FitAl

Software Requirements Specification

CSE227
ADVANCED ANDROID APP DEVELOPMENT

Srikant Kumar Aich
1211192

Prepared for
Continuous Assessment 3
Spring 2025

FitAl

Table of Contents

(O RO 5 16O 1 1O N TR 1
IR =T R 1
107 = =R 1
1.3 DEFINITIONS, ACRONYMS, AND ABBREVIATIONScittttiiieieiiiiittieeieesiiissstesseessisisssssssesssssisssssssesssssisssssssesssssssnnns 2
L REFERENCES. .. .utttiiiieeiiiitttiet e e e e s ettt ettt e e e ee s b b asteeseessaabbbaseeeeeesaabb b e beeseessasb b e e ae e s e e s s e bbb b b e e seeesaasbbbbesseeessssabbbeaseasssssanres 2

2. GENERAL DESCRIPTIONttt ettt ettt sttt e ettt e e s ettt e e s eate e e s ssbteessabessesebtaessssbesessabeasesibbneesssbanesaan 2
2.0 PRODUCT PERSPECTIVEuutttiiieeiiiiittttteeeeessitbastessesssassbastsssesssasbbbaesseessaasabbbasseesseasbbbbaasesesesabbbaaeeessssssbbbsseeeeessas 2
2.2 PRODUCT FUNCTIONScititttttiiie e e ee ittt ettt e e e e st etbbat e e e e s st eabb b b e e eeeesssasbbbbeeseeessasbbbbeseseeseasbbbbaasaeesessbbbabeeessssaabbbbseeesessss 3
2.3 USER CHARACTERISTICS. .uvtttiittttetittetesitteeesettesssestesssesbesessssessssbesessssbasssaabesessbaeessasbesssassesesssbaeessasbasessssessssseeeean 3
2.4 GENERAL CONSTRAINTS ..ctutttttieetteiitttttteeesssesbsstessesssasbtstsasesssasssbsteeseessasabtaesseesssssabbasssassssssbbassseesssssssbreseeasessns 3
2.5 ASSUMPTIONS AND DEPENDENCIES. .. .uttttttiiiiiiitirtieesessiiisssstessesssiisssssessssssasssssssssessssistsssssssssiisssssesssessissssssessenns 3

3. SPECIFIC REQUIREMENTSoooiiiiieie sttt ettt te et te e saeenteenbeanteeneenteesteenteenteaneennees 4
3.1 EXTERNAL INTERFACE REQUIREMENTS ..iiiiiiiiittttieeeeeiiiitttrietsesssisasstesssessssiasbsesssessssssbssssssssssssssssessssssissssssssssesins 4

TN L O LYY] =] g =TT 4
RO A = 10 LY Ll L1 =] = (oS TRRRTRR 4
I o) 11V T (e 1)] = oL 4
3.1.4 COMMUNICALIONS INMTEITACESeeiictriieietii ettt e ettt e ettt e s sttt e s sttt eesbeeeesstbeeessabeeeesssbeeesssbaeessaseeeesssbenesssbeneesan 4
3.2 FUNCTIONAL REQUIREMENTSeiutttittteitte ettt estaeasteeassesasseassesasssesssssassssassseassseessesssssssssessssssesssssssessssessssessssesssnees 6
R R L= N0 1 LT a1 (7= 1 o) o TSP 6
A Y AT (0] ¢ (o LU A 1= =T =1 (o] TR 6

4. ANALYSIS IMODELSttt ettt e e ettt e e ettt e e s bt e e e s ettt e e s eateeeesbteessasbeeesaabaaeessbaeeesasteeesssbeeeesarbeeess 7
4.1 DATA FLOW DIAGRAMS (DFD)......uviiiiiitiiiteete ettt sttt et e te e te e aeste e s te e sbeesbeenaeenseenbestaesteesteesreaneesnnas 7

5. VS CODE SCREENSHOTSottt ettt ettt et e s et e e s bt e e e s s st e e e s sab b e e e s ibbeeesebbbeesaabeasesbaeessabbeeesns 8

Software Requirements Specification Page ii

FitAl

1. Introduction

This section provides an overview of the FitAl mobile application, outlining the purpose, scope,
and structure of this Software Requirements Specification (SRS). The goal is to present all
necessary information to understand what the software does, whom it serves, and how it should
behave.

1.1 Purpose

The purpose of this document is to detail the functional and non-functional requirements of the
FitAl Android application. It is intended for use by the development team, project managers,
testers, and stakeholders to understand the design, behavior, and scope of the application.
The primary audience includes:

Android developers implementing the application.

