
Problème de navigation, une approche MPC
Date : 2025

Durée approximative : inconnue

On considère un navire dans un courant constant , . L'angle de cap) est contrôlé, amenant aux équations

différentielles suivantes :

La vitesse angulaire est limitée et normalisée : . Il y a des conditions aux limites au temps initial et au temps final

, sur la position et sur l'angle . L'objectif est de minimiser le temps final. Ce sujet est inspiré de ce TP dont le

problème vient d'une collaboration entre l'Université Côte d'Azur et l'entreprise française CGG qui s'intéresse aux manoeuvres

optimales de très gros navires pour la prospection marine.

✏️ Exercice 1. On supposera , on se place dans le cas normal.

1. Ecrire le problème de contrôle optimal sous la forme de Mayer.

2. Donner le pseudo-hamiltonien , où et .

3. Calculer l'équation adjointe, c'est-à-dire vérifiée par le vecteur adjoint , donnée par le principe du maximum de Pontryagin.

4. Calculer le contrôle maximisant en fonction de (on pourra l'écrire comme une fonction multivaluée).

5. Calculer le contrôle singulier, c'est-à-dire celui permettant de vérifier sur un intervalle de temps non réduit à un

singleton.

Données du problème

using OptimalControl, NLPModelsIpopt, Plots, OrdinaryDiffEq, LinearAlgebra, Plots.PlotMeasures

t0 = 0.
x0 = 0.
y0 = 0.
θ0 = π/7
xf = 4.
yf = 7.
θf = -π/2

function current(x, y) # current as a function of position
 ε = 1e-1
 w = [0.6, 0.4]
 δw = ε * [y, -x] / sqrt(1+x^2+y^2)
 w = w + δw
 if (w[1]^2 + w[2]^2 >= 1)
 error("|w| >= 1")
 end
 return w
end

#
function plot_state!(plt, x, y, θ; color=1)
 plot!(plt, [x], [y], marker=:circle, legend=false, color=color, markerstrokecolor=color, markersize=5, z_or
 quiver!(plt, [x], [y], quiver=([cos(θ)], [sin(θ)]), color=color, linewidth=2, z_order=:front)
 return plt
end

w = (wx, wy) ∥w∥ < 1

ẋ(t) = wx + cos θ(t), t ∈ [0, tf]

ẏ(t) = wy + sin θ(t),

θ̇(t) = u(t).

∥u(t)∥ ≤ 1 t = 0

t = tf (x, y) θ

p0 = −1

H(q, p, u) q = (x, y, θ) p = (px, py, pθ)

p

pθ

pθ(t) = 0

In [1]:

https://en.wikipedia.org/wiki/Model_predictive_control
https://fr.wikipedia.org/wiki/Cap_(navigation
https://github.com/pns-mam/commande/tree/main/tp3
https://www.cgg.com/
https://fr.wikipedia.org/wiki/Fonction_multivalu%C3%A9e

function plot_current!(plt; current=current, N=10, scaling=1)
 for x ∈ range(xlims(plt)..., N)
 for y ∈ range(ylims(plt)..., N)
 w = scaling*current(x, y)
 quiver!(plt, [x], [y], quiver=([w[1]], [w[2]]), color=:black, linewidth=0.5, z_order=:back)
 end
 end
 return plt
end

on affiche dans le plan de phase augmenté les conditions aux limites et le courant
plt = plot(
 xlims=(-2, 6),
 ylims=(-1, 8),
 size=(600, 600),
 aspect_ratio=1,
 xlabel="x",
 ylabel="y",
 title="Conditions aux limites",
 leftmargin=5mm,
 bottommargin=5mm,
)

plot_state!(plt, x0, y0, θ0; color=2)
plot_state!(plt, xf, yf, θf; color=2)
plot_current!(plt)

function plot_trajectory!(plt, t, x, y, θ; N=5) # N : nombre de points où l'on va afficher θ

