
COMPUTER-ASSISTED GADGET DESIGN AND PROBLEM
REDUCTION OF UNWEIGHTED MAXIMUM INDEPENDENT SET

JIN-GUO LIU∗, JONATHAN WURTZ† , MINH-THI NGUYEN‡ , MIKHAIL D. LUKIN§ ,
HANNES PICHLER¶, AND SHENG-TAO WANG†

Abstract. Reducing constraint satisfaction problems defined on graphs with general connec-
tivity to geometrically constrained energy models is a crucial step towards utilizing physics-inspired
computing devices for solving computationally hard problems. Inspired by recent progress on varia-
tional quantum algorithms [Ebadi et al., Science, 376, 1209 (2022)] for solving the maximum inde-
pendent set problem using two-dimensional, programmable quantum processors, Nguyen et al. [PRX
Quantum 4, 010316 (2023)] proposed a framework for reducing a weighted maximum independent set
problem on a general graph to that on a unit disk graph. However, the same technique is not appli-
cable to unweighted reduction, which is more readily implementable on such programmable quantum
devices. Here, using computer-assisted gadget design, we show how to reduce the unweighted max-
imum independent set problem on a general graph G = (V,E) to that on a King’s subgraph. The
transformed graph has a size O(|V | × pw(G)), where pw(G) is the pathwidth of G. This reduction
scheme is optimal up to a constant factor, assuming the exponential time hypothesis is true.

1. Introduction. Problem reduction plays a central role in the field of compu-
tational complexity. It is not only a strategy for proving the computational hardness
of a problem set [20] but is also practically useful [10]. One application of the re-
duction schemes is the re-formulation of problems of interest in a way that matches
the native hardware requirements and constraints of some specific hardware. This
work is highly inspired by recent experimental progress of solving computationally
hard problems with neutral-atom quantum processors [7, 14], which allow for a native
implementation of variational quantum algorithms for solving the NP-complete [6]
maximum independent set (MIS) problem on unit disk (UD) graphs [23, 22, 7, 2]. In
order to expand the applicability of these neutral-atom quantum processors to MIS
problems on more general graphs while retaining reasonable vertex overhead, Ref. [21]
proposed a scheme to reduce the MIS problem on general weighted graphs to that on
weighted UD graphs using at most quadratic vertex overhead. In practice, realizing
quantum algorithms for the weighted version of the MIS problem requires additional
experimental control, so finding similarly efficient reduction schemes from unweighted
MIS problems on general graphs to unweighted MIS problems on UD graphs would be
desirable from the hardware perspective [7, 26]. Moreover, the unweighted MIS prob-
lem is interesting in its own right since being a subclass of the weighted problem, it is
one of the most popular NP-hard problems in the literature [13, 18, 12], and it plays
an important role in coding theory [4, 8] and other industry relevant problems [27].

In this paper, we address this challenge and generalize the framework of Ref. [21],
developing a reduction scheme from unweighted MIS on general graphs to unweighted
MIS on UD graphs, which requires at most quadratic vertex overhead. To this end,
we introduce a computer-assisted gadget design framework based on graph rewriting

∗Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China; Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, USA; QuEra Computing Inc., 1284
Soldiers Field Road, Boston, MA, 02135, USA (jinguoliu@hkust-gz.edu.cn).

†QuEra Computing Inc., 1284 Soldiers Field Road, Boston, MA 02135, USA
‡Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;

QuEra Computing Inc., 1284 Soldiers Field Road, Boston, MA 02135, USA
§Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
¶Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria; Institute

for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020,
Austria

1

mailto:jinguoliu@hkust-gz.edu.cn

for the unweighted MIS reduction, in which the unweighted MIS gadgets play the
role of essential building blocks. With a computer-assisted exhaustive search, we can
explore the super-exponentially large graph space and find several optimal gadgets
that we employ in the problem reduction.

The content of the paper is ordered as follows. Section 2 reviews general concepts
of the MIS problem and introduces the basic notations we use throughout the paper.
Section 3 introduces the graph-rewriting framework for the unweighted MIS reduction,
including the principle of computer-assisted gadget design, followed by some specific
gadgets found for the unweighted MIS problem reduction. Section 4 introduces a
scheme to reduce a general MIS problem to that on a class of UD graphs and discusses
the optimality of the reduction. Finally, Section 5 concludes the paper with discussions
on some future research directions.

2. Background and notation. In this work, we are interested in the MIS
problem. An instance of the (unweighted) MIS problem is specified by a graph G =
(V,E), consisting of a set of vertices V and a set of edges E. An independent set of
G is a subset of V such that no pair of vertices in the subset is connected by an edge
in E. An independent set with the largest size is called a maximum independent set
and its size is denoted by α(G).

It is often convenient to formulate the MIS problem as a binary optimization
problem. For that purpose, one can employ an identification between bit-strings and
(sub)sets, an association that we will use repeatedly below. Specifically, we associate
a boolean variable sv ∈ {0, 1} with each vertex v ∈ V and identify each bitstring
s = s1s2 . . . s|V | ∈ {0, 1}|V | with a subset S of V via

v ∈ S ⇔ sv = 1 and v /∈ S ⇔ sv = 0.

The unweighted MIS problem can then be formulated as a minimization problem over
the energy function

(2.1) HMIS(s) = −
∑
v∈V

sv +
∑

(u,v)∈E

Ususv

where U is typically taken to be ∞ to satisfy the independent set constraint, but,
in practice, U > 1 is sufficient to guarantee that the lowest energy states of HMIS

correspond to the MISs. Similarly, an instance of the maximum weight independent
set (MWIS) problem is specified by a weighted graph G = (V,E, δ), where δ is a
function assigning each vertex v ∈ V a weight δv. The MWIS problem is to find an
independent set that has the largest total weight. It can be similarly written as the
minimization problem of the energy function

(2.2) HMWIS(s) = −
∑
v∈V

δvsv +
∑

(u,v)∈E

Ususv

where U > maxv∈V δv guarantees that the lowest energy states correspond to the
MWISs. Clearly, the MWIS problem contains the MIS problem (by setting all weights
to be one).

Both the MIS problem and the MWIS problem can be formulated on arbitrary
classes of graphs. In this work, we are particularly interested in UD graphs that
can be implemented natively on neutral-atom quantum processors [23]. These are
geometric graphs that can be drawn by placing the vertices in the 2D plane and
connecting two vertices by an edge if and only if they are within a unit distance.

2

A particular subclass of UD graphs are subgraphs of the King’s graphs. A King’s
subgraph (KSG) can be obtained by restricting the positions of the vertices to points
on a 2D square lattice and connecting vertices by an edge if they are nearest-neighbors
or next-nearest neighbors on the square lattice. Since the MIS problem on KSGs
is NP-complete [7], any problem in NP can be formulated as a MIS problem on a
KSG with at most a polynomial vertex overhead. In this work, we are interested in
minimizing this overhead. Ref. [21] developed an efficient reduction scheme to map
any problem in NP to a weighted MIS problem on a KSG. However, that procedure
results necessarily in a graph with nonuniform weights. In this paper, we develop an
alternative framework, based on which we find an efficient reduction scheme to map
any problem in NP to an unweighted MIS problem on a KSG.

3. Unweighted MIS gadget design. Our framework for reducing the un-
weighted MIS problem on a general graph to that on a KSG is based on graph-
rewriting techniques. The basic element of a rewriting system is a graph rewrite rule
of the form R → R′, where R is called the pattern graph and R′ the replacement
graph (see Figure 1). If a graph G contains R as a subgraph, we can apply the re-
write rule R → R′ to G by replacing R with R′. The graph obtained in this way is
denoted by G[R → R′]. Note that a well-defined graph rewrite rule R → R′ requires
a specification of how edges between R and G \ R are mapped to edges between R′

and G \ R. This motivates the definition of the boundary of a pattern graph, ∂R,
consisting of the subset of vertices of R that can be connected to vertices in G \ R.
The boundary of a replacement graph R′ is defined analogously and denoted by ∂R′.
Note that in many cases considered below the boundaries of R and R′ coincide (e.g.
Figure 1).

