU) A hardware unit
that computes special
functions and interpolates
planar attributes.
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MIP-map A Latin
phrase multum in parvo,
or much in a small space.
A MIP-map contains
precalculated images of
different resolutions, used
to increase rendering
speed and reduce
artifacts.

values of the attributes at each pixel location. The value of a given attribute Uin an
(x, y) plane can be expressed using plane equations of the form:

Uxy) = A,x+B,Y+C,

where A, B, and C are interpolation parameters associated with each attribute U.
The interpolation parameters A, B, and C are all represented as single-precision
floating-point numbers.

Given the need for both a function evaluator and an attribute interpolator in a
pixel shader processor, a single SFU that performs both functions for efficiency can
be designed. Both functions use a sum of products operation to interpolate results,
and the number of terms to be summed in both functions is very similar.

Texture Operations

Texture mapping and filtering is another key set of specialized floating-point
arithmetic operations in a GPU. The operations used for texture mapping include:

1. Receive texture address (s, t) for the current screen pixel (x, y), where s and
t are single-precision floating-point numbers.

2. Compute the level of detail to identify the correct texture MIP-map level.
3. Compute the trilinear interpolation fraction.

4. Scale texture address (s, t) for the selected MIP-map level.

5. Access memory and retrieve desired texels (texture elements).

6. Perform filtering operation on texels.

Texture mapping requires a significant amount of floating-point computation
for full-speed operation, much of which is done at 16-bit half precision. As an
example, the GeForce 8800 Ultra delivers about 500 GFLOPS of proprietary format
floating-point computation for texture mapping instructions, in addition to its
conventional IEEE single-precision floating-point instructions. For more details
on texture mapping and filtering, see Foley and van Dam [1995].

Performance

The floating-point addition and multiplication arithmetic hardware is fully
pipelined, and latency is optimized to balance delay and area. While pipelined,
the throughput of the special functions is less than the floating-point addition
and multiplication operations. Quarter-speed throughput for the special functions
is typical performance in modern GPUs, with one SFU shared by four SP cores.
In contrast, CPUs typically have significantly lower throughput for similar
functions, such as division and square root, albeit with more accurate results. The
attribute interpolation hardware is typically fully pipelined to enable full-speed
pixel shaders.
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Double precision

Newer GPUs such as the Tesla T10P also support IEEE 754 64-bit double-precision
operations in hardware. Standard floating-point arithmetic operations in double
precision include addition, multiplication, and conversions between different
floating-point and integer formats. The 2008 IEEE 754 floating-point standard
includes specification for the fused-multiply-add (FMA) operation, as discussed
in Chapter 3. The FMA operation performs a floating-point multiplication
followed by an addition, with a single rounding. The fused multiplication and
addition operations retain full accuracy in intermediate calculations. This behavior
enables more accurate floating-point computations involving the accumulation
of products, including dot products, matrix multiplication, and polynomial
evaluation. The FMA instruction also enables efficient software implementations
of exactly rounded division and square root, removing the need for a hardware
division or square root unit.

A double-precision hardware FMA unit implements 64-bit addition,
multiplication, conversions, and the FMA operation itself. The architecture of a

Inversion

Alignment | _ Exp
shifter B Diff

| Complementer |
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FIGURE B.6.2 Double-precision fused-multiply-add (FMA) unit. Hardware to implement
floating-point AX B+ C for double precision.
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double-precision FMA unit enables full-speed denormalized number support on
both inputs and outputs. Figure B.6.2 shows a block diagram of an FMA unit.

As shown in Figure B.6.2, the significands of A and B are multiplied to form a 106-
bit product, with the resultsleft in carry-save form. In parallel, the 53-bitaddend Cis
conditionally inverted and aligned to the 106-bit product. The sum and carry results
of the 106-bit product are summed with the aligned addend through a 161-bit-
wide carry-save adder (CSA). The carry-save output is then summed together in
a carry-propagate adder to produce an unrounded result in nonredundant, two’s
complement form. The result is conditionally recomplemented, so as to return a
result in sign-magnitude form. The complemented result is normalized, and then it
is rounded to fit within the target format.

Real Stuff: The NVIDIA GeForce 8800

The NVIDIA GeForce 8800 GPU, introduced in November 2006, is a unified vertex
and pixel processor design that also supports parallel computing applications written
in C using the CUDA parallel programming model. It is the first implementation
of the Tesla unified graphics and computing architecture described in Section B.4
and in Lindholm et al. [2008]. A family of Tesla architecture GPUs addresses the
different needs of laptops, desktops, workstations, and servers.

Streaming Processor Array (SPA)

The GeForce 8800 GPU shown in Figure B.7.1 contains 128 streaming processor (SP)
cores organized as 16 streaming multiprocessors (SMs). Two SMs share a texture
unit in each texture/processor cluster (TPC). An array of eight TPCs makes up the
streaming processor array (SPA), which executes all graphics shader programs and
computing programs.

The host interface unit communicates with the host CPU via the PCI-Express
bus, checks command consistency, and performs context switching. The input
assembler collects geometric primitives (points, lines, triangles). The work
distribution blocks dispatch vertices, pixels, and compute thread arrays to the
TPCs in the SPA. The TPCs execute vertex and geometry shader programs and
computing programs. Output geometric data are sent to the viewport/clip/setup/
raster/zcull block to be rasterized into pixel fragments that are then redistributed
back into the SPA to execute pixel shader programs. Shaded pixels are sent across
the interconnection network for processing by the ROP units. The network also
routes texture memory read requests from the SPA to DRAM and reads data from
DRAM through a level-2 cache back to the SPA.
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FIGURE B.7.1 NVIDIA Tesla unified graphics and computing GPU architecture. This GeForce 8300 has 128 streaming processor
(SP) cores in 16 streaming multiprocessors (SMs), arranged in eight texture/processor clusters (TPCs). The processors connect with six 64-bit-
wide DRAM partitions via an interconnection network. Other GPUs implementing the Tesla architecture vary the number of SP cores, SMs,

DRAM partitions, and other units.

Texture/Processor Cluster (TPC)

Each TPC contains a geometry controller, an SMC, two SMs, and a texture unit as
shown in Figure B.7.2.

The geometry controller maps the logical graphics vertex pipeline into recir-
culation on the physical SMs by directing all primitive and vertex attribute and
topology flow in the TPC.

The SMC controls multiple SMs, arbitrating the shared texture unit, load/store
path, and I/O path. The SMC serves three graphics workloads simultaneously:
vertex, geometry, and pixel.

The texture unit processes a texture instruction for one vertex, geometry, or pixel
quad, or four compute threads per cycle. Texture instruction sources are texture
coordinates, and the outputs are weighted samples, typically a four-component
(RGBA) floating-point color. The texture unit is deeply pipelined. Although it

contains a streaming cache to capture filtering locality, it streams hits mixed with
misses without stalling.
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FIGURE B.7.2 Texture/processor cluster (TPC) and a streaming multiprocessor (SM). Each SM has eight streaming processor
(SP) cores, two SFUs, and a shared memory.

Streaming Multiprocessor (SM)

The SM is a unified graphics and computing multiprocessor that executes vertex,
geometry, and pixel-fragment shader programs and parallel computing programs.
The SM consists of eight SP thread processor cores, two SFUs, a multithreaded
instruction fetch and issue unit (MT issue), an instruction cache, a read-only
constant cache, and a 16KB read/write shared memory. It executes scalar
instructions for individual threads.

The GeForce 8800 Ultra clocks the SP cores and SFUs at 1.5 GHz, for a peak of
36 GFLOPS per SM. To optimize power and area efficiency, some SM nondatapath
units operate at half the SP clock rate.
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To efficiently execute hundreds of parallel threads while running several different
programs, the SM is hardware multithreaded. It manages and executes up to 768
concurrent threads in hardware with zero scheduling overhead. Each thread has its
own thread execution state and can execute an independent code path.

A warp consists of up to 32 threads of the same type—vertex, geometry, pixel,
or compute. The SIMT design, previously described in Section B.4, shares the SM
instruction fetch and issue unit efficiently across 32 threads but requires a full warp
of active threads for full performance efficiency.

The SM schedules and executes multiple warp types concurrently. Each issue
cycle, the scheduler selects one of the 24 warps to execute a SIMT warp instruction.
Anissued warp instruction executes as four sets of eight threads over four processor
cycles. The SP and SFU units execute instructions independently, and by issuing
instructions between them on alternate cycles, the scheduler can keep both fully
occupied. A scoreboard qualifies each warp for issue each cycle. The instruction
scheduler prioritizes all ready warps and selects the one with highest priority for
issue. Prioritization considers warp type, instruction type, and “fairness” to all
warps executing in the SM.

The SM executes cooperative thread arrays (CTAs) as multiple concurrent warps
which access a shared memory region allocated dynamically for the CTA.

