[1]7:

[2]:

[2]:

Jmatplotlib inline
import sys

import os

import time

import numpy
import fabio
import pyFAI

profile 2d

May 3, 2025

from pyFAI.test.utilstest import UtilsTest
import pyFAI.method_registry

import pyFAI.integrator.azimuthal

print (f"Python version: {sys.versionl}")
print (f"PyFAI version: {pyFAI.version}")
start_time = time.perf_counter()

Python version: 3.12.3 | packaged by Anaconda, Inc. |

16:50:38) [GCC 11.2.0]

PyFAI version: 2025.4.0-dev0

(main, Apr 19 2024,

pyFAI .method_registry.IntegrationMethod.list_available()

['IntegrationMethod(1d
'IntegrationMethod (2d
'IntegrationMethod(1d
'IntegrationMethod (2d
'IntegrationMethod(1d
'IntegrationMethod (2d
'IntegrationMethod(1d
'IntegrationMethod (2d
'IntegrationMethod (2d
'IntegrationMethod (1d
'IntegrationMethod (2d
'IntegrationMethod(1d
'IntegrationMethod (2d
'IntegrationMethod(1d
'IntegrationMethod (2d
'IntegrationMethod(1d
'IntegrationMethod (2d
'IntegrationMethod(1d

int,
int,
int,
int,
int,
int,
int,
int,
int,
int,
int,
int,
int,
int,
int,
int,
int,
int,

no split, histogram, python)',

no split, histogram, python)',

no split, histogram, cython)',

no split, histogram, cython)',
bbox split, histogram, cython)',
bbox split, histogram, cython)',
full split, histogram, cython)',
full split, histogram, cython)',
pseudo split, histogram, cython)',

no split, CSR, cython)',
no split, CSR, cython)',
bbox split, CSR, cython)'
bbox split, CSR, cython)'
no split, CSR, python)',
no split, CSR, python)',
bbox split, CSR, python)'
bbox split, CSR, python)'
no split, CSC, cython)',

3

b

'IntegrationMethod(2d int, no split, CSC, cython)',

'IntegrationMethod(1d int, bbox split, CSC, cython)',

'IntegrationMethod(2d int, bbox split, CSC, cython)',

'IntegrationMethod(ld int, no split, CSC, python)',

'IntegrationMethod(2d int, no split, CSC, python)',

'IntegrationMethod(1ld int, bbox split, CSC, python)',

'IntegrationMethod(2d int, bbox split, CSC, python)',

'IntegrationMethod(1d int, bbox split, LUT, cython)',

'IntegrationMethod(2d int, bbox split, LUT, cython)',

'IntegrationMethod(1d int, no split, LUT, cython)',

'IntegrationMethod(2d int, no split, LUT, cython)',

'IntegrationMethod(1d int, full split, LUT, cython)',

'IntegrationMethod(2d int, full split, LUT, cython)',

'IntegrationMethod(1d int, full split, CSR, cython)',

'IntegrationMethod(2d int, full split, CSR, cython)',

'IntegrationMethod(1d int, full split, CSR, python)',

'IntegrationMethod(2d int, full split, CSR, python)',

'IntegrationMethod(1d int, full split, CSC, cython)',

'IntegrationMethod(2d int, full split, CSC, cython)',

'IntegrationMethod(1d int, full split, CSC, python)',

'IntegrationMethod(2d int, full split, CSC, python)',

'IntegrationMethod(1d int, no split, histogram, OpenCL, Intel(R) OpenCL /
Intel(R) Core(TM) i5-4308U CPU @ 2.80GHz)',

'IntegrationMethod(2d int, no split, histogram, OpenCL, Intel(R) OpenCL /
Intel(R) Core(TM) i5-4308U CPU @ 2.80GHz)',

'IntegrationMethod(ld int, no split, histogram, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved)',

'IntegrationMethod(2d int, no split, histogram, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved)',

'IntegrationMethod(1d int, bbox split, CSR, OpenCL, Intel(R) OpenCL / Intel(R)
Core(TM) i5-4308U CPU @ 2.80GHz)',

'IntegrationMethod(2d int, bbox split, CSR, OpenCL, Intel(R) OpenCL / Intel(R)
Core(TM) i5-4308U CPU @ 2.80GHz)',

'IntegrationMethod(1d int, no split, CSR, OpenCL, Intel(R) OpenCL / Intel(R)
Core(TM) i5-4308U CPU @ 2.80GHz)',