1

2

3

4

R

G \R
1

2

3

4

R′

G \R

rewrite−−−−−→

G G[R → R′]

Fig. 1: Rewriting a subgraph R of G with R′. The red-faced vertices are interior
vertices of R, the white faced vertices are boundary vertices ∂R = ∂R′ = {1, 2, 3, 4},
and the black vertices are the remaining vertices G \R. Note that both R and R′ are
allowed to contain interior vertices in a general setting, but in this specific example,
R′ does not contain any interior vertex.

The central idea of this work is to design rewrite rules that allow us to replace
a graph G with another graph G[R → R′] with more desirable properties, such as
being (closer to) a UD graph. Importantly, we are only interested in rewrite rules
that preserve the essential structure of the associated MIS problem, meaning that a
MIS of the graph of interest, G, can be found efficiently if one knows any MIS of the
rewritten graph, G[R → R′]. This motivates the following definition.

Definition 3.1 (MIS-gadget). A rewrite rule R → R′ is a MIS gadget if the
following holds for any graph G that contains R as a subgraph: for any MIS of G[R →
R′], there exists a corresponding MIS of G, such that these two MISs coincide on G\R.

3

Based on this definition, in order to obtain a MIS of G from a MIS of G[R → R′],
we only need to consider vertices in R. This can be achieved by the solution extraction
rule, which tells us which vertices in R belong to the corresponding MIS of G if we
are given the MIS configuration of G[R → R′] on R′. We note that this solution
extraction rule is not necessarily bijective, since multiple MISs of G[R → R′] can be
mapped to the same MIS of G. It is easy to see that a MIS gadget also satisfies the
following requirement: For any graph G, the MIS size of G differs from the MIS size
of G[R → R′] only by a constant c independent of G, i.e., α(G) = α(G[R → R′])− c
for any G; c is determined only by the rewrite rule and does not depend on G. This
means that the MIS size of a graph of interest can be easily obtained from the MIS
size of a rewritten graph.

Our goal is to find a set of properly designed MIS gadgets that allow us to pro-
gressively rewrite any graph to a UD form or even as a KSG. However, searching for
unweighted MIS gadgets in the super-exponentially large graph space is challenging.
In the next subsection, we therefore derive sufficient conditions for a rewrite rule to be
a valid MIS gadget that can be easily checked in an automated way. This allows for
a computer-assisted, automated search and forms the basis for our computer-assisted
framework. Some useful gadgets found with this framework are shown in Subsec-
tion 3.2.

3.1. Conditions for MIS gadgets. In this subsection, we formulate sufficient
conditions that allow us to identify valid unweighted MIS gadgets in an automated
way. To this end, we introduce the concept of the α-tensor of a pattern or replacement
graph. The α-tensor can be interpreted as a generalization of the scalar α(G), which
denotes the MIS size of a graph G.

Definition 3.2 (α-tensor). Let R be a pattern or replacement graph and ∂R its
boundary vertices. The α-tensor of R, α(R), is a tensor of rank |∂R|, whose element
α(R)s∂R

is the size of the largest independent set of R, while fixing the boundary
configuration s∂R ∈ {0, 1}|∂R|. If the boundary-vertex configuration s∂R itself violates
the independent set constraint, the corresponding α-tensor element is set to α(R)s∂R

=
−∞.

To illustrate this concept, let us consider the pattern graph R in Figure 1, which
has 4 boundary vertices. Its α-tensor, denoted by α(R), is therefore a rank-4 tensor
whose elements are indexed by the bit strings s∂R = s1s2s3s4. Specifically, the 16
elements of this tensor are listed in the second column of Table 1. Let us examine
a few tensor elements to further illustrate this. Consider, for instance, the tensor
element α(R)0000: its value is 2 corresponding to the size of the largest independent
set of R, given the boundary configuration s1 = s2 = s3 = s4 = 0; the corresponding

independent sets are 1

2

3

4

5 6 7

8

and 1

2

3

4

5 6 7

8

. Here, we use a red edge color (or) to

denote the vertex is in the independent set. Similarly, the entry α(R)0100 = 3 informs
us that the largest independent set of R with boundary configuration s2 = 1 and

s1 = s3 = s4 = 0 has size 3; the corresponding independent set is 1

2

3

4

5 6 7

8

. Lastly,

the entry α(R)1010 = −∞ indicates that the boundary configuration s1 = s3 = 1
and s2 = s4 = 0 violates the independent set constraint. Indeed, vertices 1 and 3 are
connected by an edge in R, and thus cannot be both in an independent set.

The α-tensor can be used as a first tool to identify unweighted MIS gadgets,
according to the following lemma.

4

s∂R α(R)s∂R
α̃(R)s∂R

reduced by α(R′)s∂R

0000 2 2 - 0
0001 3 3 - 1
0010 3 3 - 1
0100 3 3 - 1
1000 3 3 - 1
0011 3 −∞ 0001 −∞
0101 3 −∞ 0001 −∞
0110 4 4 - 2
1001 3 −∞ 0001 −∞
1010 −∞ −∞ - −∞
1100 4 4 - 2
0111 4 −∞ 0110 −∞
1011 −∞ −∞ - −∞
1101 4 −∞ 1100 −∞
1110 −∞ −∞ - −∞
1111 −∞ −∞ - −∞

Table 1: The α-tensor (Definition 3.2) α(R) (second column) and reduced α-tensor
(Definition 3.6) α̃(R) (third column) for the pattern graph R and for the replace-
ment graph R′ (fifth column) in Figure 1. Each row corresponds to a local MIS size
associated with the boundary-vertex configuration s∂R ∈ {0, 1}4 (first column). The
fourth column lists the corresponding relevant boundary-vertex configurations used to
remove the irrelevant boundary configurations in the corresponding rows of the first
column (Definition 3.6), to form the corresponding reduced α-tensor α̃(R).

Lemma 3.3. Let R → R′ be a rewrite rule. If the boundary vertices of R and R′

coincide and their α-tensors differ by a constant, i.e., α(R) = α(R′) − c, then the
rewrite rule R → R′ is a valid MIS gadget.

Proof. Consider an arbitrary graph G that contains R as a subgraph. It is easy
to see that α(R) = α(R′) − c implies that α(G) = α(G[R → R′]) − c. To see this,
select a specific configuration of the boundary vertices of R and R′ and consider the
largest independent sets for G and for G[R → R′] with this boundary configuration.
Both sets coincide on G \R and G \R′ since they are exactly the same with the same
boundary configuration, while on R and R′ their sizes differ by c. This holds for any
choice of the configuration of the boundary. Since a MIS of G and a MIS of G[R → R′]
can be obtained by optimizing over the boundary configuration, their sizes also differ
by c. This procedure also defines the solution extraction rule: considering any MIS
of G[R → R′], replace all vertices in R′ by those forming the largest independent set
in R with the same boundary configuration. By construction, this is an independent
set of G and its size is α(G[R → R′])− c = α(G), i.e., it is a MIS of G.