Instruction Set

Threads execute scalar instructions, unlike previous GPU vector instruction
architectures. Scalar instructions are simpler and compiler-friendly. Texture
instructions remain vector-based, taking a source coordinate vector and returning
a filtered color vector.

The register-based instruction set includes all the floating-point and integer
arithmetic, transcendental, logical, flow control, memory load/store, and texture
instructions listed in the PTX instruction table of Figure B.4.3. Memory load/store
instructions use integer byte addressing with register-plus-offset address arithmetic.
For computing, the load/store instructions access three read-write memory spaces:
local memory for per-thread, private, temporary data; shared memory for low-
latency per-CTA data shared by the threads of the CTA; and global memory for data
shared by all threads. Computing programs use the fast barrier synchronization
bar.sync instruction to synchronize threads within a CTA that communicate
with each other via shared and global memory. The latest Tesla architecture GPUs
implement PTX atomic memory operations, which facilitate parallel reductions
and parallel data structure management.

Streaming Processor (SP)

The multithreaded SP core is the primary thread processor, as introduced in
Section B.4. Its register file provides 1024 scalar 32-bit registers for up to 96 threads
(more threads than in the example SP of Section B.4). Its floating-point add and
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multiply operations are compatible with the IEEE 754 standard for single-precision
FP numbers, including not-a-number (NaN) and infinity. The add and multiply
operations use IEEE round-to-nearest-even as the default rounding mode. The SP
core also implements all of the 32-bit and 64-bit integer arithmetic, comparison,
conversion, and logical PTX instructions in Figure B.4.3. The processor is fully
pipelined, and latency is optimized to balance delay and area.

Special Function Unit (SFU)

The SFU supports computation of both transcendental functions and planar
attribute interpolation. As described in Section B.6, it uses quadratic interpolation
based on enhanced minimax approximations to approximate the reciprocal,
reciprocal square root, log x, 2% and sin/cos functions at one result per cycle. The
SFU also supports pixel attribute interpolation such as color, depth, and texture
coordinates at four samples per cycle.

Rasterization

Geometry primitives from the SMs go in their original round-robin input order
to the viewport/clip/setup/raster/zcull block. The viewport and clip units clip
the primitives to the view frustum and to any enabled user clip planes, and then
transform the vertices into screen (pixel) space.

Surviving primitives then go to the setup unit, which generates edge equations
for the rasterizer. A coarse-rasterization stage generates all pixel tiles that are at
least partially inside the primitive. The zcull unit maintains a hierarchical z surface,
rejecting pixel tiles if they are conservatively known to be occluded by previously
drawn pixels. The rejection rate is up to 256 pixels per clock. Pixels that survive zcull
then go to a fine-rasterization stage that generates detailed coverage information
and depth values.

The depth test and update can be performed ahead of the fragment shader, or
after, depending on current state. The SMC assembles surviving pixels into warps
to be processed by an SM running the current pixel shader. The SMC then sends
surviving pixel and associated data to the ROP.

Raster Operations Processor (ROP) and Memory System

Each ROP is paired with a specific memory partition. For each pixel fragment
emitted by a pixel shader program, ROPs perform depth and stencil testing and
updates, and in parallel, color blending and updates. Lossless color compression
(up to 8:1) and depth compression (up to 8:1) are used to reduce DRAM bandwidth.
Each ROP has a peak rate of four pixels per clock and supports 16-bit floating-
point and 32-bit floating-point HDR formats. ROPs support double-rate-depth
processing when color writes are disabled.
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Antialiasing support includes up to 16X multisampling and supersampling. The
coverage-sampling antialiasing (CSAA) algorithm computes and stores Boolean
coverage at up to 16 samples and compresses redundant color, depth, and stencil
information into the memory footprint and a bandwidth of four or eight samples
for improved performance.

The DRAM memory data bus width is 384 pins, arranged in six independent
partitions of 64 pins each. Each partition supports double-data-rate DDR2 and
graphics-oriented GDDR3 protocols at up to 1.0 GHz, yielding a bandwidth of
about 16 GB/s per partition, or 96 GB/s.

The memory controllers support a wide range of DRAM clock rates, protocols,
device densities, and data bus widths. Texture and load/store requests can occur
between any TPC and any memory partition, so an interconnection network routes
requests and responses.

Scalability

The Tesla unified architecture is designed for scalability. Varying the number of
SMs, TPCs, ROPs, caches, and memory partitions provides the right balance for
different performance and cost targets in GPU market segments. Scalable link
interconnect (SLI) connects multiple GPUs, providing further scalability.

Performance

The GeForce 8800 Ultra clocks the SP thread processor cores and SFUs at 1.5 GHz,
for a theoretical operation peak of 576 GFLOPS. The GeForce 8800 GTX hasa 1.35 GHz
processor clock and a corresponding peak of 518 GFLOPS.

The following three sections compare the performance of a GeForce 8800 GPU
with a multicore CPU on three different applications—dense linear algebra, fast
Fourier transforms, and sorting. The GPU programs and libraries are compiled
CUDA C code. The CPU code uses the single-precision multithreaded Intel MKL
10.0 library to leverage SSE instructions and multiple cores.

Dense Linear Algebra Performance

Dense linear algebra computations are fundamental in many applications. Volkov
and Demmel [2008] present GPU and CPU performance results for single-
precision dense matrix-matrix multiplication (the SGEMM routine) and LU,
QR, and Cholesky matrix factorizations. Figure B.7.3 compares GFLOPS rates on
SGEMM dense matrix-matrix multiplication for a GeForce 8800 GTX GPU with a
quad-core CPU. Figure B.7.4 compares GFLOPS rates on matrix factorization for a
GPU with a quad-core CPU.

Because SGEMM matrix-matrix multiply and similar BLAS3 routines are the
bulk of the work in matrix factorization, their performance sets an upper bound on
factorization rate. As the matrix order increases beyond 200 to 400, the factorization
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FIGURE B.7.3 SGEMM dense matrix-matrix multiplication performance rates. The graph
shows single-precision GFLOPS rates achieved in multiplying square NXN matrices (solid lines) and thin
N Xx64 and 64N matrices (dashed lines). Adapted from Figure 6 of Volkov and Demmel [2008]. The black
lines are a 1.35 GHz GeForce 8800 GTX using Volkov’s SGEMM code (now in NVIDIA CUBLAS 2.0) on
matrices in GPU memory. The blue lines are a quad-core 2.4 GHz Intel Core2 Quad Q6600, 64-bit Linux,
Intel MKL 10.0 on matrices in CPU memory.
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FIGURE B.7.4 Dense matrix factorization performance rates. The graph shows GFLOPS rates
achieved in matrix factorizations using the GPU and using the CPU alone. Adapted from Figure 7 of Volkov
and Demmel [2008]. The black lines are for a 1.35 GHz NVIDIA GeForce 8800 GTX, CUDA 1.1, Windows
XP attached to a 2.67 GHz Intel Core2 Duo E6700 Windows XP, including all CPU-GPU data transfer times.
The blue lines are for a quad-core 2.4 GHz Intel Core2 Quad Q6600, 64-bit Linux, Intel MKL 10.0.
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problem becomes large enough that SGEMM can leverage the GPU parallelism and
overcome the CPU-GPU system and copy overhead. Volkov’s SGEMM matrix-
matrix multiply achieves 206 GFLOPS, about 60% of the GeForce 8800 GTX peak
multiply-add rate, while the QR factorization reached 192 GFLOPS, about 4.3
times the quad-core CPU.

FFT Performance

Fast Fourier Transforms (FFTs) are used in many applications. Large transforms
and multidimensional transforms are partitioned into batches of smaller 1D
transforms.

Figure B.7.5 compares the in-place 1D complex single-precision FFT
performance of a 1.35GHz GeForce 8800 GTX (dating from late 2006) with a
2.8GHz quad-Core Intel Xeon E5462 series (code named “Harpertown,” dating
from late 2007). CPU performance was measured using the Intel Math Kernel
Library (MKL) 10.0 FFT with four threads. GPU performance was measured using
the NVIDIA CUFFT 2.1 library and batched 1D radix-16 decimation-in-frequency
FFTs. Both CPU and GPU throughput performance was measured using batched
FFTs; batch size was 2*/n, where n is the transform size. Thus, the workload for
every transform size was 128 MB. To determine GFLOPS rate, the number of
operations per transform was taken as 51 log, n.
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FIGURE B.7.5 Fast Fourier transform throughput performance. The graph compares the
performance of batched one-dimensional in-place complex FFTs on a 1.35 GHz GeForce 8800 GTX with a
quad-core 2.8 GHz Intel Xeon E5462 series (code named “Harpertown”), 6MB L2 Cache, 4GB Memory, 1600
FSB, Red Hat Linux, Intel MKL 10.0.
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Sorting Performance

In contrast to the applications just discussed, sort requires far more substantial
coordination among parallel threads, and parallel scaling is correspondingly
harder to obtain. Nevertheless, a variety of well-known sorting algorithms can
be efficiently parallelized to run well on the GPU. Satish et al. [2008] detail the
design of sorting algorithms in CUDA, and the results they report for radix sort
are summarized below.

