
Abstract 
 
This document describes the Microsoft LZX data compression format, as used in Microsoft cabinet files.  This 
information may be used to create or extract from Microsoft cabinet files which utilize LZX data compression.  The 
format of the surrounding cabinet file is described in other documents. 
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Introduction 
This document is a design specification for the format of LZX compressed data used in the LZX compression mode 
of Microsoft’s CAB file format.  The purpose of this document is to allow anyone to encode or decode LZX 
compressed data.  This document describes only the format of the output –it does not provide any specific 
algorithms for match location, tree generation, etc. 
 
Before proceeding with the design specification itself, a few important concepts are described in the following 
pages. 
 

Concepts 

LZ77 
LZX is an LZ77 based compressor that uses static Huffman encoding and a sliding window of selectable size.  Data 
symbols are encoded either as an uncompressed symbol, or as an (offset, length) pair indicating that length symbols 
should be copied from a displacement of -offset symbols from the current position in the output stream.  The value 
of offset is constrained to be less than the size of the sliding window. 
 

Bitstream 
An LZX bitstream is a sequence of 16 bit integers stored in the order least-significant-byte most-significant-byte.  
Given an input stream of bits named a, b, c, …, x, y, z, A, B, C, D, E, F, the output byte stream (with byte 
boundaries highlighted) would be as shown below. 
 

Output byte stream 

i j k l m n o p a b c d e F g h y z A B C D E F q r s t u v w x 

 

Window size 
The window size must be a power of 2, from 215 to 221.  The window size is not stored in the compressed data 
stream, and must instead be passed to the decoder before decoding begins.   
 
The window size determines the number of window subdivisions, or “position slots”, as shown in the following 
table: 
 

Window size / Position slot table 

Window size Position slots required 
32K 30 
64K 32 
128K 34 
256K 36 
512K 38 
1 MB 40 
2 MB 42 
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Trees 
LZX uses canonical Huffman tree structures to represent elements.  Huffman trees are well known in data 
compression and are not described here.  Since an LZX decoder uses only the path lengths of the Huffman tree to 
reconstruct the identical tree, the following constraints are made on the tree structure: 
 
1. For any two elements with the same path length, the lower-numbered element must be further left on the 

tree than the higher numbered element.  An alternative way of stating this constraint is that 
lower-numbered elements must have lower path traversal values; for example, 0010 (left-left-right-left) is 
lower than 0011 (left-left-right-right). 

 
2. For each level, starting at the deepest level of the tree and then moving upwards, leaf nodes must start as far 

left as possible.  An alternative way of stating this constraint is that if any tree node has children then all 
tree nodes to the left of it with the same path length must also have children. 

 
3. Zero length Huffman codes are not permitted, therefore a tree must contain at least 2 elements.  In the case 

where all tree elements are zero frequency, or all but one tree element is zero frequency, the resulting tree 
must consist of the two Huffman codes “0” and “1”.  In the latter case, constraint #1 still applies. 

 
LZX uses several Huffman tree structures.  The most important tree is the main tree, which comprises 256 elements 
corresponding to all possible ASCII characters, plus 8 * NUM_POSITION_SLOTS (see above) elements 
corresponding to matches.  The second most important tree is the length tree, which comprises 249 elements. 
 
Other trees, such as the aligned offset tree (comprising 8 elements), and the pre-trees (comprising 20 elements each), 
have a smaller role. 
 

Repeated offsets 
LZX extends the conventional LZ77 format in several ways, one of which is in the use of repeated offset codes.  
Three match offset codes, named the repeated offset codes, are reserved to indicate that the current match offset is 
the same as that of one of the three previous matches which is not itself a repeated offset. 
 
The three special offset codes are encoded as offset values 0, 1, and 2 (i.e. encoding an offset of 0 means “use the 
most recent non-repeated match offset”, an offset of 1 means “use the second most recent non-repeated match 
offset”, etc.).  All remaining offset values are displaced by +3, as is shown in the table below, which prevents 
matches at offsets WINDOW_SIZE, WINDOW_SIZE-1, and WINDOW_SIZE-2. 
 

