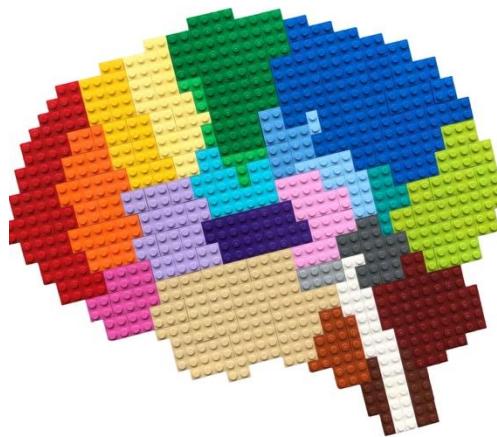


Github page for workshop:
[https://github.com/margaretc-ho/BCBB STx workshop 2024](https://github.com/margaretc-ho/BCBB_STx_workshop_2024)



Spatial Transcriptomics

Intro to Methods and Concepts for Data Analysis

Margaret Ho, PhD

Bioinformatics and Computational Biosciences Branch (BCBB) at NIAID

margaret.ho@nih.gov

Presentation to NIDDK TriLab Bioinformatics Seminar

Bioinformatics and Computational Biosciences Branch (BCBB) at NIAID

BCBB offers the following scientific services & resources such as software development, collaboration & training, and biocomputing resources for the NIAID research community and its collaborators:

- Biovisualization and 3D Printing
- Clinical Genomics
- Data Science and Biostatistics
- Imaging
- Metagenomics
- Non-Human / Microbial Genomics
- Structural Biology

More about BCBB:

<https://www.niaid.nih.gov/research/bioinformatics-and-computational-biosciences-branch-scientific-services>

Looking for bioinformatic and genomics analysis expertise? bioinformatics@niaid.nih.gov

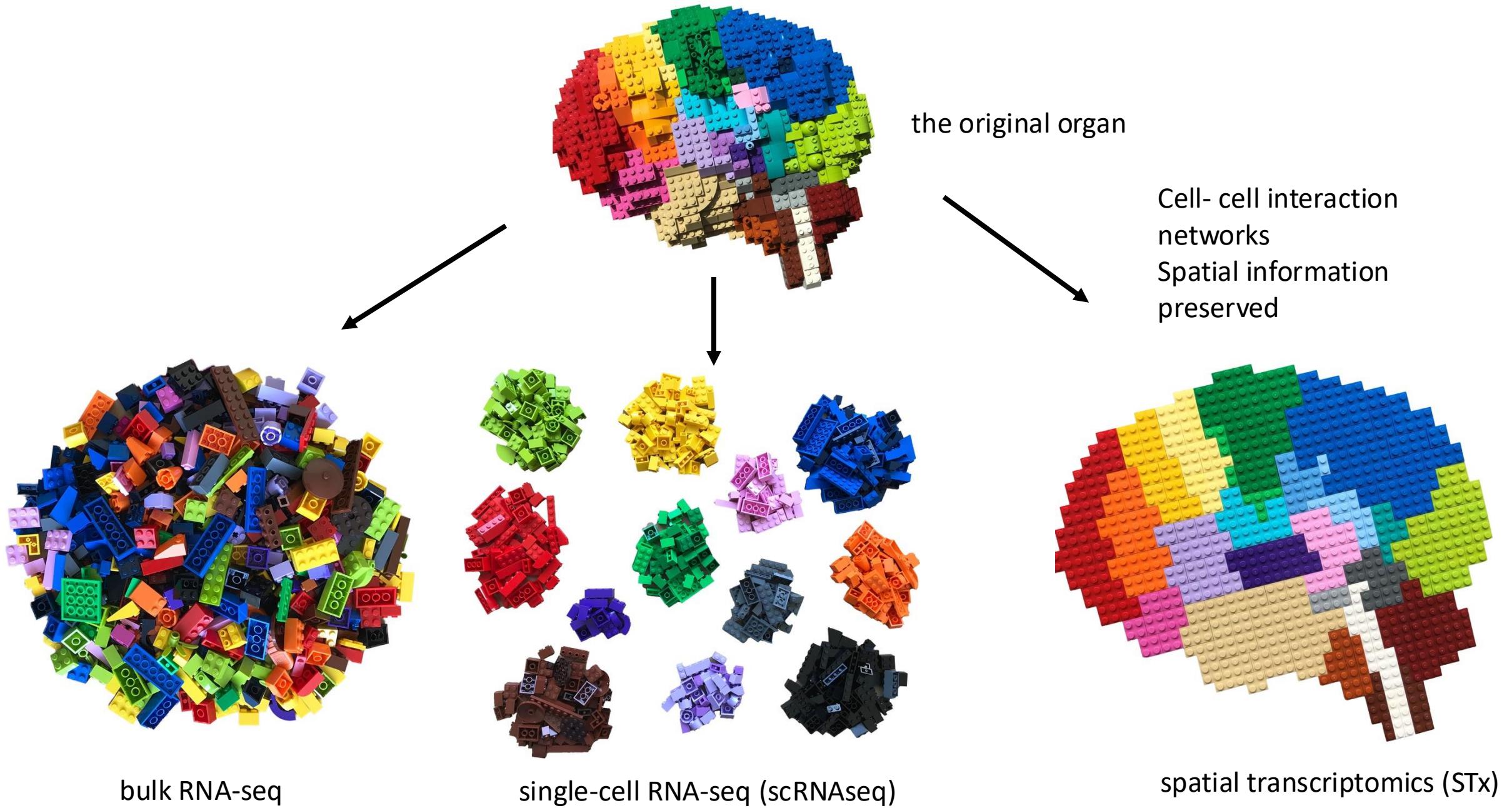
Learning Objectives

- understand **concepts underlying spatial transcriptomics (STx)** methods
- consider important aspects of experimental design depending on biological sample and research question and select best suited STx method for your experiments
- understand techniques for processing and analyzing STx data with **Seurat** and potential downstream analysis

Github page for workshop

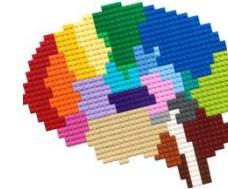
https://github.com/margaretc-ho/BCBB_STx_workshop_2024

Spatial Transcriptomics Concepts

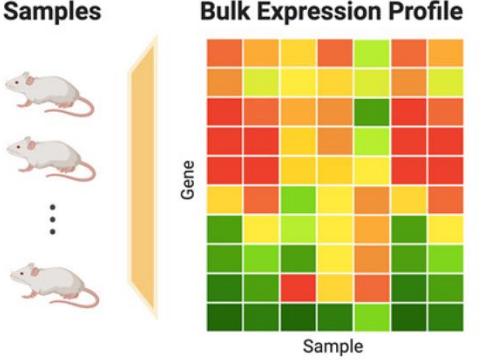
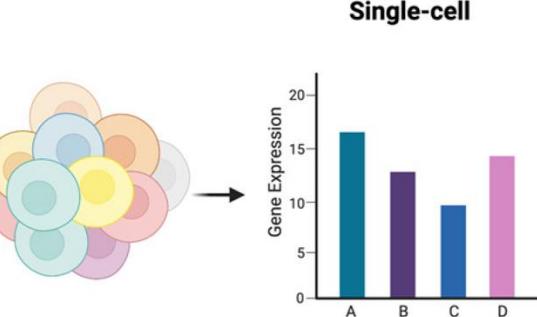
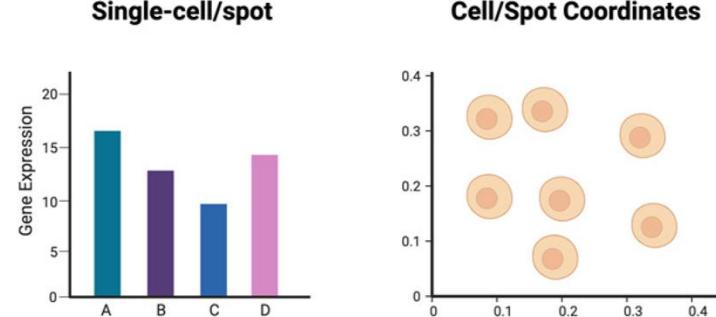


Bulk RNA-Seq

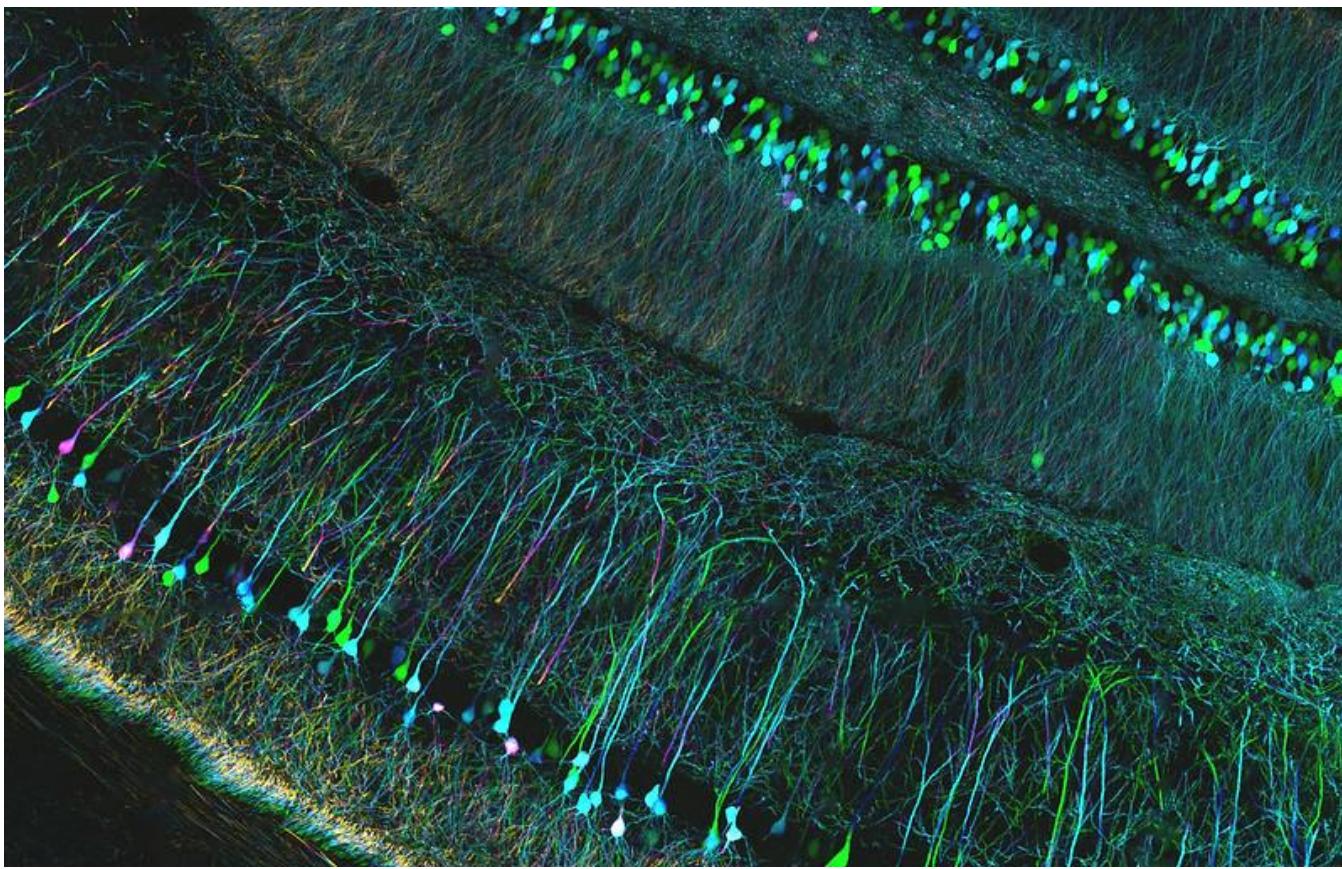
Single-cell RNA-seq



High-throughput Spatial Transcriptomics

Level	 <p>Bulk Expression Profile</p>	 <p>Single-cell</p>	 <p>Single-cell/spot</p> <p>Cell/Spot Coordinates</p>
Data Structure	<p>Subject x Gene Expression Count Data</p>	<p>Cell x Gene Expression Count Data</p>	<p>Cell/Spot x Gene Expression Count Data</p> <p>Cell/Spot 2-dimensional Coordinates</p>
Detection Target	<p>Differentially Expressed Genes</p>	<p>Differentially Expressed Genes</p> <p>Cell Sub-populations</p>	<p>Spatially Variable Genes</p> <p>Tissue Architecture</p> <p>Cell-Cell Communication</p>

Why spatial transcriptomics?



- Location, location, location!
- Despite the success of scRNA-seq, one needs to liberate viable cells from whole tissue without inducing stress, cell death
- **Two major advantages: No need for dissociation and preserves the spatial context of cells**
- Subcellular localization of RNA can be very important for function
- Cons: Tends to be lower sequencing depth than scRNA-seq

<https://www.flickr.com/photos/zeissmicro/10799673016/in/photostream/>

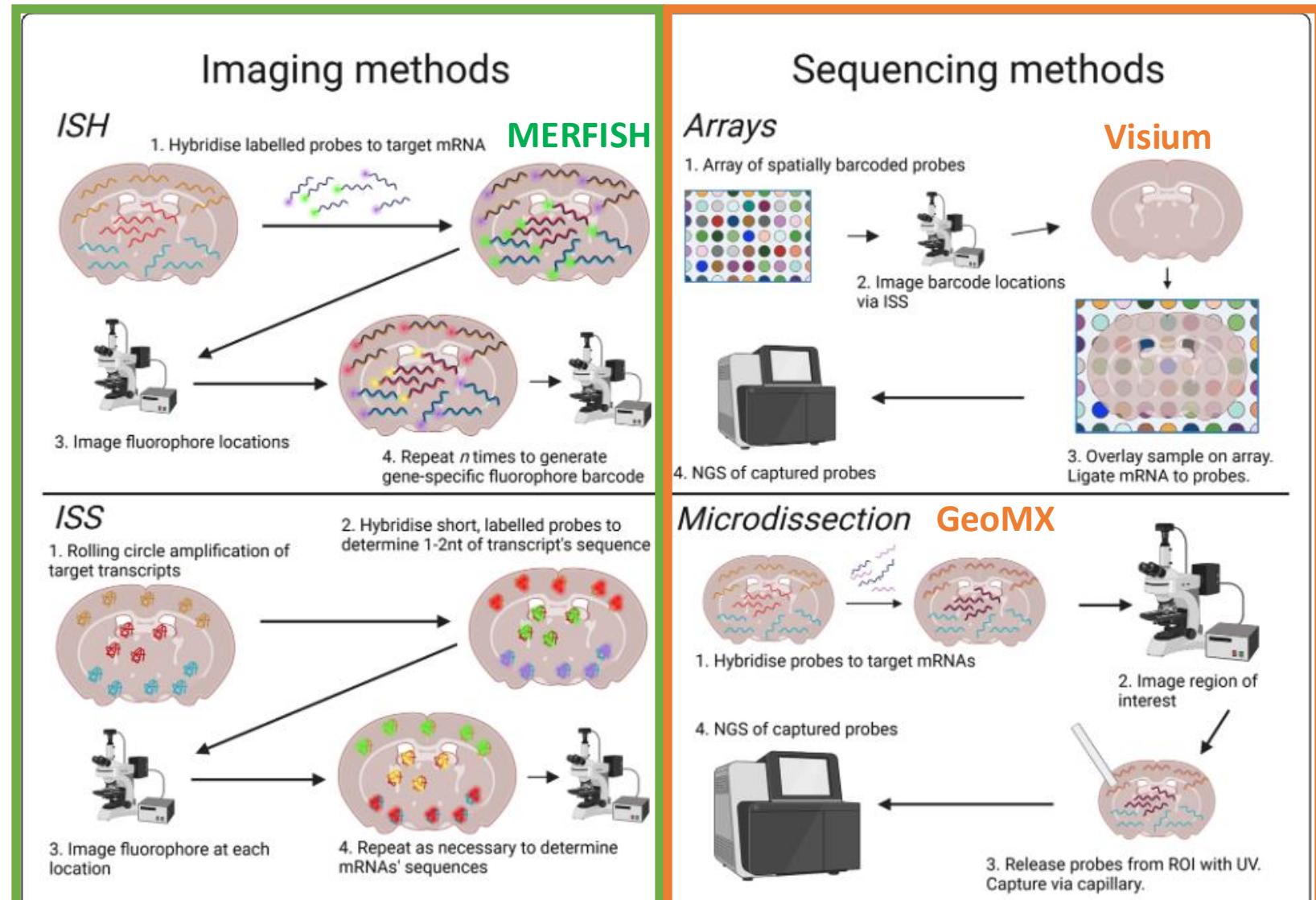
Mouse hippocampal neurons (depth coded projection)

Imaging vs Sequencing-based STx methods

In all methods, tissues are stained with antibodies for histology and imaged for overall spatial orientation

Tradeoffs include:

- Multiplexing (# of transcripts)
- Resolution
- Throughput
- Sensitivity

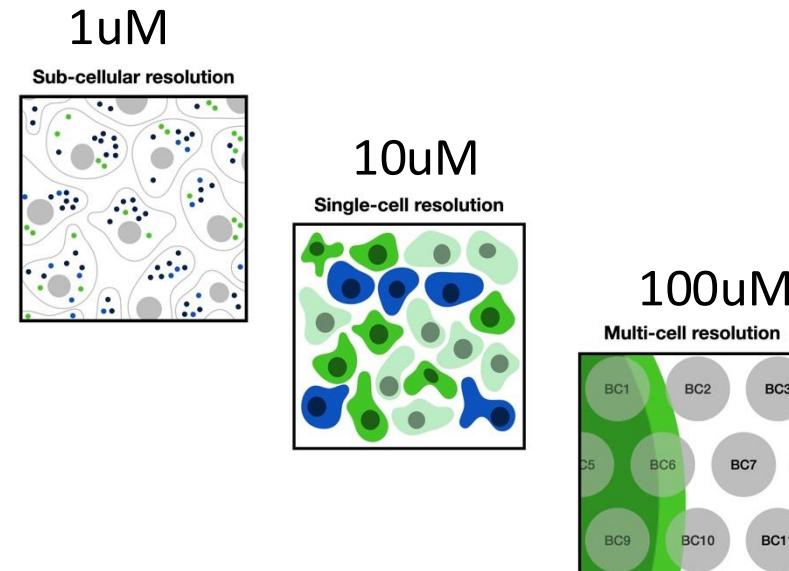


A tradeoff between cellular resolution and # of transcripts

Imaging methods (e.g. MERFISH, Xenium)