Figure B.7.6 compares the parallel sorting performance of a GeForce 8800 Ultra
with an 8-core Intel Clovertown system, both of which date to early 2007. The
CPU cores are distributed between two physical sockets. Each socket contains a
multichip module with twin Core2 chips, and each chip has a 4MB L2 cache. All
sorting routines were designed to sort key-value pairs where both keys and values
are 32-bit integers. The primary algorithm being studied is radix sort, although
the quicksort-based parallel_sort() procedure provided by Intel’s Threading
Building Blocks is also included for comparison. Of the two CPU-based radix sort
codes, one was implemented using only the scalar instruction set and the other
utilizes carefully hand-tuned assembly language routines that take advantage of the
SSE2 SIMD vector instructions.

The graph itself shows the achieved sorting rate—defined as the number of
elements sorted divided by the time to sort—for a range of sequence sizes. It is
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FIGURE B.7.6 Parallel sorting performance. This graph compares sorting rates for parallel radix sort
implementations on a 1.5 GHz GeForce 8800 Ultra and an 8-core 2.33 GHz Intel Core2 Xeon E5345 system.
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apparent from this graph that the GPU radix sort achieved the highest sorting
rate for all sequences of 8K-elements and larger. In this range, it is on average 2.6
times faster than the quicksort-based routine and roughly two times faster than the
radix sort routines, all of which were using the eight available CPU cores. The CPU
radix sort performance varies widely, likely due to poor cache locality of its global
permutations.

3 Real Stuff: Mapping Applications to GPUs

The advent of multicore CPUs and manycore GPUs means that mainstream
processor chips are now parallel systems. Furthermore, their parallelism continues
to scale with Moore’s law. The challenge is to develop mainstream visual computing
and high-performance computing applications that transparently scale their
parallelism to leverage the increasing number of processor cores, much as 3D
graphics applications transparently scale their parallelism to GPUs with widely
varying numbers of cores.

This section presents examples of mapping scalable parallel computing
applications to the GPU using CUDA.

Sparse Matrices

A wide variety of parallel algorithms can be written in CUDA in a fairly
straightforward manner, even when the data structures involved are not simple
regular grids. Sparse matrix-vector multiplication (SpMV) is a good example of an
important numerical building block that can be parallelized quite directly using the
abstractions provided by CUDA. The kernels we discuss below, when combined
with the provided CUBLAS vector routines, make writing iterative solvers such as
the conjugate gradient method straightforward.

A sparse n X n matrix is one in which the number of nonzero entries m is only
a small fraction of the total. Sparse matrix representations seek to store only the
nonzero elements of a matrix. Since it is fairly typical that a sparse n X n matrix
will contain only m= O(n) nonzero elements, this represents a substantial saving
in storage space and processing time.

One of the most common representations for general unstructured sparse
matrices is the compressed sparse row (CSR) representation. The m nonzero
elements of the matrix A are stored in row-major order in an array Av. A second
array AJ records the corresponding column index for each entry of Av. Finally, an
array Ap of n+ 1 elements records the extent of each row in the previous arrays; the
entries for row i in Aj and Av extend from index Ap[ 1] up to, but not including,
index Ap[i + 1]. This implies that Ap[ 0] will always be 0 and Ap[n] will always
be the number of nonzero elements in the matrix. Figure B.8.1 shows an example
of the CSR representation of a simple matrix.
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FIGURE B.8.1 Compressed sparse row (CSR) matrix.

float multiply_row(unsigned int rowsize,

}

unsigned int *Aj, // column indices for row
float *Av, // nonzero entries for row
float *x) // the RHS vector

float sum = 0;

for(Cunsigned int column=0; column<rowsize; ++column)
sum += Av[column] * x[Ajlcolumn]];

return sum;

FIGURE B.8.2 Serial C code for a single row of sparse matrix-vector multiply.

Given a matrix A in CSR form and a vector x, we can compute a single row of
the product y = Ax using themultiply_row() procedure shown in Figure B.8.2.
Computing the full product is then simply a matter of looping over all rows and
computing the result for that row usingmultiply_row(), as in the serial C code
shown in Figure B.8.3.

This algorithm can be translated into a parallel CUDA kernel quite easily. We
simply spread the loop in csrmul_serial() over many parallel threads. Each
thread will compute exactly one row of the output vector y. The code for this kernel
is shown in Figure B.8.4. Note that it looks extremely similar to the serial loop
used in the csrmul_serial () procedure. There are really only two points of
difference. First, the row index for each thread is computed from the block and
thread indices assigned to each thread, eliminating the for-loop. Second, we have a
conditional that only evaluates a row product if the row index is within the bounds
of the matrix (this is necessary since the number of rows #n need not be a multiple
of the block size used in launching the kernel).
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void csrmul_serial(unsigned int *Ap, unsigned int *Aj,
float *Av, unsigned int num_rows,
float *x, float *y)

for(unsigned int row=0; row<num_rows; ++row)
{
unsigned int row_begin = Apl[row];
unsigned int row_end = Ap[row+l];

ylrow] = multiply_row(row_end-row_begin, Aj+row_begin,
Av+row_begin, x);

}

FIGURE B.8.3 Serial code for sparse matrix-vector multiply.

_global__

void csrmul_kernel(unsigned int *Ap, unsigned int *Aj,
float *Av, unsigned int num_rows,
float *x, float *y)

unsigned int row = blockIdx.x*blockDim.x + threadldx.x;

if( row<num_rows )

{
unsigned int row_begin = Apl[rowl];
unsigned int row_end Aplrow+17;

ylrow] = multiply_row(row_end-row_begin, Aj+trow_begin,
Av+row_begin, x);

J

FIGURE B.8.4 CUDA version of sparse matrix-vector multiply.

Assuming that the matrix data structures have already been copied to the GPU
device memory, launching this kernel will look like:

unsigned int blocksize = 128; // or any size up to 512
unsigned int nblocks = (num_rows + blocksize - 1) / blocksize;
csrmul_kernel<<<nblocks,blocksize>>>(Ap, AJj, Av, num_rows, X, y);
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The pattern that we see here is a very common one. The original serial
algorithm is a loop whose iterations are independent of each other. Such loops
can be parallelized quite easily by simply assigning one or more iterations of the
loop to each parallel thread. The programming model provided by CUDA makes
expressing this type of parallelism particularly straightforward.

This general strategy of decomposing computations into blocks of independent
work, and more specifically breaking up independent loop iterations, is not unique
to CUDA. This is a common approach used in one form or another by various
parallel programming systems, including OpenMP and Intel’s Threading Building
Blocks.

Caching in Shared Memory

The SpMV algorithms outlined above are fairly simplistic. There are a number of
optimizations that can be made in both the CPU and GPU codes that can improve
performance, including loop unrolling, matrix reordering, and register blocking.
The parallel kernels can also be reimplemented in terms of data parallel scan
operations presented by Sengupta et al. [2007].

One of the important architectural features exposed by CUDA is the presence of
the per-block shared memory, a small on-chip memory with verylow latency. Taking
advantage of this memory can deliver substantial performance improvements. One
common way of doing this is to use shared memory as a software-managed cache
to hold frequently reused data. Modifcations using shared memory are shown in
Figure B.8.5.

In the context of sparse matrix multiplication, we observe that several rows of A
may use a particular array element x [ 1 ]. In many common cases, and particularly
when the matrix has been reordered, the rows using x[ i ] will be rows near row i.
We can therefore implement a simple caching scheme and expect to achieve some
performance benefit. The block of threads processing rows i through j will load
x[ 1] through x[ j ] into its shared memory. We will unroll themultiply_row()
loop and fetch elements of x from the cache whenever possible. The resulting
code is shown in Figure B.8.5. Shared memory can also be used to make other
optimizations, such as fetching Ap[ row+1] from an adjacent thread rather than
refetching it from memory.