 # trajectoire
 plot!(plt, x.(t), y.(t), legend=false, color=1, linewidth=2, z_order=:front)

 if N > 0

 # longueur du trajet
 s = 0
 for i ∈ 2:length(t)
 s += norm([x(t[i]), y(t[i])] - [x(t[i-1]), y(t[i-1])])
 end

 # intervalle de longueur
 Δs = s/(N+1)
 tis = []
 s = 0
 for i ∈ 2:length(t)

In [2]:

 s += norm([x(t[i]), y(t[i])] - [x(t[i-1]), y(t[i-1])])
 if s > Δs && length(tis) < N
 push!(tis, t[i])
 s = 0
 end
 end

 # affichage des points intermédiaires
 for ti ∈ tis
 plot_state!(plt, x(ti), y(ti), θ(ti); color=1)
 end

 end

 return plt

end;

Solveur (OptimalControl)

✏️ Exercice 2. Coder le problème de contrôle optimal ci-dessous.

On pourra s'insiprer du problème de la rame de métro à temps minimal décrit dans la documentation du package OptimalControl

pour définir notre problème de manoeuvre de navire ci-après.

function solve(t0, x0, y0, θ0, xf, yf, θf, w;
 grid_size=300, tol=1e-8, max_iter=500, print_level=4, display=true)

 # ---------------------------------------
 # Définition du problème : TO UPDATE
 ocp = @def begin

 tf ∈ R, variable
 t ∈ [t0, tf], time
 q = (x, y, θ) ∈ R³, state
 u ∈ R, control

 -1 ≤ u(t) ≤ 1

 q(t0) == [x0, y0, θ0]
 q(tf) == [xf, yf, θf]

 q̇(t) == [w[1]+cos(θ(t)),
 w[2]+sin(θ(t)),
 u(t)]

 tf → min

 end
 # ---------------------------------------

 # Initialisation
 tf_init = 1.5*norm([xf, yf]-[x0, y0])
 x_init(t) = [x0, y0, θ0] * (tf_init-t)/(tf_init-t0) + [xf, yf, θf] * (t-t0)/(tf_init-t0)
 u_init = (θf - θ0) / (tf_init-t0)
 init = (state=x_init, control=u_init, variable=tf_init)

 # Résolution
 sol = OptimalControl.solve(ocp;
 init=init,
 grid_size=grid_size,
 tol=tol,
 max_iter=max_iter,
 print_level=print_level,
 display=display,
 disc_method=:euler,
)

 # Récupération des données utiles
 t = time_grid(sol)
 q = state(sol)
 x = t -> q(t)[1]
 y = t -> q(t)[2]
 θ = t -> q(t)[3]
 u = control(sol)
 tf = variable(sol)

 return t, x, y, θ, u, tf, iterations(sol), sol.solver_infos.constraints_violation

In [3]:

https://control-toolbox.org/OptimalControl.jl/stable/tutorial-double-integrator-time.html

end;

Première résolution

On considère ici un vent constant et on résout une première fois le problème.

t, x, y, θ, u, tf, iter, cons = solve(t0, x0, y0, θ0, xf, yf, θf, current(x0, y0); display=false);

println("Iterations : ", iter)
println("Constraints violation : ", cons)
println("tf : ", tf)

affichage

trajectoire
plt_q = plot(xlims=(-2, 6), ylims=(-1, 8), aspect_ratio=1, xlabel="x", ylabel="y")
plot_state!(plt_q, x0, y0, θ0; color=2)
plot_state!(plt_q, xf, yf, θf; color=2)
plot_current!(plt_q; current=(x, y) -> current(x0, y0))
plot_trajectory!(plt_q, t, x, y, θ)

contrôle
plt_u = plot(t, u; color=1, legend=false, linewidth=2, xlabel="t", ylabel="u")