Note that this lemma formulates a sufficient condition for a MIS gadget. However,
it is not a necessary condition, and in fact many rewrite rules corresponding to valid
MIS-gadgets do not satisfy this condition. For instance, consider again the replace-
ment rule Figure 1, whose α-tensors are given in Table 1, and since α(R) ̸= α(R′)− c
the assumptions of Lemma 3.3 are not met. Nevertheless, this rewrite rule is a valid
MIS-gadget. The reason is that the two tensors differ only by a constant on all rele-

5

vant boundary configurations. Below, we will provide a formal definition of relevant
and irrelevant boundary configurations, but before formal definition, we find it in-
structive to first develop these concepts using the example of Figure 1. Consider for
example the pattern graph R with the boundary configuration s∂R = 0111. This is
an irrelevant boundary configuration, in the sense that it is unnecessary to consider
this configuration for finding a MIS on any graph G that contains R as a subgraph,
for the reasons given below. Assume that G has a MIS, whose configuration on ∂R is
indeed given by s∂R = 0111. Since α(R)0111 = 4, this MIS contains exactly 4 vertices

in R (corresponding to the configuration 1

2

3

4

5 6 7

8

). Importantly, it is easy to see that

if G has such a MIS, then G has another MIS, whose configuration on ∂R is given
by s∂R = 0110, which also contains α(R)0110 = 4 vertices in R (the corresponding

configuration on R is 1

2

3

4

5 6 7

8

). Moreover, these two MISs coincide on G \R. In other

words, for any MIS with the boundary configuration 0111 on ∂R, we can construct
another MIS with the boundary configuration 0110 on ∂R. Importantly, the reverse is
not true. This is because the boundary configuration 0110 is less restrictive than the
boundary configuration 0111: any configuration on G\R that is independent with the
boundary configuration 0111 on ∂R is also independent with the configuration 0110
on ∂R, but not vice versa. Since the boundary configuration 0111 is not needed to
construct a MIS of G, we call this configuration irrelevant. This notion is formalized
with the following two definitions.

Definition 3.4 (less restrictive relation). Consider two bitstrings of equal length
n, s ∈ {0, 1}n and t ∈ {0, 1}n. We say that s is less restrictive than t if si ≤ ti for
all i ∈ {1, . . . , n}. We denote this by s ≺ t.

Clearly, the least restrictive boundary configuration is the one containing all zeros.
For any other boundary configuration, one can always find less restrictive ones by
flipping some number of ones to zeros.

Definition 3.5 (irrelevant boundary configuration). Let R be a pattern or re-
placement graph, ∂R its boundary, and α(R) its α-tensor. A boundary-vertex con-
figuration t is irrelevant if there exists another boundary-vertex configuration s such
that s ≺ t and α(R)s ≥ α(R)t, or if α(R)t = −∞. A boundary configuration is
called relevant if it is not irrelevant.

These concepts are crucial in defining the reduced α-tensor, which plays the central
role in our approach to find MIS-gadgets below.

Definition 3.6 (reduced α-tensor). Let α(R) be an α-tensor for a pattern or
replacement graph R. The corresponding reduced α-tensor is defined by setting all
entries in α(R) that correspond to irrelevant boundary-vertex configurations to −∞.

In the following, we use the notation α̃(R) to denote the reduced α-tensor for the pat-
tern or replacement graph R. As an example, we list in Table 1 the reduced α-tensor
for the pattern graph R in Figure 1. This table also identifies the irrelevant boundary
configurations and lists the corresponding relevant boundary-vertex configurations
used to reduce the α-tensor.

With this, we are prepared to state the following theorem, which formulates a
useful condition to identify MIS-gadgets.

Theorem 3.7. Let R → R′ be a rewrite rule, such that the boundaries of R and
R′ coincide. The rewrite rule R → R′ is a valid MIS gadget if and only if the reduced

6

α-tensors of the pattern and replacement graphs R and R′ differ by a constant, i.e.,
α̃(R) = α̃(R′)− c.

Proof. The proof of sufficiency is a simple variant of the one outlined in the proof
of Lemma 3.3. Consider an arbitrary graph G containing R as a subgraph. It is easy
to see that α̃(R) = α̃(R′) − c implies that α(G) = α(G[R → R′]) − c. For this,
consider the relevant boundary vertex configurations of the replacement graph, R′.
For each such boundary configuration, consider the largest independent sets for G and
for G[R → R′] fixing the specific boundary configuration. We can choose these sets
such that they coincide on G\R, while on R and R′ their size differs by c. This hold for
any relevant configurations of the boundary. Since maximum independent sets of G
and G[R → R′] are obtained by optimizing over the relevant boundary configurations,
their sizes also differ by c. The solution extraction rule is given as follows. Consider
any MIS of G[R → R′]. If its boundary configuration t is irrelevant, construct the
corresponding MIS that has a relevant boundary configuration s such that s ≺ t.
Note that such s exists by definition. We then replace all vertices in R′ by those
forming the largest independent set in R with the same boundary configuration s. By
construction, this is an independent set of G and its size is α(G[R → R′])− c = α(G),
i.e., it is a MIS of G.

The necessity condition is proved in Appendix A, where we show that the reduced
α-tensors of the pattern and replacement graphs R and R′ cannot be further reduced
without invalidating the theorem.

To conclude this discussion, we return to the example of Figure 1. As we can
see from Table 1, the reduced α-tensors of R and R′ differ by 2, and therefore this
replacement rule is a valid MIS-gadget. The solution extraction rule is as follows:

1

2

3

4

1

2

3

4

5 6 7

8

→
1

2

3

4

1

2

3

4

5 6 7

8

→
1

2

3

4

1

2

3

4

5 6 7

8

→

1

2

3

4

1

2

3

4

5 6 7

8

→
1

2

3

4

1

2

3

4

5 6 7

8

→

We note that only mappings corresponding to relevant boundary configurations are
displayed, since those are the only ones that are necessary. We further note that we
dropped mappings for configurations that can be obtained from the above via the
vertical reflection symmetry. With the reduced α-tensors, we can reliably identify
unweighted MIS gadgets by searching over the feasible graph space.

3.2. Some Useful Gadgets. In the following, we show several gadgets that will
be used in Section 4 for reducing the MIS problem on a general graph to that on a UD
graph and a KSG. These gadgets are found by exhaustive search over all UD graphs
up to a certain size, and their solution extraction rules are listed in Appendix B.
The first two gadgets that we introduce below is useful for removing crossings from
a graph. In general, crossings are not allowed in UD graphs, as they often cannot
be removed by moving the vertices in two dimensions, in particular when the graph
is not planar. In our graph rewriting based scheme, a crossing can be removed by
applying the following gadget.

7

Corollary 3.8.

(3.1)
1

2

3

4

= 1

2

3

4

− 2

Let CROSS be the graph on the left-hand side of Equation (3.1) and BATOIDEA be
the KSG on the right-hand side. The correspondence between their boundary vertices
is indicated by the dashed arrows. CROSS → BATOIDEA is a valid MIS gadget, and
it is optimal in terms of the number of added vertices, 7. The constant difference in
the MIS size is 2.

Proof. The reduced α-tensors for CROSS and BATOIDEA are listed in Table 2.
By comparing the second and third columns, we can see the corresponding reduced α-
tensors differ by a constant 2, proving Equation (3.1) via Theorem 3.7. The optimality
is shown by the exhaustive search algorithm detailed in Appendix C.

s∂R α̃(CROSS)s∂R
α̃(BATOIDEA)s∂R

difference
0000 0 2 2
0001 1 3 2
0010 1 3 2
0100 1 3 2
1000 1 3 2
0011 2 4 2
0110 2 4 2
1100 2 4 2
0101 −∞ �3 -
1010 −∞ �3 -
1001 2 4 2
0111 −∞ �3 -
1110 −∞ �4 -
1101 −∞ �4 -
1011 −∞ �4 -
1111 −∞ �4 -

Table 2: The reduced α-tensor elements for CROSS and BATOIDEA. Tensor indices
s∂R are the boundary vertex configurations s1s2s3s4 ∈ {0, 1}4. Irrelevant entries are
set to −∞ with �.