Because the Tesla architecture provides an explicitly managed on-chip shared
memory, rather than an implicitly active hardware cache, it is fairly common to add
this sort of optimization. Although this can impose some additional development
burden on the programmer, it is relatively minor, and the potential performance
benefits can be substantial. In the example shown above, even this fairly simple
use of shared memory returns a roughly 20% performance improvement on
representative matrices derived from 3D surface meshes. The availability of an
explicitly managed memory in lieu of an implicit cache also has the advantage
that caching and prefetching policies can be specifically tailored to the application
needs.
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_global__

void csrmul_cached(unsigned int *Ap, unsigned int *Aj,
float *Av, unsigned int num_rows,
const float *x, float *y)

// Cache the rows of x[] corresponding to this block.
_ shared__ float cachel[blocksize];

unsigned int block_begin = blockIdx.x * blockDim.x;
unsigned int block_end = block_begin + blockDim.x;
unsigned int row = block_begin + threadldx.x;

// Fetch and cache our window of x[].
if( row<num_rows) cachelthreadIdx.x] = x[row];
__syncthreads();

if( row<num_rows )

{
unsigned int row_begin = Apl[row];
unsigned int row_end = Ap[rowtl];
float sum = 0, x_J;

for(unsigned int col=row_begin; col<row_end; ++col)
{
unsigned int j = AjLcol];

// Fetch x_j from our cache when possible
if( j>=block_begin && j<block_end )

x_J = cachel[j-block_bheginl;
else

x_J = x[Jl;

sum += Av[col]l * x_j:
}

ylrow] = sum;

}

FIGURE B.8.5 Shared memory version of sparse matrix-vector multiply.
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These are fairly simple kernels whose purpose is to illustrate basic techniques
in writing CUDA programs, rather than how to achieve maximal performance.
Numerous possible avenues for optimization are available, several of which are
explored by Williams et al. [2007] on a handful of different multicore architectures.
Nevertheless, it is still instructive to examine the comparative performance of even
these simplistic kernels. On a2 GHz Intel Core2 Xeon E5335 processor, the csrmul _
serial() kernel runs at roughly 202 million nonzeros processed per second, for
a collection of Laplacian matrices derived from 3D triangulated surface meshes.
Parallelizing this kernel with the parallel_for construct provided by Intel’s
Threading Building Blocks produces parallel speed-ups of 2.0, 2.1, and 2.3 running
on two, four, and eight cores of the machine, respectively. On a GeForce 8800 Ultra,
the csrmul_kernel () and csrmul_cached() kernels achieve processing rates
of roughly 772 and 920 million nonzeros per second, corresponding to parallel
speed-ups of 3.8 and 4.6 times over the serial performance of a single CPU core.

Scan and Reduction

Parallel scan, also known as parallel prefix sum, is one of the most important
building blocks for data-parallel algorithms [Blelloch, 1990]. Given a sequence a
of n elements:

[ag,ay5...,0, 4]
and a binary associative operator @, the scan function computes the sequence:

scan(a,®) = [a,,(ay D a,),...,(ayp B a, ©... D a, )]

As an example, if we take @ to be the usual addition operator, then applying scan
to the input array

a=[31704163]

will produce the sequence of partial sums:

scan(a,+) = [34111115162225]

This scan operator is an inclusive scan, in the sense that element i of the output
sequence incorporates element a, of the input. Incorporating only previous elements
would yield an exclusive scan operator, also known as a prefix-sum operation.

The serial implementation of this operation is extremely simple. It is simply a
loop that iterates once over the entire sequence, as shown in Figure B.8.6.

At first glance, it might appear that this operation is inherently serial. However,
it can actually be implemented in parallel efficiently. The key observation is that
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template<class T>
__host__ T plus_scan(T *x, unsigned int n)
{
for(unsigned int i=1; i<n; ++i)
x[i] = x[i-11 + x[i];
}

FIGURE B.8.6 Template for serial plus-scan.

template<class T>
__device__ T plus_scan(T *x)
{

threadldx.x;
blockDim.x;

unsigned int i
unsigned int n

for(unsigned int offset=1; offsetin; offset *= 2)
{
T t;

if(i>=offset) t = x[i-offset];
__syncthreads();

if(i>=offset) x[i] =1t + x[i1];
__syncthreads();
}
return x[i];
}

FIGURE B.8.7 CUDA template for parallel plus-scan.

because addition is associative, we are free to change the order in which elements
are added together. For instance, we can imagine adding pairs of consecutive
elements in parallel, and then adding these partial sums, and so on.

One simple scheme for doing this is from Hillis and Steele [1989]. An
implementation of their algorithm in CUDA is shown in Figure B.8.7. It assumes
that the input array x[ ] contains exactly one element per thread of the thread
block. It performs log, n iterations of a loop collecting partial sums together.

To understand the action of this loop, consider Figure B.8.8, which illustrates
the simple case for n=8 threads and elements. Each level of the diagram represents
one step of the loop. The lines indicate the location from which the data are being
fetched. For each element of the output (i.e., the final row of the diagram) we are
building a summation tree over the input elements. The edges highlighted in blue
show the form of this summation tree for the final element. The leaves of this tree
are all the initial elements. Tracing back from any output element shows that it
incorporates all input values up to and including itself.
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x[i] +=x[i-1];

x[i] + = x[i-21;

x[i] +=x[i—-4];

FIGURE B.8.8 Tree-based parallel scan data references.

While simple, this algorithm is not as efficient as we would like. Examining
the serial implementation, we see that it performs O(n) additions. The parallel
implementation, in contrast, performs O(n log n) additions. For this reason, it
is not work efficient, since it does more work than the serial implementation to
compute the same result. Fortunately, there are other techniques for implementing
scan that are work-efficient. Details on more efficient implementation techniques
and the extension of this per-block procedure to multiblock arrays are provided by
Sengupta et al. [2007].

In some instances, we may only be interested in computing the sum of all
elements in an array, rather than the sequence of all prefix sums returned by scan.
This is the parallel reduction problem. We could simply use a scan algorithm to
perform this computation, but reduction can generally be implemented more
efficiently than scan.

Figure B.8.9 shows the code for computing a reduction using addition. In this
example, each thread simply loads one element of the input sequence (i.e., it initially
sums a subsequence of length 1). At the end of the reduction, we want thread 0 to
hold the sum of all elements initially loaded by the threads of its block. The loop in
this kernel implicitly builds a summation tree over the input elements, much like
the scan algorithm above.

At the end of this loop, thread 0 holds the sum of all the values loaded by this block.
If we want the final value of the location pointed to by total to contain the total of all
elements in the array, we must combine the partial sums of all the blocks in the grid.
One strategy to do this would be to have each block write its partial sum into a second
array and then launch the reduction kernel again, repeating the process until we had
reduced the sequence to a single value. A more attractive alternative supported by
the Tesla GPU architecture is to use the atomicAdd () primitive, an efficient atomic
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_global__
void plus_reduce(int *input, unsigned int N, int *total)
{
unsigned int tid = threadIdx.x;
unsigned int i blockIdx.x*blockDim.x + threadIdx.x;

// Each block Toads its elements into shared memory, padding

// with 0 if N is not a multiple of blocksize
__shared__ int x[blocksizel;

x[tid] = (i<N) ? dinput[i] : O;
__syncthreads();

// Every thread now holds 1 input value in x[]

//

// Build summation tree over elements.

for(int s=blockDim.x/2; s>0; s=s/2)

{
if(tid < s) x[tid] += x[tid + s];
__syncthreads();

}

// Thread 0 now holds the sum of all input values

// to this block. Have it add that sum to the running total

if( tid == 0 ) atomicAdd(total, x[tidl);
}

FIGURE B.8.9 CUDA implementation of plus-reduction.

read-modify-write primitive supported by the memory subsystem. This eliminates
the need for additional temporary arrays and repeated kernel launches.

Parallel reduction is an essential primitive for parallel programming and
highlights the importance of per-block shared memory and low-cost barriers in
making cooperation among threads efficient. This degree of data shuffling among
threads would be prohibitively expensive if done in off-chip global memory.

Radix Sort

One important application of scan primitives is in the implementation of sorting
routines. The code in Figure B.8.10 implements a radix sort of integers across a
single thread block. It accepts as input an array values containing one 32-bit
integer for each thread of the block. For efficiency, this array should be stored in
per-block shared memory, but this is not required for the sort to behave correctly.
This is a fairly simple implementation of radix sort. It assumes the availability of
a procedure partition_by_bit() that will partition the given array such that
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_ device__ void radix_sort(unsigned int *values)
{
for(int bit=0; bit<32; ++bit)
{
partition_by_bit(values, bit);
__syncthreads();

J

FIGURE B.8.10 CUDA code for radix sort.

__device__ void partition_by_bit(unsigned int *values,
unsigned int bit)
{

unsigned int i = threadIdx.x;
unsigned int size = blockDim.x;
unsigned int x_i = values[i];

unsigned int p_i (x_1 >> bit) & 1;
values[i] = p_i;
_ _syncthreads();

// Compute number of T bits up to and including p_i.
// Record the total number of F bits as well.
unsigned int T_before = plus_scan(values);

unsigned int T_total = values[size-1];

unsigned int F_total size - T_total;

_ syncthreads();

// Write every x_i to its proper place
ifC p_i)
values[T_before-1 + F_total] = x_i;
else
values[i - T_beforel = x_i;
}

FIGURE B.8.11 CUDA code to partition data on a bit-by-bit basis, as part of radix sort.

all values with a 0 in the designated bit will come before all values with a 1 in that
bit. To produce the correct output, this partitioning must be stable.