Cellular or Subcellular resolution

Detects fewer transcripts
(hundreds up to ~5000)



Sequencing-based methods

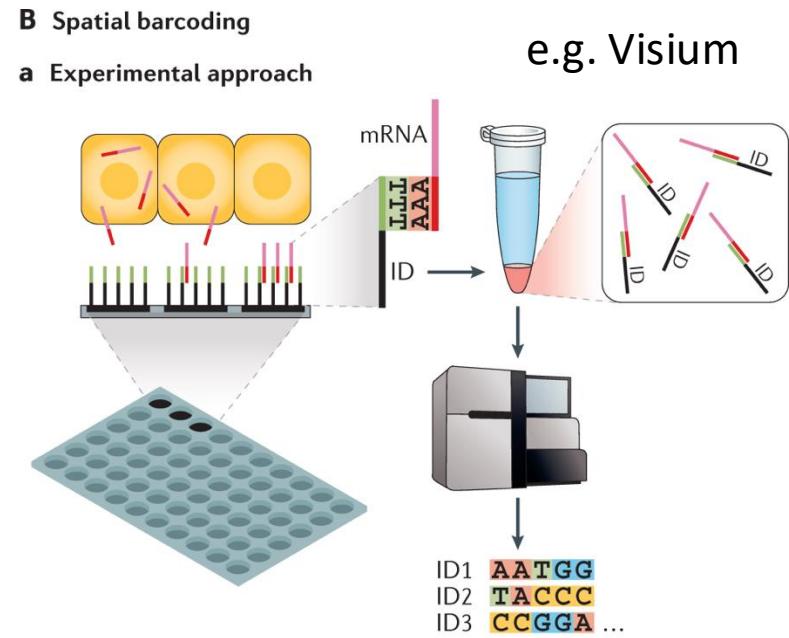
Worse resolution –

Cellular or Multicellular – array based Visium
Region of interest (ROI) – GeoMX or similar

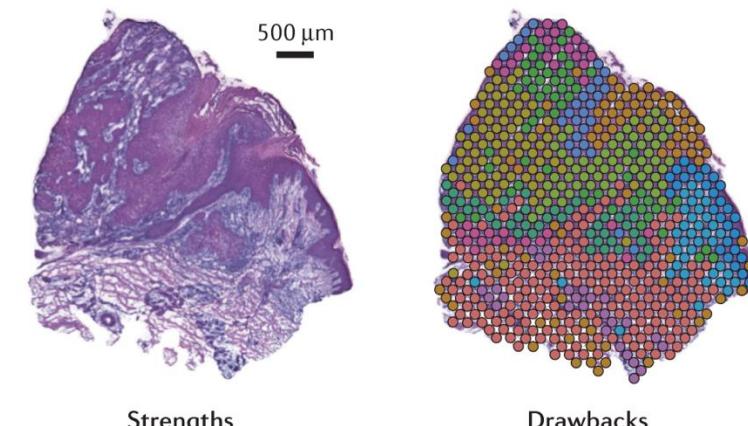
Detects more transcripts
(de novo or whole transcriptome)

Sequencing-based STx

- **Can profile whole transcriptome**
- **Unbiased** / Less need for *a priori* knowledge
- **Lower spatial resolution**
- Typically lower than cellular resolution depending on tissue – can require **deconvolution** and/or **mapping with scRNA-seq datasets** to analyze
- **More accessible** (ie. standard NGS system with some fluorescence and brightfield imaging to capture spot information or use of Visium CytAssist machine)



b Capture spot transcript mixtures deconvolved by dominant cell type



Strengths

- Unbiased
- Greater coverage
- Greater field of view
- More accessible (typically sequenced using standard NGS machine)

Drawbacks

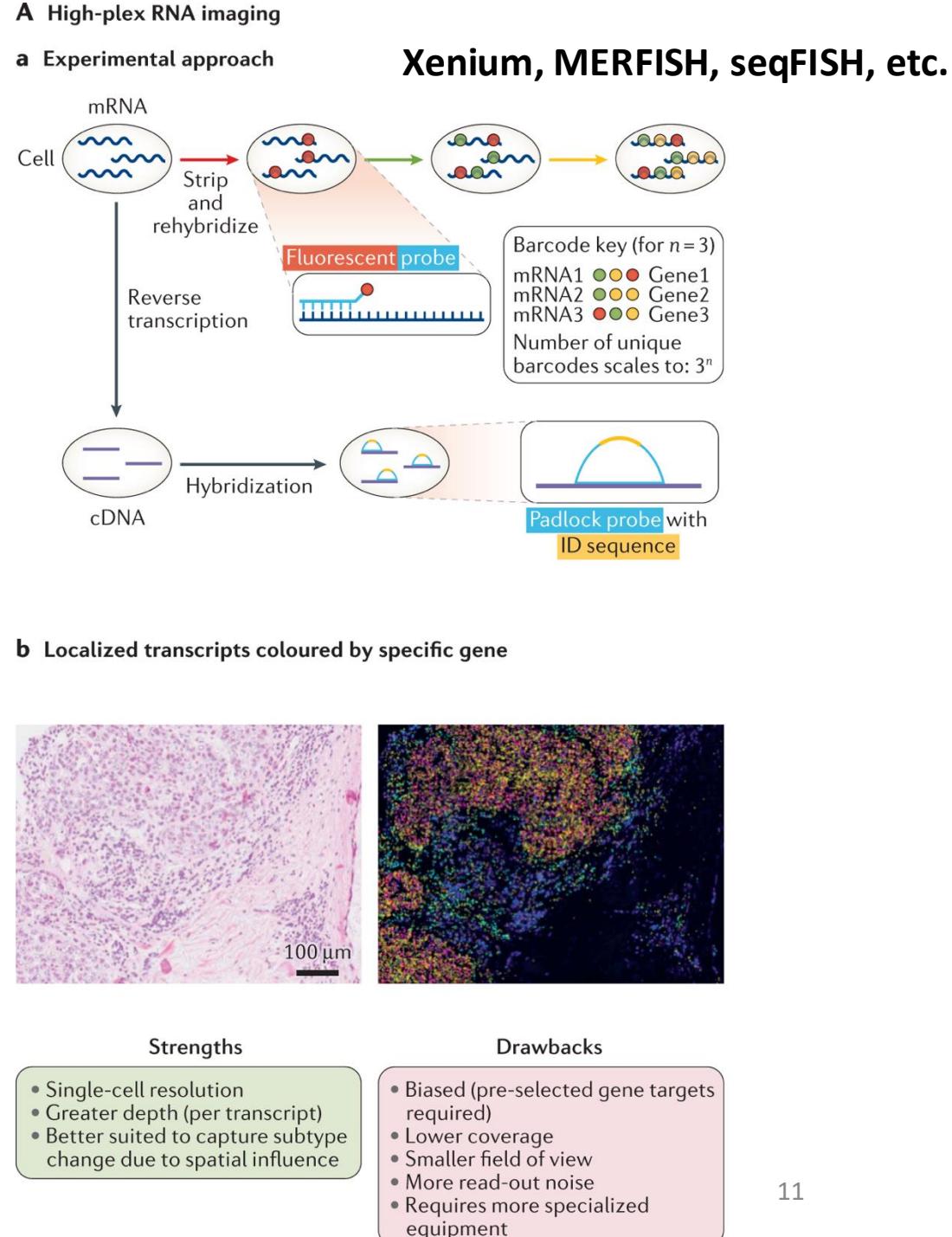
- Limited to capture spot resolution
- Lower depth (per transcript)

Imaging-based STx

- **Based off of single molecule FISH (smFISH)**
- **Single Cell to Subcellular Resolution** via localization of single mRNA molecules
- Often relies on **cell segmentation** with immunostaining with membrane markers to delineate cell boundaries
- Requires good tissue clearing methods
- **A priori knowledge** needed to select genes and design/use existing probe set
- **Typically 500-5000 genes**
- Need to consider issue of molecular crowding

At least one paper gets around this with ExM to do ten thousand genes and looking at ER subcellular localization of transcripts but it has not been implemented in commercial kits -- Xia Fan et al. PNAS 2019 -- <https://www.pnas.org/doi/10.1073/pnas.1912459116>

Longo, S. K., Guo, M. G., Ji, A. L., & Khavari, P. A. (2021). Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. *Nature Reviews. Genetics*, 22(10), 627–644.



Choosing an STx method

Comparison of major commercial STx platforms

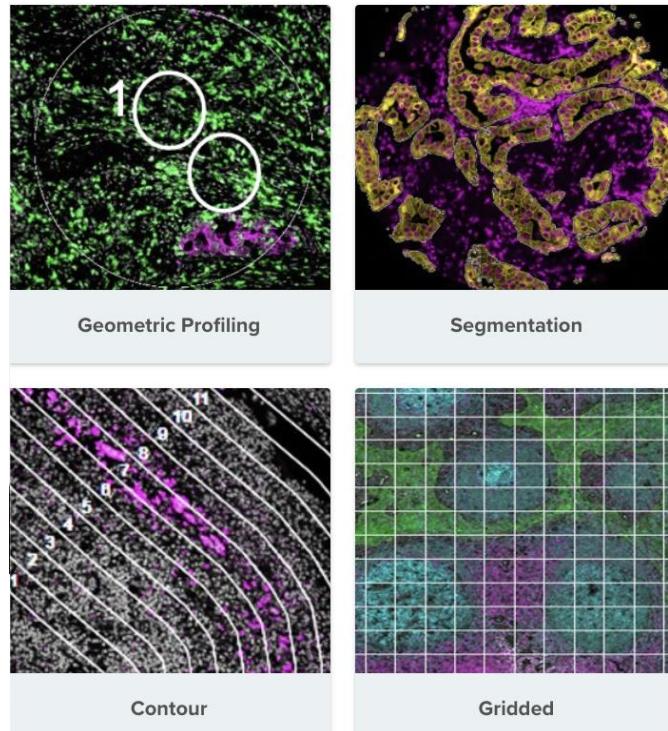
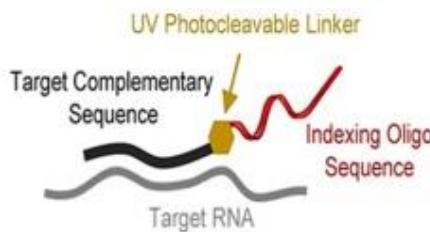
	Platform	# of genes profiled	Spatial Resolution	RNA Capture efficiency	Imaging Area	Time Required
Imaging-Based	MERSCOPE	500 1000 (Ultra)	100 nm	95% for cells 80–85% for tissue	10 mm × 10 mm	28–30 h
	10X Xenium	400-5000	50 nm	Unavailable	12 mm × 24 mm	2 days
	CosMX SMI	6000	50 nm	Unavailable	20mm x 15mm	3 days-1 week
Sequencing-Based	10X Visium HD	Whole Transcriptome	2-8um	Unavailable	(6.5 mm × 6.5 mm)×2	Few hours
	GeoMx DSP	Whole Transcriptome	50um/ ROI	Unavailable	35.3 mm × 14.1 mm	Few hours
	Stereo-Seq	Whole Transcriptome	0.5um	12,661/100um ²	10 mm × 10 mm 13.2 cm × 13.2 cm	Few hours

Updated and adapted from Wang, Y., Liu, B., Zhao, G., Lee, Y., Buzdin, A., Mu, X., Zhao, J., Chen, H., & Li, X. (2023). Spatial transcriptomics: Technologies, applications and experimental considerations. *Genomics*, 115(5), 110671.

Platform	# of genes profiled	Spatial Resolution	Imaging Area	Time Required
GeoMx DSP	Whole Transcriptome	50um / ROI	35.3 mm x 14.1 mm	Few hours
				Launched in 2019

GeoMx DSP

Within a Region of Interest (ROI), Probe with Gene-Specific Barcode Is Released Upon UV Exposure



Each probe is linked with a gene-specific barcode via UV cleavable linker. The barcodes are cleaved from the selected region of interest, and collected for library prep and sequencing. **Resolution of sequencing is limited to ROI, throughput is low (96 ROIs)**

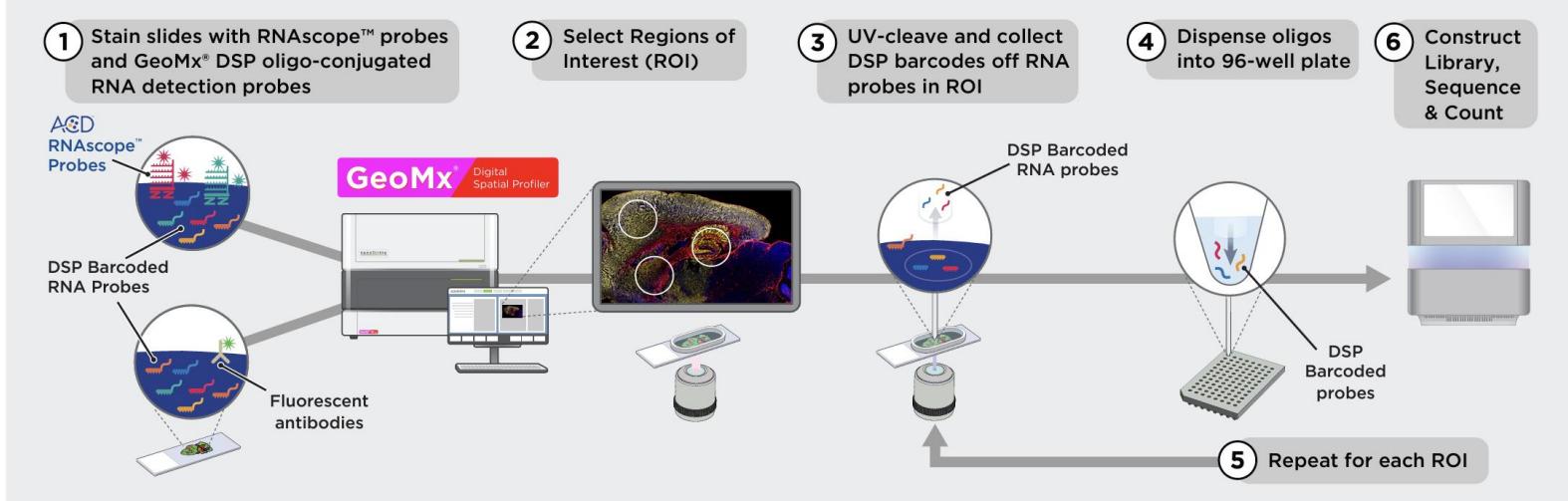
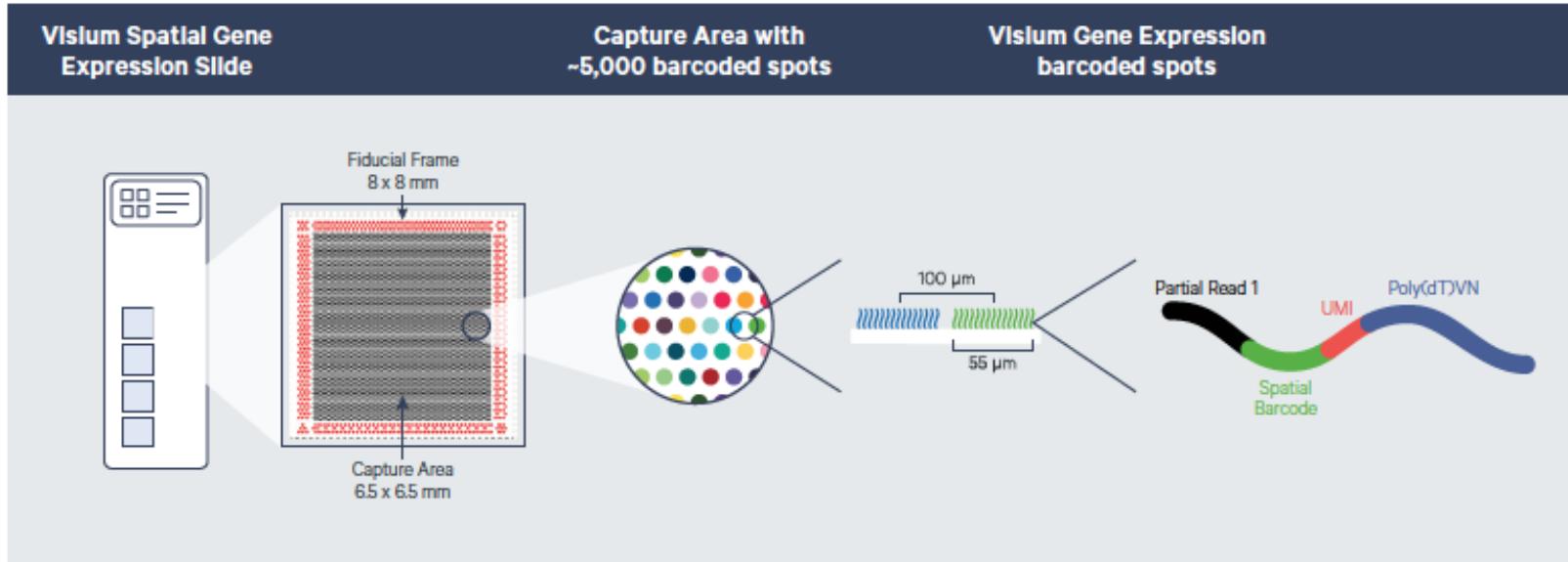
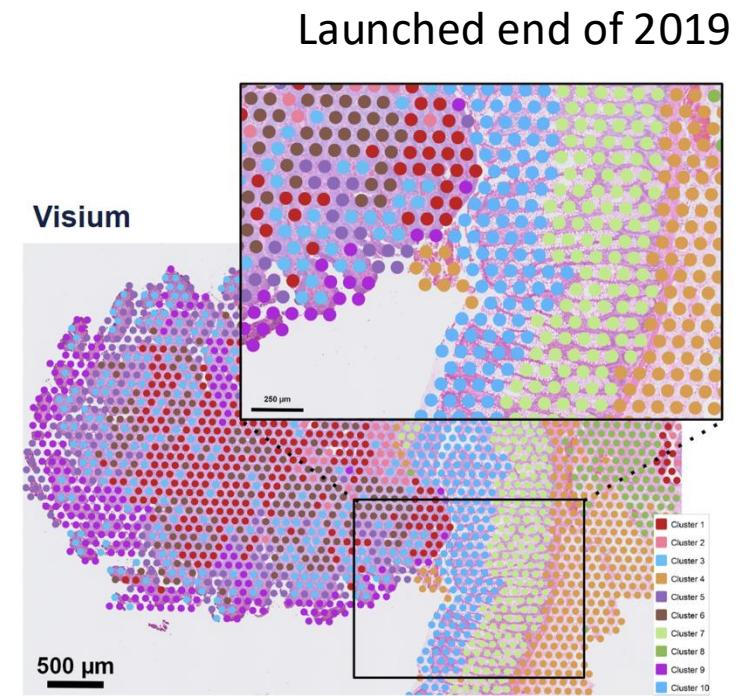
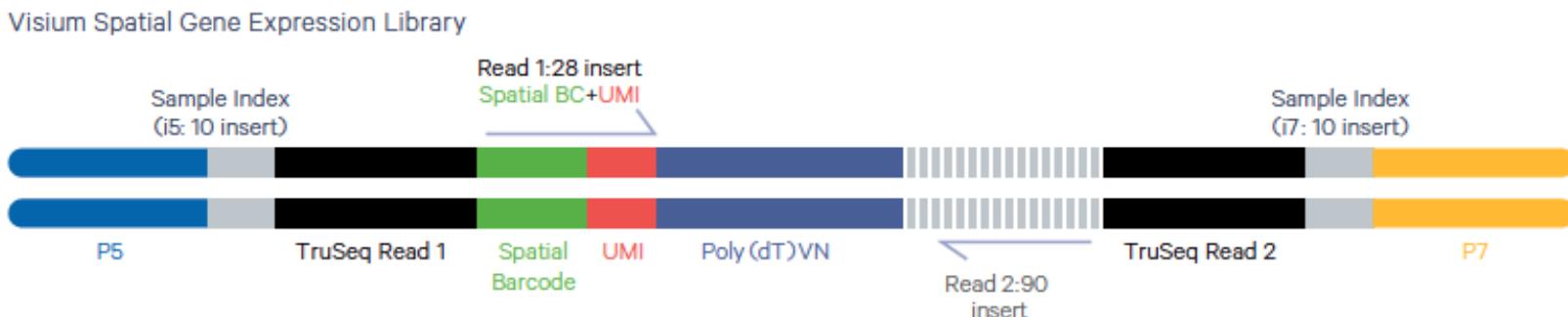


