
Benchmarking FreeBSDBenchmarking FreeBSD

Ivan Voras <ivoras@freebsd.org>

What and why?

● Everyone likes a nice benchmark graph :)
– And it's nice to keep track of these things

● The previous major run comparing
FreeBSD to Linux was done by Kris
Kennaway in 2008.

● There are occasional benchmarks
appearing on blogs and mailing lists
which show “interesting” results...

Target audience

● Mostly developers
– The results are decent, but not rosy
– Significant space for improvement

● Some system administrator material
– What to do, what not to do
– Tuning?

● “Avoid benchmarking?”
– Do you need it?

Purpose of benchmarking...

● To check your system for configuration
bugs and obvious problems (hw/sw)

● To check your capacity for running an
application (web server, db server, etc.)

● To compare your hardware to others'
● To compare your favorite application /

operating system to others...

Repeatability

● The best benchmarks are performed in a
way anyone can repeat them

● Both result verification (error checking)
and a way to compare their own setup to
the one tested

● Repeatability is a good thing...

Test hardware

● 2x IBM x3250 M3
● Xeon E3-1220 3.1 GHz, 4-core (no HTT)
● 32 GB RAM
● 4x SATA drive

RAID0
● 1 Gbps

NIC (2 ports)
Directly connected NICs

Test software

● FreeBSD 9.1 and 10-CURRENT (HEAD)
● CentOS 6.3
● PostgreSQL 9.2.3
● blogbench 1.1
● bonnie++ 1.97
● filebench 1.4.8
● Mdcached 1.0.7

Accuracy and precision

● Accurate = if it
measures what we
think it measures
(or is it off the
mark)

● Precise = is the
measured value
good
approximation of
the “real” one (or is
it affected by noise)

Systematic and random errors

● Systematic = we're not measuring what
we thing we're measuring (the method of
benchmarking is wrong, even though the
results may be repeatable and look
correct).

● Random = affected by “noise” outside
our control, results in non-repeatable
measurements.

Expressing precision

● Find meaningful precision
– (or: avoid false precision)

● 412.567 MB/s
● 412.5 MB/s
● 412 MB/s
● 410 MB/s

Standard deviation

● The “error bars”
● 1234 +/- 5 of something
● Expresses confidence in your

measurement – how precise they are
(clustered around the measured value)

outside middle inside
0

50

100

150

200

250

300

350

Example: hard drive performance

● (Systematic: you are not measuring what
you think are measuring)

● File systems vs (spinning) drives

diskinfo -vt /dev/da0

MB/s

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

Whole drive

outside

middle

inside

File systems are hard to measure

● Data location-dependant performance
● Data structure (re)use-dependant

performance (newfs vs old system)
– Double for flash drives

● Noise
MB/s

Speaking of noise...

0

50

100

150

200

250

300

350

outside

middle

inside

Reducing the difference

● Create a partition spanning the minimal
required disk space
(e.g. 3x-4x the RAM size)

partition whole drive

MB/s

bonnie++

● File system bandwidth & file op latency

Write Rewrite Read
0

100

200

300

400

500

600

CentOS 6.3 FreeBSD 9.1 FreeBSD 10

MB/s

File systems are complex beasts

● Think about it – it's a database...
● Data layout issues (esp. on rotating rust)
● Concurrent access issues
● “miscellaneous” features such as

attributes, security, reliability, TRIM
● NFS is also a horror but for different

reasons

Blogbench

● Stresses file system parallelism and
random disk IO

– Creates a tree of small-ish files
(2 KiB – 64 KiB)

– Reads and writes them
– Atomic renames for (some) writes
– Multithreaded

Blogbench results

Linux read FreeBSD 9.1 read FreeBSD 10 read
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