Implementing the partitioning procedure is a simple application of scan. Thread
i holds the value x, and must calculate the correct output index at which to write
this value. To do so, it needs to calculate (1) the number of threads j < i for which
the designated bit is 1 and (2) the total number of bits for which the designated bit
is 0. The CUDA code for partition_by_bit() is shown in Figure B.8.11.
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A similar strategy can be applied for implementing a radix sort kernel that sorts
an array of large length, rather than just a one-block array. The fundamental step
remains the scan procedure, although when the computation is partitioned across
multiple kernels, we must double-buffer the array of values rather than doing the
partitioning in place. Details on performing radix sorts on large arrays efficiently
are provided by Satish et al. [2008].

N-Body Applications on a GPU!

Nyland et al. [2007] describe a simple yet useful computational kernel with excellent
GPU performance—the all-pairs N-body algorithm. It is a time-consuming
component of many scientific applications. N-body simulations calculate the
evolution of a system of bodies in which each body continuously interacts with
every other body. One example is an astrophysical simulation in which each body
represents an individual star, and the bodies gravitationally attract each other.
Other examples are protein folding, where N-body simulation is used to calculate
electrostatic and van der Waals forces; turbulent fluid flow simulation; and global
illumination in computer graphics.

The all-pairs N-body algorithm calculates the total force on each body in the
system by computing each pair-wise force in the system, summing for each body.
Many scientists consider this method to be the most accurate, with the only loss of
precision coming from the floating-point hardware operations. The drawback is its
O(n?) computational complexity, which is far too large for systems with more than
10 bodies. To overcome this high cost, several simplifications have been proposed
to yield O(n log n) and O(n) algorithms; examples are the Barnes-Hut algorithm,
the Fast Multipole Method and Particle-Mesh-Ewald summation. All of the fast
methods still rely on the all-pairs method as a kernel for accurate computation of
short-range forces; thus it continues to be important.

N-Body Mathematics

For gravitational simulation, calculate the body-body force using elementary
physics. Between two bodies indexed by i and j, the 3D force vector is:

L

ij
(Rl
ij

m;m;
fij =G—5 X
Il x I

The force magnitude is calculated in the left term, while the direction is computed
in the right (unit vector pointing from one body to the other).

Given a list of interacting bodies (an entire system or a subset), the calculation is
simple: for all pairs of interactions, compute the force and sum for each body. Once
the total forces are calculated, they are used to update each body’s position and
velocity, based on the previous position and velocity. The calculation of the forces
has complexity O(n?), while the update is O(n).

! Adapted from Nyland et al. [2007], “Fast N-Body Simulation with CUDA,” Chapter 31 of
GPU Gems 3.

@
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The serial force-calculation code uses two nested for-loops iterating over pairs of
bodies. The outer loop selects the body for which the total force is being calculated,
and the inner loop iterates over all the bodies. The inner loop calls a function that
computes the pair-wise force, then adds the force into a running sum.

To compute the forces in parallel, we assign one thread to each body, since the
calculation of force on each body is independent of the calculation on all other
bodies. Once all of the forces are computed, the positions and velocities of the
bodies can be updated.

The code for the serial and parallel versions is shown in Figure B.8.12 and Figure
B.8.13. The serial version has two nested for-loops. The conversion to CUDA,
like many other examples, converts the serial outer loop to a per-thread kernel
where each thread computes the total force on a single body. The CUDA kernel
computes a global thread ID for each thread, replacing the iterator variable of the
serial outer loop. Both kernels finish by storing the total acceleration in a global
array used to compute the new position and velocity values in a subsequent step.
The outer loop is replaced by a CUDA kernel grid that launches N threads, one
for each body.

void accel_on_all_bodies()

{
int 1, j;
float3 acc(0.0f, 0.0f, 0.0f);
for (i = 0; i < N; i++) {

for (j 0; J < N; j++) |
acc = body_body_interaction(acc, body[i], body[jl);

}
accel[i] = acc;

}

FIGURE B.8.12 Serial code to compute all pair-wise forces on N bodies.

__global__ void accel_on_one_body()

{
int i = threadIdx.x + blockDim.x * blockIdx.x;
int J;
float3 acc(0.0f, 0.0f, 0.0f);

for (j = 0; j < N; j++) |
acc = body_body_interaction(acc, body[i], body[jl);
}
accel[i] = acc;
}

FIGURE B.8.13 CUDA thread code to compute the total force on a single body.
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Optimization for GPU Execution

The CUDA code shown is functionally correct, but is not efficient, as it ignores
key architectural features. Better performance can be achieved with three main
optimizations. First, shared memory can be used to avoid identical memory reads
between threads. Second, using multiple threads per body improves performance
for small values of N. Third, loop unrolling reduces loop overhead.

Using Shared Memory

Shared memory can hold a subset of body positions, much like a cache, eliminating
redundant global memory requests between threads. We optimize the code shown
above to have each of p threads in a thread-block load one position into shared
memory (for a total of p positions). Once all the threads have loaded a value into
shared memory, ensured by __syncthreads (), each thread can then perform
p interactions (using the data in shared memory). This is repeated N/p times to
complete the force calculation for each body, which reduces the number of requests
to memory by a factor of p (typically in the range 32-128).

The function called accel_on_one_body () requires a few changes to support
this optimization. The modified code is shown in Figure B.8.14.

__shared__ float4 shPosition[256];

__global__ void accel_on_one_body()
{
int i = threadlIdx.x + blockDim.x * blockIdx.x;
int j, k;
int p = blockDim.x;
float3 acc(0.0f, 0.0f, 0.0f);
float4 myBody = body[i];

for (j =0; J < N; j+=p) { // Outer Toops jumps by p each time

shPosition[threadldx.x] = body[j+tthreadldx.x];
__syncthreads();

for (k = 0; k < p; k++t) { // Inner Toop accesses p positions
acc = body_body_interaction(acc, myBody, shPosition[k]);

}
__syncthreads();
}
accell[i] = acc;
}

FIGURE B.8.14 CUDA code to compute the total force on each body, using shared memory to improve performance.
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N-Body Performance on GPUs
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FIGURE B.8.15 Performance measurements of the N-body application on a GeForce 8800
GTX and a GeForce 9600. The 8800 has 128 stream processors at 1.35 GHz, while the 9600 has 64 at
0.80 GHz (about 30% of the 8800). The peak performance is 242 GFLOPS. For a GPU with more processors,
the problem needs to be bigger to achieve full performance (the 9600 peak is around 2048 bodies, while the
8800 doesn’t reach its peak until 16,384 bodies). For small N, more than one thread per body can significantly
improve performance, but eventually incurs a performance penalty as N grows.

The loop that formerly iterated over all bodies now jumps by the block dimension
p- Each iteration of the outer loop loads p successive positions into shared memory
(one position per thread). The threads synchronize, and then p force calculations
are computed by each thread. A second synchronization is required to ensure that
new values are not loaded into shared memory prior to all threads completing the
force calculations with the current data.

Using shared memory reduces the memory bandwidth required to less than
10% of the total bandwidth that the GPU can sustain (using less than 5GB/s).
This optimization keeps the application busy performing computation rather than
waiting on memory accesses, as it would have done without the use of shared
memory. The performance for varying values of N is shown in Figure B.8.15.

Using Multiple Threads per Body

Figure B.8.15 shows performance degradation for problems with small values of N
(N< 4096) on the GeForce 8800 GTX. Many research efforts that rely on N-body
calculations focus on small N (for long simulation times), making it a target of
our optimization efforts. Our presumption to explain the lower performance was
that there was simply not enough work to keep the GPU busy when N is small.
The solution is to allocate more threads per body. We change the thread-block
dimensions from (p, 1, 1) to (p, g, 1), where g threads divide the work of a single body
into equal parts. By allocating the additional threads within the same thread block,
partial results can be stored in shared memory. When all the force calculations are
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done, the g partial results can be collected and summed to compute the final result.
Using two or four threads per body leads to large improvements for small N.

As an example, the performance on the 8800 GTX jumps by 110% when
N = 1024 (one thread achieves 90 GFLOPS, where four achieve 190 GFLOPS).
Performance degrades slightly on large N, so we only use this optimization for N
smaller than 4096. The performance increases are shown in Figure B.8.15 for a
GPU with 128 processors and a smaller GPU with 64 processors clocked at two-
thirds the speed.

Performance Comparison

The performance of the N-body code is shown in Figure B.8.15 and Figure B.8.16.
In Figure B.8.15, performance of high- and medium-performance GPUs is shown,
along with the performance improvements achieved by using multiple threads per
body. The performance on the faster GPU ranges from 90 to just under 250 GFLOPS.

Figure B.8.16 shows nearly identical code (C++ versus CUDA) running on
Intel Core2 CPUs. The CPU performance is about 1% of the GPU, in the range of
0.2 to 2 GFLOPS, remaining nearly constant over the wide range of problem sizes.