'IntegrationMethod(2d int, no split, CSR, OpenCL, Intel(R) OpenCL / Intel(R)
Core(TM) i5-4308U CPU @ 2.80GHz)',

'IntegrationMethod(1d int, bbox split, CSR, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved)',

'IntegrationMethod(2d int, bbox split, CSR, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved)',

'IntegrationMethod(1d int, no split, CSR, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved)',

'IntegrationMethod(2d int, no split, CSR, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved)',

'IntegrationMethod(1d int, full split, CSR, OpenCL, Intel(R) OpenCL / Intel(R)
Core(TM) i5-4308U CPU @ 2.80GHz)',

[3]:

[4] :

[4]:

[5]:

'IntegrationMethod(2d int, full split, CSR, OpenCL, Intel(R) OpenCL / Intel(R)
Core(TM) i5-4308U CPU @ 2.80GHz)',

'IntegrationMethod(1d int, full split, CSR, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved)',

'IntegrationMethod(2d int, full split, CSR, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved)',

'IntegrationMethod(1d int, bbox split, LUT, OpenCL, Intel(R) OpenCL / Intel(R)
Core(TM) i5-4308U CPU @ 2.80GHz)',

'IntegrationMethod(2d int, bbox split, LUT, OpenCL, Intel(R) OpenCL / Intel(R)
Core(TM) i5-4308U CPU @ 2.80GHz)',

'IntegrationMethod(1d int, no split, LUT, OpenCL, Intel(R) OpenCL / Intel(R)
Core(TM) i5-4308U CPU @ 2.80GHz)',

'IntegrationMethod(2d int, no split, LUT, OpenCL, Intel(R) OpenCL / Intel(R)
Core(TM) i5-4308U CPU @ 2.80GHz)',

'IntegrationMethod(1d int, bbox split, LUT, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved)',

'IntegrationMethod(2d int, bbox split, LUT, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved)',

'IntegrationMethod(1d int, no split, LUT, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved)',

'IntegrationMethod(2d int, no split, LUT, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved)',

'IntegrationMethod(1d int, full split, LUT, OpenCL, Intel(R) OpenCL / Intel(R)
Core(TM) i5-4308U CPU @ 2.80GHz)',

'IntegrationMethod(2d int, full split, LUT, OpenCL, Intel(R) OpenCL / Intel(R)
Core(TM) i5-4308U CPU @ 2.80GHz)',

'IntegrationMethod(1d int, full split, LUT, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved)',

'IntegrationMethod(2d int, full split, LUT, OpenCL, Intel Gen OCL Driver /
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved) ']

print(len(pyFAI.method_registry.IntegrationMethod.list_available()))
67

ai = pyFAI.load(UtilsTest.getimage("PilatusiM.poni"))
img = fabio.open(UtilsTest.getimage("PilatusiM.edf")) .data
ai

Detector Pilatus 1M PixelSize= 172pm, 172pm BottomRight (3)
Wavelength= 1.000000e-10 m

SampleDetDist= 1.583231e+00 m PONI= 3.341702e-02, 4.122778e-02 m
rot1=0.006487 rot2=0.007558 rot3=0.000000 rad

DirectBeamDist= 1583.310 mm Center: x=179.981, y=263.859 pix Tilt=
0.571° tiltPlanRotation= 130.640° = 1.0004

kwl = {"data": img, "npt":1000}
kw2 = {"data": img, "npt_rad":1000}

res = {}
for k,v in pyFAI.method_registry.IntegrationMethod._registry.items():
print (k)
if k.dim ==
res[k] = Jtimeit -o ai.integrateld(method=v, *xkwl)
else:
res[k] = Jtimeit -o ai.integrate2d(method=v, **kw2)

