
Project Checkpoint 4: Analyzer
4/14/2025

75 Points Possible

3/31/2025 to 4/16/2025

Add Comment

Details

In this assignment, you will implement the analyzer for our language. This is the first step in

switching from a more dynamically typed, interpreted language to a statically typed, compiled one.

The job of the analyzer is to perform semantic analysis over the source code prior to execution,

which mostly involves type checking.

Submission

You will submit a Zip file of the entire src folder (containing just the single src folder), which

should contain both your implementation (src/main/java) and tests (src/test/java). On Windows,

right-click on the src folder and "Compress to ZIP file" should have the expected behavior here.

• The first test submission is Wednesday, April 9: Project Checkpoint 4: Analyzer (TEST 1 -

Expr) (https://ufl.instructure.com/courses/523541/assignments/6419674) .

◦ This covers all rules, however only expression tests (with the exception of object_expr) are

graded.

▪ Note: We will be adjusting the grading scale from previous test submissions to be a bit

more lenient around edge cases.

• The second test submission is Saturday, April 12: Project Checkpoint 4: Analyzer (TEST 2 -

All) (https://ufl.instructure.com/courses/523541/assignments/6451481) .

◦ This covers all rules, with statements (and object_expr) being graded.

• The final submission is Monday, April 14.

Project Setup

See the following links for provided code and setup instructions:

• PlcProject (Analyzer Patch).zip (https://ufl.instructure.com/courses/523541/files/96225796?

wrap=1) (https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1)

: Contains only new analyzer files and updates to Ast.java / Main.java , plus an update to

RuntimeValue.java for debugging primitive class types. These files should be added to your

existing project (i.e. Lexer + Parser + Evaluator) following the same folder/package structure

Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/6418566

1 of 7 4/8/2025, 1:36 PM

https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6419674
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/assignments/6451481
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796?wrap=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1
https://ufl.instructure.com/courses/523541/files/96225796/download?download_frd=1

as provided.

• Project Setup (IntelliJ & Gradle) (https://ufl.instructure.com/courses/523541/pages/project-

setup-intellij-and-gradle)

Analyzer Overview

Recall that the job of semantic analysis is determine if the semantic meaning of the AST is valid

according the specification of the language. This can generally be broken down into the following

categories:

• Structural AST requirements that could have been enforced by the Parser, but make more

sense to handle within semantic analysis (typically best when the meaning is clear but the

operation itself is invalid to allow IDE to error gracefully).

• Resolution of types, variables, and functions; especially in "larger" programs that may require

linking multiple source files together to identify where variables/functions are located so they

can be compiled with references to the right locations.

• Type checking, which utilizes static typing to traverse the program and identify unsafe/invalid

uses of data throughout the program. This is most helpful in large projects and in languages

which have a sophisticated type system, otherwise it's easy to end up "fighting" the compiler to

get code that is correct dynamically to compile statically.

◦ Our language will have just slightly above the bare minimum for types. In fact, there are

many functions used in the Evaluator that we won't be able to represent accurate types for -

e.g. log (which needs generic types to represent that the argument and return value have

the same type) and list (which functions that support taking a variable number of

arguments, aka varargs).

While our analyzer will be limited (especially the type system) the focus here is on how we can

move validation from runtime in the evaluator to compile-time in the analyzer, even though we don't

actually have runtime values. You should find that the analyzer is quite similar in logic/structure to

the evaluator!

Crafting Interpreters

Unfortunately, crafting interpreters doesn't get into the aspects of semantic analysis or compile-time

validation. This territory gets much closer into the "each language figures out it's own thing and

they're all slightly broken" territory, especially with sophisticated type systems.

Grammar/Ast Changes

The grammar and AST of our language has been updated to support types. These types are

optional in the AST (thus nothing should break in the Evaluator) however you will need to update

your Parser accordingly. These changes will be graded as part of the final submission.

Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/6418566

2 of 7 4/8/2025, 1:36 PM

https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle
https://ufl.instructure.com/courses/523541/pages/project-setup-intellij-and-gradle

let_stmt ::= 'LET' identifier (':' identifier)? ('=' expr)? ';'
def_stmt ::= 'DEF' identifier '(' (identifier (':' identifier)? (',' identifier (':' identifier)?)*)?
')' (':' identifier)? 'DO' stmt* 'END'

Specification

The following table lists all AST types and their specification for static analysis. Each visit(Ast)

method returns the corresponding Ir class, i.e. visit(Ast.Stmt.Let) returns Ir.Stmt.Let .

• Unlike the evaluator, the order semantic analysis is performed is less important since there's no

side effects from execution. However:

◦ You still need to ensure that the scope used for analysis is accurate and has the right

variables defined (or not defined!).

◦ It's generally best to keep analysis order consistent with evaluation order for clarity and

easier review/debugging.

If an error should be thrown, this should use the provided AnalyzeException class. This class takes a

String message - this should be a descriptive message to help identify the issue on your side; tests

will not use this message.

AST Type Description

Source

Analyzes a program source, with the following behavior:

• Analyze all statements sequentially.

Stmt.Let

(in lecture)

Analyzes a LET statement, with the following behavior:

• Define the variable name (which must not already be defined) in the current

scope.

• The type is the first of the ast's type (if present, which must also be a

type in Environment.TYPES), the value's type (if present), or else the type

Any .

• The value , if present, must be a subtype of the variable's type.

• Note: This must be analyzed prior to defining the variable (as it's needed

for type inference and the expression shouldn't have access to the

variable).

Stmt.Def Analyzes a DEF statement, with the following behavior:

1. Define the function name (which must not already be defined) in the current

scope with a type of Type.Function .

• Parameter names must be unique.

• Parameter types and the function's returns type must all be in

Environment.TYPES ; if not provided explicitly the type is Any .

2. In a new child scope:

Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/6418566

3 of 7 4/8/2025, 1:36 PM

1. Define variables for all parameters.

2. Define the variable $RETURNS (which cannot be used as a variable in our

language) to store the return type (see Stmt.Return).

3. Analyze all body statements sequentially.

Note: We will not be performing control flow analysis to ensure that the function

returns a value.

Stmt.If

Analyzes an IF statement, with the following behavior:

1. Analyze the ast's condition , which must be a subtype of Boolean .

2. Analyze both the then/else bodies, each within their own new child scope.

• Evaluation will only evaluate one, but for purposes of compilation we need

to look at both!

Stmt.For

Analyzes a FOR loop, with the following behavior:

1. Analyze the ast's expression , which must be a subtype of Iterable .

2. In a new child scope:

1. Define the variable name to have type Integer (our language will require

all Iterables to be of Integers).

2. Analyze all body statements sequentially.

Stmt.Return

Analyzes a RETURN statement, with the following behavior:

1. Ensure the variable $RETURNS is defined (see DEF), which contains the

expected return type.

• If this variable isn't defined, it means we're returning outside of a function!

2. Verify the type of the return value, which is Nil if absent, is a subtype of

$RETURNS .

Stmt.Expression Analyzes the contained expression with no additional restrictions.

Stmt.Assignment

(partially in

lecture)

Analyzes an assignment statement, with the following behavior:

• The receiver must be an Ast.Expr.Variable or Ast.Expr.Property .

• If it is a Variable , that variable must be defined. The value must be a subtype

of the variable's type.

• If it is a Property , validate the property's receiver/name in the same was as

Ast.Expr.Property . The value must be a subtype of the property's type.

Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/6418566

4 of 7 4/8/2025, 1:36 PM

Expr.Literal

Analyzes a literal expression, with the following behavior:

• The expression type corresponds with the type of the value as used by our

language (provided).

Expr.Group Analyzes the contained expression with no additional restrictions.