Some crossings with extra features can be removed by gadgets with less vertex
overhead. For example, to rewrite a crossing with two additional vertices and one
additional edge, we introduce the following gadget.

8

Corollary 3.9.

(3.2) 1

2

3

4

5

6

= 1

2

3

4

− (−1)

Let CROSS + EDGE be the graph on the left-hand of Equation (3.2), which consists
of a crossing, two additional vertices and one additional edge, and PIRAMID be the
KSG on the right-hand side. The correspondence between their boundary vertices is
indicated by the dashed arrows. CROSS + EDGE → PIRAMID is a valid MIS gadget,
and it is optimal in terms of the number of vertices. The constant difference in the
MIS size is −1.

Proof. The reduced α-tensors for CROSS + EDGE and PIRAMID are listed in
Table 3. By comparing the second and third columns, we can see the correspond-
ing reduced α-tensors differ by a constant −1, proving Equation (3.2) via Theorem
3.7. Again, the optimality is proved by our exhaustive searching program detailed in

s∂R α̃(CROSS + EDGE)s∂R
α̃(PIRAMID)s∂R

difference
0000 2 1 −1
0001 �2 �1 -
0010 �2 �1 -
0100 �2 �1 -
1000 �2 �1 -
0011 �2 −∞ -
0110 �2 −∞ -
0101 3 2 −1
1010 3 2 −1
1001 �2 −∞ -
0111 �3 −∞ -
1011 �3 −∞ -

Table 3: The reduced α-tensor elements for CROSS + EDGE and PIRAMID. Tensor
indices s∂R are the boundary vertex configurations s1s2s3s4 ∈ {0, 1}4. Irrelevant
entries are set to −∞ with �.

Appendix C.

In the following, we introduce the copy gadget, which is not a single gadget but a
class of gadgets that can be used to copy the information of a vertex to other vertices.

Corollary 3.10.

(3.3) =

s1 s2 s3 s4 s2n s2n+1

. . . − n

Let K1 be the single-vertex graph on the left hand side of Equation (3.3), and COPYn

be the path graph on the right hand side with (2n + 1) vertices for some integer n.
9

The boundary vertices of COPYn are those annotated with odd indices. The corre-
spondence between their boundary vertices is indicated by the dashed arrows, which is
one-to-many. Then K1 → COPYn forms a MIS gadget, and the constant difference
in the MIS size is n.

Proof. This proof that this rewrite rule is a valid MIS gadget requires a bit more
care, since it does not satisfy the conditions of Theorem 3.7, since the boundaries of
R = K1 and R′ = COPYn do not coincide. While R consists of a single vertex that
is also its boundary, R′ consists of 2n+1 vertices, out of which n+1 vertices form its
boundary. Nevertheless, we show it is a valid MIS gadget according to Definition 3.1.
This rewrite rule can be understood as follows: If we replace a vertex R in a graph
G with R′, we can connect any edge e ∈ E that connects a vertex v in G \ R with
R by an edge that connects v with any one of the boundary vertices in R′. Note
that different choices for these edges result in different rewritten graphs G[R → R′].
However, for each choice, the replacement rule is a valid MIS gadget.

To see this, let us first note that COPYn has only two relevant boundary con-
figurations. These are si = 0 for all odd i on one hand, and si = 1 for all odd i on
the other hand. The corresponding largest independent sets on R′ have size n and
n + 1 respectively. Importantly, the reduced α tensors for R and R′ thus differ by a
constant n on all relevant boundary configurations (see Table 4). Let us consider any
MIS of G[R → R′]. It is easy to see that we can construct a MIS of G from this set by
replacing the vertices in R′ with the single vertex in R if the boundary configuration
of R′ is si = 1 for all boundary vertices. For any other boundary configuration, we
do not add R to the independent set to obtain a MIS of G.

s∂R α̃(K1)s∂R
s∂R′ α̃(COPYn)s∂R′ difference

0 0 00. . . 0 n n
1 1 11. . . 1 n+ 1 n
- - others ��≤ n -

Table 4: The reduced α-tensor elements for K1 and COPYn. Indices s∂R ∈ {0, 1} are
for α(K1) while s∂R′ ∈ {0, 1}n+1 are for α(COPYn)s∂R′ .

The copy gadget is useful for decomposing a high-degree vertex into low-degree
ones or bridging two vertices that are far away from each other. By applying the copy
gadget multiple times, we can also rewrite a vertex to a tree graph.

4. Reduction of an unweighted MIS problem on a general graph to
that on a KSG. The combination of the three gadgets given in Equation (3.1),
Equation (3.2), and Equation (3.3) allow for a straightforward reduction of the MIS
problem on a general graph to a MIS problem on a KSG. The reduction follows the
general idea introduced in Ref. [21], which is based on the concept of the crossing
lattice. Generalizing this idea results in the following theorem, which we refine later
by combining it with strategies to reorder the vertices in the source graph.

Theorem 4.1. The problem of finding a maximum independent set on a general
graph G = (V,E) can be reduced to that on a KSG with O(|V |2) vertices.

Proof. We prove this theorem by constructing a two-step reduction scheme as
illustrated in the top panel of Figure 2: In step 1 , we construct a crossing lattice as
shown in subplot (b). We first align the vertices in the source graph into a row and

10

1 2

3 4

5

(a)

Step 1

Step 1

→
Step 1

1 2

2

1 1 1 1
3

3

3

2 2 2

4

4

4

4

3 3

5

5

5

5

5

4

CROSS

CROSS + EDGE

(b)

4
4 4 4 4

1
1 1 1

5

5

5

3

3

3

2

2

2

(d)

Step 2

Step 2

Step 2 Eq. 3.2
→ →

⇓ fit into grid

Eq. 3.1

→→

(c)

(e)

Fig. 2: The reduction schemes for the MIS problem on a general graph G to that on a
KSG. Subplots (a), (b), and (c) on the top panel are for the O(|V |2) mapping without
vertex reordering. (a) is the source graph. (b) is the crossing lattice for (a), which is
obtained by applying the copy gadgets on the vertices in (a). Black and white circles
are interior and boundary vertices respectively. The edges in blue are from the source
graph. (c) is the KSG obtained by applying crossing gadgets to the crossings in (b).
Subplots (d), (e) on the bottom panel are for the O(|V |×pw(G)) mapping with vertex
reordering, where pw(G) is the pathwidth of G. (d) is the crossing lattice with vertex
reordering. (e) is the KSG obtained by applying crossing gadgets to the crossings in
(d). The gadgets applied in each step is indicated by the boxes “Step 1” and “Step 2”.

then rewrite each of them with a “Γ” shaped line graph with odd number of vertices
(Equation (3.3)). The collection of these line graphs forms a crossing lattice [21], a two
dimensional geometric graph that has crossings at certain lattice sites for any u, v ∈ V .
By Corollary 3.10, all vertices with odd indices in the same line are “equivalent” to the
source vertex, and hence an edge connecting two vertices in the source graph can be
redistributed to any pairs of vertices that are equivalent to them. The redistributed
edges are shown in the blue lines in subplot (b), where all of them are located at the
crossings of the crossing lattice. In step 2 , we apply either CROSS → BATOIDEA
in Equation (3.1) or CROSS + EDGE → PIRAMID in Equation (3.2) to remove the
crossings of the crossing lattice (the dashed circles in subplot (b)), so that the resulting

11

graph becomes a unit-disk graph. To embed the graph into a grid, extra vertices can
be inserted via the copy gadgets, which explains why the gadgets in the figure is
slightly different from those in the equations. The resulting KSG is shown in subplot
(c). The generated graph can be further simplified by introducing extra gadgets, such
as those for trimming the dangling legs (e.g., gadget in the box of step 2). To extract
a solution from a MIS of the obtained KSG, one can apply the solution extraction
rules detailed in Appendix B in an order that is reverse to the gadget application.

