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Abstract—The estimation of a random vector with independent
components passed through a linear transform followed by a
componentwise (possibly nonlinear) output map arises in aange
of applications. Approximate message passing (AMP) methaxl
based on Gaussian approximations of loopy belief propagain,
have recently attracted considerable attention for such pob-
lems. For large random transforms, these methods exhibit fst
convergence and admit precise analytic characterizationsvith
testable conditions for optimality, even for certain non-@nvex
problem instances. However, the behavior of AMP under genex
transforms is not fully understood. In this paper, we consiar
the generalized AMP (GAMP) algorithm and relate the method
to more common optimization techniques. This analysis endés
a precise characterization of the GAMP algorithm fixed-poirts
that applies to arbitrary transforms. In particular, we show that
the fixed points of the so-called max-sum GAMP algorithm for 0
MAP estimation are critical points of a constrained maximization
of the posterior density. The fixed-points of the sum-produt
GAMP algorithm for estimation of the posterior marginals can
be interpreted as critical points of a certain mean-field varational

optimization. N
Index Terms—Belief propagation, ADMM, variational opti-
mization, message passing. O
|. INTRODUCTION O

Consider the constrained optimization problem

(X,z) := argmin F(x,z) S.t.z = Ax, 1)

X,z

wherex € R",z € R™, A € R™*" and the objective function
admits a decomposition of the form

F(x,2) := fo(x) + f.(2) 00
o) =3 Loy (), f(2) =D fa), () T

for scalar functions,, (-) and f,(-). One example where this
optimization arises is the estimation problem in Eig. 1.¢Jjer
random vectorx has independent components with densities

Pz, (%
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methods when compared against state-of-the-art conveitio
optimization techniques.

However, despite recent extensions to larger classes of
random matrices [27],[28], the behavior of AMP methods
under generalA is not fully understood. The broad purpose
of this paper is to show that certain forms of AMP algorithms
can be seen as variants of more conventional optimization
methods. This analysis will enable a precise charactésizaft
the fixed points of the AMP methods that applies to arbitrary
A.

Our study focuses on a generalized AMP (GAMP) method
proposed in[[26] and rigorously analyzedin[29]. We conside
this algorithm since many other variants of AMP are special
cases of this general procedure. The GAMP method has two
common versions: max-sum GAMP for the MAP estimation of
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and variances in linds 1B, 114,126 dnd 27 of the algorithm are
taken with respect to the probability density functions:

plcir, ) o exp | <00+ gl -l | (6a)
plalp. ) o oxp | ~£.(2) + glaplZ, | (@D

where, for any vectors € R" andr € R" with 7 > 0,
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Under separability assumptiol] (2), these densities fator
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Secondly, the objective function from (21) is replaced by
J p(by, s, 7p) i= D(bslle™'*) + D(b.|le™/*)
+H 4 (b.,7Tp) (23)

where 7, is a positive vector andd , (b,,7T,) is the
following Gaussian upper bound on the entrdgyb.):
G| 1
H  (b,7Tp) = Z {2_ var(z;|b,,) + §log(27ﬁpi) .

: Tp;
7 1 P (24) E]

The third and final approximation is that the constraint=
Tab, is replaced by the weakenoment matchingonstraint
pair E(z|b,) = AE(x|b,) andT, = Svar(x|b,), whereS is
given in line[4 of Algorithnl. The resulting optimization is
(BI,EZ, Tp) = argminJ p(by, b.,Tp) (25a)

z,02,Tp

s.t. E(zlb,) = AE(x|b;), T, = Svar(x|b;). (25b)

Note that in [25b), the variance Vatb,) denotes the vector
with components var:;|b,;), not a covariance matrix. The
next lemma provides a certain Gaussian interpretation o th
approximate optimizatiori_(25).

Lemma 1:For any positive vectorr, and any density
functionsb,, andb., J p(bs,b.,T,) is an upper bound:

J P(bxabzv?p) Z J (bzvbz)a (26)

with equality in the case that is separable and Gaussian and
T, = var(z|b,).
Proof: See AppendiXC. [ |
Thus, the optimizatiori (25) can be interpreted as an approx-
imation where the distributions are factorizable and the ou

.