Figure 5 : GeoMx DSP workflow enables the analysis of whole transcriptome data from user-defined regions.

Platform	# of genes profiled	Spatial Resolution	Imaging Area	Time Required
10X Visium	Whole Transcriptome	100um	(6.5 mm x 6.5 mm)X4	Few hours

10X Visium Spot array-based spatial barcoding

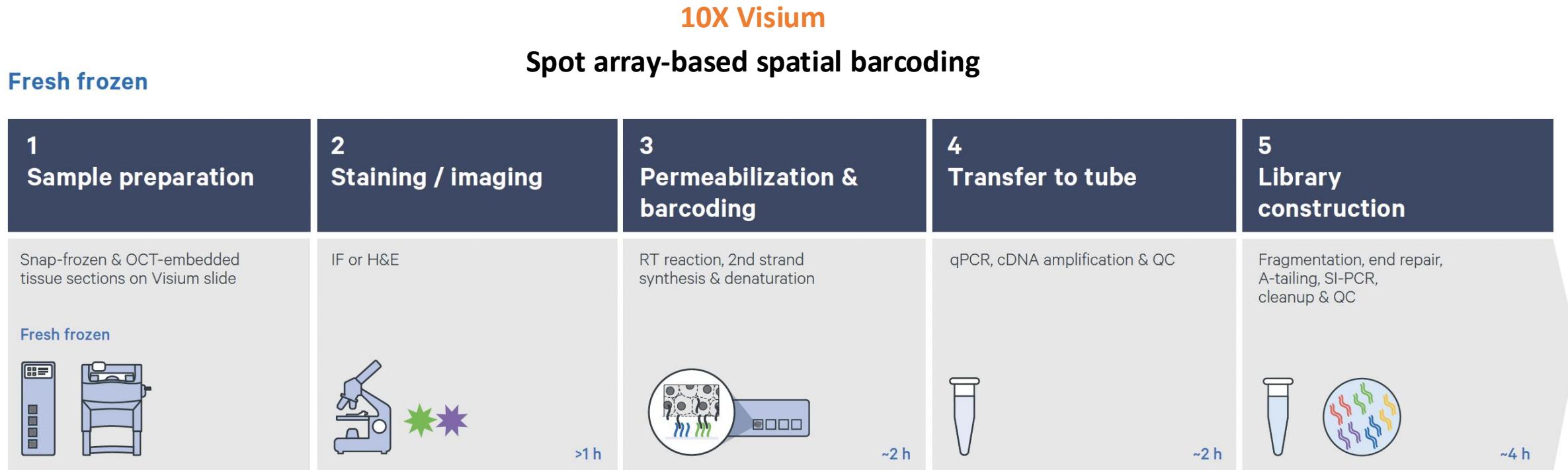


4992 total spots per each of 4 capture areas
15k read pairs per spot

1-10 mammalian cells per spot
depending on tissue type

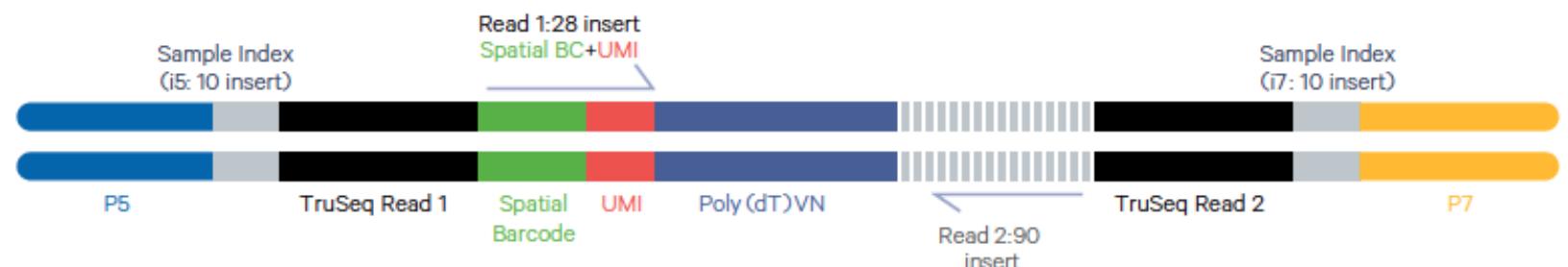
Fresh Frozen Only

Platform	# of genes profiled	Spatial Resolution	Imaging Area	Time Required
10X Visium	Whole Transcriptome	100um	(6.5 mm x 6.5 mm)X4	Few hours



Visium Spatial Gene Expression Library

→ Standard NGS

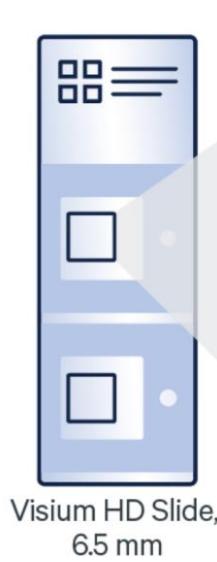
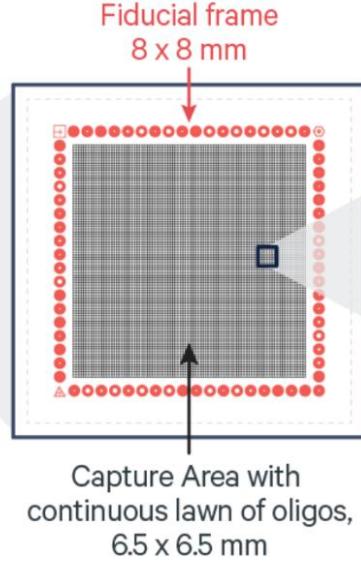
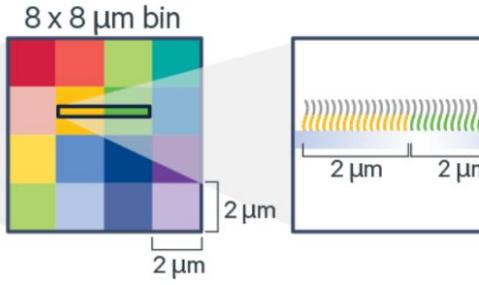
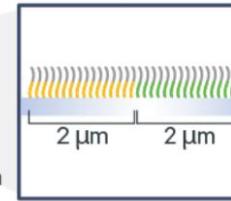
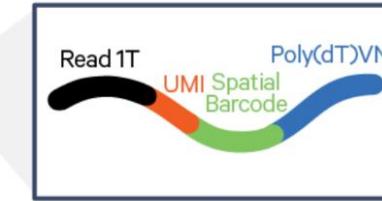


Wang, Y., Liu, B., Zhao, G., Lee, Y., Buzdin, A., Mu, X., Zhao, J., Chen, H., & Li, X. (2023). Spatial transcriptomics: Technologies, applications and experimental considerations. *Genomics*, 115(5), 110671.

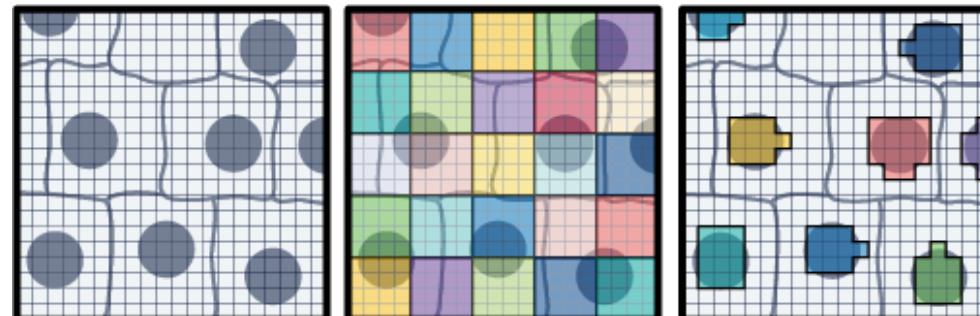
<https://kb.10xgenomics.com/hc/en-us/articles/360035999152-What-are-the-imaging-system-requirements-for-running-Visium-for-fresh-frozen>

Platform	# of genes profiled	Spatial Resolution	Imaging Area	Time Required
10X Visium HD	Whole Transcriptome (Probe-Capture)	2-8um	(6.5 mm x 6.5 mm)x2	Few hours

10X Visium HD Grid array-based spatial barcoding



Oligo with Spatial Barcode



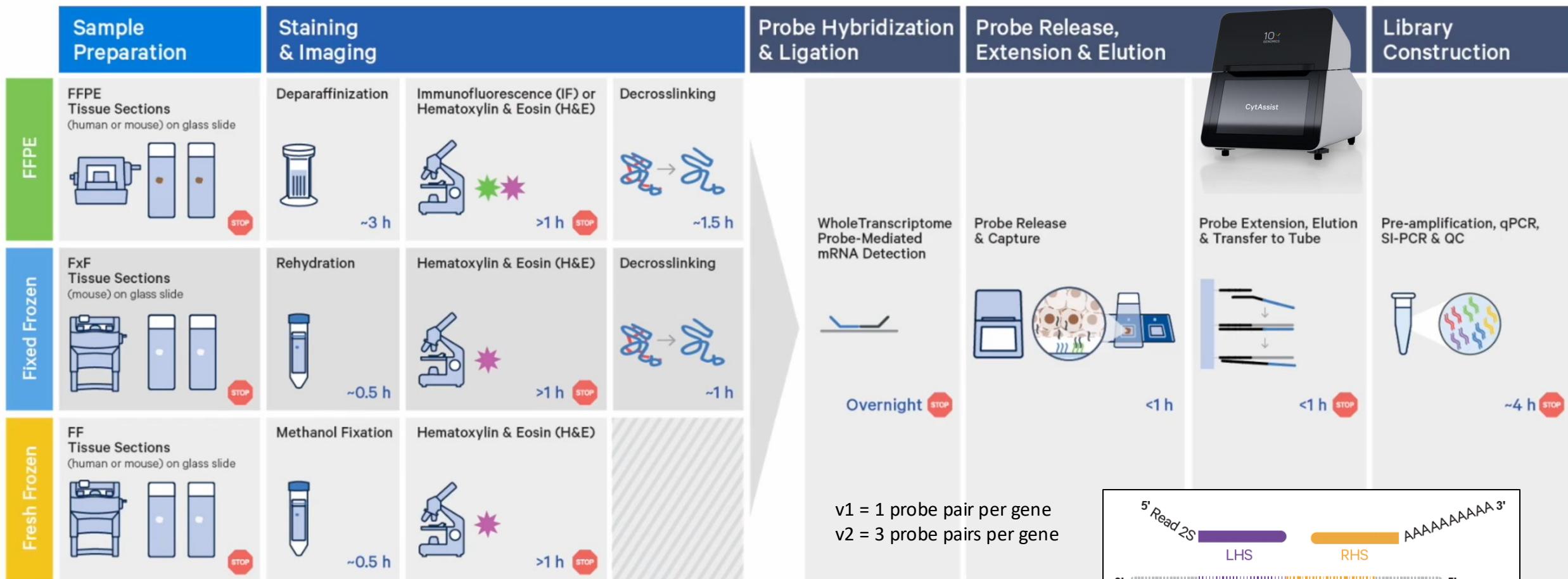
Two approaches for binning 2x2 μm barcode squares in Visium HD

11.2 million 2 x 2 μm barcoded squares without gaps

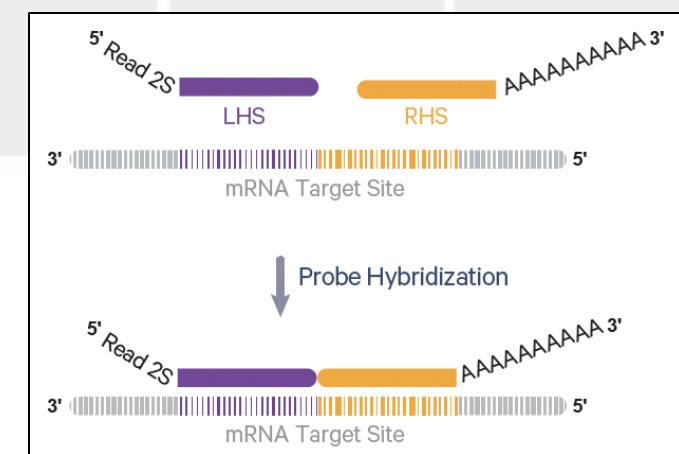
FF, Fixed Frozen and FFPE

Probe-Capture with Visium Cyt Assist before NGS Sequencing

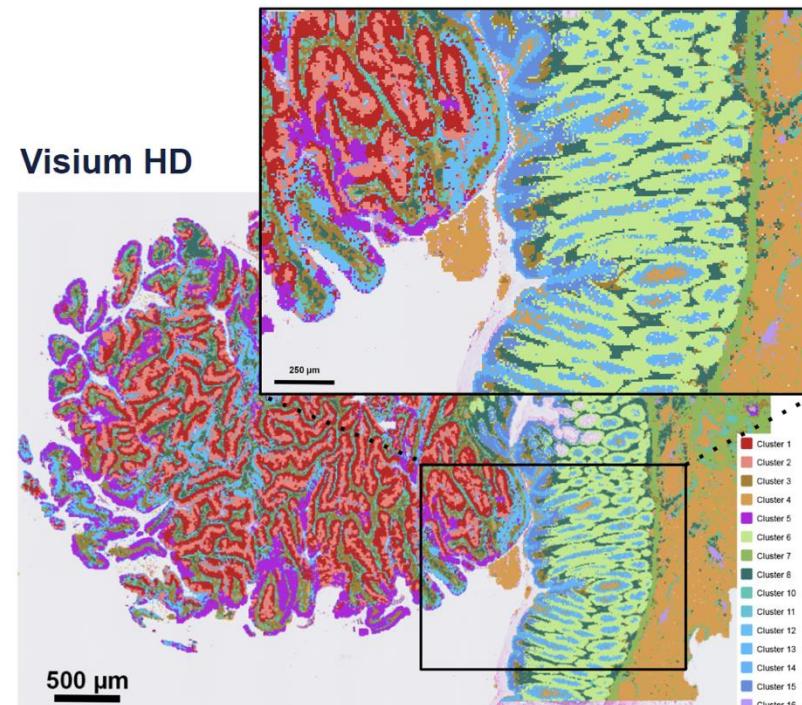
Important: Visium HD relies on probe sets to capture whole transcriptome, but output is still NGS



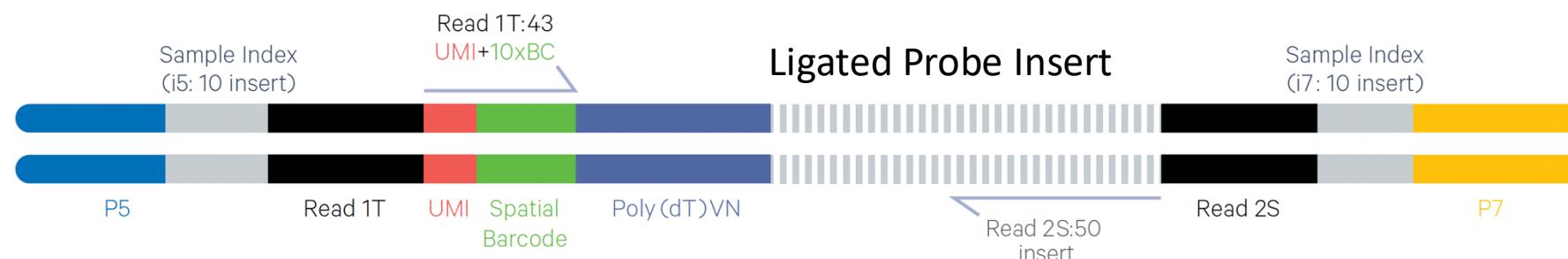
Currently, whole transcriptome custom probe sets must be designed for species other than human and mouse for Visium HD



Platform	# of genes profiled	Spatial Resolution	Imaging Area	Time Required
10X Visium HD	Whole Transcriptome (Probe-Capture)	2-8um	(6.5 mm x 6.5 mm)x2	Few hours



Visium HD Gene Expression Probe-Based Library



Gene expression library is sequenced at a recommended min depth of 275 million read pairs for Capture Areas covered fully by tissue

<https://www.10xgenomics.com/blog/your-introduction-to-visium-hd-spatial-biology-in-high-definition>
<https://www.10xgenomics.com/analysis-guides/segmentation-visium-hd>

Platform	# of genes profiled	Spatial Resolution	RNA Capture Efficiency	Imaging Area	Time Required
MERFISH	1000	100 nm	95% for cells 80–85% for tissue	10 mm × 10 mm	28–30 h

MERFISH

Multiplex error-robust FISH

MERFISH workflows involve four major steps:
Order will vary based on tissue preservation type (FFPE or FF)

Preparation

Tissue samples are mounted on slides and permeabilized.