4.1. Path decomposition and optimal vertex ordering. By relating the
layout of the crossing lattice with the path decomposition, we can further reduce the
depth of the mapped KSG to O(pw(G)), where pw(G) is the pathwidth of the source
graph G = (V,E), which is bounded above by the number of vertices, |V |. This
improvement is most significant for sparse graphs, which usually have small path-
width. For example, the pathwidth of a 3-regular graph is asymptotically bounded
by |V |/6 [9], and the pathwidth of a tree graph is O(log |V |).

Definition 4.2 (path decomposition and pathwidth [25]). Given a graph G =
(V,E), its path decomposition is a sequence of bags Xi ⊆ V , with the following two
properties:

1. For each edge of G, there exists an i such that both endpoints of the edge
belong to the bag Xi,

2. and for every three indices i ≤ j ≤ k, Xi ∩Xk ⊆ Xj.
The path decomposition defines a mapping from a general graph to a path graph

{X1, X2, . . . , Xm} and its width is defined as
m

max
j=1

|Xj |−1. The smallest width among

all path decompositions is the pathwidth of the graph, which is denoted as pw(G).

A crossing lattice with a depth pw(G) + 1 can be inferred from the optimal path
decomposition of the source graph. Consider the graph in Figure 2 (a), which has an
optimal path decomposition

(4.1) +4−−→ (4)
+1−−→ (41)

+5−−→ (415)
+3−−→ (413)

+2−−→ (412).

It can be diagrammatically represented in Figure 3, where each column is a bag in
the path decomposition, and the maximum bag size is equal to the number of rows.
Whenever a vertex is added to a bag, a segment with a horizontal span (sv, fv) is
added to the diagram, where sv is the step that the vertex is added and fv is the
step that the vertex is removed. It is easy to verify that all edges in the source graph
can be mapped to one of the bags in the path decomposition: (1, 5), (4, 5) ∈ X3,
(1, 2), (2, 4) ∈ X5, and (1, 3), (3, 4) ∈ X4.

Theorem 4.3. The problem of finding a maximum independent set on a general
graph G = (V,E) can be reduced to that on a KSG of width O(|V |) and depth pw(G)+
1, where pw(G) is the pathwidth of G.

Proof. We prove this theorem using the example in Figure 2 and Figure 3. The
idea generalizes straightforwardly to a general graph G. Given a path decomposition,
a vertex ordering can be obtained by sorting the vertices according to the step that
they are added to the bags, e.g., (4, 1, 5, 3, 2) in the above example in Figure 3. We
assign each column to a vertex and wire its copy gadget into the “⊢” shape as shown
in Figure 3 (the red solid lines for example). By Definition 4.2, for any (u, v) ∈ E,
copy gadgets of u and v are guaranteed to cross at a certain bag. The edge (u, v) in
the source graph can be redistributed to the crossing of the copy gadgets of u and v
as shown in Figure 2 (d). Finally, we apply crossing gadgets to the crossings in the

12

pw(G) + 1

+4 +1 +5 +3 +2

4 4

1 1

5 3 2BRANCHING

BRANCHING

Fig. 3: The optimal path decomposition of the source graph in Figure 2 (a), where
each column is a bag in the path decomposition, and the maximum bag size is equal
to the number of rows. A segment with a horizontal span (sv, fv) represents a vertex
v that is added to the bag at step sv and removed in a future step fv + 1. The blue
curves are the edges in the source graph. In the proof of Theorem 4.3, we explain how
to connect the vertices with the corresponding edges using the copy gagdets. The copy
gadgets are wired in the “⊢” shape as highlighted in the red color. The “BRANCHING”
structure appears in the center of the “⊢” shape, which can be rewritten into a KSG
by one of the gadgets in the “Step 2” of Figure 2.

crossing lattice and remove the dangling vertices as shown in Figure 2 (e), as well as
a new gadget to rewrite the BRANCHING (Figure 3) structure at the center of a “⊢”
to a KSG. The correctness of this new gadget can be verified by representing it as a
combination of multiple copy gadgets. The resulting graph is a KSG of width O(|V |)
and depth pw(G) + 1.

With an optimal path decomposition, the graph in Figure 2 (a) can be mapped to the
KSG in Figure 2 (e) with only 31 vertices. The target graph has depth 2 rather than
pw(G)+1 = 3 because of the removal of the dangling vertices. Note that removing an
even number of dangling vertices is effectively applying the copy gadget in a reversed
way, which is also a MIS gadget.

Example 1. Reducing the Petersen graph to a KSG. The Petersen graph is
a 3-regular graph with 10 vertices as shown in Figure 4 (a). One of its optimal path
decomposition, which has pathwidth 5, is

+A−−→ (A)
+B−−→ (AB)

+C−−→ (ABC)
+D−−→ (ABCD)

+E−−→ (ABCDE)

+G−−→ (ABCDEG)
+F−−→
-B

(ACDEGF)
+H−−→
-D

(ACEGFH)

+I−−→
-EG

(ACFHI)
+J−−→
-AH

(CFIJ).

(4.2)

The mapped KSG as shown in Figure 4 (b) has depth 6 and a grid size 23× 32.
It has 218 vertices and the MIS size of which is larger than that of the Petersen graph
by a constant 88. A sample notebook that implements the reduction of this graph is
available in our Github repository.

4.2. Lower bound on reduction size. In this subsection, we will show the
proposed KSG reduction scheme for the MIS problem is optimal up to a constant
or logarithmic factor, otherwise, there will be a sub-exponential time algorithm for
finding the maximum independent sets of a general graph, better than any existing
classical algorithms [24], in contradiction with the exponential time hypothesis.

13

https://queracomputing.github.io/UnitDiskMapping.jl/notebooks/unweighted.html

A B C

D E

F

G

H

I J

(a) (b)

Fig. 4: (a) The Petersen graph and (b) its KSG mapping with an optimal vertex
ordering.

Definition 4.4 (area-law graph). A D-dimensional area-law graph is a geometric
graph such that there exists a reference point such that given a ball of radius r centered
at the reference point, the number of vertices contained in the ball is upper bounded
by its volume αrD for some α and the number of edges cut by the unit ball is upper
bounded by the surface area βrD−1 for some β.

It is easy to see that KSGs are area-law graphs.

Lemma 4.5. There exists an algorithm B which can find a MIS of any area-law

graph Ga = (V,E) in spatial dimension D in a time of at most O(|E|)2O
(
|V |

D−1
D

)
.

Proof. The algorithm B can be the tropical tensor network method in Ref. [15],
which can solve the MIS problem on Ga in time O(|E|)2O(tw(Ga)). Here, tw(Ga) is the
treewidth of Ga and it is upper bounded by the pathwidth since a path decomposition
is also a tree decomposition. For an area-law graph, a path decomposition of width
O
(
|V |D−1

D

)
can be obtained with the process illustrated in Figure 5. Starting from

some reference point, we draw a ball of radius r = 0. Then, we increase the radius
to include more edges into the ball. Whenever the surface of the ball cuts a new
edge, a bag that consists of endpoints of edges at the boundary is added to the
sequence. At certain point, all edges will be included, and the generated sequence of
bags corresponds to a path decomposition of Ga. By the definition of area-law graphs,
the size of the bag is proportional to the surface area of the ball, rD−1. Since the
number of vertices included in the ball scales as its volume rD, the overall time and

space complexity to contract this tensor network is O(|E|)2O
(
|V |

D−1
D

)
, thus proving

the lemma.

