4 TOULOUSE

INP N/

Probléme de navigation, une approche MPC

e Date: 2025
e Durée approximative : inconnue

On considére un navire dans un courant constant w = (wj, wy), |w|| < 1.L'angle de cap) est contrélé, amenant aux équations
différentielles suivantes :

(t

z(t) w, +cosB(t), te[0,ty]
y(t) = w,+siné(t),
o(t) u(t).

La vitesse angulaire est limitée et normalisée : ||u(t)|| < 1.1l'y a des conditions aux limites au temps initial t = 0 et au temps final

t = ty, sur la position (x, y) et sur I'angle 6. L'objectif est de minimiser le temps final. Ce sujet est inspiré de ce TP dont le
probléme vient d'une collaboration entre I'Université Cote d'Azur et I'entreprise frangaise CGG qui s'intéresse aux manoeuvres
optimales de trés gros navires pour la prospection marine.

“\ Exercice 1. On supposera pO = —1, on se place dans le cas normal.
1. Ecrire le probléme de contrdle optimal sous la forme de Mayer.
2. Donner le pseudo-hamiltonien H (g, p, w), ot ¢ = (z,y,0) et p = (pz, Py, P6)-
3. Calculer I'équation adjointe, c'est-a-dire vérifiée par le vecteur adjoint p, donnée par le principe du maximum de Pontryagin.
4. Calculer le contréle maximisant en fonction de py (on pourra I'écrire comme une fonction multivaluée).
5. Calculer le controle singulier, c'est-a-dire celui permettant de vérifierpg(t) = 0 sur un intervalle de temps non réduit a un

singleton.

Données du probléeme

using OptimalControl, NLPModelsIpopt, Plots, OrdinaryDiffEq, LinearAlgebra, Plots.PlotMeasures

t0
x0
yo
00
xf
yf
of

function current(x, y) # current as a function of position
€ = le-1
w=1[0.6, 0.4]
6w =¢€ *x [y, =x] / sqrt(1+x"2+y~2)
w=w + 0w
if (wl[1]72 + w[2]72 >= 1)
error("|w| >= 1")
end
return w
end

#

function plot_state!(plt, x, y, 0; color=1)
plot!(plt, [x], [yl, marker=:circle, legend=false, color=color, markerstrokecolor=color, markersize=5, z_ol
quiver!(plt, [x], [yl, quiver=([cos(®8)], [sin(®)]), color=color, linewidth=2, z_order=:front)
return plt

end

https://en.wikipedia.org/wiki/Model_predictive_control
https://fr.wikipedia.org/wiki/Cap_(navigation
https://github.com/pns-mam/commande/tree/main/tp3
https://www.cgg.com/
https://fr.wikipedia.org/wiki/Fonction_multivalu%C3%A9e

function plot_current!(plt; current=current, N=10, scaling=1)

for x € range(xlims(plt)..., N)

for y € range(ylims(plt)..., N)
w = scalingxcurrent(x, y)
quiver!(plt, [x], [yl, quiver=([wl[1]],

end
end
return plt
end

on affiche dans le plan de phase augmenté les conditions aux limites et le courant

plt = plot(
xlims=(-2, 6),
ylims=(-1, 8),
size=(600, 600),
aspect_ratio=1,
xlabel="x",
ylabel="y",
title="Conditions aux limites",
leftmargin=5mm,
bottommargin=5mm,

)

plot_state!(plt, x0, y@, 60; color=2)
plot_state!(plt, xf, yf, 6f; color=2)

plot_current!(plt)

Conditions aux limites

R e A
N s i
7 7 T T T T T T T
N T T T T T T T
T T T T T T T T
N i A A A
P i i A A
N i A B A B

T

function plot_trajectory!(plt, t, x, y, 6; N=5) # N :

trajectoire

plot!(plt, x.(t), y.(t), legend=false, color=1, linewidth=2, z_order=:front)

if N > 0

longueur du trajet
s =0
for i € 2:1length(t)

s += norm([x(t[il), y(t[il)] - [x(tl[i-11), y(t[i-11)1)

end

intervalle de longueur
As = s/(N+1)

tis = []

s =20

for i € 2:1length(t)

1 / /)
4 6

[w[211), color=:black, linewidth=0.5, z_order=:back)

nombre de points ol l'on va afficher 6

s += norm([x(t[i]), y(t[il)] - [x(t[i-11), y(t[i-11)1)
if s > As && length(tis) < N
push!(tis, t[i])
s =0
end
end

affichage des points intermédiaires
for ti € tis
plot_state!(plt, x(ti), y(ti), 6(ti); color=1)
end
end

return plt

end;

Solveur (OptimalControl)

“\ Exercice 2. Coder le probléme de contrdle optimal ci-dessous.

