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Abstract—The estimation of a random vector with independent
components passed through a linear transform followed by a
componentwise (possibly nonlinear) output map arises in a range
of applications. Approximate message passing (AMP) methods,
based on Gaussian approximations of loopy belief propagation,
have recently attracted considerable attention for such prob-
lems. For large random transforms, these methods exhibit fast
convergence and admit precise analytic characterizationswith
testable conditions for optimality, even for certain non-convex
problem instances. However, the behavior of AMP under general
transforms is not fully understood. In this paper, we consider
the generalized AMP (GAMP) algorithm and relate the method
to more common optimization techniques. This analysis enables
a precise characterization of the GAMP algorithm fixed-points
that applies to arbitrary transforms. In particular, we sho w that
the fixed points of the so-called max-sum GAMP algorithm for
MAP estimation are critical points of a constrained maximization
of the posterior density. The fixed-points of the sum-product
GAMP algorithm for estimation of the posterior marginals can
be interpreted as critical points of a certain mean-field variational
optimization.

Index Terms—Belief propagation, ADMM, variational opti-
mization, message passing.

I. I NTRODUCTION

Consider the constrained optimization problem

(x̂, ẑ) := argmin
x,z

F (x, z) s.t. z = Ax, (1)

wherex ∈ R
n, z ∈ R

m, A ∈ R
m×n and the objective function

admits a decomposition of the form

F (x, z) := fx(x) + fz(z)

fx(x) =
n∑

j=1

fxj
(xj), fz(z) =

m∑

i=1

fzi(zi), (2)

for scalar functionsfxj
(·) andfzi(·). One example where this

optimization arises is the estimation problem in Fig. 1. Here, a
random vectorx has independent components with densities
pxj

(xj
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methods when compared against state-of-the-art conventional
optimization techniques.

However, despite recent extensions to larger classes of
random matrices [27], [28], the behavior of AMP methods
under generalA is not fully understood. The broad purpose
of this paper is to show that certain forms of AMP algorithms
can be seen as variants of more conventional optimization
methods. This analysis will enable a precise characterization of
the fixed points of the AMP methods that applies to arbitrary
A.

Our study focuses on a generalized AMP (GAMP) method
proposed in [26] and rigorously analyzed in [29]. We consider
this algorithm since many other variants of AMP are special
cases of this general procedure. The GAMP method has two
common versions: max-sum GAMP for the MAP estimation of
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and variances in lines 13, 14, 26 and 27 of the algorithm are
taken with respect to the probability density functions:

p(x|r, τr) ∝ exp

[
−fx(x) +

1

2
‖x− r‖2

τr

]
(8a)

p(z|p, τp) ∝ exp

[
−fz(z) +

1

2
‖z− p‖2

τp

]
, (8b)

where, for any vectorsv ∈ R
r andτ ∈ R

r with τ > 0,

‖v‖2
τ
:=

r∑

i=1

|vi|
2

τi
.

Under separability assumption (2), these densities factoras

p(x|r, τr) ∝

n∏

j=1

exp

[
−fxj

(xj)−
|xj −
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Secondly, the objective functionJKL from (21) is replaced by

JSP(bx, bz, τ p) := D(bx||e
−fx) +D(bz||e

−fz)

+Hgauss(bz, τ p) (23)

where τ p is a positive vector andHgauss(bz, τ p) is the
following Gaussian upper bound on the entropyH(bz):

Hgauss(bz, τ p) :=

m∑

i=1

[
1

2τpi

var(zi|bzi) +
1

2
log(2πτpi

)

]
.

(24)
The third and final approximation is that the constraintbz =
TAbx is replaced by the weakermoment matchingconstraint
pair E(z|bz) = AE(x|bx) andτ p = Svar(x|bx), whereS is
given in line 4 of Algorithm 1. The resulting optimization is

(̂bx, b̂z, τp) = argmin
bx,bz,τp

JSP(bx, bz, τ p) (25a)

s.t. E(z|bz) = AE(x|bx), τ p = Svar(x|bx). (25b)

Note that in (25b), the variance var(x|bx) denotes the vector
with components var(xj |bxj

), not a covariance matrix. The
next lemma provides a certain Gaussian interpretation to the
approximate optimization (25).

Lemma 1:For any positive vectorτ p and any density
functionsbx andbz, JSP(bx, bz, τ p) is an upper bound:

JSP(bx, bz, τ p) ≥ JKL(bx, bz), (26)

with equality in the case thatbz is separable and Gaussian and
τ p = var(z|bz).