Theorem 4.6. Assuming the exponential time hypothesis is true, no algorithm
can reduce the problem of finding a maximum independent set on a general graph
G = (V,E) to that on an area-law graph in dimension D of at most η|V | D

D−1−ϵ

vertices for some η and any ϵ > 0.

Proof. We prove the theorem by contradiction. Suppose there exists a polynomial
time algorithm A which reduces the problem of finding a MIS on any graph G = (V,E)

14

r

Fig. 5: A way to construct a path decomposition of an area-law graph, e.g. the KSG
in the graph. The vertices and edges in the red ball are those already included in the
existing bags. The vertices and edges at the cut (in red color) are the elements of the
new bag.

onto finding a MIS on an area-law graph Ga in dimension D with at most η|V | D
D−1−ϵ

vertices for some η and ϵ > 0. By Lemma 4.5, there exists an algorithm B which can
solve the MIS on an area-law graph Ga = (Va, Ea) in dimension D in a time of at most

O(|Ea|)2
O

(
|Va|

D−1
D

)
. An algorithm C may be used to solve the MIS on any graph

by using A and B as subroutines as follows. First, given an arbitrary graph G with
|V | vertices, use algorithm A to compute an area-law graph Ga of |Va| = η|V | D

D−1−ϵ

vertices. Then, use algorithm B to find a MIS of Ga, which takes a time of at most

poly(|V |)2O
(
|V |1−ϵD−1

D

)
. Then, given a MIS solution of Ga, the solution extraction

routine that associated with algorithm A can compute a solution of the source graph
G. The exponential time hypothesis (ETH) states that MIS of a generic source graph
G cannot be solved in a time lower bounded by poly(|V |)2O(|V |), by a linear reduction
of 3-SAT to MIS [13, 18]. Assuming the ETH is True, it contradicts with the existence
of an algorithm C. Therefore, by contradiction, if ETH is True, the algorithm A does
not exist, proving the theorem.

5. Discussion and outlook. In this work, we introduced a framework of un-
weighted MIS gadget design based on graph rewriting and use it to search for MIS
gadgets in an automated approach. With a few elementary MIS gadgets, we can re-
duce an unweighted MIS problem on a general graph to that on a KSG with at most a
quadratic overhead in the number of vertices. This greatly facilitates the encoding of
the MIS problems onto programmable neutral-atom quantum processors, since KSGs
can be natively implemented on the quantum hardware. It also removes the need for
unequal weights, which were required in the reduction scheme in Ref. [21]. We show
that by reordering the vertices, the mapped KSG has a size of O(|V |×pw(G)), where
pw(G) is the pathwidth of G. We further show that the reduction scheme is opti-
mal up to a constant or logarithmic factor, assuming the exponential time hypothesis
holds.

15

We note that the framework of automated gadget design based on graph rewrite
is applicable to broader context beyond MIS reduction on KSGs. The MIS reduction
is rather a specific example of the general framework. As a future direction, we are
interested in applying the reduction scheme to other constraint satisfaction problems.
We remark that the α-tensors and reduced α-tensors in the gadget searching scheme
naturally extends to multiple constraint satisfaction problems with the tropical tensor
network representations in Ref. [15]. The range of problems include but not limited to
the spin-glass problem, the matching problem, the k-coloring problem, the max-cut
problem, the binary paintshop problem, the set packing problem, and the set covering
problem [15].

The open-source implementation of the MIS reduction scheme is available on
Github [1], which is released as a Julia package.

Acknowledgments. Jinguo Liu thanks Dominik Wild for helpful discussion on
the exponential time hypothesis. We acknowledge financial support from the DARPA
ONISQ program (grant no. W911NF2010021), the ERC Starting grant QARA (grant
no. 101041435), the European Unions Horizon 2020 research and innovation pro-
gram under Grant Agreement No. 101079862 (PASQuanS2), the Army Research Of-
fice (grant no. W911NF-21-1-0367), the U.S. Department of Energy (DE-SC0021013)
and DOE Quantum Systems Accelerator Center (contract no. 7568717).

REFERENCES

[1] https://github.com/QuEraComputing/UnitDiskMapping.jl.
[2] R. S. Andrist, M. J. A. Schuetz, P. Minssen, R. Yalovetzky, S. Chakrabarti,

D. Herman, N. Kumar, G. Salton, R. Shaydulin, Y. Sun, M. Pistoia, and
H. G. Katzgraber, Hardness of the Maximum Independent Set Problem on Unit-Disk
Graphs and Prospects for Quantum Speedups, arXiv e-prints, (2023), arXiv:2307.09442,
p. arXiv:2307.09442, https://doi.org/10.48550/arXiv.2307.09442, https://arxiv.org/abs/
2307.09442.

[3] H. Breu and D. G. Kirkpatrick, Unit disk graph recognition is np-hard, Computational
Geometry, 9 (1998), pp. 3–24.

[4] S. Butenko, P. Pardalos, I. Sergienko, V. Shylo, and P. Stetsyuk, Estimat-
ing the size of correcting codes using extremal graph problems, Optimization: Struc-
ture and Applications, (2009), pp. 227–243, https://link.springer.com/chapter/10.1007/
978-0-387-98096-6_12.

[5] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound
constrained optimization, SIAM Journal on Scientific Computing, 16 (1995), pp. 1190–
1208, https://doi.org/10.1137/0916069.

[6] B. N. Clark, C. J. Colbourn, and D. S. Johnson, Unit disk graphs, Discrete mathematics,
86 (1990), pp. 165–177.

[7] S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine, D. Bluvstein, G. Se-
meghini, A. Omran, J.-G. Liu, R. Samajdar, X.-Z. Luo, B. Nash, X. Gao,
B. Barak, E. Farhi, S. Sachdev, N. Gemelke, L. Zhou, S. Choi, H. Pich-
ler, S.-T. Wang, M. Greiner, V. Vuletic, and M. D. Lukin, Quantum optimiza-
tion of maximum independent set using rydberg atom arrays, Science, 0, p. eabo6587,
https://doi.org/10.1126/science.abo6587.

[8] T. Etzion and P. R. Ostergard, Greedy and heuristic algorithms for codes and colorings,
IEEE Transactions on Information Theory, 44 (1998), pp. 382–388, https://ieeexplore.ieee.
org/abstract/document/651069.

[9] F. V. Fomin and K. Høie, Pathwidth of cubic graphs and exact algorithms, Information
Processing Letters, 97 (2006), pp. 191–196.

[10] F. Glover, G. Kochenberger, and Y. Du, A tutorial on formulating and using qubo
models, arXiv preprint arXiv:1811.11538, (2018).

[11] A. Griewank and A. Walther, Evaluating derivatives: principles and techniques of algo-
rithmic differentiation, SIAM, 2008.

[12] J. Hastad, Clique is hard to approximate within n1−ϵ, in Proceedings of 37th Conference on

16

https://github.com/QuEraComputing/UnitDiskMapping.jl
https://doi.org/10.48550/arXiv.2307.09442
https://arxiv.org/abs/2307.09442
https://arxiv.org/abs/2307.09442
https://link.springer.com/chapter/10.1007/978-0-387-98096-6_12
https://link.springer.com/chapter/10.1007/978-0-387-98096-6_12
https://doi.org/10.1137/0916069
https://doi.org/10.1126/science.abo6587
https://ieeexplore.ieee.org/abstract/document/651069
https://ieeexplore.ieee.org/abstract/document/651069

Foundations of Computer Science, IEEE, 1996, pp. 627–636.
[13] R. Impagliazzo and R. Paturi, On the complexity of k-sat, Journal of Computer and System

Sciences, 62 (2001), pp. 367–375.
[14] M. Kim, K. Kim, J. Hwang, E.-G. Moon, and J. Ahn, Rydberg quantum wires for

maximum independent set problems, Nature Physics, 18 (2022), pp. 755–759, https:
//www.nature.com/articles/s41567-022-01629-5.

