MICROSERVICES- SPRING BOOT

#1.Introduction

Microservices are an architectural style where applications are
developed as a collection of small, loosely coupled, independently
deployable services.

Characteristics of Microservices

Small, focused on doing one thing well

* Independently deployable

e Organized around business capabilities

e Decentralized data management

e Communication via lightweight protocols (typically HTTP/REST)
Comparison with Monolith

e Monolith: tightly coupled, single codebase

e Microservices: loosely coupled, multiple independent services

MONOLITHIC MICROSERVICES

BUSINESS \/S MICROSERVICE

LOGIC

DATA ACCESS
LAYER

Increased complexity in managing multiple services

e Distributed System Issues like Latency, load balancing, network
reliability, and consistency

e Managing transactions and consistency across services

¢ Handling communication protocols (REST, gRPC, messaging)

* Monitoring and Logging needs centralized monitoring and logging
solution.

Why use Microservices

Scale services independently based on demand (e.g., scale only
payment service during high traffic)

e Services can be written in different programming languages, suited
to specific tasks

e Small teams can work on different services simultaneously,
reducing time to market

e Failure in one service doesn't bring down the entire system

e Each service can be updated, deployed, and scaled independently
e Teams can work on different services without affecting each other

#2.What is Service Discovery

In @ microservices architecture, each microservice is a standalone
application with specific business functionality. Since these
microservices need to communicate with each other to function as a
complete application, they need to know each other’s network
locations. Service Discovery comes into play here, maintaining a
record of these services’ locations, helping them find each other,
and enabling communication.

Spring Cloud Eureka

Eureka is a REST based service which is primarily used for acquiring
information about services that you would want to communicate
with. This REST service is also known as Eureka Server. The Services
that register in Eureka Server to obtain information about each other
are called Eureka Clients.

Eureka Service Registry Architecture

apiGateway
Port 3020
Status: UP

HEARTEEAT

EUREKA |
SERVER
|, SemiceRegisty J
. 4

Service Registry

\ Eureka Key Features

Eureka Service Discovery Pro:

. 2. HEARTBEAT

How Eureka Works

Service Registration: A service registers itself with the Eureka Server
upon startup.

e Heartbeat: The service sends heartbeats periodically to renew its
lease with the Eureka Server.

e Service Discovery: Other services can query Eureka to discover the
location (IP and port) of the registered service.

e Health Check: Eureka performs health checks to ensure that
registered services are still healthy.

e Eviction: If a service stops sending heartbeats and its lease expires,
the Eureka Server evicts it from the registry.

#3.Spring cloud Api gateway

Spring Cloud Gateway

Routing/Gateway Handler 1

|
Predicate L
Filters

Microservice 1

Routing/Gateway Handler 2

y v\
—_—
Filters

Customer accessing
different urls

Y

Microservice 2

Routing/Gateway Handler 3 Microservice 3

]
Predicate
Filters

AM<0maw <d44m2Z

APIls are a common way of communication between applications. In
the case of microservice architecture, there will be a number of
services and the client has to know the hostnames of all underlying
applications to invoke them. To simplify this communication, we
prefer a component between client and server to manage all API
requests called APl Gateway. Additionally, we can have other features
which include:

e Security — Authentication, authorization
e Routing — routing, request/response manipulation, circuit breaker
e Observability — metric aggregation, logging, tracing

Spring Cloud APl Gateway is a powerful, flexible solution for routing
and proxying requests to downstream services in a microservices
architecture. It handles several important tasks like routing, filtering,
authentication, and load balancing.

Spring Cloud Gateway Route

1. Route: Think of this as the destination that we want a particular
request to route to. It comprises of destination URI, a condition that
has to satisfy — Or in terms of technical terms, Predicates, and one
or more filters.

2. Predicate: This is literally a condition to match. i.e. kind of “if”
condition..if requests has something — e.g. path=blah or request
header contains foo-bar etc.

Predicates with path: - Path=/api/v1/orders/**
Predicates with Method: - Method=GET
Predicates with Header: - Header=User-Agent, Mozilla/*

3. Filter: These are instances of Spring Framework WebFilter. This is
where you can apply your magic of modifying request or response.
There are quite a lot of out of box WebFilter that framework
provides.