Due to the separable structure of the objective funcfiap), (28
the optimization[(20) can be regarded as minimizing a sepa-
rable functionF'*, (u) + F*(v) with linear constraintd (29b)
betweenu andv. In this context, thex andz minimizations in
(32) and [[33D) follow the format of the ADMM minimizations
in Algorithm[3 for certain choices of the auxiliary function
On the other hand, the optimization ovef and 7, com-
ponents follow the gradient-based method in the generilize
ISTA method in Algorithm2. So, the sum-product GAMP
algorithm can be seen as a hybrid of the ISTA and ADMM
methods for the optimizatiom (R9), which is equivalent te th
variational optimization[(25).

Unfortunately, this hybrid ISTA-ADMM method is non-
standard and there is no existing convergence theory on
the algorithm. However, Theorefd 2 at least shows that if
the sum-product GAMP algorithm converges, its fixed points
correspond to critical points of optimization {29).

It is useful to briefly compare Theorel 2 with the varia-
tional interpretation of standard loopy BP. It is well-know
[32] that the fixed points of standard loopy BP can be
interpreted as distributions on the factor and variableesod
that minimize the so-called Bethe free energy subject taer
local consistency constraints. In comparison, GAMP appear
to minimize a Gaussian approximation of the KL divergence
subject to weaker moment matching constraints between the
distributions on the variable nodes. In this manner, thedfixe
points of GAMP appears closer in form of those of expectation
propagation (EP) methods that can also be interpreted as
saddle points of a certain free energy subject to moment
matching [33]. However, the exact relation between EP and
sum-product GAMP fixed points requires further study.

CONCLUSIONS

Although AMP methods admit precise analyses in the
context of large random transform matricas their behavior
for general matrices is less well-understood. This lirotat
is unfortunate since many transforms arising in practical
problems such as imaging and regression are not well-maddele
as realizations of large random matrices. To help overcome
these limitations, this paper draws connections betweetfr AM
and certain variants of standard optimization methods that
employ adaptive vector-valued step-sizes. These cormacti
enable a precise characterization of the fixed-points oh bo
max-sum and sum-product GAMP for the case of arbitrary
transform matrice\. The convergence of AMP methods for
generalA is, however, still not fully understood. Simulations
(not shown here) have indicated, for example, that under
general choices oA, AMP may diverge. We hope that the
connections between AMP and standard optimization methods
provided here help to better understand, and even improve,
AMP convergence with general matrices.
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where (a) follows from substituting (2) and (10) into (16b)
and eliminating the terms that do not dependzp(b) follows
from the definition ofp! in line 8; and (c) follows from the
definition ofz’ in line 10. This proves (16b). The update (16a)
can be proven similarly. To prove (16c), observe that

gt 2 %(Zt —ph) LA %(Zt ~ AxY)
p p

where (a) follows from the update sf in line 16 in Algorithm
1 (recall that the division is componentwise); and (b) foko
from the update forp! in line 8. We have thus proven
the equivalence of the max-sum GAMP algorithm with the
Lagrangian updates (16).

Now consider any fixed poin{z,X,s) of the max-sum
GAMP algorithm. A fixed point of (16c), requires that

7= A% (36)

so the fixed point satisfies the constraint of the optimizatio
(1). Now, using (36) and the fact thatis the minima of (16b),
we have that 9

EL(i,ﬁ, s) = 0.

Similarly, sincex is the minima of (16a), we have that
0 . .
8—XL(X, z,s) = 0.

Thus, the fixed poin{x,z,s) is a critical point of the La-
grangian (10).

Finally, consider the quadratic terris,, 7., 75) at the fixed
point. From the updates ef, andr, in Algorithm 1 [see also
(7)] and the definition ofd,. in (15), we obtain

1 1
—=d,+—=d, +S"r.. (37)
T Tr
Similarly, the updates of,; and 7, show that
1 1 1

Then, according to Definition k;, andr, are the approx-
imate diagonals of), and Q. in (14), respectively.

