
 

 

MICROSERVICES- SPRING BOOT 

#1.Introduction 

Microservices are an architectural style where applications are 

developed as a collection of small, loosely coupled, independently 

deployable services. 

Characteristics of Microservices 

Small, focused on doing one thing well 

• Independently deployable 

• Organized around business capabilities 

• Decentralized data management 

• Communication via lightweight protocols (typically HTTP/REST) 

Comparison with Monolith 

• Monolith: tightly coupled, single codebase 

• Microservices: loosely coupled, multiple independent services 

 

Increased complexity in managing multiple services 

• Distributed System Issues like Latency, load balancing, network 

reliability, and consistency 

• Managing transactions and consistency across services 



 

 

• Handling communication protocols (REST, gRPC, messaging) 

• Monitoring and Logging needs centralized monitoring and logging 

solution. 

Why use Microservices 

Scale services independently based on demand (e.g., scale only 

payment service during high traffic) 

• Services can be written in different programming languages, suited 

to specific tasks 

• Small teams can work on different services simultaneously, 

reducing time to market 

• Failure in one service doesn't bring down the entire system 

• Each service can be updated, deployed, and scaled independently 

• Teams can work on different services without affecting each other 
 

#2.What is Service Discovery 

In a microservices architecture, each microservice is a standalone 

application with specific business functionality. Since these 

microservices need to communicate with each other to function as a 

complete application, they need to know each other’s network 

locations. Service Discovery comes into play here, maintaining a 

record of these services’ locations, helping them find each other, 

and enabling communication.  

Spring Cloud Eureka 

Eureka is a REST based service which is primarily used for acquiring 

information about services that you would want to communicate 

with. This REST service is also known as Eureka Server. The Services 

that register in Eureka Server to obtain information about each other 

are called Eureka Clients. 

 



 

 

 

 

How Eureka Works 

Service Registration: A service registers itself with the Eureka Server 

upon startup. 

• Heartbeat: The service sends heartbeats periodically to renew its 

lease with the Eureka Server. 

• Service Discovery: Other services can query Eureka to discover the 

location (IP and port) of the registered service. 

• Health Check: Eureka performs health checks to ensure that 

registered services are still healthy. 

• Eviction: If a service stops sending heartbeats and its lease expires, 

the Eureka Server evicts it from the registry. 

 

 

 



 

 

#3.Spring cloud Api gateway 

 

 

APIs are a common way of communication between applications. In 

the case of microservice architecture, there will be a number of 

services and the client has to know the hostnames of all underlying 

applications to invoke them. To simplify this communication, we 

prefer a component between client and server to manage all API 

requests called API Gateway. Additionally, we can have other features 

which include: 

• Security — Authentication, authorization 

• Routing — routing, request/response manipulation, circuit breaker 

• Observability — metric aggregation, logging, tracing 

Spring Cloud API Gateway is a powerful, flexible solution for routing 

and proxying requests to downstream services in a microservices 

architecture. It handles several important tasks like routing, filtering, 

authentication, and load balancing. 

 

 



 

 

Spring Cloud Gateway Route 

1. Route: Think of this as the destination that we want a particular 

request to route to. It comprises of destination URI, a condition that 

has to satisfy — Or in terms of technical terms, Predicates, and one 

or more filters. 

2. Predicate: This is literally a condition to match. i.e. kind of “if” 

condition..if requests has something — e.g. path=blah or request 

header contains foo-bar etc. 

Predicates with path: - Path=/api/v1/orders/** 

Predicates with Method: - Method=GET 

Predicates with Header: - Header=User-Agent, Mozilla/* 

 

3. Filter: These are instances of Spring Framework WebFilter. This is 

where you can apply your magic of modifying request or response. 

There are quite a lot of out of box WebFilter that framework 

provides. 

 

 

 

 

 

 

 

 

 



 

 

#4. Spring Cloud OpenFeign 

Spring Cloud OpenFeign is a declarative HTTP client library for 

building RESTful microservices. It integrates seamlessly with Spring 

Cloud and simplifies the development of HTTP clients by allowing 

you to create interfaces that resemble the API of the target service. 

It abstracts away much of the boilerplate code typically associated 

with making HTTP requests, making your codebase cleaner and more 

maintainable 

Open Feign seamlessly integrates with service discovery and load 

balancing provided by tools like Eureka. It allows you to refer to 

services by their names rather than specific host and port, which is 

essential in a microservices architecture. 

Example 

 

 

 

 



 

 

#5. Resillience4J 

Resilience4j is a lightweight, standalone fault-tolerance library for 

Java, inspired by Netflix Hystrix but designed for Java 8 and 

functional programming. It is tailored for applications based on 

microservices architecture and provides a variety of tools to improve 

system resilience and stability. Resilience4j works well with 

frameworks such as Spring Boot and supports non-blocking and 

reactive programming models. 

 Key Features of Resilience4j: 

1. Retry 

Retry allows you to automatically retry a failed operation a specified 

number of times before giving up. This is useful when failures are 

transient and may succeed if attempted again after a short delay. 