[15] J.-G. Liu, X. Gao, M. Cain, M. D. Lukin, and S.-T. Wang, Computing solution space
properties of combinatorial optimization problems via generic tensor networks, SIAM
Journal on Scientific Computing, 45 (2023), pp. A1239–A1270, https://doi.org/10.1137/
22M1501787, https://doi.org/10.1137/22M1501787.

[16] J.-G. Liu, L. Wang, and P. Zhang, Tropical tensor network for ground states of spin
glasses, Physical Review Letters, 126 (2021), https://doi.org/10.1103/physrevlett.126.
090506, https://doi.org/10.1103%2Fphysrevlett.126.090506.

[17] J.-G. Liu and T. Zhao, Differentiate Everything with a Reversible Programming Language,
(2020), http://arxiv.org/abs/2003.04617, https://arxiv.org/abs/2003.04617.

[18] D. Lokshtanov, D. Marx, S. Saurabh, et al., Lower bounds based on the exponential time
hypothesis, Bulletin of EATCS, 3 (2013).

[19] B. D. McKay, Applications of a technique for labelled enumeration, Congressus Numerantium,
40 (1983), pp. 207–221.

[20] C. Moore and S. Mertens, The nature of computation, OUP Oxford, 2011.
[21] M.-T. Nguyen, J.-G. Liu, J. Wurtz, M. D. Lukin, S.-T. Wang, and H. Pich-

ler, Quantum optimization with arbitrary connectivity using rydberg atom arrays, PRX
Quantum, 4 (2023), p. 010316, https://doi.org/10.1103/PRXQuantum.4.010316, https:
//link.aps.org/doi/10.1103/PRXQuantum.4.010316.

[22] H. Pichler, S.-T. Wang, L. Zhou, S. Choi, and M. D. Lukin, Computational complexity
of the rydberg blockade in two dimensions, arXiv preprint arXiv:1809.04954, (2018).

[23] H. Pichler, S.-T. Wang, L. Zhou, S. Choi, and M. D. Lukin, Quantum Optimiza-
tion for Maximum Independent Set Using Rydberg Atom Arrays, arXiv e-prints, (2018),
arXiv:1808.10816, p. arXiv:1808.10816, https://doi.org/10.48550/arXiv.1808.10816, https:
//arxiv.org/abs/1808.10816.

[24] B. Randerath and I. Schiermeyer, On maximum independent sets in p5-free graphs, Dis-
cret. Appl. Math., 158 (2010), pp. 1041–1044.

[25] N. Robertson and P. Seymour, Graph minors. i. excluding a forest, Journal
of Combinatorial Theory, Series B, 35 (1983), pp. 39–61, https://doi.org/https:
//doi.org/10.1016/0095-8956(83)90079-5, https://www.sciencedirect.com/science/article/
pii/0095895683900795.

[26] J. Wurtz, A. Bylinskii, B. Braverman, J. Amato-Grill, S. H. Cantu, F. Huber,
A. Lukin, F. Liu, P. Weinberg, J. Long, S.-T. Wang, N. Gemelke, and
A. Keesling, Aquila: QuEra’s 256-qubit neutral-atom quantum computer, arXiv e-
prints, (2023), arXiv:2306.11727, p. arXiv:2306.11727, https://doi.org/10.48550/arXiv.
2306.11727, https://arxiv.org/abs/2306.11727.

[27] J. Wurtz, P. L. S. Lopes, N. Gemelke, A. Keesling, and S. Wang, Industry ap-
plications of neutral-atom quantum computing solving independent set problems, arXiv
e-prints, (2022), arXiv:2205.08500, p. arXiv:2205.08500, https://doi.org/10.48550/arXiv.
2205.08500, https://arxiv.org/abs/2205.08500.

17

https://www.nature.com/articles/s41567-022-01629-5
https://www.nature.com/articles/s41567-022-01629-5
https://doi.org/10.1137/22M1501787
https://doi.org/10.1137/22M1501787
https://doi.org/10.1137/22M1501787
https://doi.org/10.1103/physrevlett.126.090506
https://doi.org/10.1103/physrevlett.126.090506
https://doi.org/10.1103%2Fphysrevlett.126.090506
http://arxiv.org/abs/2003.04617
https://arxiv.org/abs/2003.04617
https://doi.org/10.1103/PRXQuantum.4.010316
https://link.aps.org/doi/10.1103/PRXQuantum.4.010316
https://link.aps.org/doi/10.1103/PRXQuantum.4.010316
https://doi.org/10.48550/arXiv.1808.10816
https://arxiv.org/abs/1808.10816
https://arxiv.org/abs/1808.10816
https://doi.org/https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/https://doi.org/10.1016/0095-8956(83)90079-5
https://www.sciencedirect.com/science/article/pii/0095895683900795
https://www.sciencedirect.com/science/article/pii/0095895683900795
https://doi.org/10.48550/arXiv.2306.11727
https://doi.org/10.48550/arXiv.2306.11727
https://arxiv.org/abs/2306.11727
https://doi.org/10.48550/arXiv.2205.08500
https://doi.org/10.48550/arXiv.2205.08500
https://arxiv.org/abs/2205.08500

Appendix A. The reduced α-tensor is minimal. In this appendix, we show
that the further removal of any finite-valued elements in the reduced α-tensors may
reduce the MIS size of the host graph, i.e., the number of finite-valued elements in a
reduced α-tensor is minimal. Consider a boundary-vertex configuration s such that
α̃(R)s ̸= −∞. Then, there exists a host graph G of R such that s is consistent with
the only MIS of G, i.e., removing s from the search space will result in a smaller MIS
size. One such G can be constructed by adding N mutually independent vertices to
each v ∈ ∂R when sv = 0, as shown below.

1

2

3

4

. . .

..
.

..
.

The MIS size of G with the boundary-vertex configuration s is

(A.1) α(G, s) = α̃(R)s +N

(
|∂R| −

∑
v∈∂R

sv

)
,

which is a summation of contributions from R and the remaining part of G. In
the case that N > |VR|, where |VR| is the number of vertices in R, we show by
contradiction that s is the only boundary-vertex configuration that yields the MISs
of G. Assume there exists another boundary-vertex configuration t that produces the
same or bigger MIS size, i.e., α(G, t) ≥ α(G, s). Then, t ≺ s must hold, otherwise the
MIS size will decrease for at least N − α̃(R)s > 0. It implies α̃(R)t < α̃(R)s must
hold, otherwise s must be removed by the definition of reduced α-tensor. Therefore,
we have α(G, t) = α̃(R)t + N(|∂R| −∑v∈∂R sv) < α(G, s), which contradicts with
the assumption. Hence, by contradiction, s is the only boundary-vertex configuration
that is consistent with the only MIS of G, proving the second half of the theorem.

Appendix B. Extracting results. We present the rules to extract the MIS
for the source graph as the following table. On the left side of the “→” symbol, we
specify a possible gadget configurations in the MIS of a target graph, and on the right
side, we specify a possible replacement.

