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1. Introduction

This section provides an overview of the FitAl mobile application, outlining the purpose, scope,
and structure of this Software Requirements Specification (SRS). The goal is to present all
necessary information to understand what the software does, whom it serves, and how it should
behave.

1.1 Purpose

The purpose of this document is to detail the functional and non-functional requirements of the
FitAl Android application. It is intended for use by the development team, project managers,
testers, and stakeholders to understand the design, behavior, and scope of the application.
The primary audience includes:

Android developers implementing the application.

Quality assurance/test engineers verifying functionality.

UI/UX designers designing user flows and layout.

Project supervisors reviewing deliverables.

End-user documentation writers

1.2 Scope

FitAl is an Al-powered Android fitness application designed to provide users with personalized
workout suggestions based on selected body parts or goals (e.g., cardio) and preferred duration.
The application features:

o Aninteractive interface using modern Android design (Jetpack Compose)

« Real-time step tracking for physical activity monitoring

o Al-generated exercise plans using the Gemini API

o A Gemini-powered search assistant

o login/signup functionality using Firebase.
A single-page user interface with structured exercise recommendations
the application does not include:

o Diet planning or nutrition tracking.

« Third-party fitness device integration (e.g., Fitbit, Apple Watch)

o Cloud backup or multi-device sync

« Social networking or progress sharing
This app aims to make intelligent fitness planning accessible without requiring complex
equipment or human coaching.
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1.3 Definitions, Acronyms, and Abbreviations

Term / Acronym Description

SRS Software Requirements Specification

Al Artificial Intelligence

Ul User Interface

UX User Experience

API Application Programming Interface

JSON JavaScript Object Notation

MVVM Model-View-ViewModel (Android architecture pattern)
Jetpack Compose Android’s modern Ul toolkit

Firebase Android storage mechanism for key-value data
Gemini Google’s Al platform/API used in the app

Step Tracker Module that counts steps using phone sensors

1.4 References

Android Developer Documentation - https://developer.android.com

Jetpack Compose - https://developer.android.com/jetpack/compose

Google Gemini API - Official documentation (internal/external as per availability)
IEEE 830-1998 - Recommended Practice for Software Requirements Specifications
Kotlin Language Guide - https://kotlinlang.org/docs

2. General Description

This section provides a high-level overview of the FitAl application, focusing on the product
perspective, user characteristics, and operational environment.

2.1 Product Perspective

FitAl is an independent Android application developed from scratch using Kotlin and Jetpack
Compose. It integrates Google’s Gemini Al API for generating personalized workout routines.
The app follows the MVVM architecture to ensure separation of concerns and scalability.
Key components include:
o Frontend Ul (Jetpack Compose): For seamless and reactive user experience.
« Gemini Integration Module: Handles Al-powered workout generation based on user
input.
o Step Tracker Module: Uses the device s sensors to count steps.
o Firebase: For storing user credentials.
« Al Workout Planner: Generates a structured plan with headings and subheadings based
on body part and duration.
The app does not rely on external databases or cloud services, making it lightweight and
privacy focused.


https://developer.android.com/
https://developer.android.com/jetpack/compose
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2.2 Product Functions

The primary functions of the FitAl app are:
o Allow users to sign up and log in with data storage.
o Let users choose a body part or workout type (e.g., chest, cardio) and duration (e.g., 10
minutes).
Generate custom workout plans using Gemini API based on input.
Display workout plans with a clean and structured layout (heading + subheading).
Count user steps in real time using phone sensors.
Allow users to search for workouts or queries using Gemini-powered assistant.
Show all features in a modern single-screen layout.

2.3 User Characteristics

Target Audience: Fitness enthusiasts, beginners, and casual users aged 16-50.
Technical Skill Level: Minimal; the app is designed to be user-friendly and intuitive.
Accessibility: Colorful visuals, clear fonts, and easy navigation.

Expected Behavior: Users interact via dropdowns, buttons, and search prompts. They
are expected to provide basic input like workout goals and time.

2.4 General Constraints

The app is limited to Android OS (API 26 and above).

Requires internet access for Gemini API features.

Step tracking accuracy depends on device hardware sensors.

No backend server or multi-user sync functionality is implemented.
Gemini API usage is limited based on quota and rate limits.

2.5 Assumptions and Dependencies

Users have working internet access for Al features.