Use Case: Retry a remote service call that may temporarily fail due to 

network issues or service overload. 

Configurable Options: 

• Maximum retry attempts 

• Wait duration between attempts 

• Exceptions to include or ignore 

2. Rate Limiter 

The RateLimiter restricts the number of calls that can be made within 

a certain time window. This helps protect your services from being 

overwhelmed by too many requests. 

Use Case: Prevent abuse or overload by limiting access to a particular 

API to, say, 10 calls per second. 

Configurable Options: 

• Number of allowed calls per time period 



 

 

• Refresh period 

• Timeout duration (for waiting until the next call is allowed) 

3. Circuit Breaker 

The CircuitBreaker monitors remote calls and opens the circuit 

(blocks calls) when a specified failure threshold is reached. It then 

allows limited calls during a “half-open” state to check if the service 

has recovered. 

Use Case: Avoid repeatedly calling a failing downstream service and 

give it time to recover. 

States: 

• Closed: Normal operation; calls are allowed. 

• Open: Calls are blocked; the service is considered unavailable. 

• Half-Open: Limited test calls are allowed to check recovery. 

Configurable Options: 

• Failure rate threshold 

• Wait duration in open state 

• Sliding window type and size 

 Benefits of Using Resilience4j: 

• Modular and lightweight (you can include only the modules you 

need) 

• Built for functional programming with Java 8+ features 

• Easy to integrate with Spring Boot 

• Offers metrics and monitoring via Micrometer 

• Works well with reactive libraries like Project Reactor 

 



 

 

       Available Modules 

• resilience4j-retry 

• resilience4j-ratelimiter 

• resilience4j-circuitbreaker 

• resilience4j-timelimiter 

• resilience4j-bulkhead 

• resilience4j-cache 

• resilience4j-micrometer 

     Integration Example (Spring Boot) 

 

 

 

     Conclusion 

Resilience4j is a robust and highly customizable library that 

empowers developers to build reliable, fault-tolerant microservices. 

Its minimal dependencies, functional interfaces, and rich set of 

modules make it an excellent choice for Java developers looking to 

implement resilience patterns effectively. 



 

 

#6 Global And Custom Gateway Filters 

API Gateway filters are used to intercept, 

modify, and enhance requests and responses 

that pass through an API Gateway. They allow 

you to apply common cross-cutting concerns 

(such as authentication, logging, rate limiting, 

and transformation) at a centralized entry point 

before routing requests to microservices. There 

are two types of filters: 

1. Global Filters 

2. Route specific Filters 

# 1.Global Filter  

All we have to do to create a custom global filter 

is to implement the Spring Cloud Gateway GlobalFilter interface, and 

add itto the context as a bean. 

 

 

 



 

 

#2.Route Specific Filter  

Global filters are quite useful, but we often need to execute fine-

grained custom Gateway filter operations that apply to only some 

routes. 

 Route specific Filters. To implement a GatewayFilter, we’ll have to 

extend from the AbstractGatewayFilterFactory class provided by 

Spring Cloud Gateway. 

 

 

#7.Authentcation in centralized api gateway Service 

The API Gateway acts as a central authentication point for all 

incoming requests. Clients authenticate once with the API Gateway, 

which validates the credentials (could be a JWT, OAuth2, or any 

other method). The API Gateway forwards the request to the 

respective microservice with the user's credentials or token. 

 API Gateway authentication is the process of verifying the identity of 

clients accessing an API through an API Gateway, protecting it from 

unauthorized access and potential security threats. 



 

 

 

Mutate the Request  

You can mutate the request (e.g., add headers, modify path, or 

change query parameters) before it is sent to the downstream 

service. This is typically done in pre-filters. 

 

 

 



 

 

Mutate the Response  

You can modify the response (e.g., add headers, modify the body) 

before it is sent to the client. This is typically done in post-filters. 

 

#8 Centralized Config Server 

Config Server is a dedicated service that acts as a centralized 

repository, allowing all microservices to retrieve their configurations 

dynamically at runtime. Config Server can manage different 

environments (e.g., dev, test,prod) and profiles. This means that each 

environment can have its own set of properties (e.g., different 

databases or API keys). 

 

 



 

 

 

Configuration of Config Server  

 

 

All configs manage by This Repository 

 

 

 

#9 What Are Spring Profiles? 

Spring Profiles provide a way to segregate parts of your application 

configuration and make it only available in certain environments. It 

is an essential feature for managing environment-specific 

configurations like development, testing, staging, and production. 

 



 

 

  Why Use Spring Profiles? 

Different environments require different configurations. For example: 

• In development, you might use an in-memory database. 

• In production, you’ll use a secure, cloud-hosted database. 

Spring Profiles allow you to define and activate configurations for 

each environment without changing your code. 

 

   Defining Profiles 

You define profiles in your configuration files using spring.profiles: 

Example - application-dev.properties 

spring.datasource.url=jdbc:h2:mem:testdb 

logging.level.org.springframework=DEBUG 

Example - application-prod.properties 

spring.datasource.url=jdbc:mysql://prod-db-server:3306/mydb 

logging.level.org.springframework=ERROR 

 

    Activating a Profile 

You can activate a profile in different ways: 

1. application.properties 

spring.profiles.active=dev 

             Use Case 

In a microservices system: 

• dev profile can log all incoming requests with full stack traces. 

• test profile can use mock databases and services. 

• prod profile will be optimized for performance and use secure 

settings. 



 

 

       Conclusion 

Spring Profiles offer a clean and powerful way to separate 

configuration concerns for different environments. They are 

especially useful in CI/CD pipelines and microservices deployment, 

allowing developers to manage properties smartly and consistently 

without modifying the code. 

 

#10 .Refresh Config without Restart using Centralized Config 

@RefreshScope is a Spring Cloud annotation used to enable 

dynamic refreshing of Spring-managed beans, allowing certain 

configurations in an application to be updated at runtime without 

the need to restart the application. It is commonly used in 

conjunction with Spring Cloud Config, which provides externalized 

configuration management for distributed systems.  

Key features are:  

• Dynamic Bean Refresh  

• Avoiding restarts  

• Actuator support for refreshing 

 

Enable Actuator Endpoints  

The /refresh endpoint in Spring Boot, provided by Spring Cloud 

Actuator, is used to dynamically refresh the configuration properties 

of a running application without restarting it. For the POST 

/actuator/refresh to work we need to enable the refresh actuator 

endpoint. 

 

 



 

 

#11.Zipkin and Micrometer 

Distributed Tracing 

Distributed tracing is a technique that tracks requests as they move 

through a distributed system, such as a microservices environment 

or cloud native architecture. It helps developers understand how 

requests are handled across multiple applications, services, and 

databases. 

 

 

 

 

Micrometer 

Micrometer is a tool that helps developers keep track of how their 

microservices are performing. It provides a simple façade over the 

instrumentation clients for the most popular monitoring systems. It is 

a vendor-neutral application metrics façade.  



 

 

Application metrics recorded by Micrometer are intended to be used 

to observe, alert, and react to the current/recent operational state of 

your environment. It can be used as metrics Façade for Amazon 

Cloud Watch, Elastic, Prometheus and Zipkin. 

Zipkin 

Zipkin is a tool that helps developers trace requests across different 

parts of a distributed system. Think of it as a way to see the path a 

request takes as it moves between different microservices. This can 

be really useful for understanding how long it takes for requests to 

be processed, where bottlenecks are, and what might be causing 

problems. 

Zipkin Dependencies Flow 

 

 

 

 

 

 



 

 

 

#12.ELK stack 

Why Centralized Logging 

While Zipkin is an excellent tool for distributed tracing and observing 

request paths through microservices, it doesn't offer deep log 

analysis. ELK Stack complements tracing tools like Zipkin by offering: 

• Deep log analysis and insights across microservices.  

• Long-term storage and powerful search capabilities.  

• Real-time monitoring and alerting.  

• Centralized view of logs for easier debugging and troubleshooting. 

 

ELK is a collection of three open-source applications –  

Elasticsearch, Logstash, and Kibana from Elastic that accepts data 

from any source or format, on which you can then perform search, 

analysis, and visualize that data.  



 

 

1. Elasticsearch - Elasticsearch stores and indexes the data. It is a 

NoSQL database based on Lucene's open-source search engine. Since 

Elasticsearch is developed using Java, therefore, it can run on 

different platforms. One particular aspect where it excels is indexing 

streams of data such as logs. 

 

 

2. Logstash — Logstash is a tool that integrates with a variety of 

deployments. It is used to collect, parse, transform, and buffer data 

from a variety of sources. The data collected by Logstash can be 

shipped to one or more targets like Elasticsearch. 

How Does the Logstash Work 

1. When new log entries are added to the specified files, Logstash 

reads these entries and converts them into structured events. Each 

line or entry in the log file is treated as a separate event. 

 2. Once the events are processed, Logstash sends them to the 

configured outputs. In this case, it sends the events to both the 

console (for debugging) and to Elasticsearch. The logs are sent in 

near real-time, allowing for timely analysis and visualization. 



 

 

 3. Elasticsearch receives the log events and indexes them according 

to the specified index pattern. This makes the logs searchable and 

allows for data analysis using tools like Kibana. 

Configure Logstash 

1. Configure Applications to send their logs to log file. Create a 

logbackspring.xml to generate logs. 

 2. Create a configuration file for Logstash – logstash.conf and save 

this file in the logstash installation folder.  

3. Edit this file to include the input and output locations. Here the 

input will be the location of the logs, and the output will be the 

ElasticSearch index.  

4. Save this file and run  

logstash –f logstash.conf 

3. Kibana - Kibana acts as an analytics and visualization layer on top 

of Elasticsearch. Kibana can be used to search, view, and interpret 

the data stored in Elasticsearch. 

 

By Aron 


