@

Benchmarking FreeBSD

lvan Voras <ivoras@freebsd.org>

What and why?

* Everyone likes a nice benchmark graph :)
- And it's nice to keep track of these things

 The previous major run comparing
FreeBSD to Linux was done by Kris
Kennaway in 2008.

« There are occasional benchmarks
appearing on blogs and mailing lists
which show “interesting” results...

Target audience

* Mostly developers

- The results are decent, but not rosy

- Significant space for improvement

« Some system administrator material

- What to do, what not to do
- Tuning?

« “"Avoid benchmarking?”

- Do you need it?

Purpose of benchmarking...

» To check your system for configuration
bugs and obvious problems (hw/sw)

* To check your capacity for running an
application (web server, db server, etc.)

« To compare your hardware to others'

« To compare your favorite application /
operating system to others...

Repeatability

 The best benchmarks are performed in a
way anyone can repeat them

» Both result verification (error checking)
and a way to compare their own setup to

the one tested

« Repeatability is a good thing...

Test hardware

e 2X IBM x3250 M3
e Xeon E3-1220 3.1 GHz, 4-core (no HTT)
« 32 GB RAM

e 4x SATA drive
RAIDO

* 1 Gbps
NIC (2 ports)

Directly connected NICs

Test software

« FreeBSD 9.1 and TO-CURRENT (HEAD)
« CentOS 6.3

e PostgreSQL 9.2.3

* blogbench 1.1

« bonnie++ 1.97

e filebench 1.4.8

« Mdcached 1.0.7

Accuracy and precision

* Accurate = if it
measures what we
think it measures
(or is it off the
mark)

* Precise = is the
measured value
good
approximation of
the “real” one (or is
it affected by noise)

Systematic and random errors

« Systematic = we're not measuring what
we thing we're measuring (the method of
benchmarking is wrong, even though the
results may be repeatable and look
correct).

« Random = affected by “noise” outside
our control, results in non-repeatable
measurements.

Expressing precision

» Find meaningful precision

- (or: avoid false precision)

* 410 MB/s

Standard deviation

e The “error bars’
¢ 1234 +/- 5 of something

» Expresses confidence in your
measurement - how precise they are
(clustered around the measured value)

Example: hard drive performance

e (Systematic: you are not measuring what
you think are measuring)

* File systems vs (spinning) drives

middle insid

dlsklnfo -vt /dev/da0

350
300
250
MB/s 200
150
100

50

0

File systems are hard to measure

» Data location-dependant performance

e Data structure (re)use-dependant
performance (newfs vs old system)

- Double for flash drives oo ive

400

e Noise

350

M B/S 250 = outside

200
150
100

50

Speaking of noise...

Reducing the difference

« Create a partition spanning the minimal
required disk space
(e,g. 3x-4x the RAM size)

300

250

200
MB/s

150

100

50

0
partition whole drive

bonnie++

» File system bandwidth & fileop-lateney

600

500
400
MB/s
300
200
) L
0
Write

Rewrite Read

B CentOS 6.3 W FreeBSD 9.1 FreeBSD 10

File systems are complex beasts

« Think about it - it's a database...

Data layout issues (esp. on rotating rust)
Concurrent access issues

“miscellaneous” features such as
attributes, security, reliability, TRIM

NFS is also a horror but for different
reasons

Blogbench

 Stresses file system parallelism and

random disk 10
— Creates a tree of small-ish files
(2 KiB - 64 KiB)
- Reads and writes them

- Atomic renames for (some) writes
- Multithreaded

Blogbench results

2000000

1800000
1400000
1200000
1000000 / 700’000
1,900,000 owov I
600000
400000
200000
0

Linux read FreeBSD 9.1 read FreeBSD 10 read

4500

4000
3500
3000
2500
2000
1500 I
1000
500
0

Linux write FreeBSD 9.1 write FreeBSD 10 write

Blogbench FreeBSD 9.1 vs 10

X read-91
+ read-10
R I e +
| XX x * X xX*x o+ ¥ X % o+ + + + +|
| | AM| | M_A | |
I T e T +
N Min Max Median Avg Stddev
x 11 509450 695303 600394 593580.45 60234.934
+ 11 577355 893889 695303 708560.45 102923.93