Staining for protein co-detection can be added at this stage.

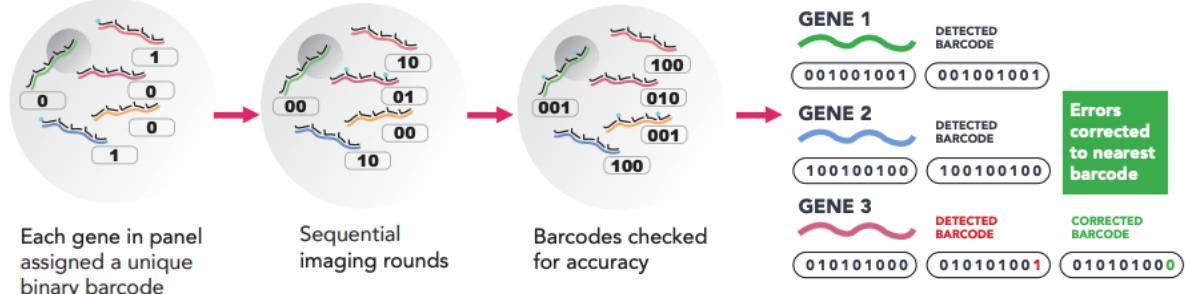
Hybridization

Embedding tens of thousands of unique encoding probes onto the sample.

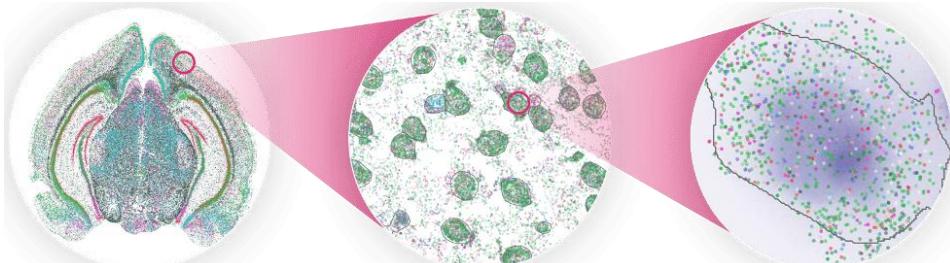
Clearing

Using a gel embedding and clearing process to remove unnecessary components while preserving transcripts and bound probes.

Imaging



(Simplified cartoon from product manual, method details covered in next slide)



WHOLE SECTION
9 x 7 mm
Organization of tissue

WIDE FIELD OF VIEW
200 x 200 micron
Cell interaction/function

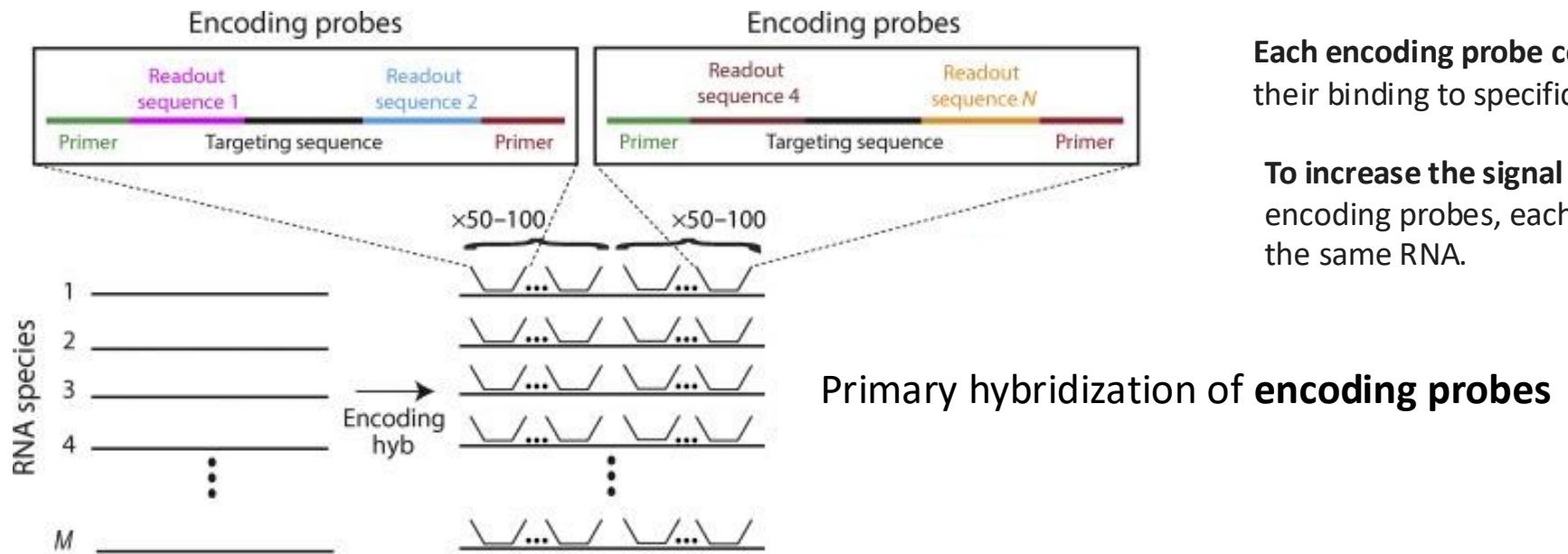
SUB-CELLULAR
12 x 12 micron
L2/3 IT Glutamatergic neuron

Vizgen

FFPE, FF, and fixed frozen tissue

<https://vizgen.com/products/>

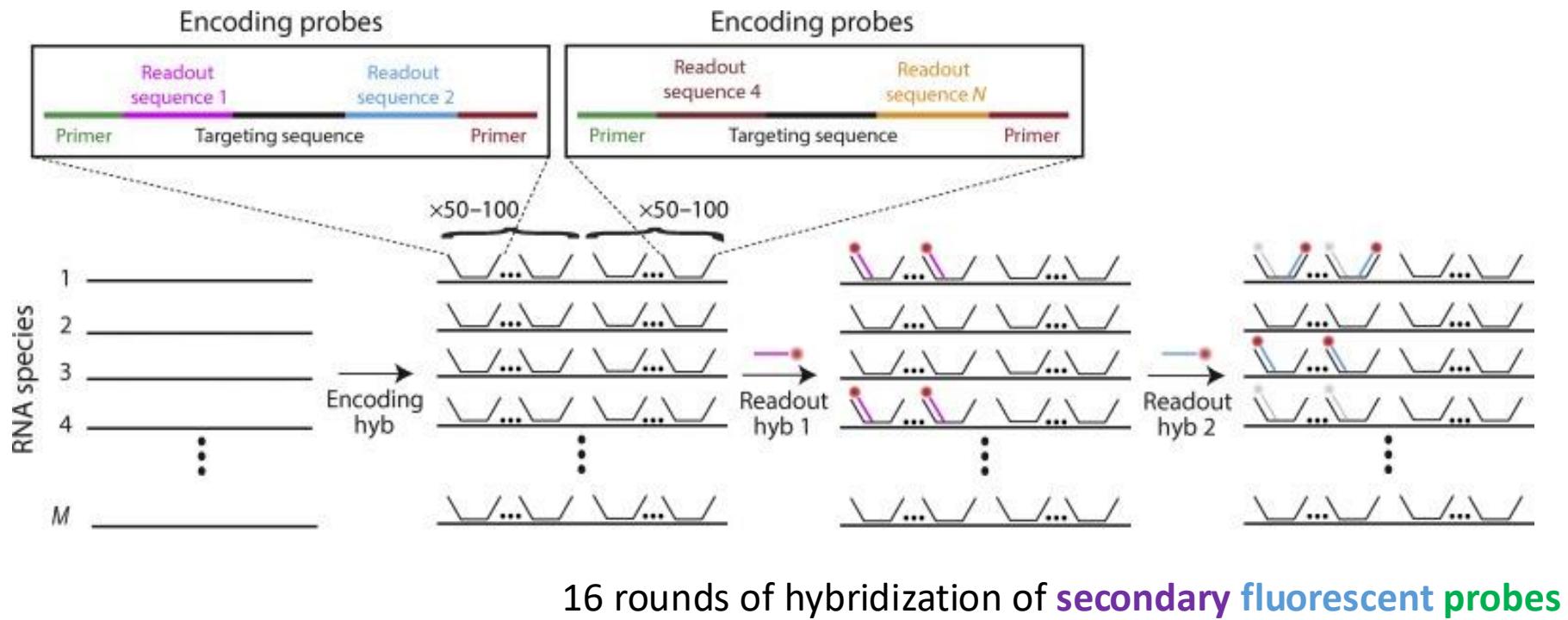
MERFISH Probe Hybridization and Fluorescence Readout



Each encoding probe contains a targeting sequence which directs their binding to specific RNA, as well as **two readout sequences**

To increase the signal from each copy of the RNA, 50-100 encoding probes, each with a different target region, are bound to the same RNA.

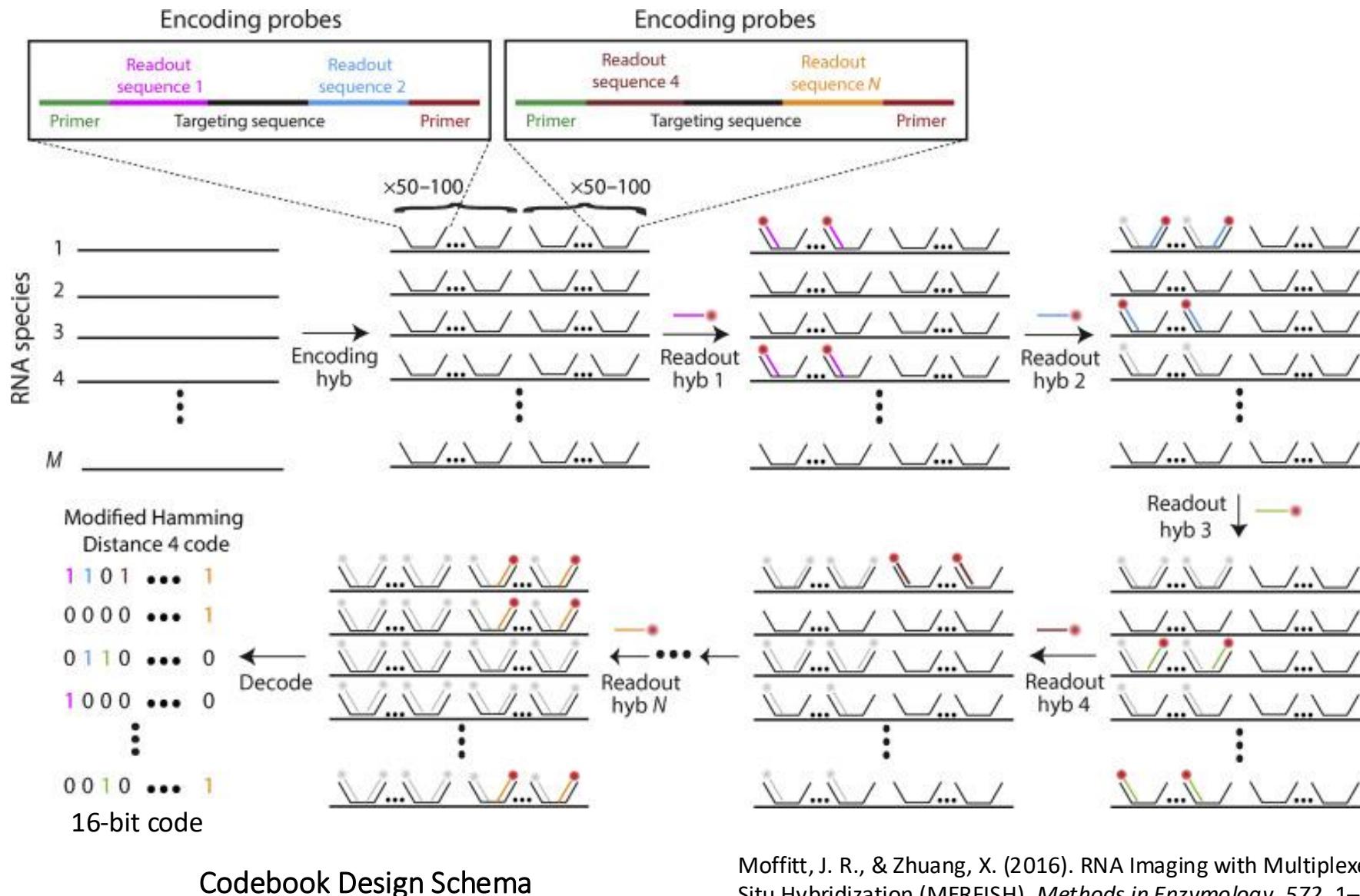
MERFISH Probe Hybridization and Fluorescence Readout



To identify the readout sequences contained on the encoding probes bound to each RNA, 16 rounds of hybridization and imaging are performed.

Each round uses a unique, **fluorescently labeled probe** whose sequence is complementary to the readout sequence for that round.

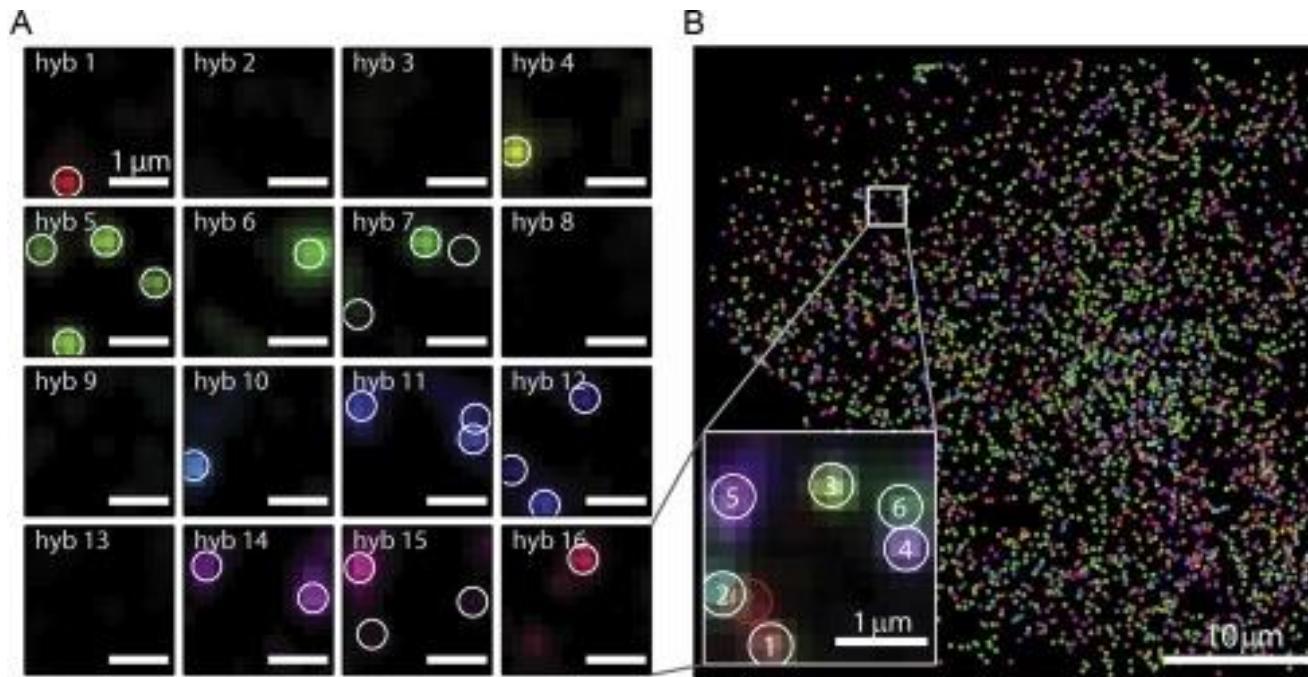
MERFISH Probe Hybridization and Fluorescence Readout



To identify the readout sequences contained on the encoding probes bound to each RNA, 16 rounds of hybridization and imaging are performed.