Gemini API key is valid and properly configured.

Users give permission for activity recognition for step tracking.
The device supports basic motion sensors.

The Android system supports Jetpack Compose (newer versions).
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3. Specific Requirements

This section outlines all functional and non-functional requirements needed to build and validate
the FitAl application. These requirements are written to be clear, testable, traceable, and
prioritized.

3.1.1 User Interfaces

The app uses a Jetpack Compose Ul with a single-screen layout containing:
Sign-up and login forms

Dropdowns for body part and duration

Gemini-powered Al prompt box

Step tracker card

Al-generated workout display (heading + subheading)

3.1.2 Hardware Interfaces

o Use an accelerometer and/or step detector sensor for step counting.
e Requires devices with Activity Recognition hardware support.

3.1.3 Software Interfaces
e Gemini API integration via HTTP requests using a valid API key.

o Use Firebase for secure storage of user credentials.
e Requires Android 8.0 (API level 26) or higher.

3.1.4 Communications Interfaces
Internet connection required for:
e Fetching workout plans from Gemini Al
e Searching fitness-related queries via Al
e No server-client model; app is standalone.
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3.2 Functional Requirements

This section describes specific features of the software project. If desired, some requirements
may be specified in the use-case format and listed in the Use Cases Section.

3.2.1 User Authentication

3.2.1.1 Introduction

Allow users to sign up, store credentials, and log in securely.

3.2.1.2 Input
o Username
e Password

3.2.1.3 Processing
o Check for existing users during signup.
« Match credentials on login using Firebase.
3.2.1.4 Output
o Login success/failure messages
« Navigate to dashboard upon success.
3.2.1.5 Error Handling
o Show "Invalid credentials” toast if login fails.
o Show "User already exists™ if duplicate signup.

3.2.2 Al Workout Generator
3.2.2.1 Introduction
Generates personalized workouts using Gemini Al.
3.2.2.2 Input

« Dropdown selection of body part or workout type

o Dropdown selection of workout duration
3.2.2.3 Processing

e Prompt Gemini with structured query like:

"Generate a 15-minute back workout with warm-up and main exercises."

3.2.2.4 Output

o Structured workout with a heading and subheading

o The display result is a styled card.
3.2.2.5 Error Handling

« Display fallback error if Gemini API fails or times out.

3.2.3 Step Tracker
3.2.3.1 Introduction
Track and display the user’s steps in real time.
3.2.3.2 Input

e Device’s motion sensors
3.2.3.3 Processing

o Listen to step events and update the count.
3.2.3.4 Output

« Realtime step count shown in a colorful card.
3.2.3.5 Error Handling

« Show "Step tracking not available" if sensors aren 't found.
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4. Analysis Models
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The user interface is designed using Jetpack Compose, with a clean and modern layout that
is intuitive and responsive. Key Ul elements include:
o Login/Sign-up Screen:
e Text fields for username and password.
e Buttons to submit and switch between login/sign-up modes.
e Error messages for invalid or duplicate credentials.
o Main Dashboard:
e Step tracker card showing current step count.
e Gemini Al workout generator section:
= Dropdowns to select body part and duration.
= Prompt and response box styled for clarity.
e OQutput area displays structured workout with:
e Heading (e.g., “Back Workout”)
e Subheading (e.g., warm-up + exercises)
o Colors and Themes:
e Colorful cards inspired by fitness dashboards.
e Smooth animations using Jetpack Compose's built-in transitions.



FitAl

Hardware Interfaces
o Sensors Used:
e Step Counter and/or Step Detector
e Device must support Activity Recognition for accurate step tracking.
4.3 Software Interfaces
e Android Platform:
e Minimum SDK version: APl 26 (Android 8.0)
e Target SDK: API 34 (Android 14)
e APIs & Libraries:

e Gemini Al API (Google Generative Al client)
e Firebase for credential storage

e Jetpack Compose for Ul development.

e Kotlin as the programming language

4.4 Communication Interfaces
o Internet Connectivity:
e Required to interact with Gemini Al and fetch workout suggestions.
e Apps should gracefully handle lack of connection (show error prompts).
« No backend/server dependency:
e All logic and storage are client-side (offline-first except Al).

5. VS CODE SCREENSHOTS
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Figure 14 StepsScreen.kt
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Figure 15 AlWorkoutPlanner.kt
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