Microsoft LZX Data Compression Format

Copyright © 1997 Microsoft Corporation. All rights reserved.

Abstract

This document describes the Microsoft LZX data compression format, as used in Microsoft cabinet files. This
information may be used to create or extract from Microsoft cabinet files which utilize LZX data compression. The
format of the surrounding cabinet file is described in other documents.

Microsoft LZX Data Compression Format

Table of Contents

INTRODUCTION 3
CONCEPTS ...ttt ettt a bt b st et s ettt a e a e s s s s a s a s st s st n et a e ene s enis 3
LZ77 ettt ekttt h st hea e bRt bt ket h et ekttt ettt ne et ne e 3
BUISIFOAM ...t e 3
WERAOW SIZE.......c.oouiiiiiiiiiiiie ettt ettt et h bbbttt ettt erens 3
THOOS .. ettt ettt et 4
REPDEALEA OfffSOIS ...ttt ettt 4
COMSTANLS ...ttt ettt ettt ettt e sh ettt et e 5
LZX COMPRESSED DATA FORMAToeieuiieiitreeesireseasreessseeaseseeeasssesssesasssesssssssessssesssssesssssssesssssessssesssssessnssees 5
CABINEE DIOCK SIZE ...ttt ettt ettt ettt 5
HEAAET SIFUCIUFE ...ttt ettt ettt ettt ene 6
ENCOACE PFEPIOCESSING ...ttt ettt ettt eae 6
BIOCK SIFUCHUTE ...ttt et ettt ettt ene 7
Uncompressed BIOCK fOTMAL. ...ttt 8
V@IBDALII BIOCK ...ttt ettt ettt 8
ATIGNEA OffSEE BIOCK ...ttt ettt 8
Encoding the trees ANd Pre-treescocuiriiiiiiiiniiieiieeet ettt sttt 8
COMPIESSC LIEOFQALS ...ttt ettt ettt 9
Match offset => FOrmMAtted OffSEtcociiiriiiiiniiiiiiiieieett ettt 12
Formatted offset = Position sI0t, POSItION fOOLETccccoeeieoieoiioiiiiiiiiiisese st 12
Position footer = Verbatim bits, AlIgned OffSEt DILScccccecuvoiioiiiiiiiiiiiiiii e 15
Match length = Length header, LeNgth fOOLEFcccccouecuiciioiiiiiiiiiiiiiiaene sttt 16
Length header, Position slot = Length/Position headerccccccuuuiniiniinininineeieeeeeeen, 16
ENCOAING G AICTH ...ttt 16
Decoding a match or an uncompressed CRAFACIEFcccccvciioiiiiiiiiiiiiiiiii i 17

Page 2 of 19 March 20, 1997

Microsoft LZX Data Compression Format

Introduction

This document is a design specification for the format of LZX compressed data used in the LZX compression mode
of Microsoft’s CAB file format. The purpose of this document is to allow anyone to encode or decode LZX
compressed data. This document describes only the format of the output —it does not provide any specific
algorithms for match location, tree generation, etc.

Before proceeding with the design specification itself, a few important concepts are described in the following
pages.

Concepts

LZ77

LZX is an LZ77 based compressor that uses static Huffman encoding and a sliding window of selectable size. Data
symbols are encoded either as an uncompressed symbol, or as an (offset, length) pair indicating that length symbols
should be copied from a displacement of -offsef symbols from the current position in the output stream. The value
of offset is constrained to be less than the size of the sliding window.

Bitstream

An LZX bitstream is a sequence of 16 bit integers stored in the order least-significant-byte most-significant-byte.
Given an input stream of bits named a, b, ¢, ..., X, y, z, A, B, C, D, E, F, the output byte stream (with byte
boundaries highlighted) would be as shown below.

Output byte stream

HEEEEERE EREEREHEL EEREERDEE EEREREEE

Window size

The window size must be a power of 2, from 2! to 22!, The window size is not stored in the compressed data
stream, and must instead be passed to the decoder before decoding begins.