N-Body Performance on Intel CPUs
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FIGURE B.8.16 Performance measurements on the N-body code on a CPU. The graph shows
single precision N-body performance using Intel Core2 CPUs, denoted by their CPU model number. Note
the dramatic reduction in GFLOPS performance (shown in GFLOPS on the y-axis), demonstrating how
much faster the GPU is compared to the CPU. The performance on the CPU is generally independent of
problem size, except for an anomalously low performance when N = 16,384 on the X9775 CPU. The graph
also shows the results of running the CUDA version of the code (using the CUDA-for-CPU compiler)
on a single CPU core, where it outperforms the C++ code by 24%. As a programming language, CUDA
exposes parallelism and locality that a compiler can exploit. The Intel CPUs are a 3.2 GHz Extreme X9775
(code named “Penryn”), a 2.66 GHz E8200 (code named “Wolfdale”), a desktop, pre-Penryn CPU, and a
1.83 GHz T2400 (code named “Yonah”), a 2007 laptop CPU. The Penryn version of the Core 2 architecture
is particularly interesting for N-body calculations with its 4-bit divider, allowing division and square root
operations to execute four times faster than previous Intel CPUs.
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The graph also shows the results of compiling the CUDA version of the code
for a CPU, where the performance improves by 24%. CUDA, as a programming
language, exposes parallelism, allowing the compiler to make better use of the SSE
vector unit on a single core. The CUDA version of the N-body code naturally maps
to multicore CPUs as well (with grids of blocks), where it achieves nearly perfect
scaling on an eight-core system with N = 4096 (ratios of 2.0, 3.97, and 7.94 on two,
four, and eight cores, respectively).

Results

With a modest effort, we developed a computational kernel that improves GPU
performance over multicore CPUs by a factor of up to 157. Execution time for
the N-body code running on a recent CPU from Intel (Penryn X9775 at 3.2 GHz,
single core) took more than 3 seconds per frame to run the same code that runs ata
44 Hz frame rate on a GeForce 8800 GPU. On pre-Penryn CPUs, the code requires
6-16 seconds, and on older Core2 processors and Pentium IV processor, the time
is about 25 seconds. We must divide the apparent increase in performance in half,
as the CPU requires only half as many calculations to compute the same result
(using the optimization that the forces on a pair of bodies are equal in strength and
opposite in direction).

How can the GPU speed up the code by such a large amount? The answer
requires inspecting architectural details. The pair-wise force calculation requires
20 floating-point operations, comprised mostly of addition and multiplication
instructions (some of which can be combined using a multiply-add instruction),
but there are also division and square root instructions for vector normalization.
Intel CPUs take many cycles for single-precision division and square root
instructions,? although this has improved in the latest Penryn CPU family with its
faster 4-bit divider.> Additionally, the limitations in register capacity lead to many
MOV instructions in the x86 code (presumably to/from L1 cache). In contrast, the
GeForce 8800 executes a reciprocal square-root thread instruction in four clocks;
see Section B.6 for special function accuracy. It has a larger register file (per thread)
and shared memory that can be accessed as an instruction operand. Finally, the
CUDA compiler emits 15 instructions for one iteration of the loop, compared
with more than 40 instructions from a variety of x86 CPU compilers. Greater
parallelism, faster execution of complex instructions, more register space, and an
efficient compiler all combine to explain the dramatic performance improvement
of the N-body code between the CPU and the GPU.

2'The x86 SSE instructions reciprocal-square-root (RSQRT*) and reciprocal (RCP*) were
not considered, as their accuracy is too low to be comparable.

*Intel Corporation, Intel 64 and IA-32 Architectures Optimization Reference Manual.
November 2007. Order Number: 248966-016. Also available at www.intel.com/design/
processor/manuals/248966.pdf.
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On a GeForce 8800, the all-pairs N-body algorithm delivers more than 240
GFLOPS of performance, compared to less than 2 GFLOPS on recent sequential
processors. Compiling and executing the CUDA version of the code on a CPU
demonstrates that the problem scales well to multicore CPUs, but is still significantly
slower than a single GPU.

We coupled the GPU N-body simulation with a graphical display of the motion,
and can interactively display 16K bodies interacting at 44 frames per second.
This allows astrophysical and biophysical events to be displayed and navigated at
interactive rates. Additionally, we can parameterize many settings, such as noise
reduction, damping, and integration techniques, immediately displaying their
effects on the dynamics of the system. This provides scientists with stunning visual
imagery, boosting their insights on otherwise invisible systems (too large or small,
too fast or too slow), allowing them to create better models of physical phenomena.

Figure B.8.17 shows a time-series display of an astrophysical simulation of 16K
bodies, with each body acting as a galaxy. The initial configuration is a spherical shell

FIGURE B.8.17 Twelve images captured during the evolution of an N-body system with 16,384 bodies.
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of bodies rotating about the z-axis. One phenomenon of interest to astrophysicists
is the clustering that occurs, along with the merging of galaxies over time. For the
interested reader, the CUDA code for this application is available in the CUDA
SDK from www.nvidia.com/CUDA.

Fallacies and Pitfalls

GPUs have evolved and changed so rapidly that many fallacies and pitfalls have
arisen. We cover a few here.

Fallacy GPUs are just SIMD vector multiprocessors.

It is easy to draw the false conclusion that GPUs are simply SIMD vector
multiprocessors. GPUs do have a SPMD-style programming model, in that
a programmer can write a single program that is executed in multiple thread
instances with multiple data. The execution of these threads is not purely SIMD
or vector, however; it is single-instruction multiple-thread (SIMT), described in
Section B.4. Each GPU thread has its own scalar registers, thread private memory,
thread execution state, thread ID, independent execution and branch path, and
effective program counter, and can address memory independently. Although a
group of threads (e.g., a warp of 32 threads) executes more efficiently when the PCs
for the threads are the same, this is not necessary. So, the multiprocessors are not
purely SIMD. The thread execution model is MIMD with barrier synchronization
and SIMT optimizations. Execution is more efficient if individual thread load/
store memory accesses can be coalesced into block accesses, as well. However, this
is not strictly necessary. In a purely SIMD vector architecture, memory/register
accesses for different threads must be aligned in a regular vector pattern. A GPU
has no such restriction for register or memory accesses; however, execution is more
efficient if warps of threads access local blocks of data.

In a further departure from a pure SIMD model, an SIMT GPU can execute
more than one warp of threads concurrently. In graphics applications, there may
be multiple groups of vertex programs, pixel programs, and geometry programs
running in the multiprocessor array concurrently. Computing programs may also
execute different programs concurrently in different warps.

Fallacy GPU performance cannot grow faster than Moore’s law.

Moore’s law is simply a rate. It is not a “speed of light” limit for any other rate.
Moore’s law describes an expectation that, over time, as semiconductor technology
advances and transistors become smaller, the manufacturing cost per transistor will
decline exponentially. Put another way, given a constant manufacturing cost, the
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number of transistors will increase exponentially. Gordon Moore [1965] predicted
that this progression would provide roughly two times the number of transistors
for the same manufacturing cost every year, and later revised it to doubling every
2 years. Although Moore made the initial prediction in 1965 when there were just
50 components per integrated circuit, it has proved remarkably consistent. The
reduction of transistor size has historically had other benefits, such as lower power
per transistor and faster clock speeds at constant power.

This increasing bounty of transistors is used by chip architects to build processors,
memory, and other components. For some time, CPU designers have used the
extra transistors to increase processor performance at a rate similar to Moore’s law,
so much so that many people think that processor performance growth of two
times every 18-24 months is Moore’s law. In fact, it is not.

Microprocessor designers spend some of the new transistors on processor cores,
improving the architecture and design, and pipelining for more clock speed. The
rest of the new transistors are used for providing more cache, to make memory
access faster. In contrast, GPU designers use almost none of the new transistors to
provide more cache; most of the transistors are used for improving the processor
cores and adding more processor cores.

GPUs get faster by four mechanisms. First, GPU designers reap the Moore’s law
bounty directly by applying exponentially more transistors to building more parallel,
and thus faster, processors. Second, GPU designers can improve on the architecture
over time, increasing the efficiency of the processing. Third, Moore’s law assumes
constant cost, so the Moore’s law rate can clearly be exceeded by spending more for
larger chips with more transistors. Fourth, GPU memory systems have increased their
effective bandwidth at a pace nearly comparable to the processing rate, by using faster
memories, wider memories, data compression, and better caches. The combination of
these four approaches has historically allowed GPU performance to double regularly,
roughly every 12 to 18 months. This rate, exceeding the rate of Moore’s law, has been
demonstrated on graphics applications for approximately 10 years and shows no sign
of significant slowdown. The most challenging rate limiter appears to be the memory
system, but competitive innovation is advancing that rapidly too.

