Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/64 18566

Project Checkpoint 4: Analyzer 75 Points Possible

4/14/2025

EN Add Comment

3/31/2025 to 4/16/2025

v Details

In this assignment, you will implement the analyzer for our language. This is the first step in
switching from a more dynamically typed, interpreted language to a statically typed, compiled one.
The job of the analyzer is to perform semantic analysis over the source code prior to execution,
which mostly involves type checking.

Submission

You will submit a Zip file of the entire src folder (containing just the single src folder), which
should contain both your implementation (src/main/java) and tests (src/test/java). On Windows,
right-click on the src folder and "Compress to ZIP file" should have the expected behavior here.

o This covers all rules, however only expression tests (with the exception of object_expr) are
graded.
= Note: We will be adjusting the grading scale from previous test submissions to be a bit
more lenient around edge cases.

All)_(https://ufl.instructure.com/courses/523541/assignments/6451481)._.
o This covers all rules, with statements (and object_expr) being graded.
¢ The final submission is Monday, April 14.

Project Setup

See the following links for provided code and setup instructions:

wrap=1)_ | (https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1)
: Contains only new analyzer files and updates to ast.java / Main.java , plus an update to
Runtimevalue.java for debugging primitive class types. These files should be added to your
existing project (i.e. Lexer + Parser + Evaluator) following the same folder/package structure

1of7 4/8/2025, 1:36 PM

https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1

Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/6418566

2 of 7

as provided.

setup-intellij-and-gradle)

Analyzer Overview

Recall that the job of semantic analysis is determine if the semantic meaning of the AST is valid
according the specification of the language. This can generally be broken down into the following
categories:

e Structural AST requirements that could have been enforced by the Parser, but make more
sense to handle within semantic analysis (typically best when the meaning is clear but the
operation itself is invalid to allow IDE to error gracefully).

e Resolution of types, variables, and functions; especially in "larger" programs that may require
linking multiple source files together to identify where variables/functions are located so they
can be compiled with references to the right locations.

e Type checking, which utilizes static typing to traverse the program and identify unsafe/invalid
uses of data throughout the program. This is most helpful in large projects and in languages
which have a sophisticated type system, otherwise it's easy to end up "fighting" the compiler to
get code that is correct dynamically to compile statically.

o Qur language will have just slightly above the bare minimum for types. In fact, there are
many functions used in the Evaluator that we won't be able to represent accurate types for -
e.g. log (which needs generic types to represent that the argument and return value have
the same type) and 1ist (which functions that support taking a variable number of
arguments, aka varargs).

While our analyzer will be limited (especially the type system) the focus here is on how we can
move validation from runtime in the evaluator to compile-time in the analyzer, even though we don't
actually have runtime values. You should find that the analyzer is quite similar in logic/structure to
the evaluator!

Crafting Interpreters

Unfortunately, crafting interpreters doesn't get into the aspects of semantic analysis or compile-time
validation. This territory gets much closer into the "each language figures out it's own thing and
they're all slightly broken" territory, especially with sophisticated type systems.

Grammar/Ast Changes

The grammar and AST of our language has been updated to support types. These types are
optional in the AST (thus nothing should break in the Evaluator) however you will need to update
your Parser accordingly. These changes will be graded as part of the final submission.

4/8/2025, 1:36 PM

https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle

Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/6418566

let_stmt ::= 'LET' identifier (':' identifier)? ('=' expr)? ';'
def_stmt ::= 'DEF' identifier '(' (identifier (':' identifier)? (',' identifier (':' identifier)?)*)?
")' (':' identifier)? 'DO' stmt* 'END'

Specification

The following table lists all AST types and their specification for static analysis. Each visit(ast)
method returns the corresponding 1r class, i.e. visit(Ast.stmt.Let) returns ir.stmt.Let .

¢ Unlike the evaluator, the order semantic analysis is performed is less important since there's no
side effects from execution. However:
o You still need to ensure that the scope used for analysis is accurate and has the right
variables defined (or not defined!).
o It's generally best to keep analysis order consistent with evaluation order for clarity and
easier review/debugging.

If an error should be thrown, this should use the provided analyzeException class. This class takes a
string message - this should be a descriptive message to help identify the issue on your side; tests
will not use this message.

AST Type Description

Analyzes a program source, with the following behavior:

>ource e Analyze all statements sequentially.
Analyzes a LeT statement, with the following behavior:
¢ Define the variable name (which must not already be defined) in the current
scope.
e The type is the first of the ast's type (if present, which must also be a
Stmt. Let type in Environment.TYPES), the value's type (if present), or else the type
(in lecture) Any .
e The value, if present, must be a subtype of the variable's type.
¢ Note: This must be analyzed prior to defining the variable (as it's needed
for type inference and the expression shouldn't have access to the
variable).
Stmt.Def Analyzes a per statement, with the following behavior:

1. Define the function name (which must not already be defined) in the current
scope with a type of Type.Function .
e Parameter names must be unique.
e Parameter types and the function's returns type must all be in
Environment.TYPES ; if not provided explicitly the type is any .
2. In a new child scope:

3of7 4/8/2025, 1:36 PM

Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/6418566

1. Define variables for all parameters.

2. Define the variable ¢reTurns (which cannot be used as a variable in our
language) to store the return type (see stmt.return).

3. Analyze all body statements sequentially.

Note: We will not be performing control flow analysis to ensure that the function
returns a value.

