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What and why?

● Everyone likes a nice benchmark graph :)
– And it's nice to keep track of these things

● The previous major run comparing 
FreeBSD to Linux was done by Kris 
Kennaway in 2008.

● There are occasional benchmarks 
appearing on blogs and mailing lists 
which show “interesting” results...



Target audience

● Mostly developers
– The results are decent, but not rosy
– Significant space for improvement

● Some system administrator material
– What to do, what not to do
– Tuning?

● “Avoid benchmarking?”
– Do you need it?



Purpose of benchmarking...

● To check your system for configuration 
bugs and obvious problems (hw/sw)

● To check your capacity for running an 
application (web server, db server, etc.)

● To compare your hardware to others'
● To compare your favorite application / 

operating system to others...



Repeatability

● The best benchmarks are performed in a 
way anyone can repeat them

● Both result verification (error checking) 
and a way to compare their own setup to 
the one tested

● Repeatability is a good thing...



Test hardware

● 2x IBM x3250 M3
● Xeon E3-1220 3.1 GHz, 4-core (no HTT)
● 32 GB RAM
● 4x SATA drive

RAID0
● 1 Gbps

NIC (2 ports)
Directly connected NICs



Test software

● FreeBSD 9.1 and 10-CURRENT (HEAD)
● CentOS 6.3
● PostgreSQL 9.2.3
● blogbench 1.1
● bonnie++ 1.97
● filebench 1.4.8
● Mdcached 1.0.7



Accuracy and precision

● Accurate = if it 
measures what we 
think it measures 
(or is it off the 
mark)

● Precise = is the 
measured value 
good 
approximation of 
the “real” one (or is 
it affected by noise)



Systematic and random errors

● Systematic = we're not measuring what 
we thing we're measuring (the method of 
benchmarking is wrong, even though the 
results may be repeatable and look 
correct).

● Random = affected by “noise” outside 
our control, results in non-repeatable 
measurements.



Expressing precision

● Find meaningful precision
– (or: avoid false precision)

● 412.567 MB/s
● 412.5 MB/s
● 412 MB/s
● 410 MB/s



Standard deviation

● The “error bars”
● 1234 +/- 5 of something
● Expresses confidence in your 

measurement – how precise they are 
(clustered around the measured value)
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Example: hard drive performance

● (Systematic: you are not measuring what 
you think are measuring)

● File systems vs (spinning) drives

diskinfo -vt /dev/da0

MB/s
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File systems are hard to measure

● Data location-dependant performance
● Data structure (re)use-dependant 

performance (newfs vs old system)
– Double for flash drives

● Noise
MB/s



Speaking of noise...
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Reducing the difference

● Create a partition spanning the minimal 
required disk space
(e.g. 3x-4x the RAM size)

partition whole drive

MB/s



bonnie++

● File system bandwidth & file op latency
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File systems are complex beasts

● Think about it – it's a database...
● Data layout issues (esp. on rotating rust)
● Concurrent access issues
● “miscellaneous” features such as 

attributes, security, reliability, TRIM
● NFS is also a horror but for different 

reasons



Blogbench

● Stresses file system parallelism and 
random disk IO

– Creates a tree of small-ish files 
(2 KiB – 64 KiB)

– Reads and writes them
– Atomic renames for (some) writes
– Multithreaded



Blogbench results
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Blogbench FreeBSD 9.1 vs 10
x read-91
+ read-10
+----------------------------------------------------------------------+
|xx x        * x x*x  + *    x   +*  + +      +                    +  +|
|    |__________AM|________|______M__A_________________|               |
+----------------------------------------------------------------------+
    N           Min           Max        Median           Avg        Stddev
x  11        509450        695303        600394     593580.45     60234.934
+  11        577355        893889        695303     708560.45     102923.93
Difference at 95.0% confidence
        114980 +/- 75005.3
        19.3706% +/- 12.6361%
        (Student's t, pooled s = 84325.5)

x write-91
+ write-10
+----------------------------------------------------------------------+
|                    +                                                 |
|+   +  +  ++*       * x+     x x        x  x  *          x      x+   x|
| |__________M_______A|_________________|M_________________|           |
+----------------------------------------------------------------------+
    N           Min           Max        Median           Avg        Stddev
x  11          1299          2173          1734     1716.6364      287.0642
+  11          1111          2104          1299          1416      296.7814
Difference at 95.0% confidence
        -300.636 +/- 259.694
        -17.5131% +/- 15.128%
        (Student's t, pooled s = 291.963)



Why is Blogbench slow on 
FreeBSD?