Fallacy GPUs only render 3D graphics; they can’t do general computation.

GPUs are built to render 3D graphics as well as 2D graphics and video. To meet
the demands of graphics software developers as expressed in the interfaces and
performance/feature requirements of the graphics APIs, GPUs have become
massively parallel programmable floating-point processors. In the graphics
domain, these processors are programmed through the graphics APIs and with
arcane graphics programming languages (GLSL, Cg, and HLSL, in OpenGL and
Direct3D). However, there is nothing preventing GPU architects from exposing
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the parallel processor cores to programmers without the graphics API or the arcane
graphics languages.

In fact, the Tesla architecture family of GPUs exposes the processors through
a software environment known as CUDA, which allows programmers to develop
general application programs using the C language and soon C++. GPUs are
Turing-complete processors, so they can run any program that a CPU can run,
although perhaps less well. And perhaps faster.

Fallacy GPUs cannot run double-precision floating-point programs fast.

In the past, GPUs could not run double-precision floating-point programs at all,
except through software emulation. And that’s not very fast at all. GPUs have made
the progression from indexed arithmetic representation (lookup tables for colors)
to 8-bit integers per color component, to fixed-point arithmetic, to single-precision
floating-point, and recently added double precision. Modern GPUs perform
virtually all calculations in single-precision IEEE floating-point arithmetic, and are
beginning to use double precision in addition.

For a small additional cost, a GPU can support double-precision floating-point
as well as single-precision floating-point. Today, double-precision runs more slowly
than the single-precision speed, about five to ten times slower. For incremental
additional cost, double-precision performance can be increased relative to single
precision in stages, as more applications demand it.

Fallacy GPUs don’t do floating-point correctly.

GPUs, at least in the Tesla architecture family of processors, perform single-
precision floating-point processing at a level prescribed by the IEEE 754 floating-
point standard. So, in terms of accuracy, GPUs are the equal of any other IEEE
754-compliant processors.

Today, GPUs do not implement some of the specific features described in the
standard, such as handling denormalized numbers and providing precise floating-
point exceptions. However, the recently introduced Tesla T10P GPU provides full
IEEE rounding, fused-multiply-add, and denormalized number support for double
precision.

Pitfall Just use more threads to cover longer memory latencies.

CPU cores are typically designed to run a single thread at full speed. To run at full
speed, every instruction and its data need to be available when it is time for that
instruction to run. If the next instruction is not ready or the data required for that
instruction is not available, the instruction cannot run and the processor stalls.
External memory is distant from the processor, so it takes many cycles of wasted
execution to fetch data from memory. Consequently, CPUs require large local
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caches to keep running without stalling. Memory latency is long, so it is avoided
by striving to run in the cache. At some point, program working set demands may
be larger than any cache. Some CPUs have used multithreading to tolerate latency,
but the number of threads per core has generally been limited to a small number.

The GPU strategy is different. GPU cores are designed to run many threads
concurrently, but only one instruction from any thread at a time. Another way to
say this is that a GPU runs each thread slowly, but in aggregate runs the threads
efficiently. Each thread can tolerate some amount of memory latency, because
other threads can run.

The downside of this is that multiple—many multiple threads—are required to
cover the memory latency. In addition, if memory accesses are scattered or not
correlated among threads, the memory system will get progressively slower in
responding to each individual request. Eventually, even the multiple threads will
not be able to cover the latency. So, the pitfall is that for the “just use more threads”
strategy to work for covering latency, you have to have enough threads, and the
threads have to be well-behaved in terms of locality of memory access.

Fallacy O(n) algorithms are difficult to speed up.

No matter how fast the GPU is at processing data, the steps of transferring data to
and from the device may limit the performance of algorithms with O(#n) complexity
(with a small amount of work per datum). The highest transfer rate over the PCle
bus is approximately 48 GB/second when DMA transfers are used, and slightly less
for nonDMA transfers. The CPU, in contrast, has typical access speeds of 8-12 GB/
second to system memory. Example problems, such as vector addition, will be
limited by the transfer of the inputs to the GPU and the returning output from the
computation.

There are three ways to overcome the cost of transferring data. First, try to leave
the data on the GPU for as long as possible, instead of moving the data back and
forth for different steps of a complicated algorithm. CUDA deliberately leaves data
alone in the GPU between launches to support this.

Second, the GPU supports the concurrent operations of copy-in, copy-out and
computation, so data can be streamed in and out of the device while it is computing.
This model is useful for any data stream that can be processed as it arrives. Examples
are video processing, network routing, data compression/decompression, and even
simpler computations such as large vector mathematics.

The third suggestion is to use the CPUand GPU together, improving performance
by assigning a subset of the work to each, treating the system as a heterogeneous
computing platform. The CUDA programming model supports allocation of work
to one or more GPUs along with continued use of the CPU without the use of
threads (via asynchronous GPU functions), so it is relatively simple to keep all
GPUs and a CPU working concurrently to solve problems even faster.
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Concluding Remarks

GPUs are massively parallel processors and have become widely used, not only
for 3D graphics, but also for many other applications. This wide application was
made possible by the evolution of graphics devices into programmable processors.
The graphics application programming model for GPUs is usually an API such
as DirectX™ or OpenGL™. For more general-purpose computing, the CUDA
programming model uses an SPMD (single-program multiple data) style, executing
a program with many parallel threads.

GPU parallelism will continue to scale with Moore’s law, mainly by increasing
the number of processors. Only the parallel programming models that can readily
scale to hundreds of processor cores and thousands of threads will be successful
in supporting manycore GPUs and CPUs. Also, only those applications that have
many largely independent parallel tasks will be accelerated by massively parallel
manycore architectures.

Parallel programming models for GPUs are becoming more flexible, for both
graphics and parallel computing. For example, CUDA is evolving rapidly in the
direction of full C/C++ functionality. Graphics APIs and programming models
will likely adapt parallel computing capabilities and models from CUDA. Its
SPMD-style threading model is scalable, and is a convenient, succinct, and easily
learned model for expressing large amounts of parallelism.

Driven by these changes in the programming models, GPU architecture is in
turn becoming more flexible and more programmable. GPU fixed-function units
are becoming accessible from general programs, along the lines of how CUDA
programs already use texture intrinsic functions to perform texture lookups using
the GPU texture instruction and texture unit.

GPU architecture will continue to adapt to the usage patterns of both graphics
and other application programmers. GPUs will continue to expand to include
more processing power through additional processor cores, as well as increasing
the thread and memory bandwidth available for programs. In addition, the
programming models must evolve to include programming heterogeneous
manycore systems including both GPUs and CPUs.
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Historical Perspective and Further
Reading

Graphics Pipeline Evolution

3D graphics pipeline hardware evolved from the large expensive systems of the
early 1980s to small workstations and then to PC accelerators in the mid- to late-
1990s. During this period, three major transitions occurred:

B Performance-leading graphics subsystems declined in price from $50,000 to
$200.

B Performance increased from 50 million pixels per second to 1 billion pixels per
second and from 100,000 vertices per second to 10 million vertices per second.

m Native hardware capabilities evolved from wireframe (polygon outlines) to
flat shaded (constant color) filled polygons, to smooth shaded (interpolated
color) filled polygons, to full-scene anti-aliasing with texture mapping and
rudimentary multitexturing.

Fixed-Function Graphics Pipelines

Throughout this period, graphics hardware was configurable, but not programmable
by the application developer. With each generation, incremental improvements
were offered. But developers were growing more sophisticated and asking for
more new features than could be reasonably offered as built-in fixed functions. The
NVIDIA GeForce 3, described by Lindholm et al. [2001], took the first step toward
true general shader programmability. It exposed to the application developer what
had been the private internal instruction set of the floating-point vertex engine.
This coincided with the release of Microsoft’s DirectX 8 and OpenGLs vertex shader
extensions. Later GPUs, at the time of DirectX 9, extended general programmability
and floating point capability to the pixel fragment stage, and made texture
available at the vertex stage. The ATT Radeon 9700, introduced in 2002, featured
a programmable 24-bit floating-point pixel fragment processor programmed
with DirectX 9 and OpenGL. The GeForce FX added 32-bit floating-point pixel
processors. This was part of a general trend toward unifying the functionality of
the different stages, at least as far as the application programmer was concerned.
NVIDIAs GeForce 6800 and 7800 series were built with separate processor designs
and separate hardware dedicated to the vertex and to the fragment processing. The
XBox 360 introduced an early unified processor GPU in 2005, allowing vertex and
pixel shaders to execute on the same processor.
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Evolution of Programmable Real-Time Graphics

During the last 30 years, graphics architecture has evolved from a simple pipeline for
drawing wireframe diagrams to a highly parallel design consisting of several deep
parallel pipelines capable of rendering complex interactive imagery that appears
three-dimensional. Concurrently, many of the calculations involved became far
more sophisticated and user-programmable.

In these graphics pipelines, certain stages do a great deal of floating-point
arithmetic on completely independent data, such as transforming the position
of triangle vertexes or generating pixel colors. This data independence is a key
difference between GPUs and CPUs. A single frame, rendered in 1/60th of a
second, might have 1 million triangles and 6 million pixels. The opportunity to use
hardware parallelism to exploit this data independence is tremendous.

The specific functions executed at a few graphics pipeline stages vary with
rendering algorithms and have evolved to be programmable. Vertex programs
map the position of triangle vertices on to the screen, altering their position, color,
or orientation. Typically a vertex shader thread inputs a floating-point (x, y, z, w)
vertex position and computes a floating-point (x, y, z) screen position. Geometry
programs operate on primitives defined by multiple vertices, changing them or
generating additional primitives. Pixel fragment shaders each “shade” one pixel,
computing a floating-point red, green, blue, alpha (RGBA) color contribution to
the rendered image at its pixel sample (x, y) image position. For all three types of
graphics shaders, program instances can be run in parallel, because each works on
independent data, produces independent results, and has no side effects.

Betweenthese programmablegraphicspipelinestagesaredozensoffixed-function
stages which perform well-defined tasks far more efficiently than a programmable
processor could and which would benefit far less from programmability. For
example, between the geometry processing stage and the pixel processing stage is
a “rasterizer;” a complex state machine that determines exactly which pixels (and
portions thereof) lie within each geometric primitive’s boundaries. Together, the
mix of programmable and fixed-function stages is engineered to balance extreme
performance with user control over the rendering algorithms.

Common rendering algorithms perform a single pass over input primitives and
access other memory resources in a highly coherent manner; these algorithms
provide excellent bandwidth utilization and are largely insensitive to memory
latency. Combined with a pixel shader workload that is usually compute-limited,
these characteristics have guided GPUs along a different evolutionary path than
CPUs. Whereas CPU die area is dominated by cache memory, GPUs are dominated
by floating-point datapath and fixed-function logic. GPU memory interfaces
emphasize bandwidth over latency (since latency can be readily hidden by a high
thread count); indeed, bandwidth is typically many times higher than a CPU,
exceeding 100 GB/second in some cases. The far-higher number of fine-grained
lightweight threads effectively exploits the rich parallelism available.
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Beginning with NVIDIA’s GeForce 8800 GPU in 2006, the three programmable
graphics stages are mapped to an array of unified processors; the logical graphics
pipeline is physically a recirculating path that visits these processors three times,
with much fixed-function graphics logic between visits. Since different rendering
algorithms present wildly different loads among the three programmable stages,
this unification provides processor load balancing.

Unified Graphics and Computing Processors

By the DirectX 10 generation, the functionality of vertex and pixel fragment
shaders was to be made identical to the programmer, and in fact a new logical
stage was introduced, the geometry shader, to process all the vertices of a primitive
rather than vertices in isolation. The GeForce 8800 was designed with DirectX 10
in mind. Developers were coming up with more sophisticated shading algorithms,
and this motivated a sharp increase in the available shader operation rate,
particularly floating-point operations. NVIDIA chose to pursue a processor design
with higher operating frequency than standard-cell methodologies had allowed,
to deliver the desired operation throughput as area-efficiently as possible. High-
clock-speed design requires substantially more engineering effort, and this favored
designing one processor, rather than two (or three, given the new geometry stage).
It became worthwhile to take on the engineering challenges of a unified processor
(load balancing and recirculation of a logical pipeline onto threads of the processor
array) to get the benefits of one processor design.

GPGPU: an Intermediate Step

As DirectX 9-capable GPUs became available, some researchers took notice of the
raw performance growth path of GPUs and began to explore the use of GPUs to
solve complex parallel problems. DirectX 9 GPUs had been designed only to match
the features required by the graphics API. To access the computational resources, a
programmer had to cast their problem into native graphics operations. For example,
to run many simultaneous instances of a pixel shader, a triangle had to be issued to
the GPU (with clipping to a rectangle shape if that’s what was desired). Shaders did
not have the means to perform arbitrary scatter operations to memory. The only
way to write a result to memory was to emit it as a pixel color value, and configure
the framebuffer operation stage to write (or blend, if desired) the result to a two-
dimensional framebuffer. Furthermore, the only way to get a result from one pass
of computation to the next was to write all parallel results to a pixel framebuffer,
then use that framebuffer as a texture map as input to the pixel fragment shader of
the next stage of the computation. Mapping general computations to a GPU in this
era was quite awkward. Nevertheless, intrepid researchers demonstrated a handful
of useful applications with painstaking efforts. This field was called “GPGPU” for
general purpose computing on GPUs.
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GPU Computing

While developing the Tesla architecture for the GeForce 8800, NVIDIA realized its
potential usefulness would be much greater if programmers could think of the GPU
as a processor. NVIDIA selected a programming approach in which programmers
would explicitly declare the data-parallel aspects of their workload.

For the DirectX 10 generation, NVIDIA had already begun work on a high-
efficiency floating-point and integer processor that could run a variety of
simultaneous workloads to support the logical graphics pipeline. This processor
was designed to take advantage of the common case of groups of threads executing
the same code path. NVIDIA added memory load and store instructions with
integer byte addressing to support the requirements of compiled C programs. It
introduced the thread block (cooperative thread array), grid of thread blocks, and
barrier synchronization to dispatch and manage highly parallel computing work.
Atomic memory operations were added. NVIDIA developed the CUDA C/C++
compiler, libraries, and runtime software to enable programmers to readily access
the new data-parallel computation model and develop applications.

Scalable GPUs

Scalability has been an attractive feature of graphics systems from the beginning.
Workstation graphics systems gave customers a choice in pixel horsepower by
varying the number of pixel processor circuit boards installed. Prior to the mid-
1990s PC graphics scaling was almost nonexistent. There was one option—the
VGA controller. As 3D-capable accelerators appeared, the market had room for a
range of offerings. 3dfx introduced multiboard scaling with the original SLI (Scan
Line Interleave) on their Voodoo2, which held the performance crown for its time
(1998). Also in 1998, NVIDIA introduced distinct products as variants on a single
architecture with Riva TNT Ultra (high-performance) and Vanta (low-cost), first
by speed binning and packaging, then with separate chip designs (GeForce 2 GTS &
GeForce 2 MX). At present, for a given architecture generation, four or five separate
GPU chip designs are needed to cover the range of desktop PC performance and
price points. In addition, there are separate segments in notebook and workstation
systems. After acquiring 3dfx, NVIDIA continued the multi-GPU SLI concept in
2004, starting with GeForce 6800—providing multi-GPU scalability transparently
to the programmer and to the user. Functional behavior is identical across the
scaling range; one application will run unchanged on any implementation of an
architectural family.

CPUs are scaling to higher transistor counts by increasing the number of
constant-performance cores on a die, rather than increasing the performance of
a single core. At this writing the industry is transitioning from dual-core to quad-
core, with eight-core not far behind. Programmers are forced to find fourfold to
eightfold task parallelism to fully utilize these processors, and applications using
task parallelism must be rewritten frequently to target each successive doubling of
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core count. In contrast, the highly multithreaded GPU encourages the use of many-
fold data parallelism and thread parallelism, which readily scales to thousands of
parallel threads on many processors. The GPU scalable parallel programming
model for graphics and parallel computing is designed for transparent and
portable scalability. A graphics program or CUDA program is written once and
runs on a GPU with any number of processors. As shown in Section B.1, a CUDA
programmer explicitly states both fine-grained and coarse-grained parallelism in
a thread program by decomposing the problem into grids of thread blocks—the
same program will run efficiently on GPUs or CPUs of any size in current and
future generations as well.

Recent Developments

Academic and industrial work on applications using CUDA has produced
hundreds of examples of successful CUDA programs. Many of these programs run
the application tens or hundreds of times faster than multicore CPUs are capable
of running them. Examples include n-body simulation, molecular modeling,
computational finance, and oil and gas exploration data processing. Although many
of these use single-precision floating-point arithmetic, some problems require
double precision. The recent arrival of double-precision floating-point in GPUs
enables an even broader range of applications to benefit from GPU acceleration.

For a comprehensive list and examples of current developments in applications
that are accelerated by GPUs, visit CUDAZone: www.nvidia.com/CUDA.

Future Trends

Naturally, the number of processor cores will continue to increase in proportion to
increases in available transistors as silicon processes improve. In addition, GPUs
will continue to enjoy vigorous architectural evolution. Despite their demonstrated
high performance on data-parallel applications, GPU core processors are still of
relatively simple design. More aggressive techniques will be introduced with each
successive architecture to increase the actual utilization of the calculating units.
Because scalable parallel computing on GPUs is a new field, novel applications
are rapidly being created. By studying them, GPU designers will discover and
implement new machine optimizations.
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