Correlation between encoded offset and real offset 

Encoded offset Real offset 
0 Most recent non-repeated match offset 
1 Second most recent non-repeated match offset 
2 Third most recent non-repeated match offset 
3 1 (closest allowable) 
4 2 
5 3 
6 4 
7 5 
8 6 
500 498 
x+2 x 
WINDOW_SIZE-1 
(maximum possible) 

WIDOW_SIZE-3 
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The three most recent non-repeated match offsets are kept in a list, the behavior of which explained below: 
 
Let R0 be defined as the most recent non-repeated offset 
Let R1 be defined as the second most recent non-repeated offset 
Let R2 be defined as the third most recent non-repeated offset 
 
The list is managed similarly to an LRU (least recently used) queue, with the exception of the cases when R1 or R2 
is output.  In these cases, which are fairly uncommon, R1 or R2 is simply swapped with R0, which requires fewer 
operations than would an LRU queue.  The compression penalty from doing so is essentially zero and it removes a 
small computational overhead from the decoder. 
 
The initial state of R0, R1, R2 is (1, 1, 1). 
 

Management of the repeated offsets list 

Match offset X where... Operation 
X ¹ R0 and X ¹ R1 and X ¹ R2 R2 ¬ R1 

R1 ¬ R0 
R0 ¬ X 

X = R0 None 
X = R1 swap R0 Û R1 
X = R2 swap R0 Û R2 
 

Constants 
The following named constants are used frequently in this document: 
 

MIN_MATCH Smallest allowable match length 2 
MAX_MATCH Largest allowable match length 257 
NUM_CHARS Number of uncompressed 

character types 
256 

WINDOW_SIZE Window size Varies 
NUM_POSITION_SLOTS Number of window subdivisions Dependent upon 

WINDOW_SIZE 
MAIN_TREE_ELEMENTS Number of elements in main tree NUM_CHARS + 

NUM_POSITION_SLOTS*8 
NUM_SECONDARY_LENGTHS Number of elements in length tree 249 

 
 

LZX compressed data format 
LZX compressed data consists of a header indicating the file translation size (which is described later), followed by 
a sequence of compressed blocks.  A stream of uncompressed input may be output as multiple compressed LZX 
blocks to improve compression, since each compressed block contains its own statistical tree structures. 
 

Header Block Block Block … 

 

Cabinet block size 
The cabinet file format requires that for any particular CFDATA block, the indicated number of compressed input 
bytes must represent exactly the indicated number of uncompressed output bytes.  Furthermore, each CFDATA 
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block must represent 32768 uncompressed bytes, with the exception of the last CFDATA block in a folder, which 
may represent less than 32768 uncompressed bytes. 
 
The LZX block size is independent of the CFDATA block size; an LZX block can represent 200,000 uncompressed 
bytes, for example.  In order to ensure that an exact number of input bytes represent an exact number of output 
bytes, after each 32768th uncompressed byte is represented, the output bit buffer is byte aligned on a 16-bit boundary 
by outputting 0-15 zero bits.  The bit buffer is flushed in an identical manner after the final CFDATA block in a 
folder.  Furthermore, the compressor may not emit any matches that span a 32768-byte boundary in the input (for 
example, at position 65528 in the input, the compressor cannot emit a match with a length of 50; the maximum 
allowable match length at this point would be 6). 
 
One additional constraint is that, for any given CFDATA block, the compressed size of a CFDATA block may not 
occupy more than 32768+6144 bytes (i.e. 32K of uncompressed input may not grow by more than 6K when 
compressed). 
 

Header structure 
The header consists of either a zero bit indicating no encoder preprocessing, or a one bit followed by a file 
translation size, a value which is used in encoder preprocessing. 
 

0  
1 Most significant 16 bits 

of file translation size 
Least significant 16 bits of 
file translation size 

 

Encoder preprocessing 
The encoder may optionally perform a preprocessing stage on all CFDATA input blocks (size <= 32K) which 
improves compression on 32-bit Intel 80x86 code.  The translation is performed before the data is passed to the 
compressor, and therefore an appropriate reverse translation must be performed on the output of the decompressor.  
A bit indicating whether preprocessing was used is stored in the compression header (see above). 
 
The preprocessing stage translates 80x86 CALL instructions, which begin with the E8 (hex) opcode, to use absolute 
offsets instead of relative offsets.  
 
Preprocessing is disabled after the 32768th CAB input frame in a folder (where a CAB input frame is 32768 bytes) in 
order to avoid signed/unsigned arithmetic complexity.  This change can obviously occur only when a folder 
represents at least 1 gigabyte of uncompressed data. 
 

CALL byte sequence (E8 followed by 32 bit offset) 

E8 r0 r1 r2 r3 
 

Performing the relative-to-absolute conversion 

relative_offset ¬ r0 + r1*28 + r2*216 + r3*224 
new_value ¬ conversion_function(current_location, relative_offset) 
a0 ¬ bits 0-7 of new_value 
a1 ¬ bits 8-15 of new_value 
a2 ¬ bits 16-23 of new_value 
a3 ¬ bits 24-31 of new_value 
 

Translated CALL byte sequence 

E8 a0 a1 a2 a3 
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The diagram below illustrates the relative-to-absolute conversion function, where curpos is the current offset within 
all uncompressed data seen in the current cabinet folder, and file_size is the file translation size from the 
compression header (file_size is unrelated to the size of the actual file being decompressed). 
 
The translation is performed “in place” on the input data without using extra codes to indicate whether a translation 
occurred (i.e. there is a direct mapping from a 32-bit value to a 32-bit value), therefore there is a one-to-one 
correlation between pre- and post- translated values. 
 

Offset translation diagram 

 
 
 
Pre-translation (relative offset value) 
 
 
 
 
 
 
 
 
Post-translation (resulting value) 
 
From the diagram one can see that values in the range of 0x80000000 (-231) to -curpos, and file_size to 
0x7FFFFFFFF (+231) are left unchanged.  The translation algorithm operates as follows on an input block of size 
input_size, where 0 <= input_size <= 32768.  No translation may be performed on the last 6 bytes of the input block 
 
if (input_size < 6) 

return /* don’t perform translation if < 6 input bytes */ 
 

for (i = 0; i < input_size; i++) 
 
 if (input_data[i] == 0xE8) 
  if (i >= input_size-6) 

break; 
  endif 
   
  … perform translation illustrated above … 
 endif 
 

Block structure 
Each block of compressed data begins with a 3 bit header describing the block type, followed by the block itself.  
The allowable block types are: 
 
0 Undefined 
1 Verbatim block 
2 Aligned offset block 
3 Uncompressed block 
4-7 Undefined 

 

[0x00000000 ... file size) 
good translation 

[file_size ... 0x7FFFFFFF] 
no translation 

[-curpos ... file_size – curpos) 
good translation 

[file_size .... 0x7FFFFFFF] 
no translation 

[file_size - curpos ... file_size) 
compensating translation 

[0x80000000 to –curpos) 
no translation 

[0x80000000 to –curpos) 
no translation 

[-curpos to 0x00000000) 
compensating translation 

file_size curpos -231 +231 
232 
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Uncompressed block format 
An uncompressed block begins with 1 to 16 bits of zero padding to align the bit buffer on a 16-bit boundary.  At 
this point, the bitstream ends, and a bytestream begins.  The data that follows is encoded as bytes for performance.  
Following the zero padding, new values for R0, R1, and R2 are output in little-endian form, followed by the 
uncompressed data bytes themselves. 
 

1-16 bits  4 bytes 4 bytes 4 bytes n bytes 
zero padding R0 

(LSB first) 
R1 
(LSB first) 

R2 
(LSB first) 

Uncompressed data 

 

Verbatim block 
A verbatim block consists of the following: 
 
Entry Comments Size 
Number of uncompressed bytes accounted for 
in this block 

Range of 1...224 24 bits 

Pre-tree for first 256 elements of main tree 20 elements, 4 bits each 80 bits 
Path lengths of first 256 elements of main tree Encoded using pre-tree Variable 
Pre-tree for remainder of main tree 20 elements, 4 bits each 80 bits 
Path lengths of remaining elements of main tree Encoded using pre-tree Variable 
Pre-tree for length tree 20 elements, 4 bits each 80 bits 
Path lengths of elements in length tree Encoded using pre-tree Variable 
Compressed literals Described later Variable 
 

Aligned offset block 
An aligned offset block consists of the following: 
 
Entry Comments Size 
Number of uncompressed bytes accounted for 
in this block 

Range of 1...224 24 bits 

Pre-tree for first 256 elements of main tree 20 elements, 4 bits each 80 bits 
Path lengths of first 256 elements of main tree Encoded using pre-tree Variable 
Pre-tree for remainder of main tree 20 elements, 4 bits each 80 bits 
Path lengths of remaining elements of main tree Encoded using pre-tree Variable 
Pre-tree for length tree 20 elements, 4 bits each 80 bits 
Path lengths of elements in length tree Encoded using pre-tree Variable 
Aligned offset tree 8 elements, 3 bits each 24 bits 
Compressed literals Described later Variable 
 
The aligned offset tree comprises only 8 elements, each of which is encoded as a 3 bit path length.  Since the size of 
this tree is so small, no additional compression is performed on it. 
 