Quality assurance/test engineers verifying functionality.

UI/UX designers designing user flows and layout.

Project supervisors reviewing deliverables.

End-user documentation writers

1.2 Scope

FitAl is an Al-powered Android fitness application designed to provide users with personalized
workout suggestions based on selected body parts or goals (e.g., cardio) and preferred duration.
The application features:

o Aninteractive interface using modern Android design (Jetpack Compose)

« Real-time step tracking for physical activity monitoring

o Al-generated exercise plans using the Gemini API

o A Gemini-powered search assistant

o login/signup functionality using Firebase.
A single-page user interface with structured exercise recommendations
the application does not include:

o Diet planning or nutrition tracking.

« Third-party fitness device integration (e.g., Fitbit, Apple Watch)

o Cloud backup or multi-device sync

« Social networking or progress sharing
This app aims to make intelligent fitness planning accessible without requiring complex
equipment or human coaching.

FitAl

1.3 Definitions, Acronyms, and Abbreviations

Term / Acronym Description

SRS Software Requirements Specification

Al Artificial Intelligence

Ul User Interface

UX User Experience

API Application Programming Interface

JSON JavaScript Object Notation

MVVM Model-View-ViewModel (Android architecture pattern)
Jetpack Compose Android’s modern Ul toolkit

Firebase Android storage mechanism for key-value data
Gemini Google’s Al platform/API used in the app

Step Tracker Module that counts steps using phone sensors

1.4 References

Android Developer Documentation - https://developer.android.com

Jetpack Compose - https://developer.android.com/jetpack/compose

Google Gemini API - Official documentation (internal/external as per availability)
IEEE 830-1998 - Recommended Practice for Software Requirements Specifications
Kotlin Language Guide - https://kotlinlang.org/docs

2. General Description

This section provides a high-level overview of the FitAl application, focusing on the product
perspective, user characteristics, and operational environment.

2.1 Product Perspective

FitAl is an independent Android application developed from scratch using Kotlin and Jetpack
Compose. It integrates Google’s Gemini Al API for generating personalized workout routines.
The app follows the MVVM architecture to ensure separation of concerns and scalability.
Key components include:
o Frontend Ul (Jetpack Compose): For seamless and reactive user experience.
« Gemini Integration Module: Handles Al-powered workout generation based on user
input.
o Step Tracker Module: Uses the device s sensors to count steps.
o Firebase: For storing user credentials.
« Al Workout Planner: Generates a structured plan with headings and subheadings based
on body part and duration.
The app does not rely on external databases or cloud services, making it lightweight and
privacy focused.

https://developer.android.com/
https://developer.android.com/jetpack/compose

FitAl

2.2 Product Functions

The primary functions of the FitAl app are:
o Allow users to sign up and log in with data storage.
o Let users choose a body part or workout type (e.g., chest, cardio) and duration (e.g., 10
minutes).
Generate custom workout plans using Gemini API based on input.
Display workout plans with a clean and structured layout (heading + subheading).
Count user steps in real time using phone sensors.
Allow users to search for workouts or queries using Gemini-powered assistant.
Show all features in a modern single-screen layout.

2.3 User Characteristics

Target Audience: Fitness enthusiasts, beginners, and casual users aged 16-50.
Technical Skill Level: Minimal; the app is designed to be user-friendly and intuitive.
Accessibility: Colorful visuals, clear fonts, and easy navigation.

Expected Behavior: Users interact via dropdowns, buttons, and search prompts. They
are expected to provide basic input like workout goals and time.

2.4 General Constraints

The app is limited to Android OS (API 26 and above).

Requires internet access for Gemini API features.

Step tracking accuracy depends on device hardware sensors.

No backend server or multi-user sync functionality is implemented.
Gemini API usage is limited based on quota and rate limits.

2.5 Assumptions and Dependencies

Users have working internet access for Al features.

Gemini API key is valid and properly configured.

Users give permission for activity recognition for step tracking.
The device supports basic motion sensors.

The Android system supports Jetpack Compose (newer versions).

FitAl

3. Specific Requirements

This section outlines all functional and non-functional requirements needed to build and validate
the FitAl application. These requirements are written to be clear, testable, traceable, and
prioritized.