Difference at 95.0% confidence
114980 +/- 75005.3
19.3706% +/- 12.6361%
(Student's t, pooled s = 84325.5)

X write-91
+ write-10

e . e e +
I + |
| + + 4+ ++* * X+ X X XL X X X+ X |
| | M Al M | |
N R ———— +

N Min Max Median Avg Stddev
x 11 1299 2173 1734 1716.6364 287.0642
+ 11 1111 2104 1299 1416 296.7814

Difference at 95.0% confidence
-300.636 +/- 259.694
-17.5131% +/- 15.128%
(Student's t, pooled s = 291.963)

Why is Blogbench slow on
FreeBSD?

« A multithreaded mix of file operations

e On FreeBSD (UFS):

- open(O_WRITE)

- write()

- rename()

- etc ... block each other (exclusive lock)
- + writers block readers

e So called “write bias” of FreeBSD

Why is Blogbench slow on
FreeBSD?

.472372 CALL open(Ox7ffffebf5770,0x601<0 WRONLY |0 CREAT|O0 TRUNC>,0x180<S IRUSR|S IWUSR>)
.472381 CALL close(0x2a)

.472382 CALL read(0x31,0x602f60,0x10000)

.472386 CALL read(0x32,0x602f60,0x10000)

.472387 CALL open(Ox7ffff73b9bad,0<0 RDONLY>,<unused>0)
.472395 CALL read(0x31,0x602f60,0x10000)

.472398 CALL write(0x2a,0x612f60,0x1df2)

.472402 CALL read(0x32,0x602f60,0x10000)

.472407 CALL close(0x31)

.472412 CALL close(0x2a)

.472403 CALL open(0x7ffff73b9bad,0<0 RDONLY>,<unused>0)
.472418 CALL open(0x7ffffabd5ba0,0<0 RDONLY>,<unused>0)
.472421 CALL rename(0x7ffffebf5770,0x7ffffebf5ba0)
.472415 CALL close(0x32)

.472423 CALL read(0x2a,0x602f60,0x10000)

.472430 CALL open(0x7ffffd5eaba0,0<0 RDONLY>,<unused>0)
.472433 CALL read(0x31,0x602f60,0x10000)

.472438 CALL read(0x2a,0x602f60,0x10000)

.472442 CALL open(0x7ffffebf5770,0x601<0 WRONLY |0 CREAT|0 TRUNC>,0x180<S IRUSR|S IWUSR>)
.472443 CALL close(0x2a)

.472451 CALL open(0x7ffffd5eabal,0<0 RDONLY>,<unused>0)
.472451 CALL read(0x31,0x602f60,0x10000)

.472450 CALL open(0x7ffff73b9ba0d,0<0 RDONLY>,<unused>0)
.472460 CALL read(0x2a,0x602f60,0x10000)

.472464 CALL write(0x32,0x612f60,0x13f2)

.472465 CALL open(0x7ffff73b9bad,0<0 RDONLY>,<unused>0)
.472461 CALL close(0x31)

.472475 CALL read(0x31,0x602f60,0x10000)

.472477 CALL open(0x7ffffabd5bad,0<0 RDONLY>,<unused>0)
.472480 CALL read(0x2a,0x602f60,0x10000)

.472478 CALL close(0x32)

884 100130 blogbench
884 100190 blogbench
884 100162 blogbench
884 100141 blogbench
884 100190 blogbench
884 100162 blogbench
884 100130 blogbench
884 100141 blogbench
884 100162 blogbench
884 100130 blogbench
884 100190 blogbench
884 100162 blogbench
884 100130 blogbench
884 100141 blogbench
884 100190 blogbench
884 100141 blogbench
884 100162 blogbench
884 100190 blogbench
884 100130 blogbench
884 100190 blogbench
884 100141 blogbench
884 100162 blogbench
884 100190 blogbench
884 100141 blogbench
884 100130 blogbench
884 100190 blogbench
884 100162 blogbench
884 100190 blogbench
884 100162 blogbench
884 100141 blogbench
884 100130 blogbench

