

Properties of the Back-vector Modification for Microfacet BRDF Models

Matthias Raab
NVIDIA

March 14, 2025

1 Microfacet BRDF Models

Using the notations from figure 1, a microfacet BRDF [WMLT07, Hei14] takes the form

$$f(\mathbf{v}, \mathbf{l}) = \frac{D(\mathbf{h})G_2(\mathbf{v}, \mathbf{l})}{4 \langle \mathbf{v}, \mathbf{n} \rangle \langle \mathbf{l}, \mathbf{n} \rangle} \quad (1)$$

where D is the distribution of microfacets, normalized to fulfill $\int_{\Omega} D(\mathbf{h}) \langle \mathbf{n}, \mathbf{h} \rangle d\mathbf{h} = 1$, and G_2 is the shadowing-masking function. The shadowing-masking function combines the visibility masking function $G_1(\mathbf{v}, \mathbf{l})$ for view direction and $G_1(\mathbf{l}, \mathbf{v})$ for light direction:

$$G_2(\mathbf{v}, \mathbf{l}) = G_2(G_1(\mathbf{v}, \mathbf{l}), G_1(\mathbf{l}, \mathbf{v})) \quad (2)$$

Mathematically, the BRDF is plausible if G_2 is symmetric w.r.t. to exchanging \mathbf{v} and \mathbf{l} , fulfills $G_2(\mathbf{v}, \mathbf{l}) \leq G_1(\mathbf{v}, \mathbf{l})$, and if G_1 further establishes the correct projected area of visible micro-surfaces [Hei14]

$$\langle \mathbf{v}, \mathbf{n} \rangle = \int_{\{\mathbf{h} \in \Omega: \langle \mathbf{v}, \mathbf{h} \rangle \geq 0\}} D(\mathbf{h})G_1(\mathbf{v}, \text{reflect}(\mathbf{v}, \mathbf{h})) \langle \mathbf{v}, \mathbf{h} \rangle d\mathbf{h}. \quad (3)$$

Choices for G_1 with this property are the Smith masking function

$$G_1(\mathbf{v}, \mathbf{l}) = G_{1, \text{Smith}}(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{n} \rangle}{\int_{\{\mathbf{h} \in \Omega: \langle \mathbf{v}, \mathbf{h} \rangle \geq 0\}} D(\mathbf{h}) \langle \mathbf{v}, \mathbf{h} \rangle d\mathbf{h}}, \quad (4)$$

where analytic expressions are available for Beckmann and GGX distributions, and the v-cavity masking function

$$G_1(\mathbf{v}, \mathbf{l}) = G_{1, \text{vc}}(\langle \mathbf{v}, \mathbf{n} \rangle, \langle \mathbf{n}, \mathbf{h} \rangle, \langle \mathbf{v}, \mathbf{h} \rangle) = \min \left\{ \frac{2 \langle \mathbf{v}, \mathbf{n} \rangle \langle \mathbf{n}, \mathbf{h} \rangle}{\langle \mathbf{v}, \mathbf{h} \rangle}, 1 \right\}, \quad (5)$$

which is generally applicable for distributions with symmetry around the normal.

\mathbf{v}	normalized vector to viewer
\mathbf{l}	normalized vector to light
\mathbf{n}	surface normal
$\mathbf{t}_1, \mathbf{t}_2$	tangent and bitangent (forming an orthonormal coordinate frame with the normal)
\mathbf{h}	half vector, $\mathbf{h} = \mathbf{h}(\mathbf{v}, \mathbf{l}) = \frac{\mathbf{v} + \mathbf{l}}{\ \mathbf{v} + \mathbf{l}\ }$
$\langle \mathbf{x}, \mathbf{y} \rangle$	dot product of \mathbf{x} and \mathbf{y}
$\text{reflect}(\mathbf{x}, \mathbf{m})$	reflection of vector \mathbf{x} on surface with normal \mathbf{m} , i.e. $\text{reflect}(\mathbf{x}, \mathbf{m}) = -\mathbf{x} + 2 \langle \mathbf{x}, \mathbf{m} \rangle \mathbf{m}$
Ω	hemisphere of directions around the normal

Figure 1: Notations used.

2 Back-vector Modification

If instead of half-vector \mathbf{h} the back-vector \mathbf{b} , defined as

$$\mathbf{b}(\mathbf{v}, \mathbf{l}) = \mathbf{h}(\mathbf{v}', \mathbf{l}) = \frac{\mathbf{v}' + \mathbf{l}}{\|\mathbf{v}' + \mathbf{l}\|}, \text{ with } \mathbf{v}' = \text{reflect}(\mathbf{v}, \mathbf{n}), \quad (6)$$

is used in equation (1), the resulting BRDF is retro-reflective [BPD⁺14]. Note that instead of explicitly defining a BRDF using the back-vector, we can simply use \mathbf{v}' instead of \mathbf{v} , i.e. we define $f_{\text{retro}}(\mathbf{v}, \mathbf{l}) := f(\mathbf{v}', \mathbf{l})$ such that the half-vector becomes the back-vector. In the following we show that this BRDF is plausible, i.e. symmetry and energy conservation are guaranteed.

3 Plausibility of the Back-vector Modification

In analogy to \mathbf{v}' we let $\mathbf{l}' := \text{reflect}(\mathbf{l}, \mathbf{n})$. First we observe

$$\begin{aligned} \langle \mathbf{v}', \mathbf{n} \rangle &= \langle \mathbf{v}, \mathbf{n} \rangle \text{ and} \\ \langle \mathbf{l}, \mathbf{n} \rangle &= \langle \mathbf{l}', \mathbf{n} \rangle. \end{aligned} \quad (7)$$

For the back-vector we show $\mathbf{h}(\mathbf{v}', \mathbf{l}) = \text{reflect}(\mathbf{h}(\mathbf{l}', \mathbf{v}), \mathbf{n})$, as

$$\begin{aligned} \mathbf{v}' + \mathbf{l} &= (-\mathbf{v} + 2 \langle \mathbf{v}, \mathbf{n} \rangle \mathbf{n}) + \mathbf{l} \\ &= (-\mathbf{v} + 2 \langle \mathbf{v}, \mathbf{n} \rangle \mathbf{n}) + (-\mathbf{l}' + 2 \langle \mathbf{l}', \mathbf{n} \rangle \mathbf{n}) \\ &= -(\mathbf{l}' + \mathbf{v}) + 2 \langle \mathbf{l}' + \mathbf{v}, \mathbf{n} \rangle \mathbf{n} = \text{reflect}(\mathbf{l}' + \mathbf{v}, \mathbf{n}) \end{aligned} \quad (8)$$

and therefore $\|\mathbf{v}' + \mathbf{l}\| = \|\mathbf{l}' + \mathbf{v}\|$ as well. From that we can conclude

$$\begin{aligned} \langle \mathbf{n}, \mathbf{h}(\mathbf{v}', \mathbf{l}) \rangle &= \langle \mathbf{n}, \mathbf{h}(\mathbf{l}', \mathbf{v}) \rangle \\ \langle \mathbf{t}_1, \mathbf{h}(\mathbf{v}', \mathbf{l}) \rangle &= -\langle \mathbf{t}_1, \mathbf{h}(\mathbf{l}', \mathbf{v}) \rangle \\ \langle \mathbf{t}_2, \mathbf{h}(\mathbf{v}', \mathbf{l}) \rangle &= -\langle \mathbf{t}_2, \mathbf{h}(\mathbf{l}', \mathbf{v}) \rangle. \end{aligned} \quad (9)$$

As anisotropic Phong, Beckmann, and GGX distributions are reflection-symmetric around the normal, i.e. they take the form $D(\mathbf{h}) = D(\langle \mathbf{n}, \mathbf{h} \rangle, |\langle \mathbf{t}_1, \mathbf{h} \rangle|, |\langle \mathbf{t}_2, \mathbf{h} \rangle|)$, we can thus infer that using them with the back-vector obeys symmetry. Further, the reflection symmetry of D along with equation (7) gives

$$\begin{aligned} G_{1, \text{Smith}}(\mathbf{v}) &= \frac{\langle \mathbf{v}, \mathbf{n} \rangle}{\int_{\{\mathbf{h} \in \Omega: \langle \mathbf{v}, \mathbf{h} \rangle \geq 0\}} D(\mathbf{h}) \langle \mathbf{v}, \mathbf{h} \rangle d\mathbf{h}} \\ &= \frac{\langle \mathbf{v}', \mathbf{n} \rangle}{\int_{\{\mathbf{h} \in \Omega: \langle \mathbf{v}', \mathbf{h} \rangle \geq 0\}} D(\mathbf{h}) \langle \mathbf{v}', \mathbf{h} \rangle d\mathbf{h}} = G_{1, \text{Smith}}(\mathbf{v}') \end{aligned} \quad (10)$$

for Smith-masking. Next we show

$$\langle \mathbf{v}', \mathbf{l} \rangle = -\langle \mathbf{v}, \mathbf{l} \rangle + 2 \langle \mathbf{v}, \mathbf{n} \rangle \langle \mathbf{l}, \mathbf{n} \rangle = \langle \mathbf{v}, -\mathbf{l} + 2 \langle \mathbf{l}, \mathbf{n} \rangle \mathbf{n} \rangle = \langle \mathbf{v}, \mathbf{l}' \rangle \quad (11)$$

and therefore

$$\langle \mathbf{v}', \mathbf{h}(\mathbf{v}', \mathbf{l}) \rangle = \frac{1 + \langle \mathbf{l}, \mathbf{v}' \rangle}{\|\mathbf{v}' + \mathbf{l}\|} = \frac{1 + \langle \mathbf{l}', \mathbf{v} \rangle}{\|\mathbf{l}' + \mathbf{v}\|} = \langle \mathbf{l}', \mathbf{h}(\mathbf{l}', \mathbf{v}) \rangle. \quad (12)$$

Using this along with equations (9) and (7) we get

$$\begin{aligned} G_1(\mathbf{v}', \mathbf{l}) &= G_{1, \text{vc}}(\langle \mathbf{v}', \mathbf{n} \rangle, \langle \mathbf{n}, \mathbf{h}(\mathbf{v}', \mathbf{l}) \rangle, \langle \mathbf{v}', \mathbf{h}(\mathbf{v}', \mathbf{l}) \rangle) \\ &= G_{1, \text{vc}}(\langle \mathbf{v}, \mathbf{n} \rangle, \langle \mathbf{n}, \mathbf{h}(\mathbf{l}', \mathbf{v}) \rangle, \langle \mathbf{l}', \mathbf{h}(\mathbf{l}', \mathbf{v}) \rangle) \\ &= G_{1, \text{vc}}(\langle \mathbf{v}, \mathbf{n} \rangle, \langle \mathbf{n}, \mathbf{h}(\mathbf{v}, \mathbf{l}') \rangle, \langle \mathbf{l}', \mathbf{h}(\mathbf{v}, \mathbf{l}') \rangle) \\ &= G_1(\mathbf{v}, \mathbf{l}') \end{aligned} \quad (13)$$

and similarly $G_1(\mathbf{l}, \mathbf{v}') = G_1(\mathbf{l}', \mathbf{v})$ for the v-cavity masking function. In summary, we can conclude the symmetry of the BRDF

$$\begin{aligned} f_{\text{retro}}(\mathbf{v}, \mathbf{l}) = f(\mathbf{v}', \mathbf{l}) &= \frac{D(\mathbf{h}(\mathbf{v}', \mathbf{l}))G_2(G_1(\mathbf{v}', \mathbf{l}), G_1(\mathbf{l}, \mathbf{v}'))}{4 \langle \mathbf{v}', \mathbf{n} \rangle \langle \mathbf{l}, \mathbf{n} \rangle} \\ &= \frac{D(\mathbf{h}(\mathbf{l}', \mathbf{v}))G_2(G_1(\mathbf{v}, \mathbf{l}'), G_1(\mathbf{l}', \mathbf{v}))}{4 \langle \mathbf{v}, \mathbf{n} \rangle \langle \mathbf{l}', \mathbf{n} \rangle} = f(\mathbf{l}', \mathbf{v}) = f_{\text{retro}}(\mathbf{l}, \mathbf{v}). \end{aligned} \quad (14)$$