Encoding the trees and pre-trees 
Since all trees used in LZX are created in the form of a canonical Huffman tree, the path length of each element in 
the tree is sufficient to reconstruct the original tree.  The main tree and the length tree are each encoded using the 
method described below.  However, the main tree is encoded in two components as if it were two separate trees, the 
first tree corresponding to the first 256 tree elements (uncompressed symbols), and the second tree corresponding to 
the remaining elements (matches). 
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Since trees are output several times during compression of large amounts of data, LZX optimises compression by 
encoding only the delta path lengths between the current and previous trees.  In the case of the very first such tree, 
the delta is calculated against a tree in which all elements have a zero path length. 
 
Each tree element may have a path length from 0 to 16 (inclusive) where a zero path length indicates that the 
element has a zero frequency and is not present in the tree.  Tree elements are output in sequential order starting 
with the first element.  Elements may be encoded in one of two ways -if several consecutive elements have the 
same path length, then run length encoding is employed; otherwise the element is output by encoding the difference 
between the current path length and the previous path length of the tree, mod 17.  These output methods are 
described below: 
 

Tree codes 

Code Operation 
0-16 Len[x] = (prev_len[x] + code) mod 17 
17 Zeroes = getbits(4) 

Len[x] = 0 for next (4 + Zeroes) elements 
18 Zeroes = getbits(5) 

Len[x] = 0 for next (20 + Zeroes) elements 
19 Same = getbits(1) 

Decode new Code 
Value = (prev_len[x] + Code) mod 17 
Len[x] = Value for next (4 + Same) elements 

 
Each of the 17 possible values of (len[x] - prev_len[x]) mod 17, plus three additional codes used for run-length 
encoding, are not output directly as 5 bit numbers, but are instead encoded via a Huffman tree called the pre- tree.  
The pre-tree is generated dynamically according to the frequencies of the 20 allowable tree codes.  The structure of 
the pre-tree is encoded in a total of 80 bits by using 4 bits to output the path length of each of the 20 pre-tree 
elements.  Once again, a zero path length indicates a zero frequency element. 
 

Pre-tree 

Length of tree code 0 4 bits 
Length of tree code 1 4 bits 
Length of tree code 2 4 bits 
… … 
Length of tree code 18 4 bits 
Length of tree code 19 4 bits 
 
The “real” tree is then encoded using the pre-tree Huffman codes. 
 

Compressed literals 
The compressed literals that make up the bulk of either a verbatim block or an aligned offset block immediately 
follow the tree data (as shown in the diagram for each block type).  These literals, which comprise matches and 
unmatched characters, will, when decompressed, correspond to exactly the number of uncompressed bytes indicated 
in the block header. 
 
The representation of an unmatched character in the output is simply the appropriate element 0…(NUM_CHARS-1) 
Huffman-encoded using the main tree. 
 
The representation of a match in the output involves several transformations, as shown in the following diagram.  
At the top of the diagram are the match length (MIN_MATCH…MAX_MATCH) and the match offset 
(0…WINDOW_SIZE-4).  The match offset and match length are split into sub-components and encoded 
separately. 
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As mentioned previously, in order to remain compatible with the cabinet file format, the compressor may not emit 
any matches that span a 32768-byte boundary in the input. 
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Diagram of match sub-components 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Match length Match offset 

Length/Position header Length footer 

Position footer 

Aligned offset bits Verbatim position bits 
3 

Formatted offset 

Length header Position slot 

Main tree 
1 

Length tree 
2 

 
OUTPUT 

Aligned offset tree 
4 
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Match offset Þ Formatted offset 
The match offset, range 1…(WINDOW_SIZE-4), is converted into a formatted offset by determining whether the 
offset can be encoded as a repeated offset, as shown below.  It is acceptable to not encode a match as a repeated 
offset even if it is possible to do so. 
 

Converting a match offset to a formatted offset 
if offset == R0 then 
 formatted offset ¬ 0 
else if offset == R1 then 
 formatted offset ¬ 1 
else if offset == R2 then 
 formatted offset ¬ 2 
else 
 formatted offset ¬ offset + 2 
endif 

 

Formatted offset Þ Position slot, Position footer 
The formatted offset is subdivided into a position slot and a position footer.  The position slot defines the most 
significant bits of the formatted offset in the form of a base position as shown in the table on the following page.  
The position footer defines the remaining least significant bits of the formatted offset.  As the table shows, the 
number of bits dedicated to the position footer grows as the formatted offset becomes larger, meaning that each 
position slot addresses a larger and larger range. 
 