The window size determines the number of window subdivisions, or “position slots”, as shown in the following
table:

Window size / Position slot table

Window size Position slots required
32K 30
64K 32
128K 34
256K 36
512K 38
1 MB 40
2 MB 42

Page 3 of 19 March 20, 1997

Microsoft LZX Data Compression Format

Trees

LZX uses canonical Huffman tree structures to represent elements. Huffman trees are well known in data
compression and are not described here. Since an LZX decoder uses only the path lengths of the Huffman tree to
reconstruct the identical tree, the following constraints are made on the tree structure:

L. For any two elements with the same path length, the lower-numbered element must be further left on the
tree than the higher numbered element. An alternative way of stating this constraint is that
lower-numbered elements must have lower path traversal values; for example, 0010 (left-left-right-left) is
lower than 0011 (left-left-right-right).

2. For each level, starting at the deepest level of the tree and then moving upwards, leaf nodes must start as far
left as possible. An alternative way of stating this constraint is that if any tree node has children then all
tree nodes to the left of it with the same path length must also have children.

3. Zero length Huffman codes are not permitted, therefore a tree must contain at least 2 elements. In the case
where all tree elements are zero frequency, or all but one tree element is zero frequency, the resulting tree
must consist of the two Huffman codes “0” and “1”. In the latter case, constraint #1 still applies.

LZX uses several Huffman tree structures. The most important tree is the main tree, which comprises 256 elements
corresponding to all possible ASCII characters, plus 8 * NUM_POSITION_SLOTS (see above) elements
corresponding to matches. The second most important tree is the length tree, which comprises 249 elements.

Other trees, such as the aligned offset tree (comprising 8 elements), and the pre-trees (comprising 20 elements each),
have a smaller role.

Repeated offsets

LZX extends the conventional LZ77 format in several ways, one of which is in the use of repeated offset codes.
Three match offset codes, named the repeated offset codes, are reserved to indicate that the current match offset is
the same as that of one of the three previous matches which is not itself a repeated offset.

The three special offset codes are encoded as offset values 0, 1, and 2 (i.e. encoding an offset of 0 means “use the
most recent non-repeated match offset”, an offset of 1 means “use the second most recent non-repeated match
offset”, etc.). All remaining offset values are displaced by +3, as is shown in the table below, which prevents
matches at offsets WINDOW_SIZE, WINDOW _SIZE-1, and WINDOW_SIZE-2.

Correlation between encoded offset and real offset

Encoded offset Real offset

0 Most recent non-repeated match offset

1 Second most recent non-repeated match offset
2 Third most recent non-repeated match offset
3 1 (closest allowable)

4 2

5 3

6 4

7 5

8 6

500 498

x+2 X

WINDOW _SIZE-1 | WIDOW_SIZE-3

(maximum possible)

Page 4 of 19 March 20, 1997

Microsoft LZX Data Compression Format

The three most recent non-repeated match offsets are kept in a list, the behavior of which explained below:

Let RO be defined as the most recent non-repeated offset
Let R1 be defined as the second most recent non-repeated offset
Let R2 be defined as the third most recent non-repeated offset

The list is managed similarly to an LRU (least recently used) queue, with the exception of the cases when R1 or R2
is output. In these cases, which are fairly uncommon, R1 or R2 is simply swapped with R0, which requires fewer
operations than would an LRU queue. The compression penalty from doing so is essentially zero and it removes a

small computational overhead from the decoder.

The initial state of RO, R1, R2is (1, 1, 1).