Each round uses a unique, **fluorescently labeled probe** whose sequence is complementary to the readout sequence for that round.

MERFISH error robustness



Modified Hamming
Distance 4 code

1	1	0	1	...	1
0	0	0	0	...	1
0	1	1	0	...	0
1	0	0	0	...	0
...
0	0	1	0	...	1

C

Hybridization round

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
Spot number	1	1	0	0	1	0	0	0	0	0	1	0	0	1	0	0	DYNC1H1
	2	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	EGFR
	3	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	FLNA
	4	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	TLN1
	5	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	TLN1
	6	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	LRP1
	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	Unidentified

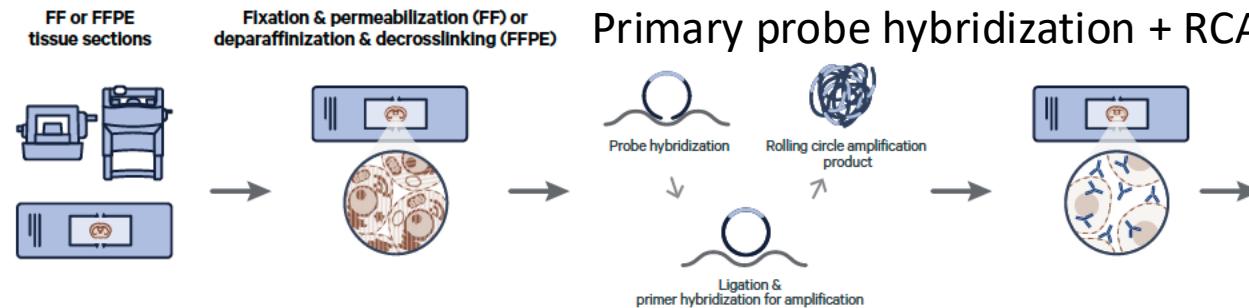
Probes designed with Hamming Distance of 4 to make robust to errors.
Errors can then also be corrected to “call” the correct probe

Constant Hamming weight is used to ensure probes have same number of 1's and 0's (since rate of reading 1 as 0 is > than reading 0 as 1)

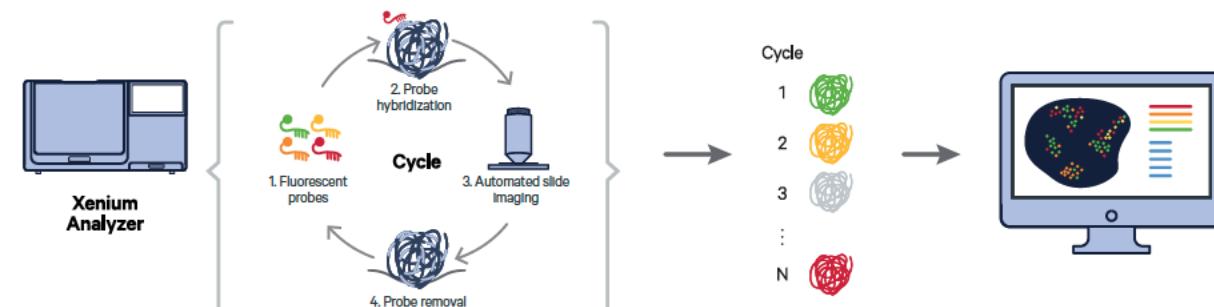
16-bit MHD4 codebook allows for **error correction**

Platform	# of genes profiled	Spatial Resolution	Imaging Area	Time Required
10X Xenium	400	50 nm	12 mm × 24 mm	2 days

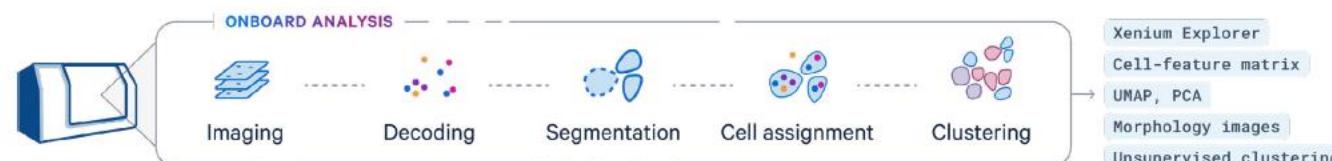
Xenium launched 2022



Data visualization



Rounds of hybridization of secondary fluorescent probes



FFPE: 5um thickness
FF: 10um thickness

STx Data Analysis

Recommended Software packages for STx analysis

Package	Platform	Latest Release	Notes
Seurat	R	v5.3.0 (Apr 2025)	
Giotto	R	v4.0.0 (Nov 2023)	
SquidPy	Python	v1.6.5 (Mar 2025)	Integrates with ScanPy

Longer list with specific tools for certain analysis tasks:

https://github.com/drieslab/awesome-spatial-data-analysis/blob/main/review_spat_trns_methods.html

Seurat 5.0 package

Developers: Rahul Satija lab at NYU

Seurat object

Spots/Cells

Raw matrix (UMI counts)

+ associated info:
Metadata such as
images,
Normalized counts,
Dimension reduction
Embeddings,
Spatial coordinates
etc.

Seurat v5

We are excited to release Seurat v5! To install, please follow the instructions in our [Install page](#). This update brings the following new features and functionality:

- **Integrative multimodal analysis:** The cellular transcriptome is just one aspect of cellular identity, and recent technologies enable routine profiling of chromatin accessibility, histone modifications, and protein levels from single cells. In Seurat v5, we introduce 'bridge integration', a statistical method to integrate experiments measuring different modalities (i.e. separate scRNA-seq and scATAC-seq datasets), using a separate multimodal dataset as a molecular 'bridge'. For example, we demonstrate how to map scATAC-seq datasets onto scRNA-seq datasets, to assist users in interpreting and annotating data from new modalities.

We recognize that while the goal of matching shared cell types across datasets may be important for many problems, users may also be concerned about which method to use, or that integration could result in a loss of biological resolution. In Seurat v5, we also introduce flexible and streamlined workflows for the integration of multiple scRNA-seq datasets. This makes it easier to explore the results of different integration methods, and to compare these results to a workflow that excludes integration steps.

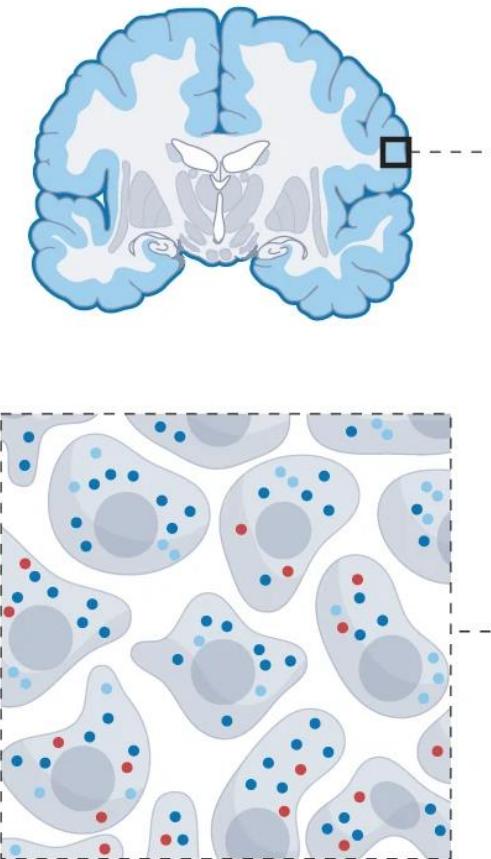
- Paper: [Dictionary learning for integrative, multimodal, and scalable single-cell analysis](#)
- Vignette: [Streamlined integration of scRNA-seq data](#)

See materials with Seurat tutorial on the [Github page](#)

[Analysis of spatial datasets \(Sequencing-based\)](#)
[Analysis of spatial datasets \(Imaging-based\)](#)

Image-based spatial transcriptomics: cell segmentation

Segmentation mask with transcript locations



Coordinates and counts of transcript

	x	y	Count	Cell
gene1	-10	3	15	1
gene2	-15	4	2	1
gene1	2	3	5	2
gene2	4	2	10	2
gene1	-12	10	3	3
gene2	-14	8	1	3
...

Cell count matrix and cell coordinates

	m_{raw} genes	...	x	y
n_{raw} cells	15	2	...	-12 3
	5	10	...	3 2
	3	1	...	-13 9

Cell Segmentation is handled by MERSCOPE and Xenium software, but other methods can also be run post-hoc

Nuclei: DAPI
Boundary/Membrane: anti-ATPase Ab
Interior RNA: anti-18S rRNA Ab

Multimodal Cell Segmentation

Example from Xenium

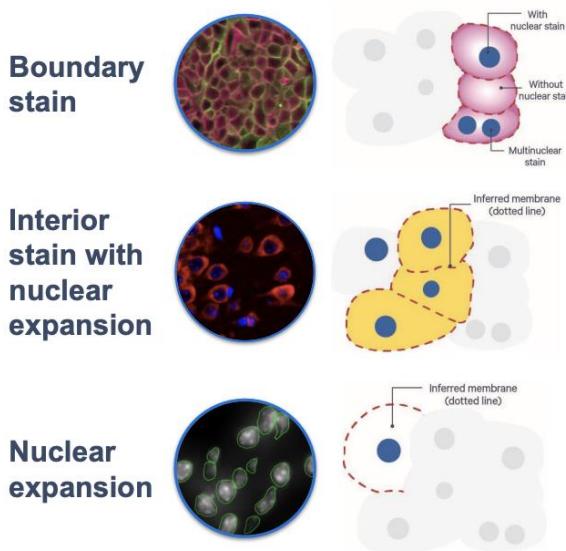
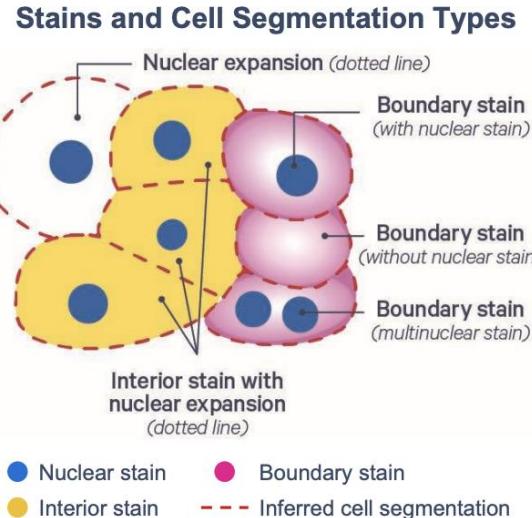
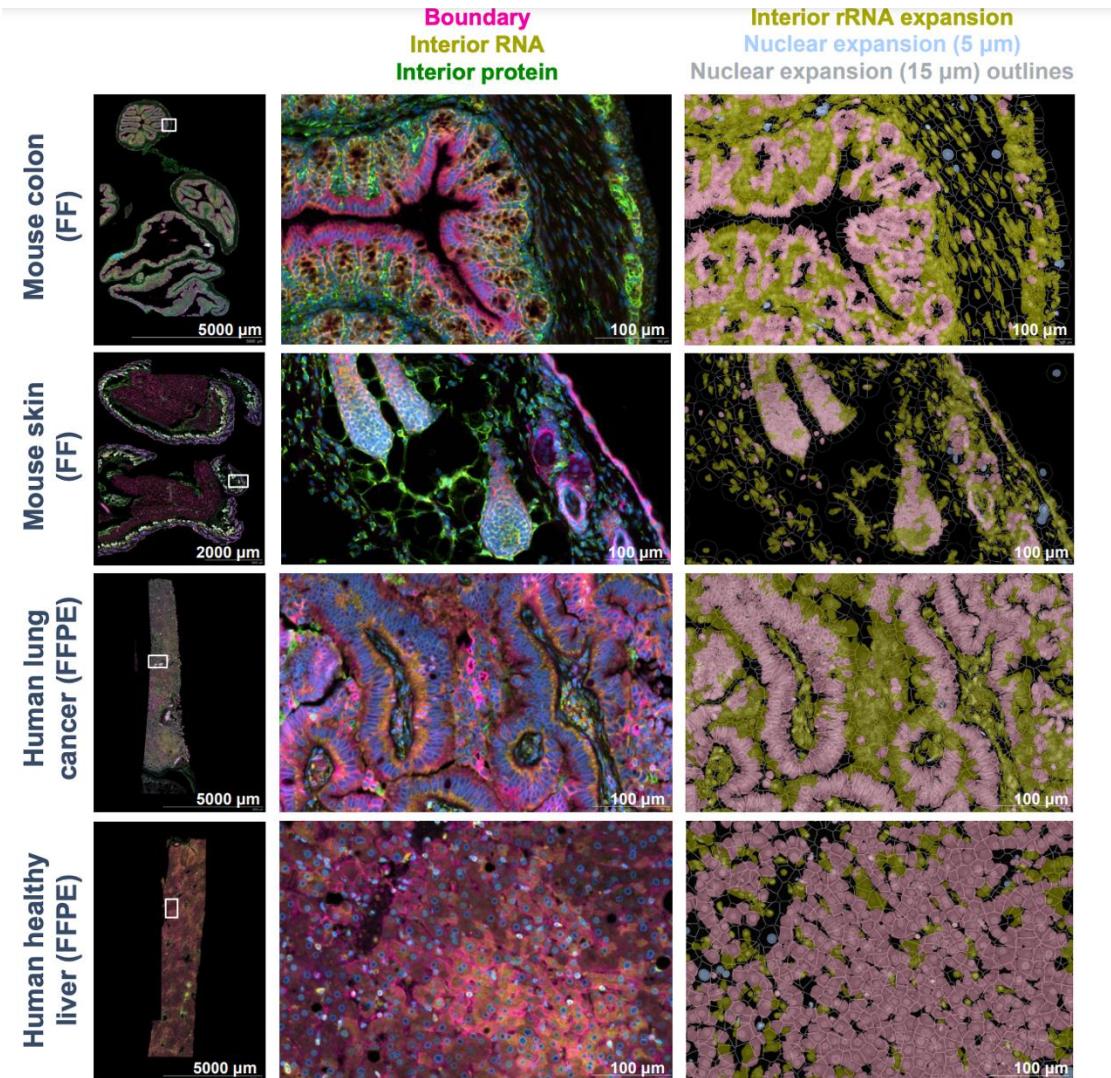


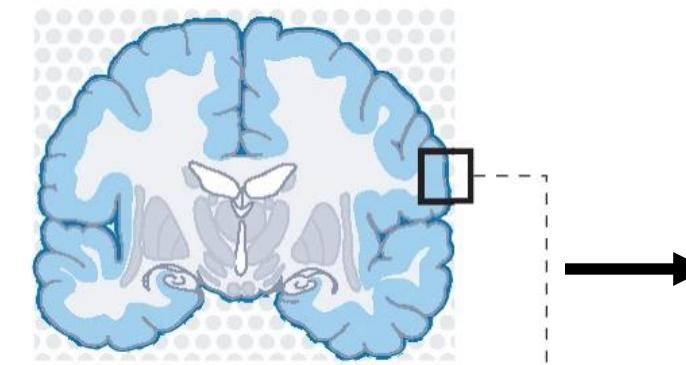
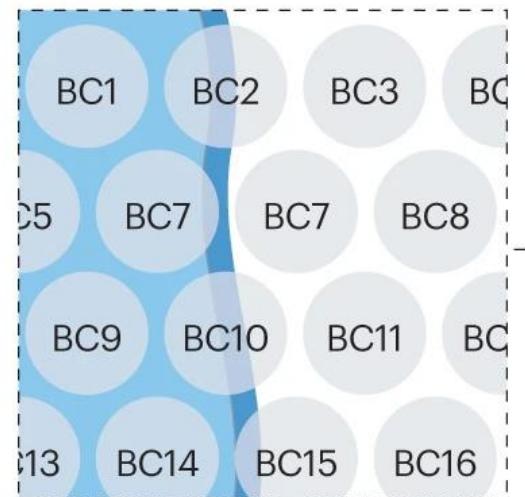
Figure 1. multimodal cell segmentation approach. After nucleus segmentation with DAPI, the algorithm segments each cell with one of three methods applied in a stepwise fashion: boundary segmentation, expansion from the nucleus to the cell interior stain edge, and nuclear expansion. Unlike conventional single-step methods, this multimodal approach effectively addresses certain cell types that cannot provide complete or even partial boundary information due to lack of clear membrane markers.

Since Xenium's boundary segmentation model does not require the presence of a nucleus, they were able to correctly segment multinucleate and occasionally anucleate cells.



Array-based spatial transcriptomics: deconvolution

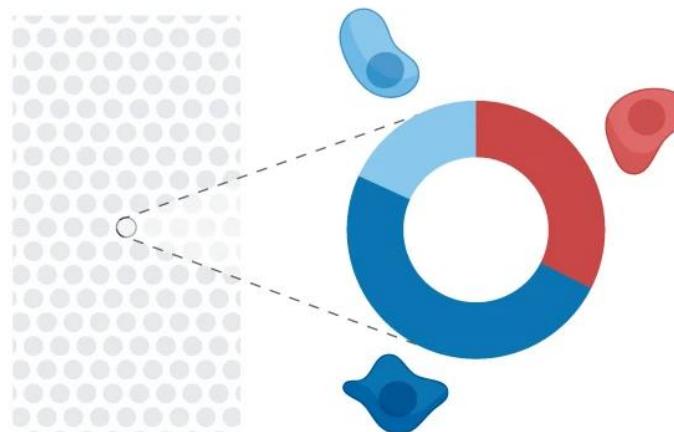
Tissue slice on barcode regions



Count matrix and coordinates of barcode regions

$m_{\text{raw}} \text{ genes}$					x	y
0	5	2	...		-10	3
10	0	0	...		-5	7
15	0	0	...		2	3
...