Linux write FreeBSD 9.1 write FreeBSD 10 write
0

500

1000

1500

2000

2500

3000

3500

4000

4500

1,900,000

700,000

Blogbench FreeBSD 9.1 vs 10
x read-91
+ read-10
+--+
|xx x * x x*x + * x +* + + + + +|
| |__________AM|________|______M__A_________________| |
+--+
 N Min Max Median Avg Stddev
x 11 509450 695303 600394 593580.45 60234.934
+ 11 577355 893889 695303 708560.45 102923.93
Difference at 95.0% confidence
 114980 +/- 75005.3
 19.3706% +/- 12.6361%
 (Student's t, pooled s = 84325.5)

x write-91
+ write-10
+--+
| + |
|+ + + ++* * x+ x x x x * x x+ x|
| |__________M_______A|_________________|M_________________| |
+--+
 N Min Max Median Avg Stddev
x 11 1299 2173 1734 1716.6364 287.0642
+ 11 1111 2104 1299 1416 296.7814
Difference at 95.0% confidence
 -300.636 +/- 259.694
 -17.5131% +/- 15.128%
 (Student's t, pooled s = 291.963)

Why is Blogbench slow on
FreeBSD?

● A multithreaded mix of file operations
● On FreeBSD (UFS):

– open(O_WRITE)
– write()
– rename()
– etc ... block each other (exclusive lock)
– + writers block readers

● So called “write bias” of FreeBSD

Why is Blogbench slow on
FreeBSD?

 884 100130 blogbench 1.472372 CALL open(0x7ffffebf5770,0x601<O_WRONLY|O_CREAT|O_TRUNC>,0x180<S_IRUSR|S_IWUSR>)
 884 100190 blogbench 1.472381 CALL close(0x2a)
 884 100162 blogbench 1.472382 CALL read(0x31,0x602f60,0x10000)
 884 100141 blogbench 1.472386 CALL read(0x32,0x602f60,0x10000)
 884 100190 blogbench 1.472387 CALL open(0x7ffff73b9ba0,0<O_RDONLY>,<unused>0)
 884 100162 blogbench 1.472395 CALL read(0x31,0x602f60,0x10000)
 884 100130 blogbench 1.472398 CALL write(0x2a,0x612f60,0x1df2)
 884 100141 blogbench 1.472402 CALL read(0x32,0x602f60,0x10000)
 884 100162 blogbench 1.472407 CALL close(0x31)
 884 100130 blogbench 1.472412 CALL close(0x2a)
 884 100190 blogbench 1.472403 CALL open(0x7ffff73b9ba0,0<O_RDONLY>,<unused>0)
 884 100162 blogbench 1.472418 CALL open(0x7ffffabd5ba0,0<O_RDONLY>,<unused>0)
 884 100130 blogbench 1.472421 CALL rename(0x7ffffebf5770,0x7ffffebf5ba0)
 884 100141 blogbench 1.472415 CALL close(0x32)
 884 100190 blogbench 1.472423 CALL read(0x2a,0x602f60,0x10000)
 884 100141 blogbench 1.472430 CALL open(0x7ffffd5eaba0,0<O_RDONLY>,<unused>0)
 884 100162 blogbench 1.472433 CALL read(0x31,0x602f60,0x10000)
 884 100190 blogbench 1.472438 CALL read(0x2a,0x602f60,0x10000)
 884 100130 blogbench 1.472442 CALL open(0x7ffffebf5770,0x601<O_WRONLY|O_CREAT|O_TRUNC>,0x180<S_IRUSR|S_IWUSR>)
 884 100190 blogbench 1.472443 CALL close(0x2a)
 884 100141 blogbench 1.472451 CALL open(0x7ffffd5eaba0,0<O_RDONLY>,<unused>0)
 884 100162 blogbench 1.472451 CALL read(0x31,0x602f60,0x10000)
 884 100190 blogbench 1.472450 CALL open(0x7ffff73b9ba0,0<O_RDONLY>,<unused>0)
 884 100141 blogbench 1.472460 CALL read(0x2a,0x602f60,0x10000)
 884 100130 blogbench 1.472464 CALL write(0x32,0x612f60,0x13f2)
 884 100190 blogbench 1.472465 CALL open(0x7ffff73b9ba0,0<O_RDONLY>,<unused>0)
 884 100162 blogbench 1.472461 CALL close(0x31)
 884 100190 blogbench 1.472475 CALL read(0x31,0x602f60,0x10000)
 884 100162 blogbench 1.472477 CALL open(0x7ffffabd5ba0,0<O_RDONLY>,<unused>0)
 884 100141 blogbench 1.472480 CALL read(0x2a,0x602f60,0x10000)
 884 100130 blogbench 1.472478 CALL close(0x32)