Config-Server_for_microservices / apiGatewayService.yml (&

‘ ARONAGENT Update apiGatewayService.yml

| Code | Blame 27 lines (25 loc) - 689 Bytes 3 Code 55% faster with GitHub Copilot

Jwt:
secretKey: 1/2eCtvdpW7qlF6HQIuKvxUSBEuhym\V1ZzeflLgBPAXaY=

server:
port: 8881
spring:

cloud:

[I Y A VT

gateway:

routes:

=
[-~J-]

- id: orderService

11 uri: 1b://ORDERSERVICE

12 predicates:

13 - Path=/api/vl/orders/=*

14 filters:

15 - AddRequestHeader=X-Request-Id, Rohan
1 - StripPrefix=2

17 - name: LoggingOrdersFilter

18 # - name: Authentication

19 - id: inventorySerwvice

2e uri: 1b://INVENTORYSERVICE

21 predicates:

22 - Path=/api/vl/inventory/**

23 filters:

24 - AddRequestHeader=X-Request-Id, Rohan
25 - StripPrefix=2

N
@

- name: Authentication

#4. Spring Cloud OpenFeign

Spring Cloud OpenFeign is a declarative HTTP client library for
building RESTful microservices. It integrates seamlessly with Spring
Cloud and simplifies the development of HTTP clients by allowing
you to create interfaces that resemble the API of the target service.
It abstracts away much of the boilerplate code typically associated
with making HTTP requests, making your codebase cleaner and more
maintainable

Open Feign seamlessly integrates with service discovery and load
balancing provided by tools like Eureka. It allows you to refer to
services by their names rather than specific host and port, which is
essential in @ microservices architecture.

Example

ervice",path ="/1i
{

o = _)

Double reduceStock(@RequestBody OrderRequestDTO0 orderRequestDT0);

uble reduceStocks(OrderRequestDTO orderRequestDT0) {
j.info(g re eStocks T I {}", orderRequestDT0.getId())
tote ce = H
OrderRequestItemDTO0 orderRequestItemDTO : orderRequestDTO0.getOrderItems()) {
Long prodld = orderRequestI 0.getProdId();
Integer quantity = orderRequestItemDTO0.getQuantity()
log.info("P essinc Quantit {+", prodId, gquantity);
indById(prodId).orElseThrow((> new RuntimeException("IC

("I ici t
prodId, quantity, product.getStock());
throw new RuntimeException("P t ca t fulfill
b
produc (product.getStock() - guantity);
produ (product);
1 {}", prodId, product.getStock());

rice += product.getPrice() * qua

log.info(ated total ice: {}", totalPrice);

nfo(lete e eStock tal price: {}", totalPrice);
eturn totalPrice;

#5. Resillience4)

Resiliencedj is a lightweight, standalone fault-tolerance library for
Java, inspired by Netflix Hystrix but designed for Java 8 and
functional programming. It is tailored for applications based on
microservices architecture and provides a variety of tools to improve
system resilience and stability. Resilience4j works well with
frameworks such as Spring Boot and supports non-blocking and
reactive programming models.

Key Features of Resilience4;:
1. Retry

Retry allows you to automatically retry a failed operation a specified
number of times before giving up. This is useful when failures are
transient and may succeed if attempted again after a short delay.

Use Case: Retry a remote service call that may temporarily fail due to
network issues or service overload.

Configurable Options:
« Maximum retry attempts
. Wait duration between attempts
« Exceptions to include or ignore
2. Rate Limiter

The RatelLimiter restricts the number of calls that can be made within
a certain time window. This helps protect your services from being
overwhelmed by too many requests.

Use Case: Prevent abuse or overload by limiting access to a particular
API to, say, 10 calls per second.

Configurable Options:

« Number of allowed calls per time period

. Refresh period
. Timeout duration (for waiting until the next call is allowed)
3. Circuit Breaker

The CircuitBreaker monitors remote calls and opens the circuit
(blocks calls) when a specified failure threshold is reached. It then
allows limited calls during a “half-open” state to check if the service
has recovered.

Use Case: Avoid repeatedly calling a failing downstream service and
give it time to recover.