Analyzes an 1r statement, with the following behavior:
1. Analyze the ast's | condition , which must be a subtype of Boolean .

Stmt. If 2. Analyze both the then/else bodies, each within their own new child scope.

e Evaluation will only evaluate one, but for purposes of compilation we need
to look at both!

Analyzes a ror loop, with the following behavior:
1. Analyze the ast's expression , which must be a subtype of 1terable .
2. In a new child scope:
Stme. For 1. Define the variable 'name to have type Integer (our language will require
all 1terables to be of 1ntegers)

2. Analyze all body statements sequentially.

Analyzes a reTurn statement, with the following behavior:
1. Ensure the variable s$reTurns is defined (see per), which contains the
expected return type.
e If this variable isn't defined, it means we're returning outside of a function!
2. Verify the type of the return value, which is ni1 if absent, is a subtype of

Stmt.Return

$RETURNS .

stmt.Expression |Analyzes the contained expression with no additional restrictions.

Analyzes an assignment statement, with the following behavior:
e The receiver must be an Ast.Expr.Variable OI Ast.Expr.Property .
e Ifitis a variable , that variable must be defined. The value must be a subtype
of the variable's type.
e Ifitis a property , validate the property's receiver/name in the same was as

Stmt.Assignment
(partially in
lecture)

Ast.Expr.Property . The value must be a subtype of the property's type.

4 of 7 4/8/2025, 1:36 PM

Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/6418566

Analyzes a literal expression, with the following behavior:
Expr.Literal e The expression type corresponds with the type of the value as used by our
language (provided).

Expr.Group Analyzes the contained expression with no additional restrictions.

Analyzes a binary expression, with the following behavior:

e . :If either operand is a string, the resultis a string . Otherwise, the left
operand must be a subtypes of 1nteger / becimal and right must be the same
type, which is also the result type.

-/ =1/ : The left operand must be either an 1integer / becimal and the right
must be the same type, which is also the result type.

<[<«=1>15>=":The left operand must be a subtype of comparable and the right
must be the same type. The result is @ Boolean .

e --/1=: Both operands must be a subtype of Equatable . The resultis a

Expr.Binary

Boolean .
e anD / or : Both operands must be a subtype of Boolean . The resultis a

Boolean .

Expr.variable |Analyzes a variable expression, with the following behavior:
(in lecture) 1. Ensure the variable name is defined and resolve it's type.

Analyzes a variable expression, with the following behavior:
Expr.Property 1. Analyze the receiver , which must be an instanceof Type.object .
2. Ensure that name is defined in the object's scope and resolve it's type.

Analyzes a function expression, with the following behavior:
1. Ensure the function name is defined and resolve it's type, which must be an
instanceof Type.Function .
2. Analyze all arguments sequentially, ensuring that each argument is a subtype
of the function's corresponding parameter type.
3. The expression type is the function type's return type.

Expr.Function

Expr.Method Analyzes a function expression, with the following behavior:
1. Analyze the receiver , which must be an instanceof Type.object .
2. Ensure the function name is defined in the object's scope and resolve it's type,
which must be an instanceof Type.Function .
3. Analyze all arguments sequentially, ensuring that each argument is a subtype
of the function's corresponding parameter type.
e Important: Unlike the Evaluator, the types for methods will not have the
receiver as a parameter (thus, arguments and parameters should have the
same size). See the changelog for details.

50f7 4/8/2025, 1:36 PM

Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/6418566

4. The expression type is the function type's return type.

Analyzes an object expression, with the following behavior:

1. The name of the object must not be a type in Environment.TYPEs .

2. Analyze all fields, which must have unique names. The analysis follows the
same semantics as LeT statements, however should define the variable in the
object's scope.

Expr.Objectexpr | | 3- Analyze all methods, which must have unique names (and are unique with
fields as well). The analysis follows the same semantics as ber statements,
however should also define the variable this as an implicit parameter with
the type of the object.

¢ Important: Unlike methods at runtime, the "this" receiver is NOT part
of Type.Function parameters.

Throws an AnalyzeException if subtype is not a subtype of supertype . Our
language defines subtyping as follows:

requiresubtype | o All types are subtypes of any (similar to Java's object).
(partially in « All types are subtypes of themselves (per .equals()) and any .
lecture)

e Nil, comparable (and all subtypes), 1terable are subtypes of Equatable .
® Boolean , Integer , Decimal , String are subtypes of Comparable .

Changelog

Date |Change

Apr. 4 | e Update the provided files with corrections to Environment.java and AnalyzerTests.java
(see below).
o |Environment.java NOW has method types for object without the receiver parameter.
o |AnalyzerTests.java has corrections for function return tests (missing invocation IR),
integer literals (wrong type), and the Hello World program (wrong function name);
plus minor changes to the test function for better error messaging.
¢ Important: Change the representation of Method types (using Type.Function) to only
have argument types. In other words, the method receiver type (the object's type itself)
is no longer the first parameter like in the Evaluator.

6 of 7 4/8/2025, 1:36 PM

Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/64 18566

o TLDR: This leads to recursion issues in equals/toString when printing the object,
and in general is a bit awkward to work with in tests. Also simplifies the
implementation of ObjectExpr.

< Previous Next >
(https://ufl.instructure.com/courses/523541/ (https://ufl.instructure.com/courses/523541/
modules/items/11874741) modules/items/11874744)

7 of 7 4/8/2025, 1:36 PM

https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744