Method(dim=1, split='no', algo='histogram', impl='python', target=None)
73.3 ms £ 10.2 ms per loop (mean x= std. dev. of 7 runs, 10 loops each)
Method(dim=2, split='no', algo='histogram', impl='python', target=None)
160 ms + 14.4 ms per loop (mean * std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='no', algo='histogram', impl='cython', target=None)
18.6 ms + 101 s per loop (mean = std. dev. of 7 runs, 100 loops each)
Method(dim=2, split='no', algo='histogram', impl='cython', target=None)
38.4 ms + 399 s per loop (mean + std. dev. of 7 runs, 10 loops each)
Method(dim=1, split='bbox', algo='histogram', impl='cython', target=None)
45.5 ms + 281 s per loop (mean * std. dev. of 7 rumns, 10 loops each)
Method(dim=2, split='bbox', algo='histogram', impl='cython', target=None)
65.6 ms + 500 s per loop (mean + std. dev. of 7 runs, 10 loops each)
Method(dim=1, split='full', algo='histogram', impl='cython', target=None)
231 ms + 4.45 ms per loop (mean = std. dev. of 7 runs, 1 loop each)
Method (dim=2, split='full', algo='histogram', impl='cython', target=None)
351 ms + 89.4 ms per loop (mean = std. dev. of 7 runs, 1 loop each)
Method(dim=2, split='pseudo', algo='histogram', impl='cython', target=None)
506 ms + 10.5 ms per loop (mean = std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='no', algo='csr', impl='cython', target=None)

11.3 ms + 112 s per loop (mean = std. dev. of 7 runs, 100 loops each)
Method(dim=2, split='no', algo='csr', impl='cython', target=None)

17.7 ms + 3.69 ms per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='bbox', algo='csr', impl='cython', target=None)

13.8 ms + 215 s per loop (mean * std. dev. of 7 runs, 100 loops each)
Method(dim=2, split='bbox', algo='csr', impl='cython', target=None)

17.9 ms + 1.31 ms per loop (mean = std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='no', algo='csr', impl='python', target=None)

19.9 ms + 254 s per loop (mean = std. dev. of 7 runs, 10 loops each)
Method(dim=2, split='no', algo='csr', impl='python', target=None)

29.5 ms + 2.36 ms per loop (mean * std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='bbox', algo='csr', impl='python', target=None)

22 ms + 639 s per loop (mean * std. dev. of 7 runs, 10 loops each)
Method(dim=2, split='bbox', algo='csr', impl='python', target=None)

30.7 ms + 844 s per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='no', algo='csc', impl='cython', target=None)

13.3 ms + 164 s per loop (mean * std. dev. of 7 runs, 1 loop each)
Method(dim=2, split='no', algo='csc', impl='cython', target=None)

20.4 ms + 683 s per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='bbox', algo='csc', impl='cython', target=None)

17.1 ms + 127 s per loop (mean * std. dev. of 7 runs, 100 loops each)

Method (dim=2, split='bbox', algo='csc', impl='cython', target=None)
28.5 ms + 707 s per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='no', algo='csc', impl='python', target=None)
16.7 ms + 29.3 s per loop (mean * std. dev. of 7 runs, 100 loops each)
Method(dim=2, split='no', algo='csc', impl='python', target=None)
29.1 ms + 5.81 ms per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='bbox', algo='csc', impl='python', target=None)
22 ms + 269 s per loop (mean + std. dev. of 7 rumns, 10 loops each)
Method(dim=2, split='bbox', algo='csc', impl='python', target=None)
32.9 ms + 1.42 ms per loop (mean x std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='bbox', algo='lut', impl='cython', target=None)
15.2 ms + 401 s per loop (mean = std. dev. of 7 runs, 100 loops each)
Method(dim=2, split='bbox', algo='lut', impl='cython', target=None)
27.8 ms £ 1.11 ms per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='no', algo='lut', impl='cython', target=None)
12.2 ms + 219 s per loop (mean * std. dev. of 7 runs, 100 loops each)
Method(dim=2, split='no', algo='lut', impl='cython', target=None)
19.4 ms + 278 s per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='full', algo='lut', impl='cython', target=None)
156 ms + 292 s per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=2, split='full', algo='lut', impl='cython', target=None)
29.7 ms + 3.33 ms per loop (mean * std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='full', algo='csr', impl='cython', target=None)
14.9 ms + 2.64 ms per loop (mean = std. dev. of 7 runs, 1 loop each)
Method(dim=2, split='full', algo='csr', impl='cython', target=None)
16.8 ms + 211 s per loop (mean * std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='full', algo='csr', impl='python', target=None)
22 ms + 253 s per loop (mean + std. dev. of 7 runs, 10 loops each)
Method(dim=2, split='full', algo='csr', impl='python', target=None)
29.4 ms + 141 s per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='full', algo='csc', impl='cython', target=None)
23.8 ms + 265 s per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=2, split='full', algo='csc', impl='cython', target=None)
32.4 ms £ 223 s per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='full', algo='csc', impl='python', target=None)
21.9 ms £ 189 s per loop (mean + std. dev. of 7 runs, 10 loops each)
Method(dim=2, split='full', algo='csc', impl='python', target=None)

WARNING:pyFAI.opencl.azim_hist:Apparently 64-bit atomics are missing on device
Intel(R) Core(TM) i5-4308U CPU @ 2.80GHz, possibly falling back on 32-bit
atomics (loss of precision) but it can be present and not declared as Nvidia
does

32.2 ms £ 340 s per loop (mean * std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='no', algo='histogram', impl='opencl', target=(1, 0))

/home/kieffer/.venv/py312/1ib/python3.12/site-packages/pyopencl/cache.py:496:
CompilerWarning: Non-empty compiler output encountered. Set the environment
variable PYOPENCL_COMPILER_QOUTPUT=1 to see more.

_create_built_program_from_source_cached(
/home/kieffer/.venv/py312/1ib/python3.12/site-packages/pyopencl/cache.py:500:
CompilerWarning: Non-empty compiler output encountered. Set the environment
variable PYOPENCL_COMPILER_QUTPUT=1 to see more.

prg.build(options_bytes, devices)

WARNING:pyFAI.opencl.azim_hist:Apparently 64-bit atomics are missing on device
Intel(R) Core(TM) i5-4308U CPU @ 2.80GHz, possibly falling back on 32-bit
atomics (loss of precision) but it can be present and not declared as Nvidia
does

35.6 ms + 5.48 ms per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=2, split='no', algo='histogram', impl='opencl', target=(1, 0))

WARNING:pyFAI.opencl.azim_hist:Apparently 64-bit atomics are missing on device
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved, possibly falling back on
32-bit atomics (loss of precision) but it can be present and not declared as
Nvidia does

37.1 ms + 817 s per loop (mean = std. dev. of 7 runs, 10 loops each)
Method(dim=1, split='no', algo='histogram', impl='opencl', target=(0, 0))

Beignet: "unable to find good values for local_work_size[i], please provide\n" "
local_work_size[] explicitly, you can find good values with\n" " trial-and-error
method."

WARNING:pyFAI.opencl.azim_hist:Apparently 64-bit atomics are missing on device
Intel(R) HD Graphics Haswell Ultrabook GT3 reserved, possibly falling back on
32-bit atomics (loss of precision) but it can be present and not declared as
Nvidia does

75.8 ms + 425 s per loop (mean + std. dev. of 7 rumns, 10 loops each)
Method(dim=2, split='no', algo='histogram', impl='opencl', target=(0, 0))
60.7 ms + 164 s per loop (mean + std. dev. of 7 runs, 10 loops each)
Method(dim=1, split='bbox', algo='csr', impl='opencl', target=(1, 0))
25.6 ms + 1.43 ms per loop (mean * std. dev. of 7 runs, 1 loop each)
Method(dim=2, split='bbox', algo='csr', impl='opencl', target=(1, 0))
329 ms + 2.86 ms per loop (mean = std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='no', algo='csr', impl='opencl', target=(1, 0))
17.8 ms + 404 s per loop (mean + std. dev. of 7 runs, 100 loops each)
Method(dim=2, split='no', algo='csr', impl='opencl', target=(1, 0))
316 ms + 1.5 ms per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='bbox', algo='csr', impl='opencl', target=(0, 0))
28.4 ms + 93.5 s per loop (mean = std. dev. of 7 runs, 10 loops each)
Method (dim=2, split='bbox', algo='csr', impl='opencl', target=(0, 0))
62.3 ms + 449 s per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='no', algo='csr', impl='opencl', target=(0, 0))
20.5 ms + 225 s per loop (mean + std. dev. of 7 runs, 10 loops each)
Method(dim=2, split='no', algo='csr', impl='opencl', target=(0, 0))
56.7 ms + 938 s per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='full', algo='csr', impl='opencl', target=(1, 0))
25.5 ms + 841 s per loop (mean + std. dev. of 7 runs, 10 loops each)

[6]:

[6]:

Method(dim=2, split='full', algo='csr', impl='opencl', target=(1, 0))
327 ms + 3.14 ms per loop (mean = std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='full', algo='csr', impl='opencl', target=(0, 0))

28.4 ms + 111

s per loop (mean * std. dev. of 7 runs, 10 loops each)

Method(dim=2, split='full', algo='csr', impl='opencl', target=(0, 0))

62.3 ms + 247

s per loop (mean + std. dev. of 7 runs, 1 loop each)

Method(dim=1, split='bbox', algo='lut', impl='opencl', target=(1, 0))

21.7 ms + 744

s per loop (mean + std. dev. of 7 rumns, 10 loops each)

Method(dim=2, split='bbox', algo='lut', impl='opencl', target=(1, 0))
302 ms + 6.94 ms per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='no', algo='lut', impl='opencl', target=(1, 0))

16.5 ms + 116

s per loop (mean * std. dev. of 7 runs, 100 loops each)

Method(dim=2, split='no', algo='lut', impl='opencl', target=(1, 0))
208 ms = 3.39 ms per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='bbox', algo='lut', impl='opencl', target=(0, 0))

28.6 ms + 169

s per loop (mean * std. dev. of 7 runs, 10 loops each)

Method(dim=2, split='bbox', algo='lut', impl='opencl', target=(0, 0))
592 ms + 38.8 ms per loop (mean = std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='no', algo='lut', impl='opencl', target=(0, 0))

21.5 ms + 208

s per loop (mean + std. dev. of 7 runs, 10 loops each)

Method(dim=2, split='no', algo='lut', impl='opencl', target=(0, 0))
381 ms + 58.8 ms per loop (mean = std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='full', algo='lut', impl='opencl', target=(1, 0))
31.8 ms + 8.3 ms per loop (mean = std. dev. of 7 runs, 10 loops each)
Method(dim=2, split='full', algo='lut', impl='opencl', target=(1, 0))
The slowest run took 4.35 times longer than the fastest. This could mean that an
intermediate result is being cached.

612 ms + 365 ms per loop (mean + std. dev. of 7 runs, 1 loop each)
Method(dim=1, split='full', algo='lut', impl='opencl', target=(0, 0))
28.5 ms + 123 s per loop (mean + std. dev. of 7 runs, 10 loops each)
Method(dim=2, split='full', algo='lut', impl='opencl', target=(0, 0))
1.41 s + 358 ms per loop (mean = std. dev. of 7 runs, 1 loop each)

res

{Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

split='no', algo='histogram', impl='python', target=None):

: 73.3 ms + 10.2 ms per loop (mean + std. dev. of 7 runs, 10 loops

split='no', algo='histogram', impl='python', target=None):
160 ms + 14.4 ms per loop (mean * std. dev. of 7 runs, 1 loop

split='no', algo='histogram', impl='cython', target=None):
18.6 ms + 101 s per loop (mean * std. dev. of 7 runs, 100 loops

split='no', algo='histogram', impl='cython', target=None):

: 38.4 ms + 399 s per loop (mean = std. dev. of 7 runs, 10 loops

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult

split='bbox', algo='histogram', impl='cython', target=None):

: 45.5 ms + 281 s per loop (mean = std. dev. of 7 runs, 10 loops

split='bbox', algo='histogram', impl='cython', target=None):
65.6 ms + 500 s per loop (mean + std. dev. of 7 runs, 10 loops

split='full', algo='histogram', impl='cython', target=None):
231 ms + 4.45 ms per loop (mean * std. dev. of 7 runs, 1 loop

split='full', algo='histogram', impl='cython', target=None):

: 351 ms + 89.4 ms per loop (mean + std. dev. of 7 runs, 1 loop

split='pseudo', algo='histogram', impl='cython', target=None):
506 ms + 10.5 ms per loop (mean + std. dev. of 7 rumns, 1 loop

split='no', algo='csr', impl='cython', target=None):
11.3 ms = 112 s per loop (mean = std. dev. of 7 rumns, 100 loops

split='no', algo='csr', impl='cython', target=None):
17.7 ms = 3.69 ms per loop (mean + std. dev. of 7 runs, 1 loop

split='bbox', algo='csr', impl='cython', target=None):
13.8 ms = 215 s per loop (mean * std. dev. of 7 runs, 100 loops

split="'bbox', algo='csr', impl='cython', target=None):
17.9 ms + 1.31 ms per loop (mean = std. dev. of 7 runs, 1 loop

split='no', algo='csr', impl='python', target=None):
19.9 ms + 254 s per loop (mean * std. dev. of 7 runs, 10 loops

split='no', algo='csr', impl='python', target=None):
29.5 ms + 2.36 ms per loop (mean + std. dev. of 7 runs, 1 loop

split='bbox', algo='csr', impl='python', target=None):
22 ms = 639 s per loop (mean + std. dev. of 7 runs, 10 loops

split='bbox', algo='csr', impl='python', target=None):