States:
« Closed: Normal operation; calls are allowed.
. Open: Calls are blocked; the service is considered unavailable.
. Half-Open: Limited test calls are allowed to check recovery.
Configurable Options:
« Failure rate threshold
. Wait duration in open state
. Sliding window type and size
Benefits of Using Resiliencedj:

. Modular and lightweight (you can include only the modules you
need)

« Built for functional programming with Java 8+ features
. Easy to integrate with Spring Boot
. Offers metrics and monitoring via Micrometer

. Works well with reactive libraries like Project Reactor

€ Available Modules
. resiliencedj-retry
resiliencedj-ratelimiter

. resiliencedj-circuitbreaker
« resiliencedj-timelimiter

. resiliencedj-bulkhead

. resiliencedj-cache

. resilienced4j-micrometer

s Integration Example (Spring Boot)

i ,fallbackMethod =
Lic OrderRequestDTO createOrder(OrderRequestDT0 orderRequestDTO0) {
log.info(" @ Startin 2atelrder r ID: {}", orderRequestDT0.getId());

Double totalPrice = inventoryFeignClient.reduceStock(orderRequestDTO0);
Orders orders = modelMapper.map(orderRequestDT0, Orders.class);
For (OrderItem item : orders.getOrderItems()) {

item.setOrders(orders);
i
orders.setTotalPrice(totalPrice);
orders.setOrderStatus(0rderStatus.CONFIRMED) ;

: itory.save(orders);

log.info(" @ Fini iteOrder r ID: {}, Total Price: {}", orders.getId(), orders.getTotalPrice());

return felMapper.map(orders, OrderRequestDT0.class);

public OrderRequestDTO (OrderRequestDTO , Throwable throwable) {
log.error("Fallback ed due to: {}", throwable.getMessage());
return new OrderRequestDTO();

B conclusion

Resiliencedj is a robust and highly customizable library that
empowers developers to build reliable, fault-tolerant microservices.
Its minimal dependencies, functional interfaces, and rich set of
modules make it an excellent choice for Java developers looking to
implement resilience patterns effectively.

#6 Global And Custom Gateway Filters

API Gateway filters are used to intercept, \
modify, and enhance requests and responses

that pass through an APl Gateway. They allow
you to apply common cross-cutting concerns

(such as authentication, logging, rate limiting,

and transformation) at a centralized entry point
before routing requests to microservices. There

are two types of filters:

1. Global Filters

/T T é—L

2. Route specific Filters
1.Global Filter

All we have to do to create a custom global filter
is to implement the Spring Cloud Gateway GlobalFilter interface, and
add itto the context as a bean.

import org.springframework.cloud.gat filter.GatewayFilterChain;
filter.GlobalFilter;

bExchange;

implements GlobalFilter, Ordered {

c Mono<Void> filter(ServerWebExchange exchange, Gat yFilterChain chain) {

.getURI());

#2.Route Specific Filter

Global filters are quite useful, but we often need to execute fine-
grained custom Gateway filter operations that apply to only some
routes.

Route specific Filters. To implement a GatewayFilter, we’ll have to
extend from the AbstractGatewayFilterFactory class provided by
Spring Cloud Gateway.

extends AbstractGatewayFilterFactory<LoggingOrdersFilter.Config> {

super(Config.class);

apply(Config config) {
exchange, chain) -> {

nfo("L i £ e {}", exchange.getRequest().getURI());

return chain.filte

.then(Mono

e.getResponse().getStatusCode())
));

ass Config {

#7.Authentcation in centralized api gateway Service

The APl Gateway acts as a central authentication point for all
incoming requests. Clients authenticate once with the APl Gateway,
which validates the credentials (could be a JWT, OAuth2, or any
other method). The APl Gateway forwards the request to the
respective microservice with the user's credentials or token.

AP| Gateway authentication is the process of verifying the identity of
clients accessing an API through an API Gateway, protecting it from
unauthorized access and potential security threats.

v

Service 1

API
Gateway

Y

Service 2

h 4

Authentication
- JWT Verification

v

Service 3

Client

Authorization

- URL Pattern Validation
- URL Claim Validation
- User Role Validation

Sermvice 4

v

Mutate the Request

You can mutate the request (e.g., add headers, modify path, or
change query parameters) before it is sent to the downstream
service. This is typically done in pre-filters.

ap (Config config) {

exchange, chain) -> {

String authenticationHeader=exchange.getRequest().getHeaders()

.getFirst(
if(avthenticationHeader==null) {
getResponse().setStatusCode(HttpStatus

urn exchange.getResponse().setComplete();

String token=authenticationHeader.split(

Long userId=jwt ce.getUserIdFromToken(token);

ServerHttpReguest mutatedRequest=exchange.getRequest().mutate()
.header(ser-1 ,userId.toString())

Lbuild();

return chain.filter(exchange.mutate().request(mutatedRequest).build());

Mutate the Response

You can modify the response (e.g., add headers, modify the body)
before it is sent to the client. This is typically done in post-filters.

rerride
public GatewayFilter apply(Config config) {

return (exchange, chain) -> {

log.info("Logging f F 5. {}", exchange.getRequest().getURI());

nfo("Loc : rat
exchange.getResponse().getStatusCode())

#8 Centralized Config Server

Config Server is a dedicated service that acts as a centralized
repository, allowing all microservices to retrieve their configurations
dynamically at runtime. Config Server can manage different
environments (e.g., dey, test,prod) and profiles. This means that each
environment can have its own set of properties (e.g., different
databases or API keys).

High-Level Spring Cloud Config Server Architecture

[vicroserice 2 [soring Cioud Conig |
[Erve

>

-
\ =

Configuration of Config Server

All configs manage by This Repository

= O ARONAGENT / Config-Server_for_ microservices & Q Type[7] to searct 8 - ++- O N A8 ‘

<> Code (@ Issues 11 Pullrequests @ Actions [Projects @ Security [+ Insights 8 Settings

.Config-Server,for,microservices Private @Watch 0 ~ 5~ fY sr 0
P main ~ P 1Branch © 0Tags Q Goto fil t Addfile ~ [REN IS About @
Centralized Configuration repository for
@ ARONAGENT add zipkin config A 23 Enfnks other services in Microservices
D) apiGatewayServiceyml Update af vayService.yml days a A Activity
W 0st
DO application.yml
® 0 watchir
D in ¥ 0fork
O or
Releases
O or
0 or
D o Packages

#9 What Are Spring Profiles?

Spring Profiles provide a way to segregate parts of your application
configuration and make it only available in certain environments. It
is an essential feature for managing environment-specific
configurations like development, testing, staging, and production.

Why Use Spring Profiles?
Different environments require different configurations. For example:
« In development, you might use an in-memory database.
« In production, you’ll use a secure, cloud-hosted database.

Spring Profiles allow you to define and activate configurations for
each environment without changing your code.

Defining Profiles
You define profiles in your configuration files using spring.profiles:
Example - application-dev.properties
spring.datasource.url=jdbc:h2:mem:testdb
logging.level.org.springframework=DEBUG
Example - application-prod.properties
spring.datasource.url=jdbc:mysql://prod-db-server:3306/mydb
logging.level.org.springframework=ERROR

5] Activating a Profile

You can activate a profile in different ways:
1. application.properties
spring.profiles.active=dev

[l Use Case

In @ microservices system:
. dev profile can log all incoming requests with full stack traces.
. test profile can use mock databases and services.
. prod profile will be optimized for performance and use secure
settings.

(] Conclusion

Spring Profiles offer a clean and powerful way to separate
configuration concerns for different environments. They are
especially useful in CI/CD pipelines and microservices deployment,
allowing developers to manage properties smartly and consistently
without modifying the code.

#10 .Refresh Config without Restart using Centralized Config

@RefreshScope is a Spring Cloud annotation used to enable
dynamic refreshing of Spring-managed beans, allowing certain
configurations in an application to be updated at runtime without
the need to restart the application. It is commonly used in
conjunction with Spring Cloud Config, which provides externalized
configuration management for distributed systems.

Key features are:

. # actuator config
e Dynamic Bean Refresh

management:
e Avoiding restarts endpoints:
. web:
e Actuator support for refreshing
exposure:

include: "refresh™

Enable Actuator Endpoints

The /refresh endpoint in Spring Boot, provided by Spring Cloud
Actuator, is used to dynamically refresh the configuration properties
of a running application without restarting it. For the POST
/actuator/refresh to work we need to enable the refresh actuator
endpoint.

#11.Zipkin and Micrometer
Distributed Tracing

Distributed tracing is a technique that tracks requests as they move
through a distributed system, such as a microservices environment
or cloud native architecture. It helps developers understand how
requests are handled across multiple applications, services, and
databases.

Unique ID — {context} = = = = < e e e — —— ———————— [

Edge service

{context}
{context}

TRACE e

SPANS

Oms 17.136ms 34.273ms 51.409ms
=
=
=
B Lt B)
et o e L T
= e

RECOMMENDATION

==l PRODUCT-COMPOSITE

oot rocommendaton z0-1660]
gy

REVIEW

VZ [

Spans Trace

Micrometer

Micrometer is a tool that helps developers keep track of how their
microservices are performing. It provides a simple facade over the
instrumentation clients for the most popular monitoring systems. It is
a vendor-neutral application metrics facade.

Application metrics recorded by Micrometer are intended to be used
to observe, alert, and react to the current/recent operational state of
your environment. It can be used as metrics Facade for Amazon
Cloud Watch, Elastic, Prometheus and Zipkin.

Zipkin

Zipkin is a tool that helps developers trace requests across different
parts of a distributed system. Think of it as a way to see the path a
request takes as it moves between different microservices. This can
be really useful for understanding how long it takes for requests to

be processed, where bottlenecks are, and what might be causing
problems.

Zipkin Dependencies Flow

" Dependencies

Start Time nd Time
06/05/2025 15:08:05 o - | 06/06/2025 15:08:05]

orderservice Q TRACES

Uses (fraced requests)

Used (traced requests)

apigateway 1 0

#12.ELK stack
Why Centralized Logging

While Zipkin is an excellent tool for distributed tracing and observing
request paths through microservices, it doesn't offer deep log
analysis. ELK Stack complements tracing tools like Zipkin by offering:
¢ Deep log analysis and insights across microservices.

e Long-term storage and powerful search capabilities.
¢ Real-time monitoring and alerting.

e Centralized view of logs for easier debugging and troubleshooting.

LOGSTASH

f W
I configure log file
sprin Lag
@ = pﬂomg LOGS > Iogfotﬁ?h

J | -

send logs

connect ES index
APPLICATION

visualize

KIBANA ELASTIC SEARCH

ELK is a collection of three open-source applications —

Elasticsearch, Logstash, and Kibana from Elastic that accepts data
from any source or format, on which you can then perform search,
analysis, and visualize that data.

1. Elasticsearch - Elasticsearch stores and indexes the data. It is a
NoSQL database based on Lucene's open-source search engine. Since
Elasticsearch is developed using Java, therefore, it can run on
different platforms. One particular aspect where it excels is indexing
streams of data such as logs.

©® O 2= loclhosts200 x +

& G @ Notsecure hitps://localhost:9200

Pretty-print

"name": "LAPTOP-E1EFL682",
"cluster_name": "elasticsearch”,
": "bQ5aYCoiQ@aaFMASUHIuNu",

)
0a58bcldc7adae5412db66624aab968370bd44ce”,
-05-28710:06:37.8348292581",
: false,
"lucene_version": "10.1.0",
“minimum_wire_compatibility version": "8.18.8",
“minimum_index_compatibility version": "3.8.8"

Iy
“tagline": "You Know, for Search"

1
I

2. Logstash — Logstash is a tool that integrates with a variety of
deployments. It is used to collect, parse, transform, and buffer data
from a variety of sources. The data collected by Logstash can be
shipped to one or more targets like Elasticsearch.

How Does the Logstash Work

1. When new log entries are added to the specified files, Logstash
reads these entries and converts them into structured events. Each
line or entry in the log file is treated as a separate event.

2. Once the events are processed, Logstash sends them to the
configured outputs. In this case, it sends the events to both the
console (for debugging) and to Elasticsearch. The logs are sent in
near real-time, allowing for timely analysis and visualization.

3. Elasticsearch receives the log events and indexes them according
to the specified index pattern. This makes the logs searchable and
allows for data analysis using tools like Kibana.

Configure Logstash

1. Configure Applications to send their logs to log file. Create a
logbackspring.xml to generate logs.

2. Create a configuration file for Logstash — logstash.conf and save
this file in the logstash installation folder.

3. Edit this file to include the input and output locations. Here the
input will be the location of the logs, and the output will be the
ElasticSearch index.

4. Save this file and run

logstash —f logstash.conf

3. Kibana - Kibana acts as an analytics and visualization layer on top
of Elasticsearch. Kibana can be used to search, view, and interpret
the data stored in Elasticsearch.

Welcome home

Elasticsearch Observablhty Security Analyhcs

Consolidate your logs, ent, collect, detect, and respond ualize, and analyze your
r d et mw dl | epnlca ion 1acesa GS}SIE 1 threats for unified protection data using a ; erful suite of
ability with purpase-built Uls across your infrastructure. Iy\ L ol and sppleatio

Get started by adding integrations ot Try managed Elastic
Deploy, scale, and upgrade your
To start working with your data, use cne of our many ingest options. Collect s stack f c Cloud. We'll
data from an app or service, or upload a file. If you're not ready to use your ses||| wan help you quickly move your data.
own data, play with a sample data set. »
Move to Elastic Cloud

@ Add integrations 3 Try sample data & Upload a file

BY ARON