3.1.1 User Interfaces

The app uses a Jetpack Compose Ul with a single-screen layout containing:
Sign-up and login forms

Dropdowns for body part and duration

Gemini-powered Al prompt box

Step tracker card

Al-generated workout display (heading + subheading)

3.1.2 Hardware Interfaces

o Use an accelerometer and/or step detector sensor for step counting.
e Requires devices with Activity Recognition hardware support.

3.1.3 Software Interfaces
e Gemini API integration via HTTP requests using a valid API key.

o Use Firebase for secure storage of user credentials.
e Requires Android 8.0 (API level 26) or higher.

3.1.4 Communications Interfaces
Internet connection required for:
e Fetching workout plans from Gemini Al
e Searching fitness-related queries via Al
e No server-client model; app is standalone.

FitAl

11:35 (X 24:33 LA 4 P E:LE

Welcome Back &

Email ‘

Forgot Password?

11:36 (2448

Edit Your Profile

25

Y

11:36 (S 2445 s o4 Essse

Welcome, Srikant Aich

Fitness Planner

View your profile
Profile

¢
12669 kcal

Calories Bumed

Height

Donit have an accou nUp

7 Days

— [
Figure 1 Figure 2 Figure 3

11:36 (2457 C OB W8S% e 11:36 (A 25:06 A 4 P E:E A 11:36 (% 2452 . ANB5% e

% Steps Tracker Al Workout Planner Calories Burned Details
Select Body Part

‘ Full Body

2771 steps

277_] Select Duration Total Steps
100%

0 steps remaining

‘ 20 mins

¢
12669 keal

Calories Burned

FULL BODY Plan

- “*Warm-up:** Jumping Jacks (30 $
seconds)
@@ 2111.50 meters
© = Distance Covered

ur Daily Goal High Knees (30 seconds)

2700

Butt Kicks (30 seconds)

- Squats: 15 reps

- Push-ups: As many reps as possible
(AMRAP)

Figure 4 Figure 5 Figure 6

FitAl

3.2 Functional Requirements

This section describes specific features of the software project. If desired, some requirements
may be specified in the use-case format and listed in the Use Cases Section.

3.2.1 User Authentication

3.2.1.1 Introduction

Allow users to sign up, store credentials, and log in securely.

3.2.1.2 Input
o Username
e Password

3.2.1.3 Processing
o Check for existing users during signup.
« Match credentials on login using Firebase.
3.2.1.4 Output
o Login success/failure messages
« Navigate to dashboard upon success.
3.2.1.5 Error Handling
o Show "Invalid credentials” toast if login fails.
o Show "User already exists™ if duplicate signup.

3.2.2 Al Workout Generator
3.2.2.1 Introduction
Generates personalized workouts using Gemini Al.
3.2.2.2 Input

« Dropdown selection of body part or workout type

o Dropdown selection of workout duration
3.2.2.3 Processing

e Prompt Gemini with structured query like:

"Generate a 15-minute back workout with warm-up and main exercises."

3.2.2.4 Output

o Structured workout with a heading and subheading

o The display result is a styled card.
3.2.2.5 Error Handling

« Display fallback error if Gemini API fails or times out.

3.2.3 Step Tracker
3.2.3.1 Introduction
Track and display the user’s steps in real time.
3.2.3.2 Input

e Device’s motion sensors
3.2.3.3 Processing

o Listen to step events and update the count.
3.2.3.4 Output

« Realtime step count shown in a colorful card.
3.2.3.5 Error Handling

« Show "Step tracking not available" if sensors aren 't found.

FitAl

4. Analysis Models

DATA FLOW DIAGRAM (LEVEL 1)

User Inputs Gemini Al
API
° BOdy Part N FITAI .

* Time SYSTEM

A

Y

Sensor Data 2.0 Gemini (SharedPreferences)

A

Al Integration (Login Data)

(Returns Workout
Plan)

Y

{ 3 Workout J

Step Tracker

Sensor Data Presenter

Stepunso } Local Storage

Figure 7

The user interface is designed using Jetpack Compose, with a clean and modern layout that
is intuitive and responsive. Key Ul elements include:
o Login/Sign-up Screen:
e Text fields for username and password.
e Buttons to submit and switch between login/sign-up modes.
e Error messages for invalid or duplicate credentials.
o Main Dashboard:
e Step tracker card showing current step count.
e Gemini Al workout generator section:
= Dropdowns to select body part and duration.
= Prompt and response box styled for clarity.
e OQutput area displays structured workout with:
e Heading (e.g., “Back Workout”)
e Subheading (e.g., warm-up + exercises)
o Colors and Themes:
e Colorful cards inspired by fitness dashboards.
e Smooth animations using Jetpack Compose's built-in transitions.