Deconvolution



Top Deconvolution Methods

- Cell2location (ScanPy)
- SpatialDWLS ([Giotto](#))
- RCTD (supported in [Seurat](#))

Reviewed in Li et al. Nat Methods 2022 Benchmarking spatial methods for cell type deconvolution

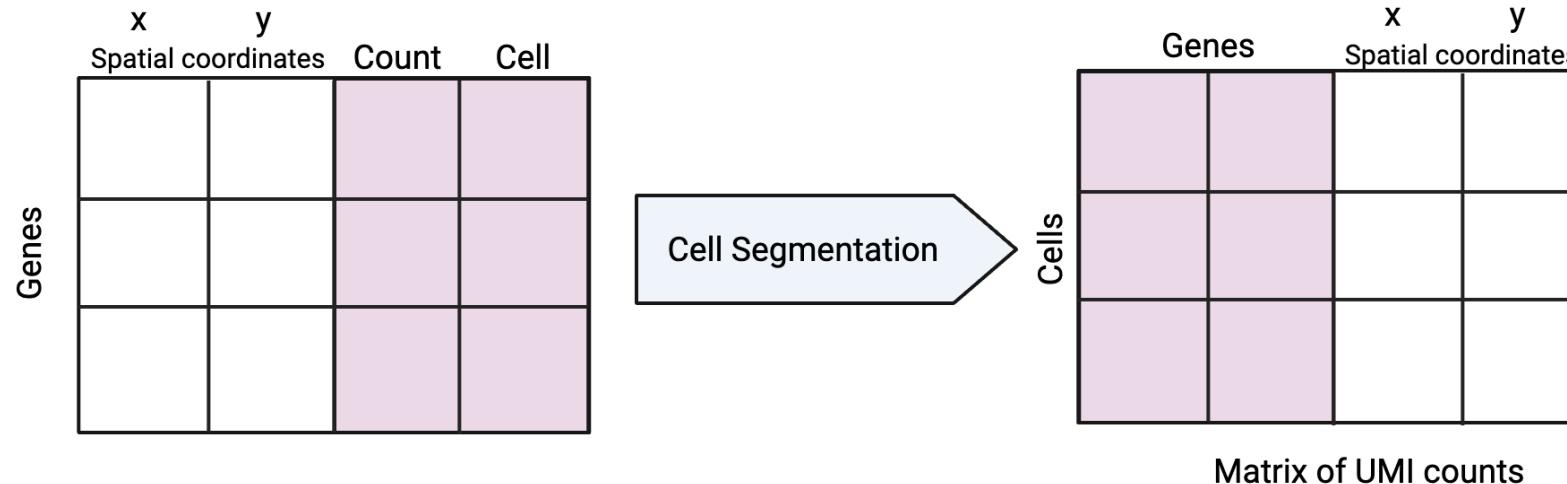
<https://www.nature.com/articles/s41592-022-01480-9>

Cell count matrix and cell coordinates

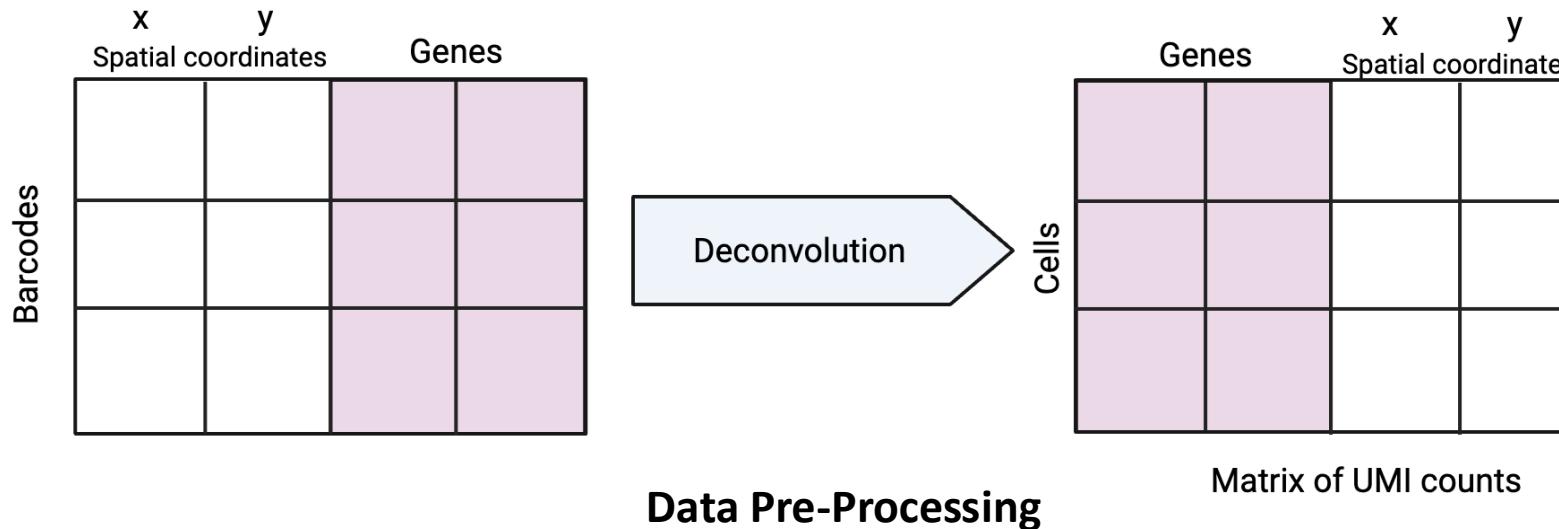
$m_{\text{raw}} \text{ genes}$					x	y
0.1	3.5	...			-10	3
7.2	0.2	...			-5	7
11.1	0.3	...			2	3
...

Summary: Assigning Genes to Cells and their spatial coordinates

Imaging-based STx needs cell segmentation

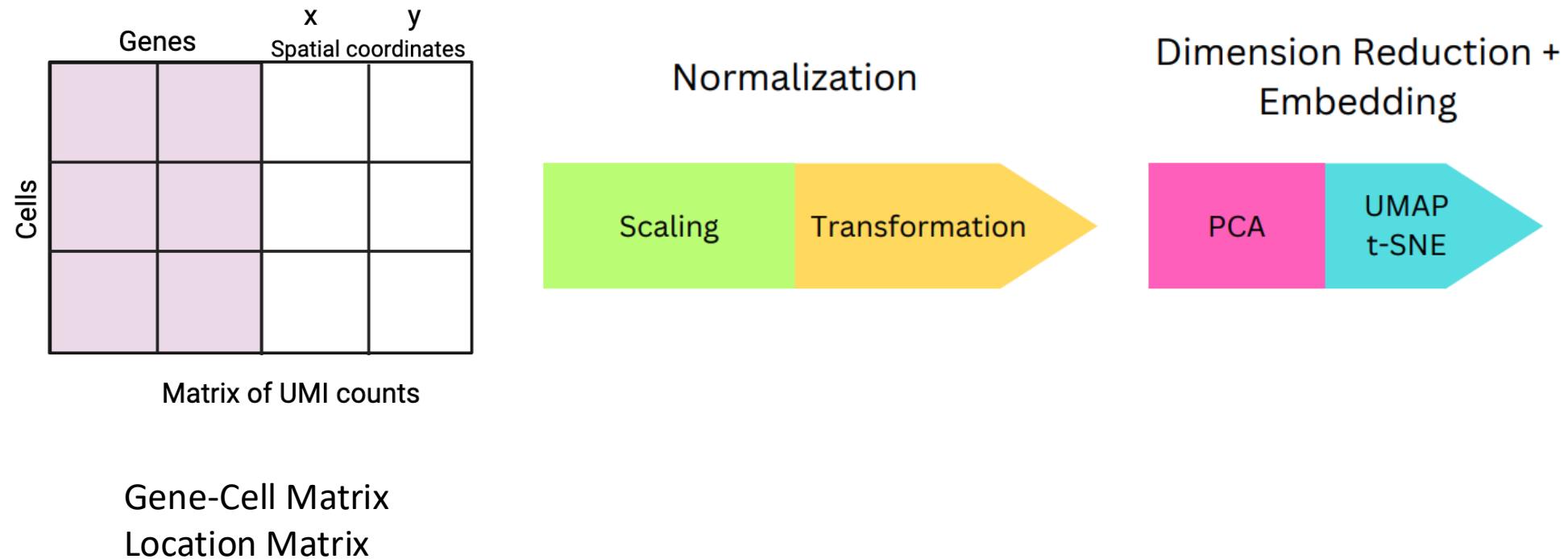


Sequencing Array-based STx needs deconvolution



Output:
Gene-Cell Matrix
Location Matrix

Count Data Preprocessing



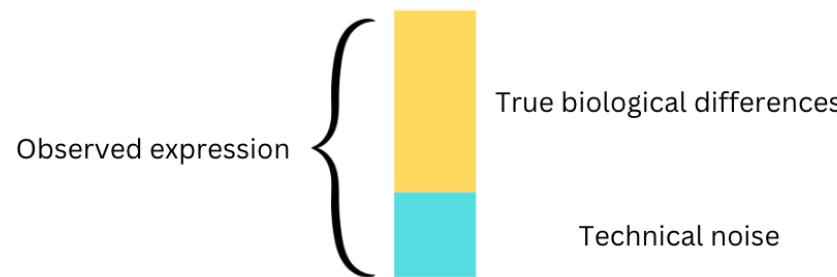
Count Normalization

Gene expression data is often overdispersed (high variance)

Normalization rationale:

- makes samples more directly comparable
- reduces high variance seen in highly expressed genes
- reduces the distortion on plots caused by highly variable genes
- Makes data compatible with common statistical tests/models that require constant variance (homoskedasticity)

Without normalization, the analysis would be dominated by highly expressed genes



- 1) Log transformation
- 2) Square root transformation

$$y_{i,j} = f(x_{i,j})$$

Generalized linear model:

- 3) Pearson residual transformation (used by Seurat's `sctransform`)

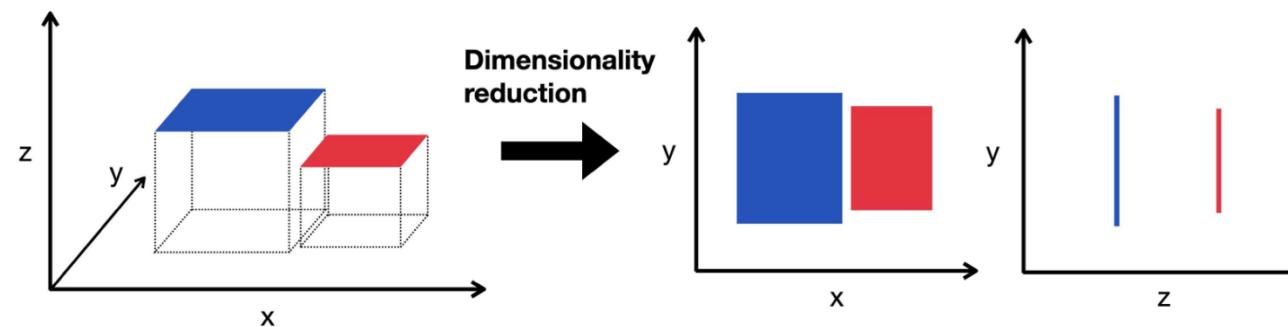
$$y_{i,j} = w_j * x_{i,j} \text{ where } w_i = 1/\sqrt{\mu_i}$$

Instead of transforming each measurement individually, Pearson residuals apply a weight w_i to all measurements of a given gene based on observed mean μ_i

Dimension Reduction

Rationale: Reducing the dimensions on high dimension data will speed up computation for downstream analysis such as clustering and also avoid overfitting

See: [Curse of dimensionality](#)



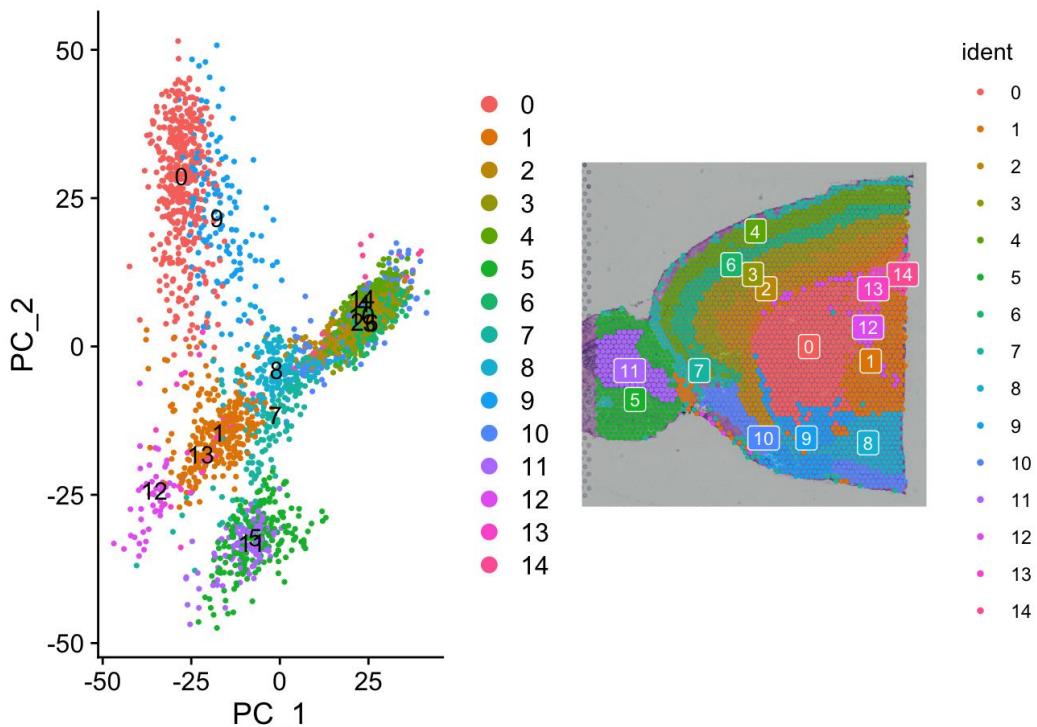
Dimension reduction is performed by generating a smaller set of predictors that capture a majority of information in the original variables (select most highly variable genes). This reduces the correlation of different predictors to one another.

Normalization is required beforehand so that larger scaled variables don't dominate the analysis
For most data reduction techniques, the new predictors are functions of the original predictors.
This class of methods is often called **signal extraction** or **feature extraction** techniques.

Principal Components Analysis + Clustering

PCA is a commonly used dimension reduction technique and seeks to find linear combinations of the predictors, known as principal components (PCs), which capture the most possible variance.

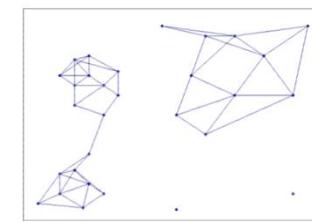
The first PC is defined as the linear combination of the predictors that captures the most variability of all possible linear combinations. Then, subsequent PCs are derived such that these linear combinations capture the most remaining variability while also being uncorrelated with all previous PCs. Mathematically, the j th PC can be written as:



$$\text{PC}_j = (a_{j1} \times \text{Predictor 1}) + (a_{j2} \times \text{Predictor 2}) + \cdots + (a_{jP} \times \text{Predictor } P).$$

P is the number of predictors. The coefficients $a_{j1}, a_{j2}, \dots, a_{jP}$ are called component weights and help us understand which predictors are most important to each PC.