Management of the repeated offsets list

Match offset X where... Operation
X #R0and X #R1 and X # R2 R2 «RI1
R1 <« RO
RO« X
X=R0 None
X=RI swap RO < R1
X=R2 swap RO <& R2
Constants

The following named constants are used frequently in this document:

MIN MATCH Smallest allowable match length 2

MAX MATCH Largest allowable match length 257

NUM_CHARS Number of uncompressed 256
character types

WINDOW SIZE Window size Varies

NUM_POSITION_SLOTS

Number of window subdivisions

Dependent upon
WINDOW _SIZE

MAIN TREE ELEMENTS

Number of elements in main tree

NUM_CHARS +
NUM_POSITION_SLOTS*8

NUM SECONDARY LENGTHS

Number of elements in length tree

249

LZX compressed data format

LZX compressed data consists of a header indicating the file translation size (which is described later), followed by
a sequence of compressed blocks. A stream of uncompressed input may be output as multiple compressed LZX

blocks to improve compression, since each compressed block contains its own statistical tree structures.

Header | Block | Block | Block

Cabinet block size

The cabinet file format requires that for any particular CFDATA block, the indicated number of compressed input
bytes must represent exactly the indicated number of uncompressed output bytes. Furthermore, each CFDATA

Page 5 of 19

March 20, 1997

Microsoft LZX Data Compression Format

block must represent 32768 uncompressed bytes, with the exception of the last CFDATA block in a folder, which
may represent less than 32768 uncompressed bytes.

The LZX block size is independent of the CFDATA block size; an LZX block can represent 200,000 uncompressed
bytes, for example. In order to ensure that an exact number of input bytes represent an exact number of output
bytes, after each 32768" uncompressed byte is represented, the output bit buffer is byte aligned on a 16-bit boundary
by outputting 0-15 zero bits. The bit buffer is flushed in an identical manner after the final CFDATA block in a
folder. Furthermore, the compressor may not emit any matches that span a 32768-byte boundary in the input (for
example, at position 65528 in the input, the compressor cannot emit a match with a length of 50; the maximum
allowable match length at this point would be 6).

One additional constraint is that, for any given CFDATA block, the compressed size of a CFDATA block may not
occupy more than 32768+6144 bytes (i.e. 32K of uncompressed input may not grow by more than 6K when
compressed).

Header structure

The header consists of either a zero bit indicating no encoder preprocessing, or a one bit followed by a file
translation size, a value which is used in encoder preprocessing.

0

1 | Most significant 16 bits | Least significant 16 bits of
of file translation size file translation size

Encoder preprocessing

The encoder may optionally perform a preprocessing stage on all CFDATA input blocks (size <= 32K) which
improves compression on 32-bit Intel 80x86 code. The translation is performed before the data is passed to the
compressor, and therefore an appropriate reverse translation must be performed on the output of the decompressor.
A bit indicating whether preprocessing was used is stored in the compression header (see above).

The preprocessing stage translates 80x86 CALL instructions, which begin with the E8 (hex) opcode, to use absolute
offsets instead of relative offsets.

Preprocessing is disabled after the 32768™ CAB input frame in a folder (where a CAB input frame is 32768 bytes) in
order to avoid signed/unsigned arithmetic complexity. This change can obviously occur only when a folder
represents at least 1 gigabyte of uncompressed data.

CALL byte sequence (E8 followed by 32 bit offset)

E€roriren

Performing the relative-to-absolute conversion

relative_offset «— ro + r1#*28 + rp*216 + r3#22

new_value <— conversion_function(current location, relative offset)
ao < bits 0-7 of new_value

ar < bits 8-15 of new_value

a» < bits 16-23 of new_value

a3 < bits 24-31 of new_value

Translated CALL byte sequence

E8 ap a1 a2 a3

Page 6 of 19 March 20, 1997

Microsoft LZX Data Compression Format

The diagram below illustrates the relative-to-absolute conversion function, where curpos is the current offset within
all uncompressed data seen in the current cabinet folder, and file size is the file translation size from the
compression header (file size is unrelated to the size of the actual file being decompressed).

The translation is performed “in place” on the input data without using extra codes to indicate whether a translation
occurred (i.e. there is a direct mapping from a 32-bit value to a 32-bit value), therefore there is a one-to-one
correlation between pre- and post- translated values.