Proof: See Appendix C.
Thus, the optimization (25) can be interpreted as an approx-

imation where the distributions are factorizable and the ou



6

Due to the separable structure of the objective function (28),
the optimization (29) can be regarded as minimizing a sepa-
rable functionF x

SP(u) +F z
SP(v) with linear constraints (29b)

betweenu andv. In this context, thex andz minimizations in
(32) and (33b) follow the format of the ADMM minimizations
in Algorithm 3 for certain choices of the auxiliary functions.
On the other hand, the optimization overτx and τp com-
ponents follow the gradient-based method in the generalized
ISTA method in Algorithm 2. So, the sum-product GAMP
algorithm can be seen as a hybrid of the ISTA and ADMM
methods for the optimization (29), which is equivalent to the
variational optimization (25).

Unfortunately, this hybrid ISTA-ADMM method is non-
standard and there is no existing convergence theory on
the algorithm. However, Theorem 2 at least shows that if
the sum-product GAMP algorithm converges, its fixed points
correspond to critical points of optimization (29).

It is useful to briefly compare Theorem 2 with the varia-
tional interpretation of standard loopy BP. It is well-known
[32] that the fixed points of standard loopy BP can be
interpreted as distributions on the factor and variable nodes
that minimize the so-called Bethe free energy subject to certain
local consistency constraints. In comparison, GAMP appears
to minimize a Gaussian approximation of the KL divergence
subject to weaker moment matching constraints between the
distributions on the variable nodes. In this manner, the fixed-
points of GAMP appears closer in form of those of expectation
propagation (EP) methods that can also be interpreted as
saddle points of a certain free energy subject to moment
matching [33]. However, the exact relation between EP and
sum-product GAMP fixed points requires further study.

CONCLUSIONS

Although AMP methods admit precise analyses in the
context of large random transform matricesA, their behavior
for general matrices is less well-understood. This limitation
is unfortunate since many transforms arising in practical
problems such as imaging and regression are not well-modeled
as realizations of large random matrices. To help overcome
these limitations, this paper draws connections between AMP
and certain variants of standard optimization methods that
employ adaptive vector-valued step-sizes. These connections
enable a precise characterization of the fixed-points of both
max-sum and sum-product GAMP for the case of arbitrary
transform matricesA. The convergence of AMP methods for
generalA is, however, still not fully understood. Simulations
(not shown here) have indicated, for example, that under
general choices ofA, AMP may diverge. We hope that the
connections between AMP and standard optimization methods
provided here help to better understand, and even improve,
AMP convergence with general matrices.
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where (a) follows from substituting (2) and (10) into (16b)
and eliminating the terms that do not depend onz; (b) follows
from the definition ofpt in line 8; and (c) follows from the
definition ofzt in line 10. This proves (16b). The update (16a)
can be proven similarly. To prove (16c), observe that

st
(a)
=

1

τ t
p

(zt − pt)
(b)
= st−1 +

1

τ t
p

(zt −Axt)

where (a) follows from the update ofst in line 16 in Algorithm
1 (recall that the division is componentwise); and (b) follows
from the update forpt in line 8. We have thus proven
the equivalence of the max-sum GAMP algorithm with the
Lagrangian updates (16).

Now consider any fixed point(ẑ, x̂, s) of the max-sum
GAMP algorithm. A fixed point of (16c), requires that

ẑ = Ax̂ (36)

so the fixed point satisfies the constraint of the optimization
(1). Now, using (36) and the fact thatẑ is the minima of (16b),
we have that

∂

∂z
L(x̂, ẑ, s) = 0.

Similarly, sincex is the minima of (16a), we have that

∂

∂x
L(x̂, ẑ, s) = 0.

Thus, the fixed point(x̂, ẑ, s) is a critical point of the La-
grangian (10).

Finally, consider the quadratic terms(τx, τr, τs) at the fixed
point. From the updates ofτx andτr in Algorithm 1 [see also
(7)] and the definition ofdx in (15), we obtain

1

τx
= dx +

1

τr
= dx + STτs. (37)

Similarly, the updates ofτs andτp show that

1

τs
=

1

dz

+ τp =
1

dz

+ Sτx. (38)

Then, according to Definition 1,τx andτs are the approx-
imate diagonals ofQx andQz in (14), respectively.

APPENDIX C
PROOF OFLEMMA 1

For any positive vectorτ p and density functionbz (even if
it is not separable), we have the bound

H(bz)
(a)

≤

m∑

i=1

H(bzi)

(b)

≤
1

2

m∑

i=1

log(2πe var(zi|bzi))

(c)

≤
1

2

m∑
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(a) The probability density function̂b is the solution to the
constrained optimization:

b̂ = argmin
b

D(b||e−f )

s.t.E(u|b) = u, var(u|b) = τu. (44)

(b) There existsq andτq > 0 such that the density function
b̂ is the solution to the unconstrained optimization

b̂ = argmin
b

[
D(b||e−f ) +

1

2τq
E((u − q)2|b)

]
, (45)

andE(u|̂b) = u, var(u|̂b) = τu.
(c) There existsq andτq > 0 such that the density function

b̂ is of the form

b̂ ∝ exp

[
−f(u)−

1

2τq
(u− q)2

]
, (46)

andE(u|̂b) = u, var(u|̂b) = τu.
Proof: This result is standard—similar calculations are in

[34]. The equivalence between (a) and (b) can be shown via a
Lagrangian argument and the equivalence between (b) and (c)
can be found by taking the derivatives of the unconstrained
objective (45) with respect tob(u) for eachu.