Expr.Binary

Analyzes a binary expression, with the following behavior:

• + : If either operand is a String , the result is a String . Otherwise, the left

operand must be a subtypes of Integer / Decimal and right must be the same

type, which is also the result type.

• - / * / / : The left operand must be either an Integer / Decimal and the right

must be the same type, which is also the result type.

• < / <= / > / >= : The left operand must be a subtype of Comparable and the right

must be the same type. The result is a Boolean .

• == / != : Both operands must be a subtype of Equatable . The result is a

Boolean .

• AND / OR : Both operands must be a subtype of Boolean . The result is a

Boolean .

Expr.Variable

(in lecture)

Analyzes a variable expression, with the following behavior:

1. Ensure the variable name is defined and resolve it's type.

Expr.Property

Analyzes a variable expression, with the following behavior:

1. Analyze the receiver , which must be an instanceof Type.Object .

2. Ensure that name is defined in the object's scope and resolve it's type.

Expr.Function

Analyzes a function expression, with the following behavior:

1. Ensure the function name is defined and resolve it's type, which must be an

instanceof Type.Function .

2. Analyze all arguments sequentially, ensuring that each argument is a subtype

of the function's corresponding parameter type.

3. The expression type is the function type's return type.

Expr.Method Analyzes a function expression, with the following behavior:

1. Analyze the receiver , which must be an instanceof Type.Object .

2. Ensure the function name is defined in the object's scope and resolve it's type,

which must be an instanceof Type.Function .

3. Analyze all arguments sequentially, ensuring that each argument is a subtype

of the function's corresponding parameter type.

• Important: Unlike the Evaluator, the types for methods will not have the

receiver as a parameter (thus, arguments and parameters should have the

same size). See the changelog for details.

Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/6418566

5 of 7 4/8/2025, 1:36 PM

4. The expression type is the function type's return type.

Expr.ObjectExpr

Analyzes an object expression, with the following behavior:

1. The name of the object must not be a type in Environment.TYPES .

2. Analyze all fields, which must have unique names. The analysis follows the

same semantics as LET statements, however should define the variable in the

object's scope.

3. Analyze all methods, which must have unique names (and are unique with

fields as well). The analysis follows the same semantics as DEF statements,

however should also define the variable this as an implicit parameter with

the type of the object.

• Important: Unlike methods at runtime, the "this" receiver is NOT part

of Type.Function parameters.

requireSubtype

(partially in

lecture)

Throws an AnalyzeException if subtype is not a subtype of supertype . Our

language defines subtyping as follows:

• All types are subtypes of Any (similar to Java's Object).

• All types are subtypes of themselves (per .equals()) and Any .

• Nil , Comparable (and all subtypes), Iterable are subtypes of Equatable .

• Boolean , Integer , Decimal , String are subtypes of Comparable .

Changelog
Date Change

Apr. 4 • Update the provided files with corrections to Environment.java and AnalyzerTests.java

(see below).

◦ Environment.java now has method types for object without the receiver parameter.

◦ AnalyzerTests.java has corrections for function return tests (missing invocation IR),

integer literals (wrong type), and the Hello World program (wrong function name);

plus minor changes to the test function for better error messaging.

• Important: Change the representation of Method types (using Type.Function) to only

have argument types. In other words, the method receiver type (the object's type itself)

is no longer the first parameter like in the Evaluator.

Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/6418566

6 of 7 4/8/2025, 1:36 PM

◦ TLDR: This leads to recursion issues in equals/toString when printing the object,

and in general is a bit awkward to work with in tests. Also simplifies the

implementation of ObjectExpr.

Previous

(https://ufl.instructure.com/courses/523541/

modules/items/11874741)

Next

(https://ufl.instructure.com/courses/523541/

modules/items/11874744)

Project Checkpoint 4: Analyzer https://ufl.instructure.com/courses/523541/assignments/6418566

7 of 7 4/8/2025, 1:36 PM

https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874741
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744
https://ufl.instructure.com/courses/523541/modules/items/11874744