Offset translation diagram

< 232 >

«— 23 «— file size > curpos ————— +231 —»

Pre-translation (relative offset value)

[0x80000000 to —curpos) |[-curpos ... file size —curpos) |[[file size - curpos ... file size) [[file size OX7FFFFFFF]

no translation good translation compensating translation no translation

A 4 A 4
[0x80000000 to —curpos) |[-curpos to 0x00000000) [0x00000000 ... file size) [file_size ... 0x7FFFFFFF]
no translation compensating translation good translation no translation

)] 4 4 lat: Ve 143 1)
L O Al Iatvinr (1 ulllllg varmuacy

From the diagram one can see that values in the range of 0x80000000 (-23!) to -curpos, and file_size to
Ox7FFFFFFFF (+2%!) are left unchanged. The translation algorithm operates as follows on an input block of size
input_size, where 0 <= input size <=32768. No translation may be performed on the last 6 bytes of the input block

if (input size < 6)
return /* don’t perform translation if < 6 input bytes */

for (i = 0; i < input size; i++)

if (input data[i] == 0xES8)
if (i >= input size-6)
break;
endif

. perform translation illustrated above .
endif

Block structure

Each block of compressed data begins with a 3 bit header describing the block type, followed by the block itself.
The allowable block types are:

0 Undefined

1 Verbatim block

2 Aligned offset block
3 Uncompressed block
4-7 Undefined

Page 7 of 19 March 20, 1997

Microsoft LZX Data Compression Format

Uncompressed block format

An uncompressed block begins with 1 to 16 bits of zero padding to align the bit buffer on a 16-bit boundary. At
this point, the bitstream ends, and a bytestream begins. The data that follows is encoded as bytes for performance.
Following the zero padding, new values for R0, R1, and R2 are output in little-endian form, followed by the

uncompressed data bytes themselves.

1-16 bits 4 bytes 4 bytes 4 bytes n bytes

zero padding | RO R1 R2
(LSB first) | (LSB first) | (LSB first)

Uncompressed data

Verbatim block
A verbatim block consists of the following:

Entry Comments Size
Number of uncompressed bytes accounted for Range of 1...2% 24 bits
in this block

Pre-tree for first 256 elements of main tree 20 elements, 4 bits each 80 bits
Path lengths of first 256 elements of main tree Encoded using pre-tree Variable
Pre-tree for remainder of main tree 20 elements, 4 bits each 80 bits
Path lengths of remaining elements of main tree | Encoded using pre-tree Variable
Pre-tree for length tree 20 elements, 4 bits each 80 bits
Path lengths of elements in length tree Encoded using pre-tree Variable
Compressed literals Described later Variable
Aligned offset block

An aligned offset block consists of the following:

Entry Comments Size
Number of uncompressed bytes accounted for Range of 1...2% 24 bits
in this block

Pre-tree for first 256 elements of main tree 20 elements, 4 bits each 80 bits
Path lengths of first 256 elements of main tree Encoded using pre-tree Variable
Pre-tree for remainder of main tree 20 elements, 4 bits each 80 bits
Path lengths of remaining elements of main tree | Encoded using pre-tree Variable
Pre-tree for length tree 20 elements, 4 bits each 80 bits
Path lengths of elements in length tree Encoded using pre-tree Variable
Aligned offset tree 8 elements, 3 bits each 24 bits
Compressed literals Described later Variable

The aligned offset tree comprises only 8 elements, each of which is encoded as a 3 bit path length. Since the size of

this tree is so small, no additional compression is performed on it.

Encoding the trees and pre-trees

Since all trees used in LZX are created in the form of a canonical Huffman tree, the path length of each element in
the tree is sufficient to reconstruct the original tree. The main tree and the length tree are each encoded using the
method described below. However, the main tree is encoded in two components as if it were two separate trees, the
first tree corresponding to the first 256 tree elements (uncompressed symbols), and the second tree corresponding to
the remaining elements (matches).

Page 8 of 19 March 20, 1997

Microsoft LZX Data Compression Format

Since trees are output several times during compression of large amounts of data, LZX optimises compression by
encoding only the delta path lengths between the current and previous trees. In the case of the very first such tree,
the delta is calculated against a tree in which all elements have a zero path length.