: 30.7 ms + 844 s per loop (mean = std. dev. of 7 rumns, 1 loop
split='no', algo='csc', impl='cython', target=None):

13.3 ms + 164 s per loop (mean * std. dev. of 7 runs, 1 loop
split='no', algo='csc', impl='cython', target=None):

20.4 ms + 683 s per loop (mean + std. dev. of 7 runs, 1 loop
split='bbox', algo='csc', impl='cython', target=None):

17.1 ms = 127 s per loop (mean * std. dev. of 7 runs, 100 loops

each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
loops each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,

split='bbox', algo='csc', impl='cython', target=None):
28.5 ms + 707 s per loop (mean + std. dev. of 7 runs, 1 loop

split='no', algo='csc', impl='python', target=None):
16.7 ms + 29.3 s per loop (mean + std. dev. of 7 runs, 100

split='no', algo='csc', impl='python', target=None):
29.1 ms + 5.81 ms per loop (mean + std. dev. of 7 runs, 1 loop

split='bbox', algo='csc', impl='python', target=None):
22 ms = 269 s per loop (mean * std. dev. of 7 runs, 10 loops

split='bbox', algo='csc', impl='python', target=None):

: 32.9 ms + 1.42 ms per loop (mean + std. dev. of 7 runs, 1 loop

split='bbox', algo='lut', impl='cython', target=None):
156.2 ms + 401 s per loop (mean * std. dev. of 7 runs, 100 loops

split='bbox', algo='lut', impl='cython', target=None):
27.8 ms + 1.11 ms per loop (mean + std. dev. of 7 runs, 1 loop

split='no', algo='lut', impl='cython', target=None):
12.2 ms = 219 s per loop (mean = std. dev. of 7 rumns, 100 loops

split='no', algo='lut', impl='cython', target=None):
19.4 ms + 278 s per loop (mean * std. dev. of 7 runs, 1 loop

split='full', algo='lut', impl='cython', target=None):
15 ms + 292 s per loop (mean + std. dev. of 7 rumns, 1 loop

split='full', algo='lut', impl='cython', target=None):
29.7 ms + 3.33 ms per loop (mean + std. dev. of 7 runs, 1 loop

split='full', algo='csr', impl='cython', target=None):
14.9 ms + 2.64 ms per loop (mean = std. dev. of 7 runs, 1 loop

split='full', algo='csr', impl='cython', target=None):
16.8 ms + 211 s per loop (mean + std. dev. of 7 runs, 1 loop

split='full', algo='csr', impl='python', target=None):
22 ms + 253 s per loop (mean + std. dev. of 7 runs, 10 loops

split='full', algo='csr', impl='python', target=None):
29.4 ms + 141 s per loop (mean + std. dev. of 7 runs, 1 loop

split='full', algo='csc', impl='cython', target=None):

<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

23.8 ms + 265 s per loop (mean + std. dev. of 7 runs, 1 loop
split='full', algo='csc', impl='cython', target=None):
: 32.4 ms + 223 s per loop (mean = std. dev. of 7 runs, 1 loop
split='full', algo='csc', impl='python', target=None):

21.9 ms + 189 s per loop (mean + std. dev. of 7 runs, 10 loops
split='full', algo='csc', impl='python', target=None):
: 32.2 ms + 340 s per loop (mean = std. dev. of 7 rumns, 1 loop

split='no', algo='histogram', impl='opencl', target=(1, 0)):

: 356.6 ms + 5.48 ms per loop (mean + std. dev. of 7 runs, 1 loop

split='no', algo='histogram', impl='opencl', target=(1, 0)):

: 37.1 ms + 817 s per loop (mean = std. dev. of 7 runs, 10 loops

split='no', algo='histogram', impl='opencl', target=(0, 0)):

: 75.8 ms + 425 s per loop (mean + std. dev. of 7 runs, 10 loops

split='no', algo='histogram', impl='opencl', target=(0, 0)):
60.7 ms + 164 s per loop (mean + std. dev. of 7 runs, 10 loops

split='bbox', algo='csr', impl='opencl', target=(1, 0)):
25.6 ms + 1.43 ms per loop (mean * std. dev. of 7 runs, 1 loop

split='bbox', algo='csr', impl='opencl', target=(1, 0)):