For the albedo we simply have

$$\rho_{\text{retro}}(\mathbf{v}) = \int_{\Omega} f_{\text{retro}}(\mathbf{v}, \mathbf{l}) \langle \mathbf{l}, \mathbf{n} \rangle d\mathbf{l} = \int_{\Omega} f(\mathbf{v}', \mathbf{l}) \langle \mathbf{l}, \mathbf{n} \rangle d\mathbf{l} = \rho(\mathbf{v}') \quad (15)$$

i.e. we get the albedo of the regular microfacet BRDF for the reflected direction. Which, using equation (3) and $\frac{d\mathbf{h}(\mathbf{v}', \mathbf{l})}{d\mathbf{l}} = \frac{1}{4 \langle \mathbf{l}, \mathbf{h}(\mathbf{v}', \mathbf{l}) \rangle} = \frac{1}{4 \langle \mathbf{v}', \mathbf{h}(\mathbf{v}', \mathbf{l}) \rangle}$ [WMLT07], can be shown to fulfill energy conservation

$$\begin{aligned} \rho(\mathbf{v}') &= \int_{\Omega} \frac{D(\mathbf{h}(\mathbf{v}', \mathbf{l}))G_2(\mathbf{v}', \mathbf{l})}{4 \langle \mathbf{v}', \mathbf{n} \rangle \langle \mathbf{l}, \mathbf{n} \rangle} \langle \mathbf{l}, \mathbf{n} \rangle d\mathbf{l} \\ &\leq \int_{\{\mathbf{h} \in \Omega: \langle \mathbf{v}', \mathbf{h} \rangle \geq 0\}} \frac{D(\mathbf{h})G_1(\mathbf{v}', \text{reflect}(\mathbf{v}', \mathbf{h}))}{\langle \mathbf{v}', \mathbf{n} \rangle} \langle \mathbf{v}', \mathbf{h} \rangle d\mathbf{h} = 1. \end{aligned} \quad (16)$$

4 Implementation Notes

Given an implementation of a regular microfacet BRDF, extending it to retro-reflection is straightforward:

- Evaluation merely needs to replace \mathbf{v} with \mathbf{v}' upfront.
- Similarly, importance sampling of \mathbf{l} given \mathbf{v} can be realized by replacing \mathbf{v} with \mathbf{v}' upfront and then importance sampling the regular microfacet BRDF. This may include low variance sampling using the domain of visible microfacets [Hd14].
- As the albedos of standard BRDF and retro-reflective BRDF are essentially identical, compensating for energy loss in the sense of [KSK01] can be realized using the same data tables.

References

[BPD¹⁴] Laurent Belcour, Romain Paganowski, Marion Delahaie, Aude Laville-Geay, and Laure Eu-pherte. BRDF Measurements and Analysis of Retroreflective Materials. *Journal of the Optical Society of America*, 31(12):2561–2572, December 2014.

[Hd14] Eric Heitz and Eugene d’Eon. Importance Sampling Microfacet-Based BSDFs using the Distribution of Visible Normals. *Computer Graphics Forum*, 33(4):103–112, July 2014.

[Hei14] Eric Heitz. Understanding the masking-shadowing function in microfacet-based brdfs. *Journal of Computer Graphics Techniques (JCGT)*, 3(2):48–107, June 2014.

[KSK01] Csaba Kelemen and Laszlo Szirmay-Kalos. A Microfacet Based Coupled Specular-Matte BRDF Model with Importance Sampling . In *Eurographics 2001 - Short Presentations*. Eurographics Association, 2001.

[WMLT07] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. Microfacet Models for Refraction through Rough Surfaces . In Jan Kautz and Sumanta Pattanaik, editors, *Rendering Techniques*. The Eurographics Association, 2007.