● A multithreaded mix of file operations
● On FreeBSD (UFS):

– open(O_WRITE)
– write()
– rename()
– etc ... block each other (exclusive lock)
– + writers block readers

● So called “write bias” of FreeBSD



Why is Blogbench slow on 
FreeBSD?

   884 100130 blogbench 1.472372 CALL  open(0x7ffffebf5770,0x601<O_WRONLY|O_CREAT|O_TRUNC>,0x180<S_IRUSR|S_IWUSR>)
   884 100190 blogbench 1.472381 CALL  close(0x2a)
   884 100162 blogbench 1.472382 CALL  read(0x31,0x602f60,0x10000)
   884 100141 blogbench 1.472386 CALL  read(0x32,0x602f60,0x10000)
   884 100190 blogbench 1.472387 CALL  open(0x7ffff73b9ba0,0<O_RDONLY>,<unused>0)
   884 100162 blogbench 1.472395 CALL  read(0x31,0x602f60,0x10000)
   884 100130 blogbench 1.472398 CALL  write(0x2a,0x612f60,0x1df2)
   884 100141 blogbench 1.472402 CALL  read(0x32,0x602f60,0x10000)
   884 100162 blogbench 1.472407 CALL  close(0x31)
   884 100130 blogbench 1.472412 CALL  close(0x2a)
   884 100190 blogbench 1.472403 CALL  open(0x7ffff73b9ba0,0<O_RDONLY>,<unused>0)
   884 100162 blogbench 1.472418 CALL  open(0x7ffffabd5ba0,0<O_RDONLY>,<unused>0)
   884 100130 blogbench 1.472421 CALL  rename(0x7ffffebf5770,0x7ffffebf5ba0)
   884 100141 blogbench 1.472415 CALL  close(0x32)
   884 100190 blogbench 1.472423 CALL  read(0x2a,0x602f60,0x10000)
   884 100141 blogbench 1.472430 CALL  open(0x7ffffd5eaba0,0<O_RDONLY>,<unused>0)
   884 100162 blogbench 1.472433 CALL  read(0x31,0x602f60,0x10000)
   884 100190 blogbench 1.472438 CALL  read(0x2a,0x602f60,0x10000)
   884 100130 blogbench 1.472442 CALL  open(0x7ffffebf5770,0x601<O_WRONLY|O_CREAT|O_TRUNC>,0x180<S_IRUSR|S_IWUSR>)
   884 100190 blogbench 1.472443 CALL  close(0x2a)
   884 100141 blogbench 1.472451 CALL  open(0x7ffffd5eaba0,0<O_RDONLY>,<unused>0)
   884 100162 blogbench 1.472451 CALL  read(0x31,0x602f60,0x10000)
   884 100190 blogbench 1.472450 CALL  open(0x7ffff73b9ba0,0<O_RDONLY>,<unused>0)
   884 100141 blogbench 1.472460 CALL  read(0x2a,0x602f60,0x10000)
   884 100130 blogbench 1.472464 CALL  write(0x32,0x612f60,0x13f2)
   884 100190 blogbench 1.472465 CALL  open(0x7ffff73b9ba0,0<O_RDONLY>,<unused>0)
   884 100162 blogbench 1.472461 CALL  close(0x31)
   884 100190 blogbench 1.472475 CALL  read(0x31,0x602f60,0x10000)
   884 100162 blogbench 1.472477 CALL  open(0x7ffffabd5ba0,0<O_RDONLY>,<unused>0)
   884 100141 blogbench 1.472480 CALL  read(0x2a,0x602f60,0x10000)
   884 100130 blogbench 1.472478 CALL  close(0x32)



Why is Blogbench slow on 
FreeBSD?
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PostgreSQL pgbench