: 329 ms + 2.86 ms per loop (mean + std. dev. of 7 runs, 1 loop

split='no', algo='csr', impl='opencl', target=(1, 0)):
17.8 ms + 404 s per loop (mean + std. dev. of 7 runs, 100 loops

split='no', algo='csr', impl='opencl', target=(1, 0)):

: 316 ms + 1.5 ms per loop (mean * std. dev. of 7 runs, 1 loop

split="'bbox', algo='csr', impl='opencl', target=(0, 0)):
28.4 ms + 93.5 s per loop (mean + std. dev. of 7 runs, 10 loops

split='bbox', algo='csr', impl='opencl', target=(0, 0)):
62.3 ms + 449 s per loop (mean + std. dev. of 7 runs, 1 loop

split='no', algo='csr', impl='opencl', target=(0, 0)):
20.5 ms + 225 s per loop (mean + std. dev. of 7 runs, 10 loops

split='no', algo='csr', impl='opencl', target=(0, 0)):
56.7 ms + 938 s per loop (mean x std. dev. of 7 runs, 1 loop

10

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method (dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult
each)>,

Method(dim=1,
<TimeitResult
each)>,

Method (dim=2,
<TimeitResult

split='full', algo='csr', impl='opencl', target=(1, 0)):
25.5 ms + 841 s per loop (mean x std. dev. of 7 runs, 10 loops

split='full', algo='csr', impl='opencl', target=(1, 0)):

: 327 ms + 3.14 ms per loop (mean # std. dev. of 7 runs, 1 loop
split='full', algo='csr', impl='opencl', target=(0, 0)):
28.4 ms + 111 s per loop (mean + std. dev. of 7 runs, 10 loops
split='full', algo='csr', impl='opencl', target=(0, 0)):
62.3 ms + 247 s per loop (mean + std. dev. of 7 runs, 1 loop
split='bbox', algo='lut', impl='opencl', target=(1, 0)):
21.7 ms + 744 s per loop (mean + std. dev. of 7 runs, 10 loops
split='bbox', algo='lut', impl='opencl', target=(1, 0)):
: 302 ms + 6.94 ms per loop (mean + std. dev. of 7 runs, 1 loop
split='no', algo='lut', impl='opencl', target=(1, 0)):
16.5 ms + 116 s per loop (mean + std. dev. of 7 runs, 100 loops
split='no', algo='lut', impl='opencl', target=(1, 0)):
208 ms + 3.39 ms per loop (mean + std. dev. of 7 rumns, 1 loop
split='bbox', algo='lut', impl='opencl', target=(0, 0)):
28.6 ms + 169 s per loop (mean + std. dev. of 7 runs, 10 loops
split='bbox', algo='lut', impl='opencl', target=(0, 0)):
592 ms + 38.8 ms per loop (mean * std. dev. of 7 runs, 1 loop
split='no', algo='lut', impl='opencl', target=(0, 0)):
21.5 ms + 208 s per loop (mean + std. dev. of 7 runs, 10 loops
split='no', algo='lut', impl='opencl', target=(0, 0)):
: 381 ms + 58.8 ms per loop (mean + std. dev. of 7 runs, 1 loop
split='full', algo='lut', impl='opencl', target=(1, 0)):
: 31.8 ms + 8.3 ms per loop (mean * std. dev. of 7 runs, 10 loops

split='full', algo='lut', impl='opencl', target=(1, 0)):
612 ms + 365 ms per loop (mean + std. dev. of 7 rumns, 1 loop

split='full', algo='lut', impl='opencl', target=(0, 0)):
28.5 ms + 123 s per loop (mean + std. dev. of 7 runs, 10 loops

split='full', algo='lut', impl='opencl', target=(0, 0)):
1.41 s + 358 ms per loop (mean * std. dev. of 7 runs, 1 loop