Each tree element may have a path length from 0 to 16 (inclusive) where a zero path length indicates that the
element has a zero frequency and is not present in the tree. Tree elements are output in sequential order starting
with the first element. Elements may be encoded in one of two ways -if several consecutive elements have the
same path length, then run length encoding is employed; otherwise the element is output by encoding the difference
between the current path length and the previous path length of the tree, mod 17. These output methods are
described below:

Tree codes

Code Operation
0-16 Len[x] = (prev_len[x] + code) mod 17

17 Zeroes = getbits(4)

Len[x] = 0 for next (4 + Zeroes) elements
18 Zeroes = getbits(5)

Len[x] = 0 for next (20 + Zeroes) elements
19 Same = getbits(1)

Decode new Code
Value = (prev_len[x] + Code) mod 17
Len[x] = Value for next (4 + Same) elements

Each of the 17 possible values of (len/x] - prev_len[x]) mod 17, plus three additional codes used for run-length
encoding, are not output directly as 5 bit numbers, but are instead encoded via a Huffman tree called the pre- tree.
The pre-tree is generated dynamically according to the frequencies of the 20 allowable tree codes. The structure of
the pre-tree is encoded in a total of 80 bits by using 4 bits to output the path length of each of the 20 pre-tree
elements. Once again, a zero path length indicates a zero frequency element.

Pre-tree

Length of tree code 0 4 bits

Length of tree code 1 4 bits

Length of tree code 2 4 bits

Length of tree code 18 | 4 bits

Length of tree code 19 | 4 bits

The “real” tree is then encoded using the pre-tree Huffman codes.

Compressed literals

The compressed literals that make up the bulk of either a verbatim block or an aligned offset block immediately
follow the tree data (as shown in the diagram for each block type). These literals, which comprise matches and
unmatched characters, will, when decompressed, correspond to exactly the number of uncompressed bytes indicated
in the block header.

The representation of an unmatched character in the output is simply the appropriate element 0...(NUM_CHARS-1)
Huffman-encoded using the main tree.

The representation of a match in the output involves several transformations, as shown in the following diagram.
At the top of the diagram are the match length (MIN. MATCH...MAX MATCH) and the match offset
(0...WINDOW _SIZE-4). The match offset and match length are split into sub-components and encoded
separately.

Page 9 of 19 March 20, 1997

Microsoft LZX Data Compression Format

As mentioned previously, in order to remain compatible with the cabinet file format, the compressor may not emit
any matches that span a 32768-byte boundary in the input.

Page 10 of 19 March 20, 1997

Microsoft LZX Data Compression Format

Diagram of match sub-components

Match length Match offset
Formatted offset
Length header Position slot Position footer
Length footer Length/Position header Verbatim position bits Aligned offset bits
3
Length tree Main tree Aligned offset tree
2 1 4
..................... N ‘ ' ‘
OUTPUT

Page 11 of 19

March 20, 1997

Microsoft LZX Data Compression Format

Match offset = Formatted offset

The match offset, range 1...(WINDOW _SIZE-4), is converted into a formatted offset by determining whether the
offset can be encoded as a repeated offset, as shown below. It is acceptable to not encode a match as a repeated
offset even if it is possible to do so.

Converting a match offset to a formatted offset

if offset == RO then
formatted offset « 0
else if offset == Rl then
formatted offset « 1
else if offset == R2 then
formatted offset « 2
else
formatted offset « offset + 2
endif

Formatted offset = Position slot, Position footer

The formatted offset is subdivided into a position slot and a position footer. The position slot defines the most
significant bits of the formatted offset in the form of a base position as shown in the table on the following page.
The position footer defines the remaining least significant bits of the formatted offset. As the table shows, the
number of bits dedicated to the position footer grows as the formatted offset becomes larger, meaning that each
position slot addresses a larger and larger range.