The number of position slots available depends on the window size.  The position slot table for the maximum 
window size of 2 megabytes, is shown in the table below. 
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The position slot table 

Position slot 
number 

Base 
position 

Number of 
position 
footer bits 

Range of base 
position and 
position footer 

0 0 0 0 
1 1 0 1 
2 2 0 2 
3 3 0 3 
4 4 1 4-5 
5 6 1 6-7 
6 8 2 8-11 
7 12 2 12-15 
8 16 3 16-23 
9 24 3 24-31 
10 32 4 32-47 
11 48 4 48-63 
12 64 5 64-95 
13 96 5 96-127 
14 128 6 128-191 
15 192 6 192-255 
16 256 7 256-383 
17 384 7 384-511 
18 512 8 512-767 
19 768 8 768-1023 
20 1024 9 1024-1535 
21 1536 9 1536-2047 
22 2048 10 2048-3071 
23 3072 10 3072-4095 
24 4096 11 4096-6143 
25 6144 11 6144-8191 
26 8192 12 8192-12287 
27 12288 12 12288-16383 
28 16384 13 16384-24575 
29 24576 13 24576-32767 
30 32768 14 32768-49151 
31 49152 14 49152-65535 
32 65536 15 65536-98303 
33 98304 15 98304-131071 
34 131072 16 131072-196607 
35 196608 16 196608-262143 
36 262144 17 262144-393215 
37 393216 17 393216-524287 
38 524288 17 524288-655359 
39 655360 17 655360-786431 
40 786432 17 786432-917503 
41 917504 17 917504-1048575 
42 1048576 17 1048576-1179647 
43 1179648 17 1179648-1310719 
44 1310720 17 1310720-1441791 
45 1441792 17 1441792-1572863 
46 1572864 17 1572864-1703935 
47 1703936 17 1703936-1835007 
48 1835008 17 1835008-1966079 
49 1966080 17 1966080-2097151 
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In order to determine the position footer, it is first necessary to determine the position slot.  Then, a simple lookup 
can be performed on the position slot to determine the number of bits, B, in the position footer.  The B least 
significant bits of the formatted offset are the position footer.  Pseudocode for obtaining the position slot and 
position footer are shown below, as is the lookup array (named extra_bits). 
 

The extra_bits table 

n 
(position slot) 

extra_bits[n] 
(number of position footer bits) 

0 0 
1 0 
2 0 
3 0 
4 1 
5 1 
6 2 
7 2 
8 3 
9 3 
10 4 
11 4 
12 5 
13 5 
14 6 
15 6 
16 7 
17 7 
18 8 
19 8 
20 9 
21 9 
22 10 
23 10 
24 11 
25 11 
26 12 
27 12 
28 13 
29 13 
30 14 
31 14 
32 15 
33 15 
34 16 
35 16 
36-49 17 
 
 



Microsoft LZX Data Compression Format 

 Page 15 of 19 March 20, 1997 

Calculating the position slot and position footer 

position_slot ¬ calculate_position_slot(formatted_offset) 
position_footer_bits ¬ extra_bits[ position_slot ] 
if position_footer_bits > 0 

position_footer ¬ formatted_offset & ((2^position_footer_bits)-1) 
else  
 position_footer ¬ null 
 

Position footer Þ Verbatim bits, Aligned offset bits 
The position footer may be further subdivided into verbatim bits and aligned offset bits if the current block uses 
aligned offsets.  If the current block is not an aligned offset block then there are no aligned offset bits, and the 
verbatim bits are the position footer. 
 
If aligned offsets are used, then the lower 3 bits of the position footer are the aligned offset bits, while the remaining 
portion of the position footer are the verbatim bits.  In the case where there are less than 3 bits in the position footer 
(i.e. formatted offset is <= 15) it is not possible to take the “lower 3 bits of the position footer” and therefore there 
are no aligned offset bits, and the verbatim bits and the position footer are the same. 
 

Pseudocode for splitting position footer into verbatim bits and aligned offset 
if block_type = aligned_offset_block then 
 if formatted_offset <= 15 then 
  verbatim_bits ¬ position_footer 
  aligned_offset ¬ null 
 else 
  aligned_offset ¬ position_footer 
  verbatim_bits ¬ position_footer >> 3 
 endif 
else 
 verbatim_bits ¬ position_footer 
 aligned_offset ¬ null 
endif 
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Match length Þ Length header, Length footer 
The match length is converted into a length header and a length footer.  The length header may have one of eight 
possible values, from 0...7 (inclusive), indicating a match of length 2, 3, 4, 5, 6, 7, 8, or a length greater than 8.  If 
the match length is 8 or less, then there is no length footer.  Otherwise the value of the length footer is equal to the 
match length minus 9. 
 