PP HREF R RRRPRPRPRARRERRRRRAERRERRPRRRPRRRERRERRBRRRRRRERRR

Why is Blogbench slow on
FreeBSD?

time [ns]
800000 close()
a (not distinguishing
700000 between open(O_RD)

read() and open(O_WR))
600000 /
500000 Open()

[T

400000
300000
write()
200000
100000
P
0 ,,l_,l._ ol RN I- |. || ru/l. I- 1. hihl, |I|.II.|I-|I_||_|I_I|_I- P

O © © © © O 90 © © © 0 © © © © 0 © © © © © © © © © © © °© © °

ivora
Typewriter
time [ns]

PostgreSQL pgbench

e |nitialized with -s 1000

« 100,000,000 records, 16 GB size

- (fits in RAM, for RO)
» PostgreSQL configuration:

- 8 GB shared buffers

- 32 MB work memory

- autovacuum off

- 30 checkpoint segments

PostgreSQL / pgbench caveats

« WAL logging means:

- data is written to checkpoint segments,
restarts are needed between WRITE
benchmarks

- data is transferred to “proper” storage
almost unpredictably, long-ish runs are
needed for repeatable benchmarks

« Autovacuum can run almost
unpredictably

Score

60000

LS -
“.---nﬂh‘l‘h'uul’z,, “‘\numm\m'.'.::...',‘,l’
50000 s.‘:uu|||uunullllln?(,..,." \\“\\‘ I,”
$ 2 BT 7 LT T . At b
> »
$ ’QIIIIIIIIIIIIIIIIIIIIlIIlIIIl’
RN
o
N &
N
< &
NI
IR
40000 S8
I
K
RN
NI
R
NI
N
5
S
QIR
NI
)
oY
N
5
o8
30000 &
R
N
AR ‘
RO
S
QR
SRR
R
SR
R
R
SRS
R
RN
20000 ol
e
S
S

10000

1 2 4 8 12 16 24 32 48 64 128
Concurrency

s | inux disk RO awg Linux disk RW awg s | inux ramfs RO awg
Linux ramfs RW awg Linux remote ramfs RO avg =+ FreeBSD disk RO awg
FreeBSD disk RW aw s FreeBSD tmpfs RO awg FreeBSD tmpfs RW awg
FreeBSD remote tmpfs RO awg

ivora
Typewriter
Concurrency

ivora
Typewriter
Score

PostgreSQL result notes

« On Linux, there's almost no difference
between ext4 when data is fully cached
(warmed) and ramfs

MB/s
60000

* On FreeBSD, o
tmpfs is o e \\\

faster

20000

10000

0
1 2 4 8 12 16 24 32 48 64 128

= | inux disk RO awgy Linux ramfs RO awg
== FreeBSD disk RO awy FreeBSD tmpfs RO awg

ivora
Typewriter
MB/s

ivora
Typewriter
Concurrency

PostgreSQL result notes

e Linux is consistently 5%-10% better

MB/s (cached)

1200
1000
800
600
400
200

0
1 2 4 8 12 16 24 32 48 64 128

Concurrenc Y
=== | inux disk RW avg === FreeBSD disk RW awg

ivora
Typewriter
MB/s (cached)

ivora
Typewriter
Concurrency

PostgreSQL result notes

« Remote access doesn't help much

60000

50000 /

40000

20000 .
Scheduler issue

10000

1 2 4 8 12 16 24 32 48 64 128

FreeBSD tmpfs RO awg FreeBSD remote tmpfs RO awg

ivora
Typewriter
Score

ivora
Typewriter
Concurrency

Score
200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

However...

» Different benchmark, by Florian Smeets
¢ 40-core, 80-thread system, 256 GB RAM
e scale 100 - 10,000,000 records

|

Linux wins
after 32 threads

Threads 4 Threads 8 Threads 10 Threads 16 Threads 20 Threads 24 Threads 32

FreeBSD-VMC-233854-postgres-9.2-devel == Linux-kernel-3.3.0-glibc-2.15-postgres-9.2-devel == FreeBSD-head-r233892

ivora
Typewriter
Concurrency

ivora
Typewriter
Score

Filebench

» Dubious correctness of the port...