On pourra s'insiprer du probléme de la rame de métro a temps minimal décrit dans la documentation du package OptimalControl
pour définir notre probléme de manoeuvre de navire ci-apres.

function solve(t0, x0, yo, 60, xf, yf, of, w;
grid_size=300, tol=1e-8, max_iter=500, print_level=4, display=true)

#
Définition du probleme : TO UPDATE
ocp = @def begin

tf € R, variable

t € [to, tf], time

qg= (x, y, 8) € R3, state
u € R, control

-1 su(t) s1
q(te) == [x0, yo, 60]
q(tf) == [xf, yf, 6f]

g(t) == [wlll+cos(e(t)),
wl2]l+sin(6(t)),
u(t)]

tf - min

end
#

Initialisation

tf_init = 1.5%norm([xf, yfl-[x0, ye@l)

x_init(t) = [x0, y0, 60] % (tf_init-t)/(tf_init-t@) + [xf, yf, 6f] % (t-t@)/(tf_init-t0)
u_init = (6f - 80) / (tf_init-t0)

init = (state=x_init, control=u_init, variable=tf_init)

Résolution

sol = OptimalControl.solve(ocp;
init=init,
grid_size=grid_size,
tol=tol,
max_iter=max_iter,
print_level=print_level,
display=display,
disc_method=:euler,

)

Récupération des données utiles
time_grid(sol)

state(sol)

t -> q(t)[1]

t —> q(t)[2]

t > q(t)[3]

control(sol)

f = variable(sol)

#
t
q
X
y
C}
u
t

return t, x, y, 6, u, tf, iterations(sol), sol.solver_infos.constraints_violation

https://control-toolbox.org/OptimalControl.jl/stable/tutorial-double-integrator-time.html

end;

Premieére résolution

On considere ici un vent constant et on résout une premiére fois le probleme.

#

t, x, y, 8, u, tf, iter, cons = solve(t0, x0, yo, 60, xf, yf, 6f, current(x0, y0); display=false);

println("Iterations : ", iter)
println("Constraints violation :
printin("tf : ", tf)

#

, cons)

affichage

trajectoire

plt_qg = plot(xlims=(-2, 6), ylims=(-1, 8), aspect_ratio=1, xlabel="x", ylabel="y")

plot_state!(plt_q, x0, y@, 60; color=2)
plot_state!(plt_q, xf, yf, 6f; color=2)

plot_current!(plt_q; current=(x, y) -> current(x0, yo0))

plot_trajectory!(plt_qg, t, x, y, 6)

contréle

plt_u = plot(t, u; color=1, legend=false, linewidth=2, xlabel="t", ylabel="u")

#

plot(plt_qg, plt_u;
layout=(1, 2),
size=(1200, 600),
leftmargin=5mm,
bottommargin=5mm,

plot_title="Simulation courant constant"

)

Iterations : 42

Constraints violation : 9.122780308956635e-10

tf : 9.969251026991449

Simulation courant constant

7 T A A7
7 A YA A A7 A7
7 A A 7 7 7 7
7 A A A 7 7 77
7 7 A A AT 77
7 T 7T A A 7 7 7
7 A A A A AT 77
7 A 7 A7 7 7 77

Simulation du systéme réel

1.0

0.5

0.0

-0.5

-1.0

0.0

25

5.0

7.5

10.0

Dans la simulation précédente, nous faisons I'hypothése que le courant est constant. Cependant, d'un point de vue pratique le
courant dépend de la position (m, y). Etant donné un modéle de courant, donné par la fonction current , nous pouvons simuler
la trajectoire réelle du navire, pourvu que I'on ait la condition initiale et le contréle au cours du temps.

function realistic_trajectory(tf, t@, x0, y@, 60, u, current; abstol=le-12, reltol=le-12, saveat=[])

function rhs!(dq, g, dummy, t)
X, ¥, 6 =4
w = current(x, y)
dql1] = w[1]+cos(8)
dql2] = wl2]+sin(8)
dq[3] = u(t)
end

g0 = [x0, yo, 60]
tspan = (t0, tf)

ode = ODEProblem(rhs!, q@, tspan)

sol = OrdinaryDiffEq.solve(ode, Tsit5(), abstol=abstol, reltol=reltol, saveat=saveat)
t = sol.t

X =t => sol(t)[1]

y =t => sol(t)[2]

6 =t -> sol(t)[3]

return t, x, y, 6

end;

trajectoire réaliste
t, X, y, 8 = realistic_trajectory(tf, t0, x0, y@, 60, u, current)

#

affichage

trajectoire

plt_qg = plot(xlims=(-2, 6), ylims=(-1, 8), aspect_ratio=1, xlabel="x", ylabel="y")
plot_state!(plt_q, x0, y@, 60; color=2)

plot_state!(plt_q, xf, yf, 6f; color=2)

plot_current!(plt_q; current=current)

plot_trajectory!(plt_qg, t, x, y, 6)

plot_state!(plt_q, x(tf), y(tf), 6(tf); color=3)

contréle
plt_u = plot(t, u; color=1, legend=false, linewidth=2, xlabel="t", ylabel="u")

#
plot(plt_qg, plt_u;
layout=(1, 2),
size=(1200, 600),
leftmargin=5mm,
bottommargin=5mm,
plot_title="Simulation avec modele de courant"

Simulation avec modele de courant

1.0

0.5

-0.5

-1.0

Approche MPC

0.0

2.5 5.0 7.5 10.0

En pratique, nous n'avons pas a l'avance les données réelles du courant sur I'ensemble du trajet, c'est pourquoi nous allons

recalculer régulierement le contréle optimal. L'idée est de mettre a jour le contréle optimal a intervalle de temps régulier en prenant

en compte le courant a la position ou le navire se trouve. On est donc amener a résoudre un certain nombre de probleme a courant

constant, avec celui-ci mis réguilieremet a jour. Ceci est une introduction aux méthodes dites MPC, pour "Model Predictive

Control" en anglais.