FitAl

Hardware Interfaces
o Sensors Used:
e Step Counter and/or Step Detector
e Device must support Activity Recognition for accurate step tracking.
4.3 Software Interfaces
e Android Platform:
e Minimum SDK version: APl 26 (Android 8.0)
e Target SDK: API 34 (Android 14)
e APIs & Libraries:

e Gemini Al API (Google Generative Al client)
e Firebase for credential storage

e Jetpack Compose for Ul development.

e Kotlin as the programming language

4.4 Communication Interfaces
o Internet Connectivity:
e Required to interact with Gemini Al and fetch workout suggestions.
e Apps should gracefully handle lack of connection (show error prompts).
« No backend/server dependency:
e All logic and storage are client-side (offline-first except Al).

5. VS CODE SCREENSHOTS

©® = [FinalProject 79 master [, Nothing A142
(3 Android Kt AndroidManifestxml 3 FitnessData.kt LoginScreen.kt SignupScreen.kt Preferences v} [], Nothing A142 AP1 35 + [[Jad
v [Capp 1 <?xml version="1.0" encoding="utf-8"2> v O DO <00 B Em B @
o ~ [manifests <manifest xmlns:android="http://schemas.android.com/apk/res/android" (e})
o= AndroidManifest.xml xmlns:tools="http://schemas.android.com/tools"> (i
v [kotlin+java @
~ [5] com.example-finalproject <application X
> [2] uitheme android:allowBackup="true"
[< AlworkoutPlanner.kt android:dataExtractionRules="@xml/data_extraction_rules"
[X AppNavigation.kt android:fullBackupContent="@xml/backup_rules"
[X CaloriesDetailsScreen.kt android:icon="@nipmap/ic_launcher”
(& FitnessData android:label="FitAI"
[< FitnessDataUploader.kt android:roundIcon="@mipmap/ic_launcher_round"
[< FitnessScreen.kt android:supportsRtl="true"
@ FitnessViewModel android:theme="@style/Theme.FinalProject" Welcome Back
[X LoginScreen kt tools:targetApi="31">
(@ MainActivity <activity
[X PreferencesManager kt android:name=".MainActivity" Email
[X ProfilePage.kt android:exported="true" "
[Z SignUpDetailScreen.kt android:label="FitAI" Passward
[< signupScreen kt android:theme="@style/Theme.FinalProject">
[< StepsScreen kt <intent-filter> Forgo! Pasewrord?
(’E(Uistate <action android:name="android.intent.action.MAIN" />
> [&] com.example finalproject (androidTes <category android:name="android.intent.category.LAUNCHER" />
> [com.example finalproject (test) </intent-filter> Doarit have an ascount? Sign Up
= > Cjava (generated) </activity>
! > [2res </application>
@ > [2res (generated)
49~ (7 Gradle Scripts </manifest>

&2 build.gradle.kts (Project: FinalProject)
&2 build.gradle.kts (I

g
o) :
) = proguard-rules.pre u or "
o ® Install successfully finished in Tm 0 s 59 ms
) gradle.properties j)
L 8} gradie-wrapper.properties (G ersig _ Text Merged Manifest ———

OFinalProject > Oapp > src > Omain > [AndroidManifestxml T OCRF UTF8 & @ 4 Tab of