Because the distance between points from performing PCA are interpretable, the results can be directly used for clustering

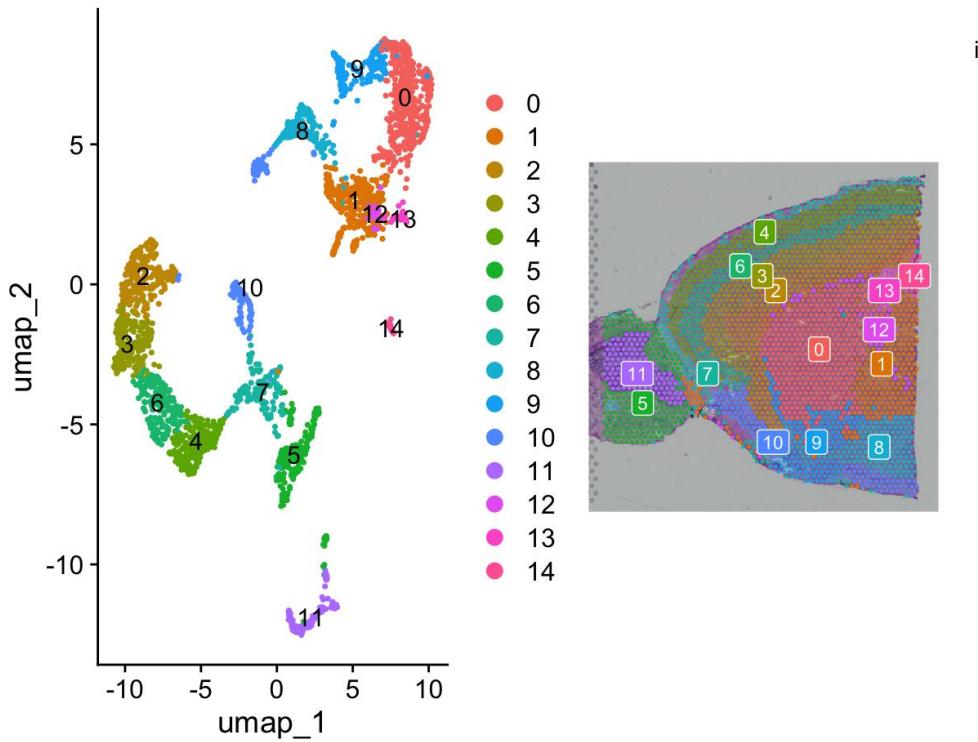


Seurat's FindNeighbors computes nearest neighbors graph for a given dataset (k-nearest neighbors, k-NN and shared nearest neighbors, SNN) using PCA space
Seurat's FindClusters performs cluster detection using Louvain (default) or other methods such as Leiden

Embedding and Visualization

Embedding maps high dimensional data into a lower dimensional space, while preserving structure and relationships

PCA still has multiple dimensions (dim >2), so embedding will be necessary for visualization of the clusters



While PCA assumes the data is linear, embedding methods **Uniform Manifold Approximation and Projection (UMAP)** and **t-Stochastic Neighbor Embedding (t-SNE)** do not assume linearity

The distance between points from performing PCA are interpretable, so they can be used for clustering, whereas those in UMAP and t-SNE embedding are not

More info:

Statquest PCA <https://www.youtube.com/watch?v=FgakZw6K1QQ>

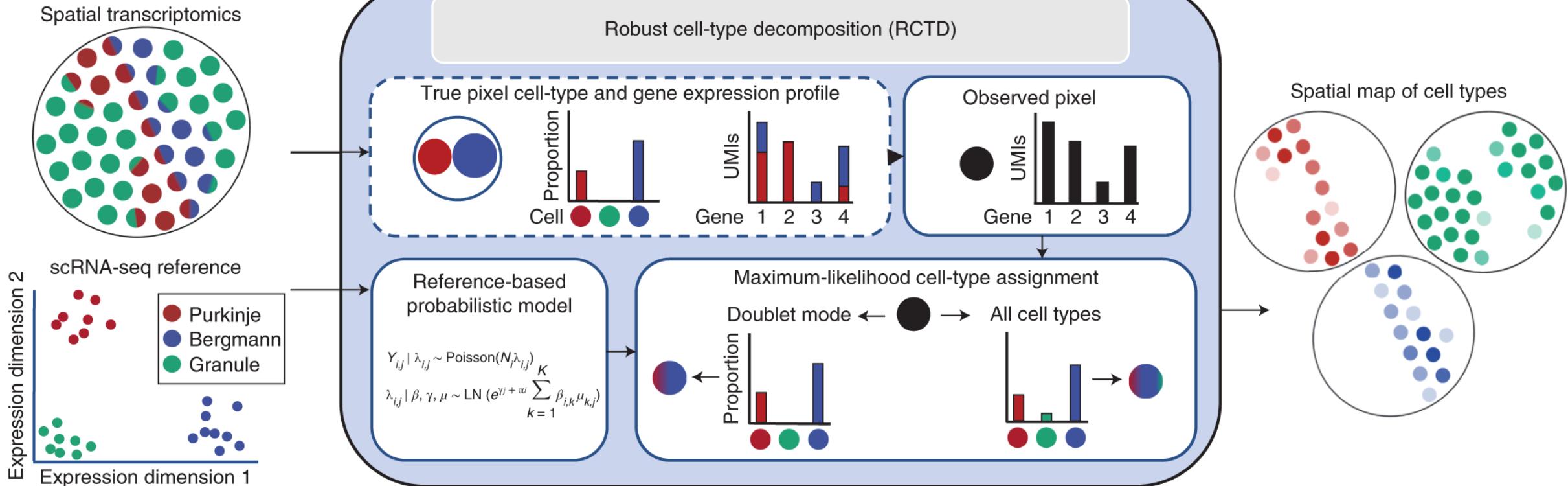
Statquest UMAP <https://www.youtube.com/watch?v=eN0wFzBA4Sc>

Statquest t-SNE <https://www.youtube.com/watch?v=NEaUSP4YerM>

t-SNE subtleties <https://distill.pub/2016/misread-tsne/>

Annotation: Integration with scRNA-seq data

a



Cable, DM et al. (2022). Robust decomposition of cell type mixtures in spatial transcriptomics. *Nat Biotech*, 40(4), 517–526.

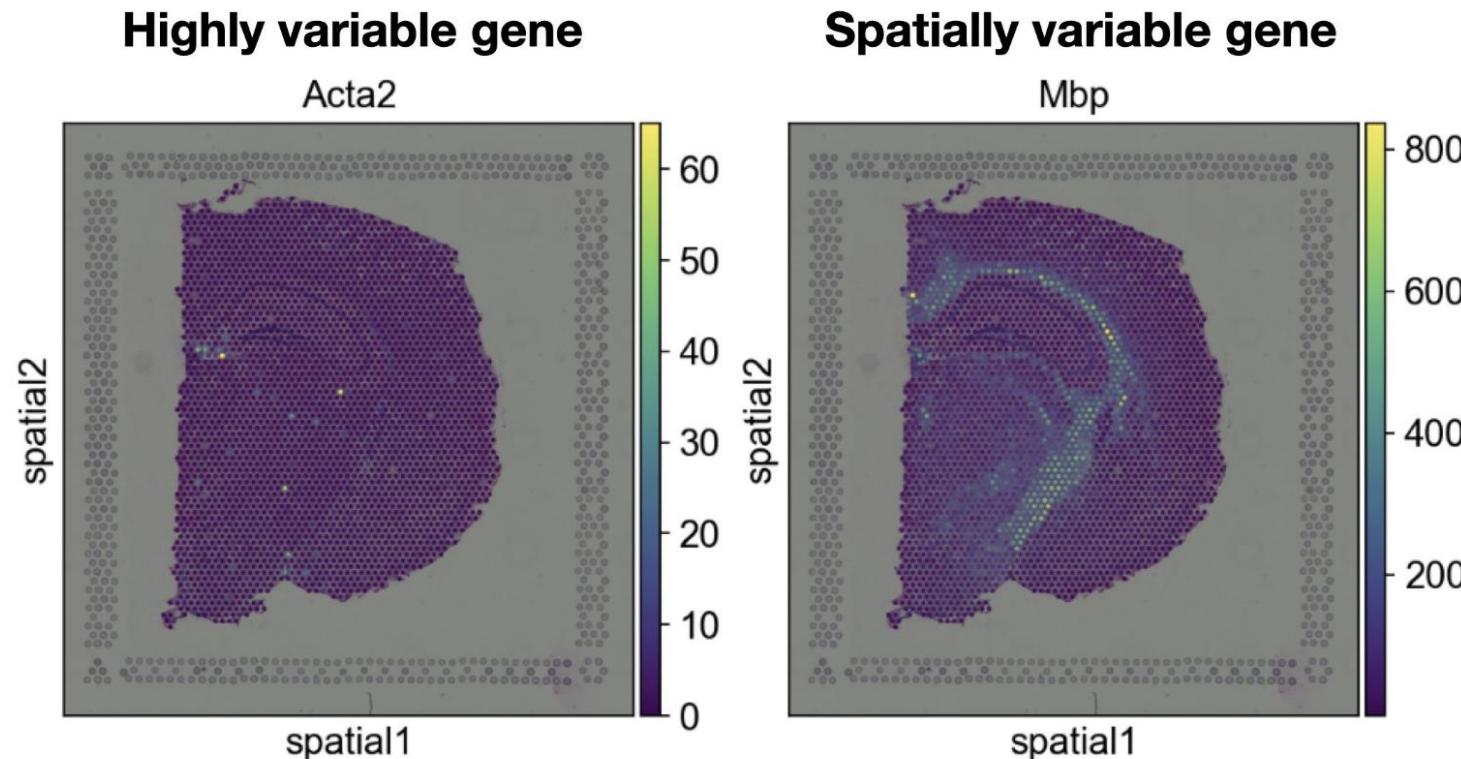
Irizarry Lab

Li, B et al. (2022). Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. *Nat Methods*, 19(6), 662–670.

Li, Y et al. (2021). Benchmarking computational integration methods for spatial transcriptomics data. *bioRxiv* <https://doi.org/10.1101/2021.08.27.457741>

Spatially Variable Genes

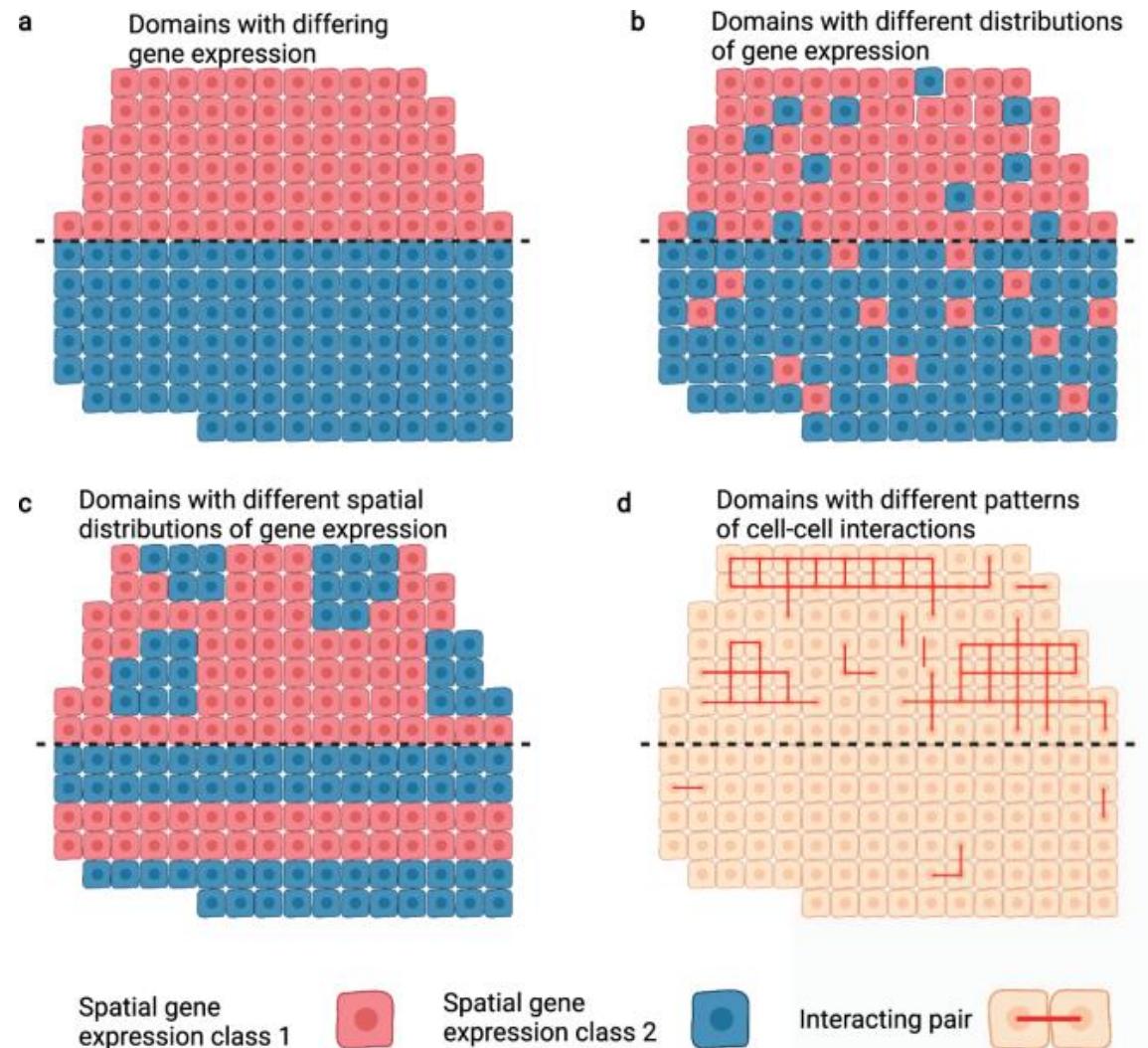
In contrast to highly variable genes (genes that differ significantly between cells), spatially variable genes show a distinct spatial pattern



Different scenarios of spatially variable genes

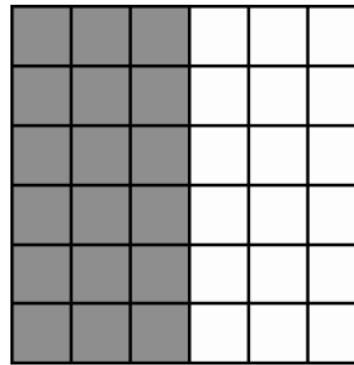
The simplest approach is to look for spatially contiguous regions of cells with maximally similar gene expression (Fig. 2a). This is analogous to the typical clustering analysis in scRNA-seq analysis pipelines, but conscious of spatial position.

Most currently methods optimize for situations like this, but as methods develop they may have to deal with situations that are more like “salt and pepper” or which have subdomain architecture or take into account specific patterns of cell-cell interactions (CCI)

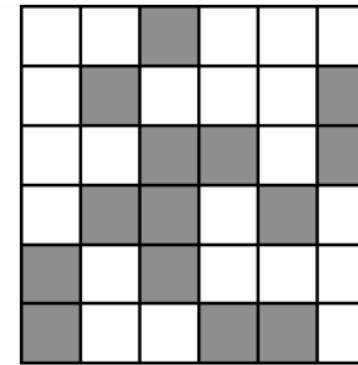


Spatial Autocorrelation

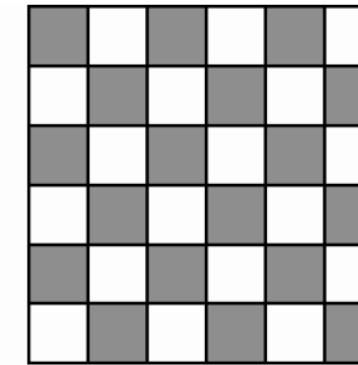
One simple way to look at spatial relationships is by measuring spatial autocorrelation (i.e. for each gene)



Positive spatial autocorrelation



No spatial autocorrelation



Negative spatial autocorrelation

Moran's I

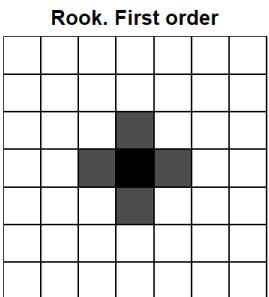
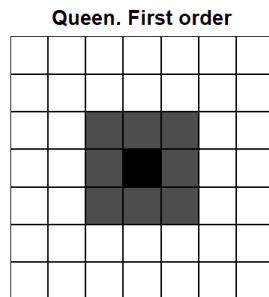
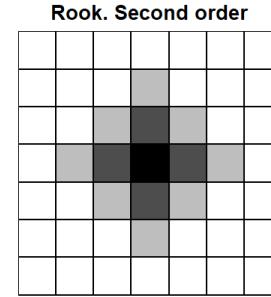
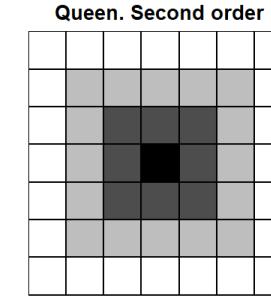
Moran's I is a spatial autocorrelation metric similar to the Pearson correlation coefficient. Range is -1 to 1.

$$\text{Moran's I} = \frac{N}{\sum_{i,j} W_{ij}} \frac{\sum_i \sum_j W_{ij}(x_i - \bar{x})(x_j - \bar{x})}{\sum_i (x_i - \bar{x})^2}$$

, where N is the total number of spatial location units indexed by (i, j) , and W is a weight matrix to be discussed below. Recall that the Pearson correlation coefficient is

$$r = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}}$$

$W_{i,j}$ is a weight matrix that can be either contiguity based (first order, second order, etc) or distance-based



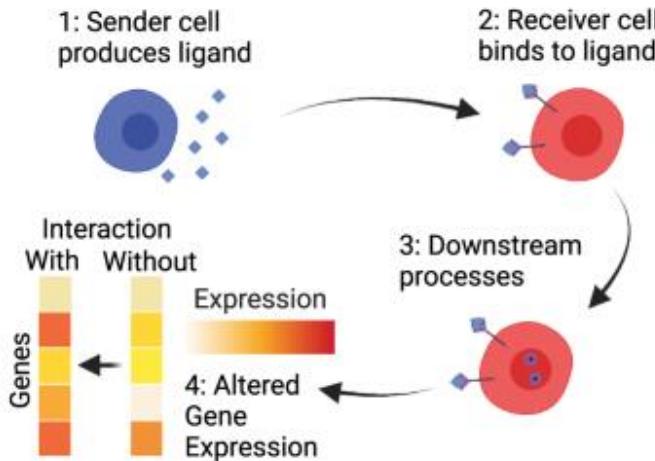
Intuitive explanation for understanding and deriving Moran's I:

https://www.youtube.com/watch?v=OJU8GNW9grc&ab_channel=ritvikmath

First and second order nearest neighbors graphic from [here](#)
Moran's I definition from [here](#)
43

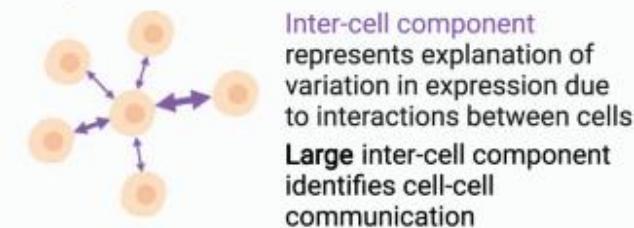
Methods to identify cell-cell interactions from STx data

a Cell-cell interactions



c Probabilistic Modeling Methods

Identify SVGs explicitly modeling CCI as one source of variance in gene expression



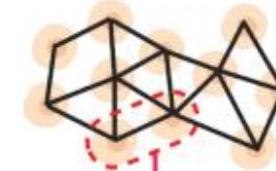
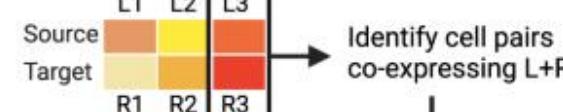
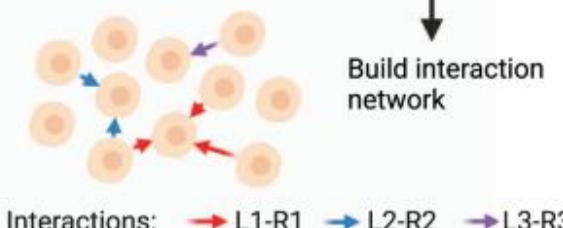
b Pairwise Co-expression Methods

Identify co-expression of L-R pairs in spatially nearby cells

Inputs:

Cell spatial network + expression data

Known L-R Pairs



- **NCEM** with Squidpy/ScanPy (Fischer et al. Nat Bio 2023, Theis Lab)
- **findInteractionChangedFeats / findICFSpot** in Giotto
- **Tensor-cell2cell** (Armingol et al.) which can be used with LIANA for context-based CCI analysis
https://ccc-protocols.readthedocs.io/en/latest/notebooks/ccc_python/S4_Spatial-Decomposition.html

Long list of tools here:

<https://github.com/multitalk/awesome-cell-cell-communication>

Great recent review: Armingol, E., Baghdassarian, H. M., & Lewis, N. E. (2024). The diversification of methods for studying cell-cell interactions and communication. *Nature Reviews. Genetics*, 25(6), 381–400.