Nmax = 20 # nombre d'itérations max de la méthode MPC

€ = le-1 # rayon sur la condition finale pour stopper les calculs
At = 1.0 # pas de temps fixe de la méthode MPC

P = 300 # nombre de points de discrétisation pour le solveur
tl = to

x1 = x0

yl = yo

61 = 60

data = [I]

N=1

stop = false
while !stop

on récupere le courant a la position actuelle
w = current(x1, y1)

on résout le probleme

t, x, y, 6, u, tf, iter, cons = solve(tl, x1, y1, 61, xf, yf, 6f, w; grid_size=P, display=false);

calcul du temps suivant
if (tl+At < tf)

t2 = tl1+At

else
t2 = tf
println("t2=tf: ", t2)

stop = true
end

on stocke les données: le temps initial courant, le temps suivant,

push!(data, (t2, t1, x(t1), y(t1), e(t1), u, tf))

le contréle

on met a jour les paramétres de la méthode MPC: on simule la réalité

t, X, ¥, 6 =

tl = t2

x1 = x(t1)

yl = y(t1)

61 = 0(t1)

on calcule la distance a la position cible
distance = norm([x1, y1, 61] - [xf, yf, of 1)

println("N: ", N, "\t distance:

if !((distance > g) && (N < Nmax))
stop = true

end

end

N: 1
6991449
N: 2
85909826
N: 3
7530206
N: 4
38558452
N: 5
1922167
N: 6
58643144
N: 7
54424756
N: 8
04334535
N: 9
74111117
N: 10
45407065
N: 11
39130135
N: 12
96606038
N: 13
07525157
t2=tf: 13.305053260732876

N: 14 distance: 0.03134653710002621
60732876

distance: 7.169372990138332

distance: 6.619012387410927
distance: 6.811824990282241
distance: 6.805743942554834
distance: 6.836922010269605
distance: 6.904144875436707
distance: 7.0070773287165915
distance: 7.14047407623855
distance: 6.682527995280143
distance: 5.585966710664459
distance: 3.9736943069307467
distance: 2.1132291368980236

distance: 0.41968650669472385

Affichage

trajectoire

plt_g = plot(xlims=(-2, 6), ylims=(-1, 8), aspect_ratio=1, xlabel="x",

condition finale
plot_state! (plt_q, xf, yf, 6f; color=2)

courant
plot_current!(plt_qg; current=current)

contréle
plt_u = plot(xlabel="t", ylabel="u")

N=1
for d € data

#
t2, t1, x1, y1, 61, u, tf =d

calcule de la trajectoire réelle
t, X, vy, 6 =

trajectoire

iterations:

iterations:

iterations:

iterations:

iterations:

iterations:

iterations:

iterations:

iterations:

iterations:

iterations:

iterations:

iterations:

iterations:

plot_state!(plt_q, x1, y1, 61; color=2)

plot_trajectory!(plt_q, t, x, y, 6;

contréle

N=0)

42

45

25

63

47

25

35

40

44

36

60

20

41

85

realistic_trajectory(t2, t1, x1, yl1, 61, u, current)

constraints:
constraints:
constraints:
constraints:
constraints:
constraints:
constraints:
constraints:
constraints:
constraints:
constraints:
constraints:

constraints:

constraints:

realistic_trajectory(t2, t1, x1, y1, 61, u, current)

plot!(plt_u, t, u; color=1, legend=false, linewidth=2)

", distance, "\t iterations: ", iter, "\t constraints:

.122780308956635e-10
.5287216764979803e-10
.462011398726929%¢e-11
.4345414573190283e-10
.88927343056389e-10
.912370758589304e-11
.789671850946036e-10
.5706123901448876e-11
.531752999057062e-13
.015091307541053478
.012697863545896193
.224759043656377e-9

.3105551177238226e-5

.0001017474278581787

ylabel="y")

, cons,

tf:

tf:

tf:

tf:

tf:

tf:

tf:

tf:

tf:

tf:

tf:

tf:

tf:

tf:

"\t tf: ",

9.96925102
11.5842488
12.1924074
12.4935984
12.6759957
12.8107056
12.9110876
12.9903416
13.3844841
13.3740842
13.3545700
13.3117697

13.2948542

13.3050532

N +=1
end
plot_state!(plt_q, x(tf), y(tf), 6(tf); color=3)

#
plot(plt_qg, plt_u;
layout=(1, 2),
size=(1200, 600),
leftmargin=5mm,
bottommargin=5mm,
plot_title="Simulation avec modele de courant"

Simulation avec modeéle de courant

10

05 r

0.0

-05

-1.0 |