Haade=me @@ ~ & Oue , 508

€

Figure 8 AndroidManifest.xml

FitAl

[J Android - Kt AndroidManifest.xml FitnessDatakt [LoginScreen.kt ¢ SignupScreen.kt v : [], Nothing A142 AP135 + | iy
o v [zapp package com.example.finalproject 19~y O MW <9 00 B o B o
o ~ [manifests . @ 5
AndroidManifest.xml import ... =Y
~ [Dketlin+java //import androidx.navigation.c nse.navigate]
v [com.example finalproject R
> [ui.theme @Composable
[AlWorkoutPlanner.kt fun LoginScreen(navController: NavHostController) {
[AppNavigation.kt var email by rememberSaveable { mutableState0f("") }
[< CaloriesDetailsScreen.kt var password by rememberSaveable { mutableState0f("") }
@FlmessData val context = LocalContext.current
[< FitnessDataUploader.kt val auth = FirebaseAuth.getInstance()
[FitnessScreen.kt val user = auth.currentUser // Check if the user is already logged in
(@ FitnessViewModel Welcome Back -,
[< LoginScreen kt // If the use already 1o in, navigate to f
(@ MainActivity if (user != null) { " y
[preferencesManagerkt LaunchedEffect(Unit) { Email
[< ProfilePage.kt b6 4 navController.navigate("fitnessScreen”) {
[SignUpDetailScreen.kt popUpTo("login") { inclusive = true } —
[signupScreen kt ¥
[X StepsScreen kt } Forgot Paseword?
(@ Uistate b
(@ UserProfile Log
> [com.example finalproject (androidTes Column(
>[5 com.example finalproject (test) nodifier = Modifier Dorit have an account? Sign Up
7 > CRjava (generated) .fillMaxSize()
> [2res .padding(24.dp),
@ > [2res (generated) horizontalAlignment = Alignment.CenterHorizontally,
) ~ &7 Gradle Scripts verticalArrangement = Arrangement.Center +
&2 build.gradle kts (Project: FinalProject)) {
O & build.gradle.kts (Module :app) Text(
= proguard-rules.pro (ProGuard Rules for " text = "Welcome Back ", 11
£33 gradle.properties (Project Properties) style = MaterialTheme.typography.headlineMedium.copy(fontWeight = FontWeigh
e 93 gradle-wrapper.properties (Gradle Versio modifier = Modifier.padding(bottom = 32.dp)
OFinalProject > Oapp > src > Omain > java > com > example > finalproject > [X LoginScreenkt > & LoginScreen 66:54 CRLF UTF-8 @ (] 4 4spaces o
QandemeI»a e WD LR E

Figure 9 LoginScreen.kt

0. Nothing A

[0 Android ~ g % 8 Kt AndroidManifestxml (@ FitnessData.kt . LoginScreenkt [£ SignupScreenkt v 2308 [, Nothing A142 API 35 + m IS e
o v [happ package com.example.finalproject Tavy O PDWO < 00 B @ [
o ~ [manifests (e} o
b AndroidManifest.xml import ... 7y
~ [Jkotlin+java @
~ [] com.example.finalproject @Composable .
> [uitheme fun SignupScreen(navController: NavHostController) {
[< AlworkoutPlanner.kt var userld by remember { mutableStateOf("") } // Email
[< AppNavigation.kt var password by remember { mutableStateOf("") ¥}
[< CaloriesDetailsScreen.kt val context = LocalContext.current
(@ FitnessData val auth = FirebaseAuth.getInstance()
[< FitnessDataUploader kt
[FitnessScreen kt Column(
(@ FitnessViewModel modifier = Modifier
[< LoginScreen kt .fillMaxSize() Sign Up
(@ MainActivity .padding(24.dp),
[< PreferencesManager.kt verticalArrangement = Arrangement.Center,
[X ProfilePage kt horizontalAlignment = Alignment.CenterHorizontally Email
[< SignUpDetailScreen.kt) Aq o
[signupScreen.kt Text("Sign Up", style = MaterialTheme.typography.headlineMedium) T]
[X stepsScreen kt |
(I Vistate Spacer(nodifier = Modifier.height(24.dp))

n Up

(@ UserProfile
> [) com.example.finalproject (androidTes // User ID input

> [2) com.example.finalproject (test) OutlinedTextField(
T > [3java (generated) value = userld,
> [Rres onValueChange = { userld = it },
@ > [2res (generated) label = { Text("Email") },
49 ¥ (7 Gradle Scripts singleline = true i
& build.gradlekts (Project: FinalProject))
O] EE build.gradle.kts (Module :app)
= proguard-rules.pro (ProGuard Rules for " Spacer(modifier = Modifier.height(16.dp)) il
o] gradle.properties (Project Properties)
w 3 gradle-wrapper.properties (Gradle Versio // Password input
OFinalProject > Oapp > src > Omain > java > com > example > finalproject > [X SignupScreen.kt 822 CRLF UTF-8 & [0 4 4spaces o
B Q5 ﬂ { = A 2% EmG G & 29,04,0231;32$