Pseudocode for obtaining the length header and footer 
if match_length <= 8 
 length_header ¬ match_length-2 
 length_footer ¬ null 
else 
 length_header ¬ 7 
 length_footer ¬ match_length-9 
endif 
 

Example conversions of some match lengths to header and footer values 

Match length Length header Length footer value 
2 (MIN_MATCH) 0 None 
3 1 None 
4 2 None 
5 3 None 
6 4 None 
7 5 None 
8 6 None 
9 7 0 
10 7 1 
50 7 41 
257 (MAX_MATCH) 7 248 
 

Length header, Position slot Þ Length/Position header 
The Length/Position header is the stage which correlates the match position with the match length (using only the 
most significant bits), and is created by combining the length header and the position slot as shown below: 
 
len_pos_header ¬ (position_slot << 3) + length_header 
 
This operation creates a unique value for every combination of match length 2, 3, 4, 5, 6, 7, 8 with every possible 
position slot.  The remaining match lengths greater than 8 are all lumped together, and as a group are correlated 
with every possible position slot. 
 

Encoding a match 
The match is finally output in up to four components, as follows: 
 
1. Output element (len_pos_header + NUM_CHARS) from the main tree 
2. If length_footer != null, then output element length_footer from the length tree 
3. If verbatim_bits != null, then output verbatim_bits 
4. If aligned_offset_bits != null, then output element aligned_offset from the aligned offset tree 
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Decoding a match or an uncompressed character 
Decoding is performed by first decoding an element using the main tree and then, if the item is a match, determining 
which additional components are necessary to reconstruct the match.  Pseudocode for decoding a match or an 
uncompressed character is shown below: 
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main_element = main_tree.decode_element() 
 
if (main_element < NUM_CHARS) /* is an uncompressed character */ 

 
window[ curpos ] ¬ (byte) main_element 
curpos ¬ curpos + 1 
 

else /* is a match */ 
 

length_header ¬ (main_element – NUM_CHARS) & NUM_PRIMARY_LENGTHS 
 
if (length_header == NUM_PRIMARY_LENGTHS)  
 match_length ¬ length_tree.decode_element() +  

NUM_PRIMARY_LENGTHS + MIN_MATCH 
else 
 match_length ¬ length_header + MIN_MATCH /* no length footer */ 
endif 
 
position_slot ¬ (main_element – NUM_CHARS) >> 3 
 
/* check for repeated offsets (positions 0,1,2) */ 
if (position_slot == 0) 
 match_offset ¬ R0 
else if (position_slot == 1) 
 match_offset ¬ R1 
 swap(R0 Û R1) 
else if (position_slot == 2) 
 match_offset ¬ R2 
 swap(R0 Û R2) 
else /* not a repeated offset */ 

extra ¬ extra_bits[ position_slot ]  
 
if (block_type == aligned_offset_block) 

if (extra > 3) /* this means there are some aligned bits */ 
   verbatim_bits ¬ (readbits(extra-3)) << 3 
   aligned_bits  ¬ aligned_offset_tree.decode_element(); 

else if (extra > 0) /* just some verbatim bits */ 
   verbatim_bits ¬ readbits(extra) 
   aligned_bits  ¬ 0 

else /* no verbatim bits */ 
verbatim_bits ¬ 0 

   aligned_bits  ¬ 0 
  endif 

 
  formatted_offset ¬ base_position[ position_slot ] +  

verbatim_bits + aligned_bits 
else /* block_type == verbatim_block */ 

if (extra > 0) /* if there are any extra bits */ 
   verbatim_bits ¬ readbits(extra) 

else 
verbatim_bits ¬ 0 

  endif 
 
  formatted_offset ¬ base_position[ position_slot ] + verbatim_bits 
 endif 
 
 match_offset ¬ formatted_offset – 2 
 
 /* update repeated offset LRU queue */ 
 R2 ¬ R1 

R1 ¬ R0 
R0 ¬ match_offset 

 
/* copy match data */ 
for (i = 0; i < match_length; i++) 

  window[curpos + i] ¬ window[curpos + i – match_offset] 
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curpos ¬ curpos + match_length 
endif 