B. Equivalence of GAMP and ADMM-ISTA Iterations

We now use Lemma 3 to that the sum-product GAMP
iterations are equivalent to the ADMM-ISTA iterations in
Theorem 2. We begin by proving (33b). Letz̃t equal the right-
hand side of (33b). We want to show thatz̃t = zt, wherezt

is the output of line 13 of the sum-product GAMP algorithm.
To show this, we first observe that

z̃t
(a)
= argmin

z

[
F z
SP(z, τ

t
p) + (st−1)T z+

1

2
‖z−Axt‖2

τ
t
p

]

(b)
= argmin

z

[
F z
SP(z, τ

t
p) +

1

2
‖z− pt‖2

τ
t
p

]
, (47)

where (a) follows from substituting (31) and (27) into (33b)
and eliminating the terms that do not depend onz, and (b)
follows from substituting in the definition ofpt from line (8)
and eliminating terms. Now, using the definition ofF z

SP in
(42b), it follows from (47) that

z̃t = E(z|̂bz), (48)

whereb̂z is the density function onz that minimizes

b̂z = argmin
bz

[
Jz
SP(bz, τ

t
p) +

1

2

∥∥E(z|bz)− pt
∥∥2
τ

t
p

]
. (49)

Now, this minimization can be simplified as

b̂z
(a)
= argmin

bz

[
D(bz||e

−fz ) +

m∑

i=1

var(zi|bzi)
2τ tpi

+
1

2

∥∥E(z|bz)− pt
∥∥2
τ

t
p

]

= argmin
bz

m∑

i=1

[
D(bzi ||e

−fzi ) +
E
(
|zi − pti|

2
∣∣ bzi

)

2τ tpi

]
(50)

where (a) follows from substituting (41b) and (24) into (49)
and removing terms that do not depend onbz; and (b) follows

from the separability assumption (22) and the fact that, for
any density functionbzi ,

var(zi|bzi) +
∣∣E(zi|bzi)− pti

∣∣2 = E
(
|zi − pti|

2
∣∣ bzi

)
.

The minimization (50) is then separable, with solution

b̂z(z) =
m∏

i=1

b̂zi(zi) (51)

whose components are the solutions

b̂zi(zi) = argmin
bzi

[
D(bzi ||e

−fzi ) +
1

2τ tpi

E
(
|zi − pti|

2
∣∣bzi

)]
.

(52)
From Lemma 3, the solution to (52) can be restated as

b̂zi(zi) ∝ exp

[
−fzi(zi)−

|zi − pti|
2

2τ tpi

] pbz (z) =
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critical point of the optimization (29), we will show that itis
a critical point of the modified LagrangianLSP−mod and that
it satisfies the constraint̂z = Ax̂.

First, the vector components of the sum-product GAMP
fixed-point must be fixed-points of the Lagrangian updates (32)
and (33). Thus, from (33a), we have that

τp = Sτx, (57)

while from (33c) we have that

ẑ = Ax̂, (58)

and so the fixed point satisfies both constraints in the opti-
mization (29).

Now, using (58) and the fact thatẑ is the minima of (33b),
we have that

∂

∂z
LSP(x̂, ẑ, τx, τp, s) = 0. (59)

Due to (57), equation (59) implies that

∂

∂z
LSP−mod(x̂, ẑ, τx, s) = 0. (60)

Similarly, sincex̂ is the minima of (32), we have that

∂

∂x
LSP−mod(x̂, ẑ, τx, s) = 0. (61)

The minimization (32) also implies that

∂

∂τx

LSP(x̂, ẑ, τx, τp, s) = −
1

2
STτs. (62)

Therefore,

∂

∂τx

LSP−mod(x̂, ẑ, τx, s)

(a)
=

∂

∂τx

LSP(x̂, ẑ, τx, τp, s) + ST ∂

∂τ p

LSP(x̂, ẑ, τx, τp, s)

(b)
= −

1

2
STτs ++

1

2
STτs = 0, (63)

where (a) follows from the definition ofLSP−mod in (56)
and from (57), while (b) follows from (62) and (33d). The
derivatives (61), (60) and (63), along with the constraints(57)
and (58), show that the vectorŝx, ẑ, τx and τp are critical
points of the optimization (29). Finally, using Lemma 3 and
arguments similar to those used in derivation of (54) and (55),
it follows that the density functionŝbx and b̂z that minimize
(28) are those given in (34).
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