11

each)>}

[7]: print(f"{'split':5s} | {'algo':9s} | {'impl':6s}| {'1d (ms)':8s} | {'2d (ms)':
-8s} | {'ratio':6s} | Device")
print ("-"%80)
for k in res:
if k.dim ==
k1l =k
k2 = k._replace(dim=2)
if k2 in res:
print (f"{k1.split:5s} | {kl.algo:9s} | {k1l.impl:6s}| {res[k1].
~best*1000:8.3f} | {res[k2] .best*1000:8.3f} | {res[k2].best/res[kl] .best:6.
<1£f} | ",
end="")
if k.target:
print (pyFAI .method_registry.IntegrationMethod._registry.get (k).
~target_name)

else:
print ()

split | algo | impl | 1d (ms) | 2d (ms) | ratio | Device
no | histogram | python| 65.402 | 139.494 | 2.1 |
no | histogram | cython]| 18.472 | 37.632 | 2.0 |
bbox | histogram | cython| 45.160 | 65.100 | 1.4 |
full | histogram | cython| 225.316 | 307.111 | 1.4 |
no | csr | cythonl| 11.137 | 15.278 | 1.4 |
bbox | csr | cythonl| 13.503 | 16.722 | 1.2 |
no | csr | pythonl| 19.724 | 28.323 | 1.4 |
bbox | csr | python| 21.389 | 30.099 | 1.4 |
no | csc | cythonl| 13.081 | 19.941 | 1.5 |
bbox | csc | cython| 16.884 | 28.018 | 1.7 |
no | csc | pythonl| 16.661 | 22.301 | 1.3 |
bbox | csc | python| 21.699 | 32.050 | 1.5 |
bbox | lut | cython| 14.706 | 27.162 | 1.8 |
no | lut | cython| 11.931 | 18.879 | 1.6 |
full | lut | cython| 14.508 | 27.532 | 1.9 |
full | csr | cythonl| 13.314 | 16.518 | 1.2 |
full | csr | python| 21.800 | 29.288 | 1.3 |
full | csc | cython| 23.498 | 32.143 | 1.4 |
full | csc | python| 21.673 | 31.875 | 1.5 |
no | histogram | opencl| 30.926 | 36.327 | 1.2 | Intel(R) OpenCL /
Intel(R) Core(TM) i5-4308U CPU @ 2.80GHz
no | histogram | opencl| 75.367 | 60.464 | 0.8 | Intel Gen OCL Driver
/ Intel(R) HD Graphics Haswell Ultrabook GT3 reserved
bbox | csr | opencl| 24.877 | 325.822 | 13.1 | Intel(R) OpenCL /

12

[8]:

Intel(R) Core(TM) i5-4308U CPU @ 2.80GHz

no | csr | opencl| 17.438 | 313.680 | 18.
Intel(R) Core(TM) i5-4308U CPU @ 2.80GHz

bbox | csr | opencl| 28.272 | 61.680 | 2.
/ Intel(R) HD Graphics Haswell Ultrabook GT3 reserved
no | csr | opencl| 20.282 | 55.421 | 2.
/ Intel(R) HD Graphics Haswell Ultrabook GT3 reserved
full | csr | opencl| 24.879 | 324.234 | 13.
Intel(R) Core(TM) i5-4308U CPU @ 2.80GHz

full | csr | opencl| 28.249 | 62.000 | 2.
/ Intel(R) HD Graphics Haswell Ultrabook GT3 reserved
bbox | lut | opencl| 21.047 | 294.854 | 14.
Intel(R) Core(TM) i5-4308U CPU @ 2.80GHz

no | lut | opencl| 16.242 | 202.838 | 12.
Intel(R) Core(TM) i5-4308U CPU @ 2.80GHz

bbox | lut | opencl| 28.460 | 562.594 | 19.
/ Intel(R) HD Graphics Haswell Ultrabook GT3 reserved
no | lut | opencl| 21.338 | 321.616 | 15.
/ Intel(R) HD Graphics Haswell Ultrabook GT3 reserved
full | lut | opencl| 22.269 | 316.551 | 14.
Intel(R) Core(TM) i5-4308U CPU @ 2.80GHz

full | lut | opencl| 28.328 | 873.578 | 30.

/ Intel(R) HD Graphics Haswell Ultrabook GT3 reserved

8

Intel(R) OpenCL /
Intel Gen OCL Driver
Intel Gen OCL Driver
Intel(R) OpenCL /
Intel Gen OCL Driver
Intel(R) OpenCL /
Intel(R) OpenCL /
Intel Gen OCL Driver
Intel Gen OCL Driver
Intel(R) OpenCL /

Intel Gen OCL Driver

print(f"Total runtime: {time.perf_counter()-start_time:.3f}s")

Total runtime: 241.364s

13