The number of position slots available depends on the window size. The position slot table for the maximum
window size of 2 megabytes, is shown in the table below.

Page 12 of 19 March 20, 1997

The position slot table

Microsoft LZX Data Compression Format

Position slot | Base Number of | Range of base

number position | position position and
footer bits | position footer

0 0 0 0

1 1 0 1

2 2 0 2

3 3 0 3

4 4 1 4-5

5 6 1 6-7

6 8 2 8-11

7 12 2 12-15

8 16 3 16-23

9 24 3 24-31

10 32 4 32-47

11 48 4 48-63

12 64 5 64-95

13 96 5 96-127

14 128 6 128-191

15 192 6 192-255

16 256 7 256-383

17 384 7 384-511

18 512 8 512-767

19 768 8 768-1023

20 1024 9 1024-1535

21 1536 9 1536-2047

22 2048 10 2048-3071

23 3072 10 3072-4095

24 4096 11 4096-6143

25 6144 11 6144-8191

26 8192 12 8192-12287

27 12288 12 12288-16383

28 16384 13 16384-24575

29 24576 13 24576-32767

30 32768 14 32768-49151

31 49152 14 49152-65535

32 65536 15 65536-98303

33 98304 15 98304-131071

34 131072 16 131072-196607

35 196608 16 196608-262143

36 262144 17 262144-393215

37 393216 17 393216-524287

38 524288 17 524288-655359

39 655360 17 655360-786431

40 786432 17 786432-917503

41 917504 17 917504-1048575

42 1048576 17 1048576-1179647

43 1179648 17 1179648-1310719

44 1310720 17 1310720-1441791

45 1441792 17 1441792-1572863

46 1572864 17 1572864-1703935

47 1703936 17 1703936-1835007

48 1835008 17 1835008-1966079

49 1966080 17 1966080-2097151

Page 13 of 19

March 20, 1997

Microsoft LZX Data Compression Format

In order to determine the position footer, it is first necessary to determine the position slot. Then, a simple lookup
can be performed on the position slot to determine the number of bits, B, in the position footer. The B least
significant bits of the formatted offset are the position footer. Pseudocode for obtaining the position slot and
position footer are shown below, as is the lookup array (named extra_bits).

The extra_bits table

n extra_bits[n]
(position slot) (number of position footer bits)
0 0
1 0
2 0
3 0
4 1
5 1
6 2
7 2
8 3
9 3
10 4
11 4
12 5
13 5
14 6
15 6
16 7
17 7
18 8
19 8
20 9
21 9
22 10
23 10
24 11
25 11
26 12
27 12
28 13
29 13
30 14
31 14
32 15
33 15
34 16
35 16
36-49 17

Page 14 of 19 March 20, 1997

Microsoft LZX Data Compression Format

Calculating the position slot and position footer

position slot <« calculate position slot (formatted offset)
position footer bits <« extra bits[position slot]
if position footer bits > 0
position footer <« formatted offset & ((2%position footer bits)-1)
else
position footer < null

Position footer = Verbatim bits, Aligned offset bits

The position footer may be further subdivided into verbatim bits and aligned offset bits if the current block uses
aligned offsets. If the current block is not an aligned offset block then there are no aligned offset bits, and the
verbatim bits are the position footer.

If aligned offsets are used, then the lower 3 bits of the position footer are the aligned offset bits, while the remaining
portion of the position footer are the verbatim bits. In the case where there are less than 3 bits in the position footer
(i.e. formatted offset is <= 15) it is not possible to take the “lower 3 bits of the position footer” and therefore there
are no aligned offset bits, and the verbatim bits and the position footer are the same.

Pseudocode for splitting position footer into verbatim bits and aligned offset

if block type = aligned offset block then
if formatted offset <= 15 then
verbatim bits <« position_footer
aligned offset <« null

else
aligned offset <« position_footer
verbatim bits <« position_footer >> 3
endif
else
verbatim bits <« position_footer
aligned offset « null
endif B

Page 15 of 19 March 20, 1997

Microsoft LZX Data Compression Format

Match length = Length header, Length footer

The match length is converted into a length header and a length footer. The length header may have one of eight
possible values, from 0...7 (inclusive), indicating a match of length 2, 3,4, 5, 6, 7, 8, or a length greater than 8. If
the match length is 8 or less, then there is no length footer. Otherwise the value of the length footer is equal to the
match length minus 9.

Pseudocode for obtaining the length header and footer

if match length <= 8
length_header <« match_length-2
length footer <« null

else B
length_header <« 7

length_footer <« match_length-9
endif

Example conversions of some match lengths to header and footer values

Match length Length header Length footer value
2 (MIN MATCH) 0 None
3 1 None
4 2 None
5 3 None
6 4 None
7 5 None
8 6 None
9 7 0

10 7 1

50 7 41
257 MAX MATCH) 7 248

Length header, Position slot = Length/Position header

The Length/Position header is the stage which correlates the match position with the match length (using only the
most significant bits), and is created by combining the length header and the position slot as shown below:

len pos_header <« (position slot << 3) + length header

This operation creates a unique value for every combination of match length 2, 3,4, 5, 6, 7, 8 with every possible
position slot. The remaining match lengths greater than 8 are all lumped together, and as a group are correlated
with every possible position slot.

Encoding a match
The match is finally output in up to four components, as follows:

Output element (len_pos_header + NUM_CHARS) from the main tree

If length_footer !=null, then output element length footer from the length tree

If verbatim_bits != null, then output verbatim_bits

If aligned offset bits !=null, then output element aligned offset from the aligned offset tree

bl o

Page 16 of 19 March 20, 1997

Microsoft LZX Data Compression Format

Decoding a match or an uncompressed character
Decoding is performed by first decoding an element using the main tree and then, if the item is a match, determining
which additional components are necessary to reconstruct the match. Pseudocode for decoding a match or an

uncompressed character is shown below:

Page 17 of 19 March 20, 1997

Microsoft LZX Data Compression Format

main element = main tree.decode element ()

if (main element < NUM CHARS) /* is an uncompressed character */

window[curpos] <« (byte) main element
curpos < curpos + 1

else /* is a match */

length header <« (main element - NUM CHARS) & NUM PRIMARY LENGTHS
if (length header == NUM PRIMARY LENGTHS)

match length <« length tree.decode element () +

NUM_PRIMARY LENGTHS + MIN MATCH

else

match length <« length header + MIN MATCH /* no length footer */
endif

position slot <« (main element - NUM CHARS) >> 3

/* check for repeated offsets (positions 0,1,2) */

if (position _slot == 0)
match offset <« RO
else if (position slot == 1)

match offset <« RI1
swap (RO < R1)
else if (position slot == 2)
match offset <« R2
swap (RO < R2)
else /* not a repeated offset */
extra <« extra bits[position slot]

if (block type == aligned offset block)
if (extra > 3) /* this means there are some aligned bits */
verbatim bits <« (readbits(extra-3)) << 3
aligned bits <« aligned offset tree.decode element();
else if (extra > 0) /* just some verbatim bits */
verbatim bits <« readbits(extra)
aligned bits <« 0
else /* no verbatim bits */
verbatim bits <« 0
aligned bits <« 0

endif
formatted offset <« base position[position slot] +
verbatim bits + aligned bits
else /* block type == verbatim block */

if (extra > 0) /* if there are any extra bits */
verbatim bits <« readbits(extra)

else
verbatim bits <« 0
endif
formatted offset <« base position[position slot] + verbatim bits

endif
match_offset <« formatted offset - 2

/* update repeated offset LRU queue */
R2 <« R1

R1 « RO

RO « match offset

/* copy match data */

for (i = 0; i < match _length; i++)
window[curpos + i] < window[curpos + 1 - match offset]

Page 18 of 19 March 20, 1997

Microsoft LZX Data Compression Format

curpos <« curpos + match length
endif

Page 19 of 19 March 20, 1997