B.1. BATOIDEA in Equation (3.1). In order to adapt the gadget to the grid,
we transformed the original gadget slightly. We first add two (four) vertices on the
vertical (horizontal) line of the pattern graph, which is equivalent to applying the
copy gadget. Then, we remove one dangling vertex from both sides.

18

→ →

→ →

→ →

→ →

→ →

→ →

→ →

→ →

→ →

B.2. PIRAMID in Equation (3.2).
19

→ →

→

B.3. BRANCHING.

→ →

→ →

→ →

→

Appendix C. Exhaustive search of unweighted MIS gadgets. In this ap-
pendix, we show how to search for unweighted MIS gadgets by efficiently enumerating
relevant graphs at a certain size. We will focus our discussion on finding a replace-
ment graph to rewrite a crossing graph, CROSS. The searching algorithm is listed in
Algorithm C.1, where for each candidate R′ we check if it is a valid replacement for
CROSS by the following criteria:

1. The reduced α-tensors of CROSS and R′ differ only by a constant,
i.e., is_diff_by_constant(α̃(R′), α̃(CROSS)) returns true (Theorem 3.7).

2. The replacement graph R′ is a unit disk graph, which can be tested by the
function has_unit_disk_embedding (Appendix C.2).

The function to compute reduced α-tensors is compute_reduced_alpha_tensor,
which can be implemented with the generic tensor network [16, 15] method. The most
challenging part of this algorithm is to enumerate the graph space efficiently. To find
the gadget (CROSS,BATOIDEA) that introduced in Subsection 3.2, the graph space

20

Algorithm C.1 Crossing Gadget Searching
Let CROSS be the pattern graph and α̃(CROSS) be its reduced α-tensor.
Let n be the size of the replacement graph to be searched.
foreach non-isomorphic graph G = (V,E) with |V | = n do

foreach choice of boundary ∂R′ do
R′ ← (V,E, ∂R′)
if pass_filtering_rules(R′) then

α̃(R′)← compute_reduced_alpha_tensor(R′, ∂R′)
if is_diff_by_constant(α̃(R′), α̃(CROSS)) then

if has_unit_disk_embedding(R′) then
return R′

end
end

end
end

end

up to size |V | = 11 must be searched, which can be as large as 255 ≈ 3.6× 1016. For
each graph instance, there are ∼ |V |4 different choices of boundary vertices, which is
beyond the capability of a classical computer. In the following, we focus the discussion
on how to reduce the graph space to search by using symmetries. The first trick is
to only search for non-isomorphic graphs [19]. The table of non-isomorphic graphs
may be found in http://users.cecs.anu.edu.au/ bdm/data/graphs.html. For graph size
|V | = 11, there are 1018997864 non-isomorphic graphs in total. To further take the
advantage of problem symmetries, we designed the function pass_filtering_rules
to filter out redundant graphs. This function returns false if any of the following
conditions is met:

1. The boundary vertices either (1, 3) or (2, 4) is directly connected.
2. The set of boundary vertices is related by problem symmetries with an in-

stance already in the search list. For CROSS, the reduced α-tensor is sym-
metric under exchanges 1 ↔ 3, 2 ↔ 4 and (1, 3) ↔ (2, 4).

3. The crossing criteria in Appendix C.1 is not meet.
Graphs up to size |V | = 11 are searched on a 72-core Amazon Web Service (AWS)
EC2 machine in less than one day. Four valid replacement graphs for CROSS are
found, which are listed in Figure 6.

C.1. unit disk crossing criteria for CROSS. There are some easy-to-test nec-
essary conditions to tell if a graph can be a unit disk replacement graph for CROSS
even before we compute its reduced α-tensor. Let G = (V,E) be a unit disk replace-
ment graph for CROSS and A,B,C and D be the four boundary vertices of G. The
edges (A,D) and (B,C) are the two edges that cross each other. For G to be a valid
unit-disk replacement graph of CROSS, all paths πAD ∈ Paths(A,D) must intersect
with all paths πBC ∈ Paths(B,C). Then, we have the following lemma.

Lemma C.1. Let πAD and πBC be two paths in a unit disk graph G = (V,E).
They intersect each other only if at least one of the following statements is true:

1. there exists a vertex v such that v ∈ πAD and v ∈ πBC,
2. there exist a vertex w ∈ πAD and an edge (u, v) ∈ πBC , both (w, u) and (w, v)

are in E.
3. there exist a vertex w ∈ πBC and an edge (u, v) ∈ πAD, both (w, u) and (w, v)

are in E.
21

http://users.cecs.anu.edu.au/~bdm/data/graphs.html

1

2

3

4

5

6 7

8

9

10

11

1

2

3

4

5

6
7

8

9

10

11

1

2

3

4

56

7

8

9

10

11

1

2

3

4

5
6
7

8

9

10

11

Fig. 6: The four valid unit disk replacement graphs for CROSS. All of them has graph
size |V | = 11, among which the top right graph (BATOIDEA) can be embedded onto
a square grid.

Proof. This lemma is evident if we draw the unit disk graph in the plane. Given
a graph, we draw a circle of radius 0.5 around each vertex. By definition of a unit
disk graph, two vertices are connected if and only if their circles intersect.

A

D

π
(2)
AD

B

π
(2)
BC

Cπ
(3)
BC

(a) a path from A to D. (b) a path from B to C.

Now we consider πAD and πBC cross each other. Their circles must intersect at
least once, because the circles in the same path form a connected region in the two
dimensional plane and the two regions must intersect when the two paths cross each
other. As illustrated below, the way to cross paths πAD and πBC must be one of the
following three cases. One is vertex sharing as shown in (a) and the other is having a
vertex in one path connected to an edge in another path as shown in (b).

22

B

C

A D

B

C

A D

(a) sharing a vertex. (b) not sharing vertices.

The first case is covered by the first statement in the lemma and the second
case are covered by the second and third statements in the lemma respectively. This
completes the proof for the lemma.

C.2. Unit disk embedding. Proving if a general graph has a unit disk embed-
ding is NP-hard [3]. In our case, the graph size is small enough such that we can use
a variational approach to find the unit disk embedding of a graph. Let G = (V,E) be
the graph to be tested, we define the following loss function

L(x) =
∑

(i,j)∈E(G)

relu(∥xi − xj∥2 − 0.99)

+
∑

(i,j)/∈E(G)

relu(1.01− ∥xi − xj∥2),
(C.1)

and variationally optimize this loss function using the automatic differentiation [11, 17]
technique. Here, variational parameters x are vertex coordinates and relu is the
rectified linear unit function

(C.2) relu(x) =

{
x x > 0

0 x ≤ 0.

This loss function is zero only if the graph G is a unit disk graph. To avoid numerical
instability, we use 0.99 and 1.01 instead of 1 in the loss function. The optimizer is
L-BFGS [5] and we fix one of the vertex coordinates so that we have 2|V | − 2 free
variational parameters in total. We initialize the variational parameters with random
numbers and repeat the optimization for 100 times to avoid local minima. With this
approach, we can reliably find a unit disk embedding for a graph with up to |V | = 11
vertices in a few milliseconds.

23

	Introduction
	Background and notation
	Unweighted MIS gadget design
	Conditions for MIS gadgets
	Some Useful Gadgets

	Reduction of an unweighted MIS problem on a general graph to that on a KSG
	Path decomposition and optimal vertex ordering
	Lower bound on reduction size

	Discussion and outlook
	References
	Appendix A. The reduced -tensor is minimal
	Appendix B. Extracting results
	BATOIDEA in eq:cross
	PIRAMID in eq:crosscon
	BRANCHING

	Appendix C. Exhaustive search of unweighted MIS gadgets
	unit disk crossing criteria for CROSS
	Unit disk embedding