Why is Blogbench slow on
FreeBSD?

0

100000

200000

300000

400000

500000

600000

700000

800000

read()

close()

open()

write()

(not distinguishing
between open(O_RD)
and open(O_WR))

ivora
Typewriter
time [ns]

PostgreSQL pgbench

● Initialized with -s 1000
● 100,000,000 records, 16 GB size

– (fits in RAM, for RO)
● PostgreSQL configuration:

– 8 GB shared buffers
– 32 MB work memory
– autovacuum off
– 30 checkpoint segments

PostgreSQL / pgbench caveats

● WAL logging means:
– data is written to checkpoint segments,

restarts are needed between WRITE
benchmarks

– data is transferred to “proper” storage
almost unpredictably, long-ish runs are
needed for repeatable benchmarks

● Autovacuum can run almost
unpredictably

PostgreSQL results

1 2 4 8 12 16 24 32 48 64 128
0

10000

20000

30000

40000

50000

60000

Linux disk RO avg Linux disk RW avg Linux ramfs RO avg

Linux ramfs RW avg Linux remote ramfs RO avg FreeBSD disk RO avg

FreeBSD disk RW avg FreeBSD tmpfs RO avg FreeBSD tmpfs RW avg

FreeBSD remote tmpfs RO avg

ivora
Typewriter
Concurrency

ivora
Typewriter
Score

1 2 4 8 12 16 24 32 48 64 128
0

10000

20000

30000

40000

50000

60000

Linux disk RO avg Linux ramfs RO avg

FreeBSD disk RO avg FreeBSD tmpfs RO avg

PostgreSQL result notes

● On Linux, there's almost no difference
between ext4 when data is fully cached
(warmed) and ramfs

● On FreeBSD,
tmpfs is
faster

ivora
Typewriter
MB/s

ivora
Typewriter
Concurrency

PostgreSQL result notes

● Linux is consistently 5%-10% better

1 2 4 8 12 16 24 32 48 64 128
0

200

400

600

800

1000

1200

Linux disk RW avg FreeBSD disk RW avg

ivora
Typewriter
MB/s (cached)

ivora
Typewriter
Concurrency

1 2 4 8 12 16 24 32 48 64 128
0

10000

20000

30000

40000

50000

60000

Linux ramfs RO avg Linux remote ramfs RO avg FreeBSD tmpfs RO avg FreeBSD remote tmpfs RO avg

PostgreSQL result notes

● Remote access doesn't help much

Scheduler issue

ivora
Typewriter
Score

ivora
Typewriter
Concurrency

However...

● Different benchmark, by Florian Smeets
● 40-core, 80-thread system, 256 GB RAM
● scale 100 – 10,000,000 records

Threads 2 Threads 4 Threads 8 Threads 10 Threads 16 Threads 20 Threads 24 Threads 32
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

FreeBSD-VMC-233854-postgres-9.2-devel Linux-kernel-3.3.0-glibc-2.15-postgres-9.2-devel FreeBSD-head-r233892

Linux wins
after 32 threads

ivora
Typewriter
Concurrency

ivora
Typewriter
Score

Filebench

● Dubious correctness of the port...
● “fileserver” and “webproxy” profiles

– fileserver: “Emulates simple file-server I/O activity. This workload
performs a sequence of creates, deletes, appends, reads, writes
and attribute operations on a directory tree. 50 threads are used
by default. The workload generated is somewhat similar to
SPECsfs.”