APPENDIXC
PROOF OFLEMMA 1

For any positive vecto¥, and density functiom, (even if
it is not separable), we have the bound

H(b:) < S H(b.)
b1
< 5lzlog(27reV<’:1I’(Zi|bz1;))

clm
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(a) The probability density functioh is the solution to the from the separability assumption_{22) and the fact that, for

constrained optimization: any density functiorb,,,
b= argmin D(b|[e~7) var(z;|b.,) + ’E(Z1|bzl) — pﬂz =E(|z —pt? ’ bz,).
b
s.t. E(ulb) =@, var(u|b) = 7. (44) The minimization[(5D) is then separable, with solution
(b) There exists; andr, > 0 such that the density function ~ _ o~ ‘
b is the solution to the unconstrained optimization b:(2) = H bzi(2i (51)

b= arg min {D(b||e*f) + %E((u — q)2|b)}, (45) Whose components are the solutions
b Tq

~ . 1
b, (25) = argmin| D(b.,lle~ /) + 5 E(|zi — pif?[b.,) |
TZH

and E(ulb) =, var(ulb) = 7. ; 7
(c) There existgy and7, > 0 such that the density function (52)
b is of the form From LemmdB, the solution t6 (52) can be restated as
t|2 Bz z
— pil ]

|2

274 27},
and E(u(b) =, var(ulb) = 7. O O 0O
Proof: This result is standard—similar calculations are in

[34]. The equivalence between (a) and (b) can be shown via a

Lagrangian argument and the equivalence between (b) and (c) (]

can be found by taking the derivatives of the unconstrained

objective [45) with respect ta(u) for eachu. [ |

B o exp [_ F) - qﬂ . () By (20) o exp [—fzi,(zi) -

B. Equivalence of GAMP and ADMM-ISTA lIterations 1

We now use Lemm&]3 to that the sum-product GAMP
iterations are equivalent to the ADMM-ISTA iterations in
Theoreni 2. We begin by proving(33b). L#tequal the right-
hand side of[(33b). We want to show thgt= z!, wherez’
is the output of liné_1I3 of the sum-product GAMP algorithm. L1 L1
To show this, we first observe that -

a 1
z' = argmin [F Bz, 7))+ (s*HTz + §||Z - AXtHz.t:|

b . . 1 ._
= arg}nln[F p(z,Tzf)—i-in—ptHf_;}, 47)

where (a) follows from substituting (B1) and {27) infa (B3b)

and eliminating the terms that do not dependzyrand (b)

follows from substituting in the definition gb’ from line (8) ] ]
and eliminating terms. Now, using the definition 6f in

(@2D), it follows from [47) that —
7t = E(z[b.), (48) ]

Wheregz is the density function om that minimizes |

- 1 a
b, = argbmin [J (bz,Tp 3 HE(Z|bZ) - ptHiJ- (49) ] ]

z

Now, this minimization can be simplified as

~ aq var(z;|b.,,

b, = argmln{ (bo]le™ =) —i—Z Z|
+5 B -2,

E(|z; — pt|? | bs,
= argman{ bZT||esz + (|Z thll ‘ l)] (50)
Pi

where (a) follows from substitutindg (4lLb) arld (24) inta](49)
and removing terms that do not dependignand (b) follows



critical point of the optimization (29), we will show that ig
a critical point of the modified Lagrangian p_ and that
it satisfies the constrait = AX. 7]

First, the vector components of the sum-product GAMP
fixed-point must be fixed-points of the Lagrangian updat&} (3
and (33). Thus, from (33a), we have that

(6]

(8]

Tp = STI, (57) [9]
while from (33c) we have that [10]
z = AX, (58)

(11]
and so the fixed point satisfies both constraints in the opti-
mization (29).

Now, using (58) and the fact thatis the minima of (33b),
we have that

[12]

9 [13]
%L p(X,2, Ty, Tp,s) = 0. (59) [14]
Due to (57), equation (59) implies that
9 [15]
%L p— (X,2,7s,8) =0. (60)
16
Similarly, sincex is the minima of (32), we have that el
0
— %.Z = [17]
8§L r— (X,2,7,,8)=0. (61)
The minimization (32) also implies that 18]
(9 o~ o~ 1 T
a—ﬂL p(X,2, Ty, Tp,8) = —§S Ts. (62) [19]
Therefore,
[20]
%L P— (§527 Tz S)
a O P 0 P [21]
== 6—?1L P(szszvav S) + STa—?pL P(X7Z7 Txs Tp, S)
22
L R Y S (63)
2 2 23]
where (a) follows from the definition of. p_ in (56)

and from (57), while (b) follows from (62) and (33d). The?4
derivatives (61), (60) and (63), along with the constra{bf)

and (58), show that the vecto& z, 7, and 7, are critical [25]
points of the optimization (29). Finally, using Lemma 3 and
arguments similar to those used in derivation of (54) and, (5%
it follows that the density functions, andb, that minimize

(28) are those given in (34). 271
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