#
plot(plt_q, plt_u;
 layout=(1, 2),
 size=(1200, 600),
 leftmargin=5mm,
 bottommargin=5mm,
 plot_title="Simulation courant constant"
)

Iterations : 42
Constraints violation : 9.122780308956635e-10
tf : 9.969251026991449

Simulation du système réel

In [4]:

Out[4]:

Dans la simulation précédente, nous faisons l'hypothèse que le courant est constant. Cependant, d'un point de vue pratique le

courant dépend de la position . Etant donné un modèle de courant, donné par la fonction current , nous pouvons simuler

la trajectoire réelle du navire, pourvu que l'on ait la condition initiale et le contrôle au cours du temps.

function realistic_trajectory(tf, t0, x0, y0, θ0, u, current; abstol=1e-12, reltol=1e-12, saveat=[])

 function rhs!(dq, q, dummy, t)
 x, y, θ = q
 w = current(x, y)
 dq[1] = w[1]+cos(θ)
 dq[2] = w[2]+sin(θ)
 dq[3] = u(t)
 end

 q0 = [x0, y0, θ0]
 tspan = (t0, tf)
 ode = ODEProblem(rhs!, q0, tspan)
 sol = OrdinaryDiffEq.solve(ode, Tsit5(), abstol=abstol, reltol=reltol, saveat=saveat)

 t = sol.t
 x = t -> sol(t)[1]
 y = t -> sol(t)[2]
 θ = t -> sol(t)[3]

 return t, x, y, θ

end;

trajectoire réaliste
t, x, y, θ = realistic_trajectory(tf, t0, x0, y0, θ0, u, current)

affichage

trajectoire
plt_q = plot(xlims=(-2, 6), ylims=(-1, 8), aspect_ratio=1, xlabel="x", ylabel="y")
plot_state!(plt_q, x0, y0, θ0; color=2)
plot_state!(plt_q, xf, yf, θf; color=2)
plot_current!(plt_q; current=current)
plot_trajectory!(plt_q, t, x, y, θ)
plot_state!(plt_q, x(tf), y(tf), θ(tf); color=3)

contrôle
plt_u = plot(t, u; color=1, legend=false, linewidth=2, xlabel="t", ylabel="u")

#
plot(plt_q, plt_u;
 layout=(1, 2),
 size=(1200, 600),
 leftmargin=5mm,
 bottommargin=5mm,
 plot_title="Simulation avec modèle de courant"
)

(x, y)

In [5]:

In [6]:

Approche MPC

En pratique, nous n'avons pas à l'avance les données réelles du courant sur l'ensemble du trajet, c'est pourquoi nous allons

recalculer régulièrement le contrôle optimal. L'idée est de mettre à jour le contrôle optimal à intervalle de temps régulier en prenant

en compte le courant à la position où le navire se trouve. On est donc amener à résoudre un certain nombre de problème à courant

constant, avec celui-ci mis réguilièremet à jour. Ceci est une introduction aux méthodes dites MPC, pour "Model Predictive

Control" en anglais.

Nmax = 20 # nombre d'itérations max de la méthode MPC
ε = 1e-1 # rayon sur la condition finale pour stopper les calculs
Δt = 1.0 # pas de temps fixe de la méthode MPC
P = 300 # nombre de points de discrétisation pour le solveur

t1 = t0
x1 = x0
y1 = y0
θ1 = θ0

data = []

N = 1
stop = false

while !stop

 # on récupère le courant à la position actuelle
 w = current(x1, y1)

 # on résout le problème
 t, x, y, θ, u, tf, iter, cons = solve(t1, x1, y1, θ1, xf, yf, θf, w; grid_size=P, display=false);

 # calcul du temps suivant
 if (t1+Δt < tf)
 t2 = t1+Δt
 else
 t2 = tf
 println("t2=tf: ", t2)
 stop = true
 end

 # on stocke les données: le temps initial courant, le temps suivant, le contrôle
 push!(data, (t2, t1, x(t1), y(t1), θ(t1), u, tf))