– webproxy: “Emulates I/O activity of a simple web proxy server. A
mix of create-write-close, open-read-close, and delete
operations of multiple files in a directory tree and a file append to
simulate proxy log. 100 threads are used by default.”

● Local drive, NFSv3 and NFSv4

fileserver profile

0

100

200

300

400

500

600

700

800

900

Linux – local MB/s Linux – NFSv3 MB/s Linux – NFSv4 MB/s FreeBSD – local MB/s FreeBSD – NFSv3 MB/s FreeBSD – NFSv4 MB/s

Should not be possibleNFSv4 is slow
even on Linux

ivora
Typewriter
MB/s

webproxy profile

0

100

200

300

400

500

600

700

800

Linux – local MB/s Linux – NFSv3 MB/s Linux – NFSv4 MB/s FreeBSD – local MB/s FreeBSD – NFSv3 MB/s FreeBSD – NFSv4 MB/s

Possible,
but improbable

ivora
Typewriter
MB/s

Cross-benchmarking

● FreeBSD server, Linux client
● Linux does caching...

0

50

100

150

200

250

Linux – NFSv3 MB/s Linux client, FreeBSD 10 server, NFSv3 MB/s

ivora
Typewriter
MB/s

Bullet Cache

● My own cache server, presented at
BSDCan 2012 :)

● Lots of small (32 byte – 128 byte) TCP
command / response transactions

● Multithreaded + non-blocking IO
● (nearly 2,000,000 TPS over Unix sockets

on medium-end hardware)

CentOS 6.3 FreeBSD 9.1 FreeBSD 10
0

100000

200000

300000

400000

500000

600000

100 conn 200 conn 300 conn 400 conn 500 conn

● Linux support incomplete, lacks epoll()
● Within measurement error, 9.1 == 10

ivora
Typewriter
Ops/s

Result notes

● TCP is fairly concurrent in FreeBSD,
multiple TCP streams do not block
each other

● > 470,000 PPS per direction
● Over Unix sockets (local): 1,020,000 TPS

On tuning...

● The year is 2013 and FreeBSD actually
auto-tunes reasonably well

● Example #1: vfs.read_max
● Example #2: hw.em.txd/rxd
● Example #3: kern.maxusers
● Example #4: vm.pmap.shpgperproc

+ hi/lobufspace

Why no CPU benchmarks?

● You are not going to influence raw CPU
performance from the OS (except in edge
cases / misconfiguration)

● You can test the quality of the libc and
libm implementations... but be sure that
is what you want to

● You can also test the quality of compiler
optimizations... if you want to.

(LLVM vs GCC)

● (do not draw conclusions based on this)
● (Phoronix benchmark, Botan/KASUMI)

OpenBenchmarking.orgMbytes/s, More Is Better

Botan v1.10.3
Test: KASUMI

GCC 4.7.2

GCC 4.8.0

LLVM Clang 3.2

LLVM Clang 3.3 SVN

15 30 45 60 75

SE +/- 0.00
39.35

SE +/- 0.00
37.91

SE +/- 0.00
39.34

SE +/- 0.00
65.75

Powered By Phoronix Test Suite 4.4.1

1. (CXX) g++ options: -m64 -ldl -lpthread -lrt

Why NOT benchmark?

● When is benchmarking important?
– Is performance more important than

features?
– Is it cheaper to buy another machine than

to reconfigure / develop a better OS?
● The future is actually quite good

– During 7.x timeframe: 8 CPU scalability
– During 10.x timeframe: 32 CPU scalability

When you do need to benchmark?

● As a sysadmin, you just want to know
● Planning / budgeting for a project
● When your boss tells you to :)
● Advocacy...

Continuous benchmarking?

● Some talks were had...
● It would probably be easier to set up now

after the developer cluster has been
updated...

● Performance regression monitoring

The End

Benchmarking FreeBSDBenchmarking FreeBSD

Ivan Voras <ivoras@freebsd.org>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