» “fileserver” and “webproxy” profiles

- fileserver: “Emulates simple file-server I/O activity. This workload
performs a sequence of creates, deletes, appends, reads, writes
and attribute operations on a directory tree. 50 threads are used

by default. The workload generated is somewhat similar to
SPECsfs.”

- webproxy: “Emulates 1/0 activity of a simple web proxy server. A
mix of create-write—close, open-read-close, and delete
operations of multiple files in a directory tree and a file append to
simulate proxy log. 100 threads are used by default.”

e Local drive, NFSv3 and NFSv4

fileserver profile

MB/s

900
800
700

600
NFSV4 is slow Should not be possible
even on Linux

500

400

300

200

100

—

M Linux — local MB/s Linux — NFSV3 MB/s M Linux — NFSwv MB/s M FreeBSD — local MB/s FreeBSD — NFSV3 MB/s M FreeBSD — NFSW MB/s

ivora
Typewriter
MB/s

webproxy profile

MB/s

800
700

600

Possible,
but improbable

500

400

300

200

100

M Linux — local MB/s " Linux — NFSV3 MB/s M Linux — NFSwv MB/s B FreeBSD — local MB/s ' FreeBSD — NFSV3 MB/s & FreeBSD — NFSw MB/s

ivora
Typewriter
MB/s

Cross-benchmarking

e FreeBSD server, Linux client

* Linux does caching...

MB/s

250
200
150
100

50

0

M Linux — NFSV3 MB/s M Linux client, FreeBSD 10 senver, NFSV3 MB/s

ivora
Typewriter
MB/s

Bullet Cache

« My own cache server, presented at
BSDCan 2012 :)

e Lots of small (32 byte - 128 byte) TCP
command / response transactions

« Multithreaded + non-blocking 10

e (nearly 2,000,000 TPS over Unix sockets
on medium-end hardware)

* Linux support incomplete, lacks epoll()

« Within measurement error, 9.1 == 10

600000

CentOS 6.3 FreeBSD 9.1 FreeBSD 10

Opsls

500000

400000

300000

200000

100000

o

B 100 conn W 200 conn © 300 conn M 400 conn W 500 conn

ivora
Typewriter
Ops/s

Result notes

» TCP is fairly concurrent in FreeBSD,
multiple TCP streams do not block
each other

« > 470,000 PPS per direction
e Over Unix sockets (local);: 1,020,000 TPS

On tuning...

 The year is 2013 and FreeBSD actually
auto-tunes reasonably well

 Example #1: vfs.read_max +hifobufspace
« Example #2: hw.em.txd/rxd
 Example #3: kern.maxusers

 Example #4: vm.pmap.shpgperproc

Why no CPU benchmarks?

* You are not going to influence raw CPU
performance from the OS (except in edge
cases / misconfiguration)

* You can test the quality of the libc and
libm implementations... but be sure that
is what you want to

* You can also test the quality of compiler
optimizations... if you want to.

(LLVM vs GCC)

e (do not draw conclusions based on this)

* (Phoronix benchmark, Botan/KASUMI)

Botan v1.10.3

Test: KASUMI

GCC4.7.2
SE +/- 0.00

GCC 4.8.0
SE +/-0.00

LLVM Clang 3.2

o
o
|
=
g
:
@
5
@
»
?
&

LLVM Clang 3.3 SVN
SE +/-0.00

d By Phoronix Test Suite 4.4.1

Why NOT benchmark?

 When is benchmarking important?

- |s performance more important than
features?

- Is it cheaper to buy another machine than
to reconfigure / develop a better OS?

» The future is actually quite good

- During 7.x timeframe: 8 CPU scalability
- During 10.x timeframe: 32 CPU scalability

hen you do need to benchmark?

¢ As a sysadmin, you just want to know
* Planning / budgeting for a project
 When your boss tells you to :)

« Advocacy...

Continuous benchmarking?

« Some talks were had...

It would probably be easier to set up now
after the developer cluster has been
updated...

* Performance regression monitoring

U The End

Benchmarking FreeBSD

lvan Voras <ivoras@freebsd.org>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