Out[6]:

In [7]:

 # on met à jour les paramètres de la méthode MPC: on simule la réalité
 t, x, y, θ = realistic_trajectory(t2, t1, x1, y1, θ1, u, current)
 t1 = t2
 x1 = x(t1)
 y1 = y(t1)
 θ1 = θ(t1)

 # on calcule la distance à la position cible
 distance = norm([x1, y1, θ1] - [xf, yf, θf])
 println("N: ", N, "\t distance: ", distance, "\t iterations: ", iter, "\t constraints: ", cons, "\t tf: ",
 if !((distance > ε) && (N < Nmax))
 stop = true
 end

 #
 N += 1

end

N: 1 distance: 7.169372990138332 iterations: 42 constraints: 9.122780308956635e-10 tf: 9.96925102
6991449
N: 2 distance: 6.619012387410927 iterations: 45 constraints: 2.5287216764979803e-10 tf: 11.5842488
85909826
N: 3 distance: 6.811824990282241 iterations: 25 constraints: 5.462011398726929e-11 tf: 12.1924074
7530206
N: 4 distance: 6.805743942554834 iterations: 63 constraints: 2.4345414573190283e-10 tf: 12.4935984
38558452
N: 5 distance: 6.836922010269605 iterations: 47 constraints: 4.88927343056389e-10 tf: 12.6759957
1922167
N: 6 distance: 6.904144875436707 iterations: 25 constraints: 7.912370758589304e-11 tf: 12.8107056
58643144
N: 7 distance: 7.0070773287165915 iterations: 35 constraints: 9.789671850946036e-10 tf: 12.9110876
54424756
N: 8 distance: 7.14047407623855 iterations: 40 constraints: 1.5706123901448876e-11 tf: 12.9903416
04334535
N: 9 distance: 6.682527995280143 iterations: 44 constraints: 7.531752999057062e-13 tf: 13.3844841
74111117
N: 10 distance: 5.585966710664459 iterations: 36 constraints: 0.015091307541053478 tf: 13.3740842
45407065
N: 11 distance: 3.9736943069307467 iterations: 60 constraints: 0.012697863545896193 tf: 13.3545700
39130135
N: 12 distance: 2.1132291368980236 iterations: 20 constraints: 2.224759043656377e-9 tf: 13.3117697
96606038
N: 13 distance: 0.41968650669472385 iterations: 41 constraints: 2.3105551177238226e-5 tf: 13.2948542
07525157
t2=tf: 13.305053260732876
N: 14 distance: 0.03134653710002621 iterations: 85 constraints: 0.0001017474278581787 tf: 13.3050532
60732876

Affichage

trajectoire
plt_q = plot(xlims=(-2, 6), ylims=(-1, 8), aspect_ratio=1, xlabel="x", ylabel="y")

condition finale
plot_state!(plt_q, xf, yf, θf; color=2)

courant
plot_current!(plt_q; current=current)

contrôle
plt_u = plot(xlabel="t", ylabel="u")

N = 1

for d ∈ data

 #
 t2, t1, x1, y1, θ1, u, tf = d

 # calcule de la trajectoire réelle
 t, x, y, θ = realistic_trajectory(t2, t1, x1, y1, θ1, u, current)

 # trajectoire
 plot_state!(plt_q, x1, y1, θ1; color=2)
 plot_trajectory!(plt_q, t, x, y, θ; N=0)

 # contrôle
 plot!(plt_u, t, u; color=1, legend=false, linewidth=2)

In [8]:

 N += 1

end

plot_state!(plt_q, x(tf), y(tf), θ(tf); color=3)

#
plot(plt_q, plt_u;
 layout=(1, 2),
 size=(1200, 600),
 leftmargin=5mm,
 bottommargin=5mm,
 plot_title="Simulation avec modèle de courant"
)

Out[8]:

