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2.1. Stacked Cross Attention Network

Sentence T: A catis sitting in the bathroom sink.

| Attended sentence vector a{ |— S
' =

cat sitting |

Stage 10 Amrend to words

sink.

e bathroom O Similarity
S(1.T)

Lee & (2018) olux|et w49 SFA2E sh=tl Qo 7|&E9 WHEEH
A ol FFE F 7R URe Aotstach A wiA W (1Y 2-1] 2
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2.2. Dynamic Fusion with Intra- and Inter-modality Atte

ntion Flow

Gao = (2019)
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o
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1ot =4 dlolEfof tis yfet o F Hlolge] JESE
2 0] &35t =Xl g (Dynamic fusion with intra- and inter-modality at
tention flow, DFAF)S Aok}, of upwie ojujx|e} 2RYe 7ke] o 4%

ArsAre o 7+t A] TANSHe] Visual Question Answering(VQA) (Antol &, 20
g

What is the man
pointing at

Classfier

g =
E Question
Feature

[1™ 2-3] DFAF #+% (Gao 5, 2019)
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o] EALZ query, key, value2 U1 AYE WHEY. A4S
Ry, Ry Ry € R" ™ By By By R Z AFojgict, of7]4 dime region
slEjol Cojule]o] At S ou]sitt,

Ry = Linear(R;0p), Ex= Linear(E; 0gy), (11)
RQZLinear(R;QRQ), EQZLinear(E; HEQ), (12)
RVZLinear(R;HHV), EVZLinear(E; QEV). (13)

RoE)
InterMAF,_p= softmax \/Q— ) (14)
i
E,Ri
InterMAFg ;= softmaz oR ) (15)
Vdim
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Gp.p=o0(Linear(AvgPool(R);05p)), (20)
G p=0c(Linear(AvgPool (F); 0 p)). (21)
Ro=(14Gp p)ORy, Ry =1+ Gp_p)O Ry, (22)
Eo=(+4Gy.p)ORy, Ry= 1+ Gpp)O Ey. (23)
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Ry Ry,
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o] FaHzICt.

R piate = DyIntra MAFz_ X Ry, (26)
Eypgate = DyIntraMAFp p X Ey, (27)
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E= Linear(E—i— Eup(latf:; GED) (29)
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3. 2 Aot

SCAN®] 7% regiono|t Toj7} th& w=tolA= ot ofu|& 7 £ b=
AMAE tkste Aol digt stAZE Q7] o] & =4+ DFAFQ] Dynamic
Intra-modality Attention?] ofo]jtjo]& ZMotsto] 2 gojE|Q] AHUt A1s=
7ol obd x| AHAlel Huw Fusto] B Hrutole E5to] region U @

of &X|7} 7hs3t 7hA™ Image-Text Matching@®Ql Dynamic Attention Net
work(DMAN)S A|otstc}, [23 3-1]2 A|otst= mulo] tjzkA Lxo|ct

Intra-Meodality Attention Inter—ModaIlty Attention

feature

Similarity
5(1.T)

a plate of fruiton a
table next to a vase.

Text
feature

[

3.1. Bottom-up attentionZ ©]-&3t o|ujX] £4 F&

Folal ojula] 1] chshA. olull EARHA V= {vy,.on ) ERP2 B
571 9ol 2 wEollds FE24 regiong PAIsH] ¢lsll Anderson & (2018)
o] m9ket Bottom-up attention Wit Faster R-CNN (Girshick 5, 2015)%
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[1™ 3-2] Bottom-up Attention2 ©o]&3sF 7HA] (Anderson %, 2018)

o[-l oJulx] EA& FEIITh

Faster R-CNN2 & 7FA] ©A7} Qe AAEA7IHolct. A ¥R ©7= Regi
on Proposal Network(RPN)Z o]0]X]& <2dlo} A}7ztE @ OFO] object propos
al} objectness scoreg EHsEt. F+ WA DA = A9E &7/ % bound
ing box 3HE £I%F convolution feature mapO 23 E Region Of Interests(R
Ols)Z Poolingstct.

 =wodAE [ 3-21 o] ofuprt FRet EAS s55h7] Y5l Andres
on < (2018)0] Visual Genomes (Krishna &, 2017) Hjo|E{N|E & pre-trained
st Faster R-CNN1I} ResNet-101 (He &, 2016)2 A&isto] 2Z2stsH7] o8& r
egionit &J0]7}F 7t regiong A EtTHA, shs, &, ¥H 5).

Z}zto] dElE region o tish, f,= o ZAAIS] 2048AH4 <l mean-pooled co
nvolutional featureg 2JOjstct. 1 o3 f,5 31t Zo] DARIEQ ¥y o2
#1971}

Vi = vfi, + bv' (30)
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A7 W,oF b= Z2F 7hER|eE HEgolth. maka xEAQl o]u]x]e] dH|
st 23l k& o]u]A] Woll 91+ region®] 7S <julstct.

ol
=]
ok
rlo

v={v}, 03}, v, E R? (31)

olulR G T4 JALe AAs] Ysh olulAY YelPrATY 2A EHE
DRIYOR UjF shFolof dich. TRt BAol Zolfe W, JbY Tud B2
2 3 9t 9k BE o2 Jpusoz ujgste Zolch Jeiy of FaM
28 UolA of¥l ool wete mefstr] gtk o] ® =2o)At Recurre
t Neural Network(RNN)& Ab&stol ojo] mietut 3bA| tojg Qugatct,
24 Wl WAl olo] ohsl, WA Tolo indexd UERYE one-hot W2
YeER D, Ul Y WS §5l 300AIU 02 MEZICH

_,,
rlr

3

z; = W, i € [1, -, n] (32)

A7IM ne = U9 ©oj9o] S 9ujgitt. I o5, bi-directional GRU
= o] &8st #70 U JEHE gokto=n A9 wWMy; d A FAQ o

o] #lg{o] o3ttt Bi-directional GRUE A BHA] ThojQl w, Y& Opx|a}t thoj

9l w, 7% 9% forward GRU | 9t w, %8 w7} Y+ backward GRU ; 2

F4Elol 9t
h = GRUG Ji€Ln (33)
= et < s

H5A09l to] 4 ¢ (WAl Toldl w, 599 FBES Qofsl= ek | o
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t={ty...t,h,t;= R” (35)

3.3. Intra-modality attention

Intra-modality attention WA= A}7| AFAIQ] WA HJEE A7] Qs &
oAl regionHlEI gt HOHE YUY v, o] thsll, thak o] ©A Zbzfo] IA}
o SAES TF ¥ AAstES k.

viij tz-Tti (36)
’Ii' = . y Yii = . y
P ol oyl A AT &l
— [%‘L — [ym‘h ‘ ‘
sz:kj ,’,:’—726[1’...’k]’]6[1’...’k]

Y
2 N N 2 (37)
Zl[%h \/’_El[yz‘jh

Aq714 [a], = max(a)Z, z; i regiontt jHA region Ato]o] QALEES
ojujat, y, = WA Wolel jAl Tol Aojo] gAteE oujgich. Ea e
£ stt olft A@Moz FEE Qe W A5l 6 F] GRolch 3

= region®] tisl] th& regiong< OlfIAsH] {5 o3t Zo] region®lE =

_ exp()\lij)
ik - (38)

o2 i regionyt offIHdS siFo] wUA FJEES VHAAL Q= regiond]

El2 ddlolE siEt.
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OPE7ER 2 Tojo sl th2 Tols2 of®lAdshy] {8l thZat 2ol ToldE
o]

So) JHEAlE S F UM Tolet s e shxel 2uH Fug AR 9
- CEEERE DR F
eXP()\1§i]’)

Zexp ()\15@7)

j=1

o

|
—
N
2

t, = Zam N (41)

ji=1

A7 N2 AL EWMASIAO] inversed temperature@ Al A

7] Aof logitS Uit g LERHCE (Chorowski &5, 2015).

3.4. Inter-modality attention

Inter-modality attentionu}A o A= Atcjule] Y E A7] 95 Fo]Al region
of s th32 Zo] regionyt Tojo] FARRIGAIE

SERE GOl eI Y ot
Sij% —_rLé_H_—}

5. =
Yool eyl

JBE 7HX] 1 QlE regionyt Toj S0 thall regiono theh T

ole< of®dsH ] sl HoIHE S TSR] B8 TSl DRIVEAIR Tojof of

3t regions< ol8lMs7] 95l region®E| 5] JMEA] 4, Pt

_15_



o exp(Agsyy) o exp(Agsyy)

Bij i e
: T (43)
Y lexp (Ags;) Dexp (Agsi;)
i=1 j=1
o714 A\E OHIIR|2 AmEWASEAO] inversed temperatureo]tt 1t
Z¥7+S- intra-modality attention#}7g oAl Ldo] EX regionyt Troj#lE{of ofEll
5ol wHA PGt Juitte] FEE FAlol 2 e 254 regiond]

B ajot doldlE ¢ 2 guolE afiEct.

il

o
ol

k 4 ’
a = Nt @l = Y (44)

ji=1 i=1

3.5, GAIE A4

opAlal apg oAl Zojal olulxlo] ojs] FoE Tz A sl jHAl
Croje} ojujxlAfolo] TRAS Theut o] BAMEQl ¢ 0 UA YHO[EF of

m

A regionHEQl a;9] AR FALE==R FoITh

=t (45)

J

TR HR = 2oixl 270 sl 593t regiong Z7dst7] sl i¥1A] region
v ZgArel9] #dS oSk 2ol regionH]EQl v,QF 9hA AHo]EgE of’IA
o ToHEQl g0 AR fALER FEict

T t
Vi Gy

R (v al)=—""—0 (46)

Foi Il [l af |

T8} @ thgat 2ol 77hS LSE poolingdlzol Hahael 2ExQl ojojx| 7 o
25 T Apolo] SAtE Ha9l S( 7)7F et
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n (1/X,)
R(L T) =log| Y exp(\R(e;, a}'))} : (47)
=1
) k , 1/X3)
R (I, T)=log E exp (AR (v, aﬁ))} , (48)
S(LT)=R(I T)+R(LT). (49)
36. 24 a4

Triplet loss= ©|UA] 274 ELAYE & O EF AMEE| = ranking objectiv
eo|tt. Karpathy 5 (2015)= ch3t

Obl a8 M EAIZCE

My

o] hinge-based triplet ranking losso|

WL 1)=3la= S D+SED]+Yla-SET)+SL D] (5

T
o710l [o], = max(e,0), S )& AR olux-24 #e] gA=HAolL
Te o oHER ge P 7= 79 ORER e olnRE ojujsiul,
S Dok S(7, 1) Aol ok el gatmAsolch flo] uas
ol0]Al-24 e Jptolstn ARl e AE WA == At SRR of
oA 24 FUAR] e) ASH ol BPotL, MEYS A PoR s

&+ redundancy?t £3o] Lejoh= B0l Qlot. o] Akt a&& s 2

=M= Faghri 5 (2018)0] AQteh &gl ojyuiR[olA BE BGAQ 2
st Eote AL B F 7P fARETE =2 A @A &AgeE Atst
T TS AR

AEY oo R-27 A (7 D)ol Hisll, FRAA B F 7P fALETE w2 A

= [, =argmazx,, .. [S(m, 7), T, = argmaz, . TS(

=RoA ATt 2NFAL Cheu 2t

~
&
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1o
2
o
>
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i)
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il
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bara (b 1) = [a= 8L D)+ S(L T,)], + [a— 8L 1)+ 8(1,, D], (51)

+
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x-]] 4X}t Als

.

d

2 =2olAE Aotsl R0l DMANS H7}sl7] 9ol on|x|-24F @xkebal
AARo] o] At8-E= Flickr30K (Plummer &, 2015)} MS-COCO (Young <,
2014) HlolHAS o]&st FHLt A4S 2SR, thE TSt oJulx]-F
Ab D AFQFAl A el Eut vt TH H] w3t 22 Deep visual-semantic al
ignments(DVSA) (Karpathy &, 2015), selective multimodal LSTM(sm-LSTM)
(Huang =, 2017), 2WayNet (Eisenschtat =, 2017), Visual-semantic embed
dings(VSE++) (Faghri &, 2018), Dual attention network(DAN) (Nam %, 201
7), Dual-path convolutional image-text embedding(DPC) (Zheng =, 2017),
Semantic concepts and order(SCO) (Huang =, 2018), Generative cross-mo

dal feature learning framework(GXN) (Gu &, 2018), SCAN, BFANo]|c}.

4.1. gojg 29 R FIIK|®

4.1.1. to]g 49

Flickr30K : 31,000742] o|n]x|S& A&]o] Qlu, 7+ oju]x|= 57Ho] Awat
AALo] 9T}, Karpathy & (2015)& wet 1,000712] o]ojx]E validation© =2
A}g8T 1,000719) o]0|A|E testz ALESlT Ulx] o]0]K S-S traino] A}&a

o}

MS-COCO : 123,287719] oJujA|&& A% o] l1, 7t o]u|X]&= Flickr30Ke}
OR7HAl = 5719 A8t AZE o] Qlot. EQF Karpathy & (2015)2 @2} 5,000
719] o]u]X|S validation© 2 Ap835tal 5,000719] ©]U|A|S test2 AFE5tal 82,7
837112} olu]A]E traino] A&ttt 2|1 Faghri & (2018)2 wef ARESHA] ©F

_19_



& 30.,504719] oju]x]s Y¥zjo] validationofl F7istch [17 4-1]& MS-COCO
o] dAlE HoErt

* aweird looking blue bus in a field.

* avintage blue and white bus displayed in a field.

= afancy bus with multiple pictures and awards at a park.

« two different buses one is white and blue the other red and white.

= anold bus on show at an event parked next to motorcycles and another bus.

[ 4-1] MS-COCO d|o]E] of|A] (https://cocodataset.org/)

4.1.2. 7R &

= =wolMe oluA-2 WARGA AAolA d2] AREE+= Recall at K

(ROK)Z H/lxm2 A8 ROKY SALEAAE 71E02 A9 K9 Sw

% Hgol 9l ¥ge ojujgitt. B AN L R@l, R@5, RO10S AMR&C)
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Flickr30K Test

L) 273 3A o[uA] 74

R@1 | R@5 | R@10 | R@l | R@5 | R@10
(R-CNN, AlexNet)
DVSA 222 482 [61.4 |152 [37.7 [505
(VGG)
sm-LSTM 425 [71.9 [815 [302 [604 [72.3
2WayNet 49.8 | 67.5 - 360 [55.6 -
(ResNet)
VSE++ 529 [80.5 [87.2 [39.6 [70.1 [795
DAN 55.0 |81.8 [89.0 |39.4 [69.2 [79.1
DPC 55.6 | 81.9 [895 [39.1 [69.2 [80.9
SCO 55.5 |82.0 [89.3 |41.1 [705 [81.1
(Faster—RCNN, ResNet)
SCAN 674 [903 [958 |486 [77.7 [85.2
BFAN 68.1 |91.4 - |508 [78.4 -
DMAN(ours) 68.9 |90.5 |958 |512 [77.9 [85.4

[ 4-1] Flickr30K djo]ge] A& Aut

MS-COCO Test

2 2 AA oA A

R@l | R@5 | R@10 | R@1 | R@5 | R@10
(R-CNN, AlexNet)
DVSA 38.4 [69.9 [805 [274 [602 [748
(VGG)
sm-LSTM 53.2 [83.1 [915 407 |758 [874
2WayNet 55.8 [75.2 |- 39.7 [63.3 |-
(ResNet)
VSE++ 64.6 [90.0 [957 [52.0 [84.3 [92.0
DPC 65.6 |89.8 |955 |47.1 [79.9 [90.0
GXN 68.5 |- 97.9 [56.6 |- 94.5
SCO 69.9 |92.9 [975 |56.7 |87.5 |94.8
(Faster—RCNN, ResNet)
SCAN 727 948 [98.4 |588 |884 [9438
BFAN 749 952 |- 616 |89.6 |-
DMAN(ours) 735 960 [984 |57.9 [886 [95.1

[E 4-2] MS-COCO g|o|gje] Ald Axt
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ABSTRACT

Dynamic Attention Network for Image-Text Matching

Youngdong Kim

Major in Statistics
Department of Statistics
The Graduate School

Chung-Ang University

Image-text matching problem is a link between image and text, so it h
as attracted great interest in the past decades. Tasks in Image-text matc
hing include cross-modal retrieval (i.e., image search for given sentence
s with visual descriptions and the retrieval of sentences from image quer
ies.). The key to this study depends on how we learn the similarity betwe
en images and texts.

In this paper, we propose a Dynamic Attention Network (DMAN) with In
tra-modal and inter-modal information flow that alternately delivers dyna
mic information between images and texts in cross-modal task. DMAN ca
n capture high level of contextual interaction between images and texts,
so we expect to improve performance in cross-modal retrieval.

In this study, two data such as Flickr30K and MS-COCO were experime
nted to compare performance through cross-modal retrieval, and as a re
sult, performance improvement was confirmed compared with other mod

els.

Keyword : Deep learning, Multi-modal retrieval, Attention algorithm
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