● Initialized with -s 1000
● 100,000,000 records, 16 GB size

– (fits in RAM, for RO)
● PostgreSQL configuration:

– 8 GB shared buffers
– 32 MB work memory
– autovacuum off
– 30 checkpoint segments



PostgreSQL / pgbench caveats

● WAL logging means:
– data is written to checkpoint segments, 

restarts are needed between WRITE 
benchmarks

– data is transferred to “proper” storage 
almost unpredictably, long-ish runs are 
needed for repeatable benchmarks

● Autovacuum can run almost 
unpredictably



PostgreSQL results
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PostgreSQL result notes

● Linux is consistently 5%-10% better
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● Remote access doesn't help much

Scheduler issue
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However...

● Different benchmark, by Florian Smeets
● 40-core, 80-thread system, 256 GB RAM
● scale 100 – 10,000,000 records

Threads 2 Threads 4 Threads 8 Threads 10 Threads 16 Threads 20 Threads 24 Threads 32
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Filebench

● Dubious correctness of the port...
● “fileserver” and “webproxy” profiles

– fileserver: “Emulates simple file-server I/O activity. This workload 
performs a sequence of creates, deletes, appends, reads, writes 
and attribute operations on a directory tree. 50 threads are used 
by default. The workload generated is somewhat similar to 
SPECsfs.”

– webproxy: “Emulates I/O activity of a simple web proxy server. A 
mix of create-write-close, open-read-close, and delete 
operations of multiple files in a directory tree and a file append to 
simulate proxy log. 100 threads are used by default.”

● Local drive, NFSv3 and NFSv4



fileserver profile
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webproxy profile
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Cross-benchmarking

● FreeBSD server, Linux client
● Linux does caching...
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Bullet Cache

● My own cache server, presented at 
BSDCan 2012 :)

● Lots of small (32 byte – 128 byte) TCP 
command / response transactions

● Multithreaded + non-blocking IO
● (nearly 2,000,000 TPS over Unix sockets 

on medium-end hardware)
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● Linux support incomplete, lacks epoll()
● Within measurement error, 9.1 == 10
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Result notes

● TCP is fairly concurrent in FreeBSD, 
multiple TCP streams do not block
each other

● > 470,000 PPS per direction
● Over Unix sockets (local): 1,020,000 TPS



On tuning...

● The year is 2013 and FreeBSD actually 
auto-tunes reasonably well

● Example #1: vfs.read_max
● Example #2: hw.em.txd/rxd
● Example #3: kern.maxusers
● Example #4: vm.pmap.shpgperproc

+ hi/lobufspace



Why no CPU benchmarks?

● You are not going to influence raw CPU 
performance from the OS (except in edge 
cases / misconfiguration)

● You can test the quality of the libc and 
libm implementations... but be sure that 
is what you want to

● You can also test the quality of compiler 
optimizations... if you want to.



(LLVM vs GCC)

● (do not draw conclusions based on this)
● (Phoronix benchmark, Botan/KASUMI)

OpenBenchmarking.orgMbytes/s, More Is Better

Botan v1.10.3
Test: KASUMI

GCC 4.7.2

GCC 4.8.0

LLVM Clang 3.2

LLVM Clang 3.3 SVN

15 30 45 60 75

SE +/- 0.00
39.35

SE +/- 0.00
37.91

SE +/- 0.00
39.34

SE +/- 0.00
65.75

Powered By Phoronix Test Suite 4.4.1

1. (CXX) g++ options: -m64 -ldl -lpthread -lrt



Why NOT benchmark?

● When is benchmarking important?
– Is performance more important than 

features?
– Is it cheaper to buy another machine than 

to reconfigure / develop a better OS?
● The future is actually quite good

– During 7.x timeframe: 8 CPU scalability
– During 10.x timeframe: 32 CPU scalability



When you do need to benchmark?

● As a sysadmin, you just want to know
● Planning / budgeting for a project
● When your boss tells you to :)
● Advocacy...



Continuous benchmarking?

● Some talks were had...
● It would probably be easier to set up now 

after the developer cluster has been 
updated...

● Performance regression monitoring



The End

Benchmarking FreeBSDBenchmarking FreeBSD

Ivan Voras <ivoras@freebsd.org>
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