Figure 10 SignUpScreen.kt

FitAl

[Android ~

{ ProfilePage.kt

[FitnessScreenkt v

{ SignUpDetailScreen.kt { StepsScreen.kt

[, Nothing A142 API 35

L

¢ X N o
o ~ [app package com.example.finalproject BY6e ~v O DWW 9 OO B o [)
o ~ [manifests) [e2} o
AndroidManifest.xml import 3,
~ [Okotlin+java B
v [2] com.example.finalproject +
> [uitheme @Composable Welcome, Srikant
[AlWorkoutPlanner.kt 50 fun Fitnessapp()]
[< AppNavigation.kt val navController = rememberNavController() Fitriess Planner
[CaloriesDetailsScreen kt
@ FitnessData NavHost(navController = navController, startDestination = "fitnessScreen") {
[< FitnessDataUploader kt composable("fitnessScreen") { !
[< FitnessScreen kt FitnessScreen(navController = navController) // Pass the navController View your profile
(@ FitnessViewMode! } oratte
[< LoginScreen kt composable("stepsDetails") {
(@ MainActivity StepsDetailsScreen() // Navigate to Steps Details Screen
[< PreferencesManager.kt } n
[< ProfilePage .kt }
[< signUpDetailScreen kt | 9338 keal
[Z SignupScreen.kt Caleries Burned
[< stepsScreen.kt @Composable
(3 Vistate fun StatCard(title: String, value: String, emoji: String, onClick: () -> Unit) {...} "
(@ UserProfile x
> [2) com.example.finalproject (androidTes @ptIn(ExperimentalMaterial3Api::class) 4224
> [2) com.example.finalproject (test) @Composable Steps
T > [Rjava (generated)
> [2res fun FitnessScreen(navController: NavController) {
P > [2res (generated) val context = LocalContext.current w
o &7 Gradle Scripts var steps by remember { mutableState0f(0) } 7 Days +
&2 build.gradle.kts (Project: FinalProject) var calories by remember { mutableState0f(0) } -
0] &3 build.gradlekts (Module :2pp) val userProfile = getUserProfile(context)
= proguard-rules.pro (ProGuard Rules for ": // Fetch steps from SharedPreferences 1=
3 gradie.properties (Project Properties) LaunchedEffect(Unit) { 7]
L 163 gradle-wrapper.properties (Gradle Versio steps = getStepCount(context) ik
OFinalProject > Dapp > src > Omain > java > com > example > finalproject > [X FitnessScreenkt > @ FitnessApp 5019 LF UTF-8 @& [0 4 4 spaces
aa LI O A& IV due 00

Figure 11 DashBoard/Fitnessscreen.kt

@ Android 8 X ¢ ProfilePage.kt { SignUpDetailScreen.kt { StepsScreenkt [< FitnessScreenkt v = 308 [, Nothing A142 API 35 P (] e
o ~ [Crapp package com.example.finalproject ByYerv O MO « 00 B [
o v [Dmanifests [0
AndroidManifest.xml import =)
~ [JkKetlin+java =
v [com.example finalproject R
> ez Geomposevte Edit Your Profile
[< AlWorkoutPlanner.kt 50 fun FitnessApp() {
[AppNavigation.kt val navController = rememberNavController()
[CaloriesDetailsScreen kt !
@ FitnessData NavHost(navController = navController, startDestination = "fitnessScreen") {
[< FitnessDataUploader kt composable("fitnessScreen") { NS":‘i;can!
[< FitnessScreen kt FitnessScreen(navController = navController) // Pass the navContr
(& FitnessViewMode! }
[< LoginScreen kt composable("stepsDetails") { &
(@ MainActivity StepsDetailsScreen() // Navigate to Steps Details
[< preferencesManager.kt + ;;
[< ProfilePage .kt }
[< signUpDetailScreen.kt [|
[SignupScreen.kt
[stepsScreen.kt @Composable
(@ UiState fun StatCard(title: String, value: String, emoji: String, onClick: () -> Unit) {...} Helght
(@ UserProfile 175.0
> [com.example-finalproject (androidTes @ptIn(ExperimentalMaterial3Apis::class)
> [) com.example finalproject (test) @Composable ‘II
T > [Rjava (generated) o
> [2res fun FitnessScreen(navController: NavController) { Wielght
@ > [2res (generated) val context = LocalContext.current 75.0
49 7 &7 Gradle Scripts var steps by remember { mutableState0f(0) } +
&2 build.gradlekts (Project: FinalProject) var calories by remember { mutableState0f(0) }
(0] C’:Ebuild.gradle.ktsAMocJe app) val userProfile = getUserProfile(context)
= proguard-rules.pro (ProGuard Rules for " // Fetch steps f Sh ferences 1
1 gradie.properties (Project Properties) LaunchedEffect(Unit) {
L £33 gradle-wrapper.properties (Gradle Versio steps = getStepCount(context)
OFinalProject > Oapp > src > Omain > java > com > example > finalproject > [ProfilePage.kt 5019 LF UTF-8 £ [0 4 4spaces o
i Q7238 :A LI UL Jpeehecy

Figure 12 ProfilePage.kt
10

FitAl

[J Android - JnUpDetailScreen.kt { StepsScreenkt { FitnessScreen.kt [CaloriesDetailsScreen.kt v [N i [, Nothing A142 API 35 ar (|
o v [Bapp 2581~ OD P DO <« 00 B @D Q&
o v [manifests @Composable 5)
= AndroidManifest.xm| fun CaloriesDetailsScreen() { v
v [Dkotlin+java val context = LocalContext.current ; (1]
~ [7 com.example.finalproject val steps = getStepCount(context) // G
> [uitheme val userProfile = getUserProfile(context) // Fetch weight and height from Calories Burned Details A
[< AlworkoutPlanner kt
[< AppNavigation.kt val weight = userProfile.weight // i"
[X CaloriesDetails Screen kt val height = userProfile.height //
(@ FitnessData 4224 steps
[FitnessDataUploader.kt // Check TN
[< FitnessScreen kt if (weight
(@ FitnessViewModel Text(
[< LoginScreen kt text = "Invalid profile data. Please update your profile.", p‘y
@MamActivlty style MaterialTheme.typography.bodylarge.copy(fontWeight = FontWeight.Bol 9656 keal
[PreferencesManager.kt color = MaterialTheme.colorScheme.error Calories Burned
[X ProfilePage kt)
[< SignUpDetailScreen kt return
[signupScreen.kt } j__
é 3::(5:'99"'“ 3218.69 meters
Distanze Coverad
(@ UserProfile
> [&2 com.example-finalproject (androidTes s
> [£3 com.example finalproject (test)
T > [Rjava (generated) meter estimate)
> 2res
@ > (2res (generated)
& - @ Gradle Scripts /7 Ce : burne I
&% build.gradlekts (Project: FinalProject) val caloriesBurned = (distanceCovered * weight * caloriesPerKgPerMeter).toInt()
o E&bulld.gradle.kts (Module :app)
= = proguard-rules.pro (ProGuard Rules for " // Save the d ance and ries in SharedPr ences Bl
@ gradle.properties (Project Properties) 79 4 lsﬂveDistnnceAnanlories[cnntext, distanceCovered.toFloat(), caloriesBurned)
¥ 3 gradle-wrapper.properties (Gradle Versio
OFinalProject > Oapp > sre > Omain > java > com > example > finalproject > (X CaloriesDetailsSereenkt >) CaloriesDetailsScreen 795 CRLF UTF-8 £ [4 4spaces o
i eme @ a e W Ree s

Figure 13 CaloriesDetails.kt

0. Nothing A

[Android ~ ¢ X)nUpDetailScreen.kt [X stepsScreen.kt { FitnessScreen.kt { CaloriesDetailsScreen.kt v = 0 B8 [, Nothing A142 API 35 ol a : iy
o v [happ import kotlin.math.sqrt 11~ v O PDWU <« 00 B @ [R=)
& ~ [manifests @Composable ®]
= AndroidManifest.xml fun StepsScreen(navController: NavHostController) { (v
~ [Dkotlin+java val context = LocalContext.current J]
v [2) com.example finalproject val sensorManager = remember { context.getSystemService(Context.SENSOR_SERVICE) as
> [uitheme val accelerometer = remember { sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROM ﬁ_ Steps Tracker 2
[AlworkoutPlanner.kt
[< AppNavigation.kt // Load saved step count and goal from SharedPreferences
[< CaloriesDetailsScreen.kt var steps by remember { mutableStateOf(getStepCount(context)) }
(@ FitnessData var goal by remember { mutableStateOf(getSavedGoal(context)) }
[< FitnessDataUploader kt 4224
[FitnessScreen kt val stepThreshold = 12f e
(@ FitnessViewModel val lastValues = remember { mutableStateOf(Triple(6f, 0f, 0f)) } b et R
[< LoginScreen kt
(@ MainActivity // Registering the SensorEventlListener
[< PreferencesManager.kt 39 ? DisposableEffect(Unit)
[< ProfilePage.kt val listener = object : SensorEventListener {
[Z SignUpDetailScreen.kt a override fun onSensorChanged(event: SensorEvent?) {
[< signupScreen.kt event?.let {
[< StepsScreen kt val (x, y, z) = Triple(it.values[0], it.values[1], it.values[2])
(R Vistate val prev = lastValues.value @
(@ UserProfile val delta = sqrt(
i st vour Dely Gosl
> [) com.example.finalproject (androidTes (x - prev.first).toDouble().pow(2.0) + 1000
> [E] com.example.finalproject (test) (y - prev.second).toDouble().pow(2.0) +
= > [3java (generated) (z - prev.third).toDouble().pow(2.0)
T > [2res).toFloat()
A4 > [2res (generated)
49 ¥ (7 Gradle Scripts if (delta > stepThreshold) { T
&2 build.gradle.kts (Project: FinalProject) steps += 1
0] &2 build.gradle.kts (Module :app) saveStepCount(context, steps) // Save ps to SharedPreference @
= proguard-rules.pro (ProGuard Rules for " } il
] gradle.properties (Project Properties)
P 183 gradle-wrapper.properties (Gradle Versio lastValues.value = Triple(x, vy, z) e
O FinalProject > Oapp > sfic > Omain > java > com > example > finalproject > [StepsScreenkt > (@ StepsScreen 3929 CRLF UTF-8 @& [] 4 4spaces o
EQ %X &= 26 Emﬁ & & 29—04923622 &

Figure 14 StepsScreen.kt
11

FitAl

P FinalPrc
[Android ~ ¢ X i [X AworkoutPlanner.kt * (i3 UiStatekt (G FitnessViewModel.kt MainActivity.kt An v [, Nothing A142 API 35 ar (m iy
o v [3app import ... 7TH1ZE A~y O PP MO <« 00 B =] Qe
o ~ [manifests 7 [e2} o
AndroidManifest.xml @Composable &
~ [Jkotlin+java fun AIWorkoutPlannerScreen() { P o bb @
v [E] com.example.finalproject val bodyParts = listOf("Full Body", "Cardio", "Chest", "Back", "Legs", "Arms", "Cor +
> [£] uitheme val durations = 1ist0f("10 mins", "15 mins", "20 mins", "30 mins", "45 mins", "60 m Select Bady Part
[AlWorkoutPlanner.kt Full Bady
[< AppNavigation.kt var selectedBodyPart by remember { mutableStateOf(bodyParts.first()) }
[CaloriesDetailsScreen kt var selectedDuration by remember { mutableStateOf(durations[2]) } Select Duration
(@ FitnessData i N
[< FitnessDataUploader kt val fitnessViewModel: FitnessViewModel = viewModel()) A)
[< FitnessScreen kt val viState by fitnessViewModel.uiState.collectAsState()
(@ FitnessViewModel
[< LoginScreen kt Column(
(@ MainActivity modifier = Modifier FULL BODRY Plan
[< PreferencesManager.kt -fillMax$ize()) .
[< ProfilePage.kt .padding(16.dp) ’- o -‘
o it
[< SignUpDetailScreen kt .verticalScroll(rememberScrollState()), |
[X SignupScreen.kt horizontalAlignment = Alignment.CenterHorizontally P -
[< StepsScreen.kt)4 ‘ e ® ‘
(3 Vistate Text(S J
(@ UserProfile text = "AI Workout Planner", P N
> [5) com.example.finalproject (androidTes style = MaterialTheme.typography.headlineSmall.copy(fontWeight = FontWeight ‘) ‘
> [E3 com.example.finalproject (test) modifier = Modifier.padding(top = 60.dp, bottom = 24.dp) g ¥
% > CRjava (generated)) s B
> (e ‘ [AMRAF) S o
4 > [2res (generated) BodyPartDropdown(hodyParts, selectedBodyPart) { selectedBodyPart = it }
1‘1‘ ~ &7 Gradle Scripts Spacer(modifier = Modifier.height(16.dp)) - ~ [+
&2 build.gradle.kts (Project: FinalProject) -» -Walking Lunges (each leg): 10 reps ‘
o &2 build.gradlekts (Module :app) DurationDropdown(durations, selectedDuration) { selectedDuration = it } J
= proguard-rules.pro (ProGuard Rules for " Spacer(modifier = Modifier.height(24.dp)) ' ~ | 11
€ gradie.properties (Project Properties) ‘ PR Blank:a0lesconog ol ‘
w © gradie-wrapper.properties (Gradle Versio Button(~ e
OFinalProject > Oapp > src > Omain > java > com > example > finalproject > [AlWorkoutPlanner.kt > (@ StatCard 12967 CRLF UTF-8 £ [4 4spaces oS
1] i Q ENG 03:50
[] o = A ANy B g0 &

Figure 15 AlWorkoutPlanner.kt

12