Ongoing challenges in the spatial transcriptomics field

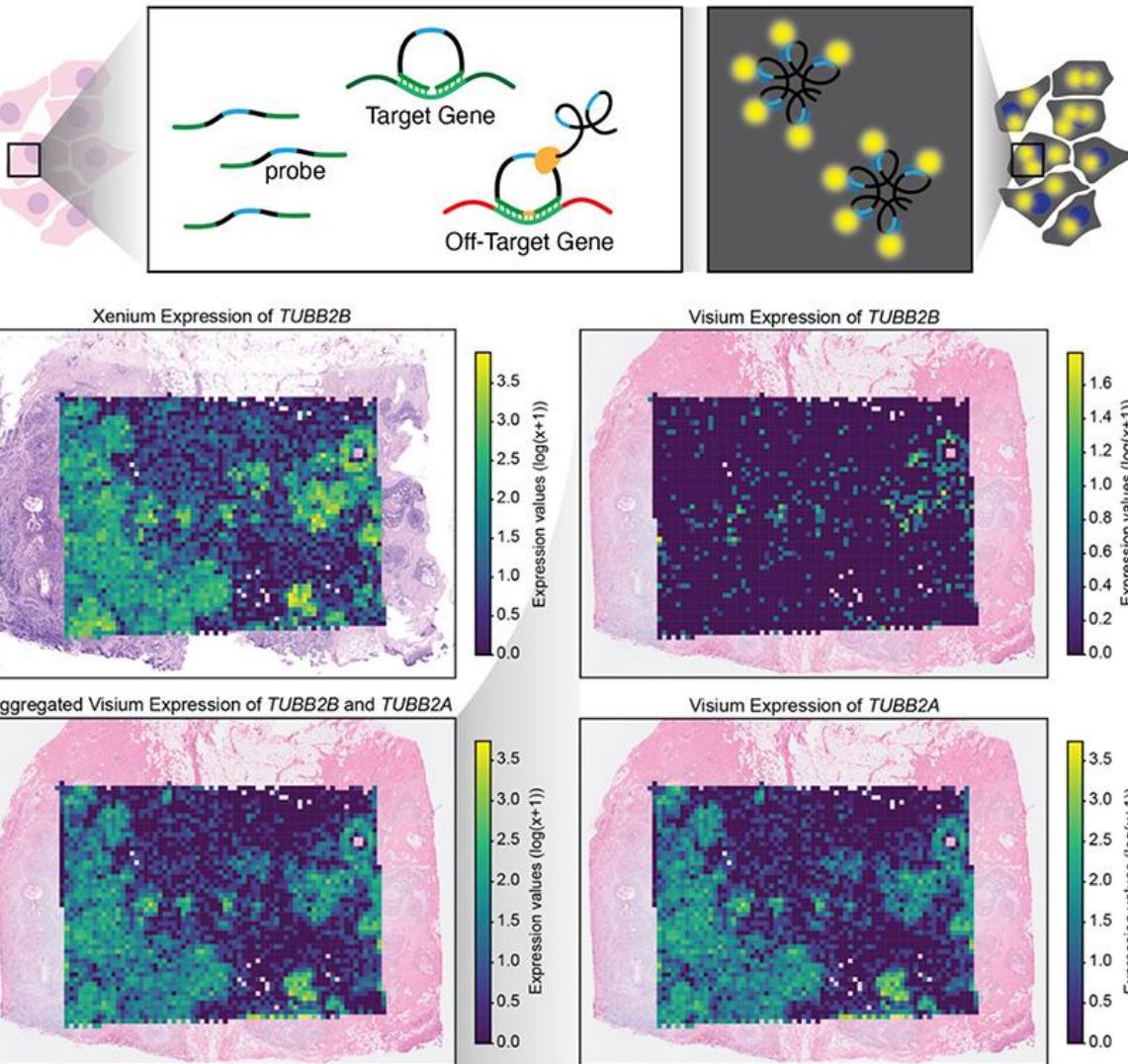
- Experimental technologies still being improved (cost, resolution, # of genes, sequencing depth, sensitivity, FOV, speed, sample types)
- Software and methods for data analyses still being developed
- Truly “spatially variable” genes that are not just marker genes
- Spatial DE (example: [C-SIDE](#) method using covariate matrix)
- Spatial datasets as 3D maps rather than just 2D coordinates
- Spatial image registration across replicates and samples
- Effective integration with other datasets (scRNA-seq, ATAC-seq, proteomics)

Cautionary Tales

Evidence of off-target probe binding in the 10x Genomics Xenium v1 Human Breast Gene Expression Panel compromises accuracy of spatial transcriptomic profiling (Jean Fan Lab, JHU)

bioRxiv
THE PREPRINT SERVER FOR BIOLOGY

HOME | SUBM



New Results

Follow this preprint

Evidence of off-target probe binding in the 10x Genomics Xenium v1 Human Breast Gene Expression Panel compromises accuracy of spatial transcriptomic profiling

✉ Caleb Hallinan, ✉ Hyun Joo Ji, ✉ Steven L Salzberg, ✉ Jean Fan
doi: <https://doi.org/10.1101/2025.03.31.646342>

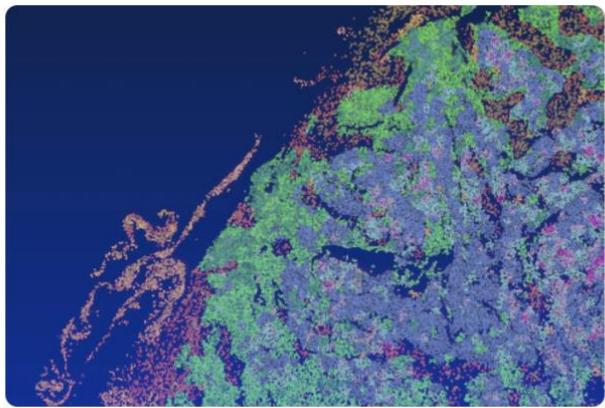
This article is a preprint and has not been certified by peer review [what does this mean?].

Abstract Full Text Info/History Metrics Preview PDF

Abstract

The accuracy of spatial gene expression profiles generated by probe-based *in situ* spatially-resolved transcriptomic technologies depends on the specificity with which probes bind to their intended target gene. Off-target binding, defined as a probe binding to something other than the target gene, can distort a gene's true expression profile, making probe specificity essential for reliable transcriptomics. Here, we investigate off-target binding in the 10x Genomics Xenium v1 Human Breast Gene Expression Panel. We developed a software tool, Off-target Probe Tracker (OPT), to identify putative off-target binding via alignment of probe sequences and found at least 21 out of the 280 genes in the panel impacted by off-target binding to protein-coding genes. To substantiate our predictions, we leveraged a previously published Xenium breast cancer dataset generated using this gene panel and compared results to orthogonal spatial and single-cell transcriptomic profiles from Visium CytAssist and 3' single-cell RNA-seq derived from the same tumor block. Our findings indicate that for some genes, the expression patterns detected by Xenium demonstrably reflect the aggregate expression of the target and

Testing 10X Genomics Human Immuno-Oncology Probe Set



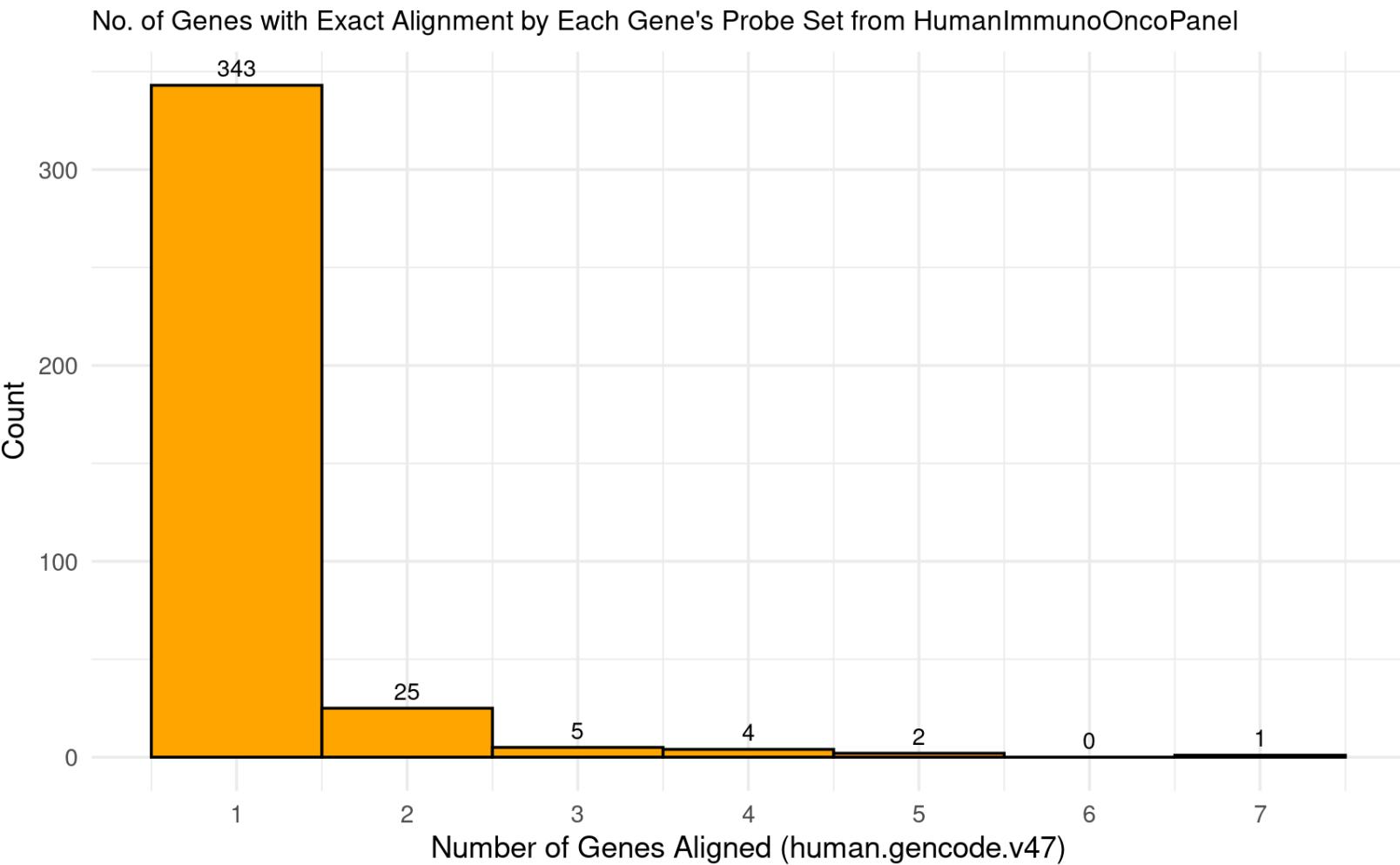
Human Immuno-Oncology

Includes gene markers for major immune cell types, checkpoint markers, etc.

Genes on panel Add on genes
380 up to 100

[View dataset >](#)

[Download gene list](#)



9.7% of probe sets targets more than one gene

37 target genes in Xenium HumanImmunoOnco panel whose probe sets have some off-targeting (based on strict exact match)

Highlighted in red are immune related genes

target_gene	n	aligned_to	n_hits	n_probes	PASSstatus	num_genes_aligned	Ensemble ID	Num_Probesets	Codewords	Annotation
1 NOTCH2	10	[NOTCH2,NOTCH2NLC,NOTCH2NLA,NOTCH2NLB,ENSG00000286185,NC]	[16,12,28,4,4,2,1]	[10,4,4,4,1,1]	false		7 ENSG00000134250	8		1 T Cell;Th2
2 ARPC3	2	[ARPC3P1,ARPC3P2,ARPC3P3,ARPC3,EENSG00000258210]	[1,1,1,2,1]	[1,1,1,2,1]	false		5 ENSG00000111229	2	1	
3 IGHG2	7	[IGHG4,IGHG2,IGHG3,IGHG1,IGHG]	[4,7,2,2,1]	[4,7,2,2,1]	false		5 ENSG00000211893	7		1 Plasma Cell
4 IFITM3	4	[IFITM3,IFITM1,ENSG00000297680,IFITM3P9]	[16,4,1,1]	[4,1,1,1]	false		4 ENSG00000142089	3		1 Tumorigenesis
5 PGA5	9	[PGA3,PGA4,PGA5,ENSG00000256220]	[10,9,14,1]	[5,5,7,1]	false		4 ENSG00000256713	8		1 Chief Cell;Lineage Marker
6 IGHG3	7	[IGHG3,IGHG4,IGHG2,IGHG1]	[7,1,2,2]	[7,1,2,2]	false		4 ENSG00000211897	7		1 Plasma Cell
7 IGLC3	1	[IGLC1,IGLL5,IGLC2,IGLC3]	[1,3,1,1]	[1,1,1,1]	false		4 ENSG00000211679	1		1 Plasmablast
8 FCGR1A	3	[FCGR1A,FCGR1CP,ENSG00000307137]	[3,1,7]	[3,1,1]	false		3 ENSG00000150337	3		1 Macrophage
9 CXCR2	8	[CXCR2,ENSG00000291236,CXCR2P1]	[8,1,1]	[8,1,1]	false		3 ENSG00000180871	8		1 Immune Cell Migration
10 TUBB	3	[TUBB,TUBBP1,ENSG00000293293]	[15,2,2]	[3,2,2]	false		3 ENSG00000196230	3		1 Cytoskelton
11 IGHG	4	[IGHG,IGHG2,IGHG4]	[4,2,2]	[4,2,2]	false		3 ENSG00000253755	4		1 Plasma Cell
12 FLT3LG	2	[ENSG00000273189,FLT3LG,ENSG00000269469]	[1,10,1]	[1,2,1]	false		3 ENSG00000090554	2		1 Dendritic Cell
13 FCGR2B	8	[FCGR2B,FCGR2C]	[24,2]	[8,2]	false		2 ENSG00000072694	8	1	
14 FCGR2A	2	[FCGR2A,FCGR2C]	[9,1]	[2,1]	false		2 ENSG00000143226	2		
15 EPCAM	8	[EPCAM,ENSG00000225356]	[16,1]	[8,1]	false		2 ENSG00000119888	8		1 Tumorigenesis
16 CD8B	11	[CD8B,CD8B2]	[37,4]	[11,2]	false		2 ENSG00000172116	8		1 T Cell;CD Molecule
17 CFC1	7	[CFC1B,CFC1]	[21,21]	[7,7]	false		2 ENSG00000136698	7		1 Cancer Stemness
18 CCR6	8	[CCR6,ENSG00000272980]	[32,16]	[8,8]	false		2 ENSG00000112486	8		1 C-C Motif Chemokine Receptor;M1;Macrophage;Cytokine Receptor;C
19 BRAF	12	[BRAF,BRAF1]	[40,1]	[12,1]	false		2 ENSG00000157764	8		1 Proto-Oncogene
20 PTEN	8	[PTEN,PTENP1]	[54,12]	[8,6]	false		2 ENSG00000171862	8	1	
21 ENTPD1	8	[ENTPD1,ENSG00000270099]	[32,2]	[8,2]	false		2 ENSG00000138185	8		1 T Cell;Inhibitory
22 CTSD	2	[CTSD,ENSG00000250644]	[18,4]	[2,2]	false		2 ENSG00000117984	2		1 Tumor
23 KLRK1	8	[KLRK1,KLRC4-KLRK1]	[16,8]	[8,8]	false		2 ENSG00000213809	8		1 Natural Killer Cell
24 PSMB10	3	[PSMB10,ENSG00000261884]	[3,1]	[3,1]	false		2 ENSG00000205220	3	1	
25 CD68	2	[CD68,ENSG00000264772]	[4,2]	[2,2]	false		2 ENSG00000129226	2		1 Macrophage;CD Molecule
26 IGHG1	3	[IGHG3,IGHG1]	[1,3]	[1,3]	false		2 ENSG00000211896	3		1 Plasma Cell
27 CCL14	8	[CCL14,CCL15-CCL14]	[16,2]	[8,2]	false		2 ENSG00000276409	8		1 Cytokines & Growth Factors;Chemokine Ligand;Cytokine-Cytokine-Re
28 CCL15	2	[CCL15-CCL14,CCL15]	[2,2]	[2,2]	false		2 ENSG00000275718	2		1 Cytokines & Growth Factors;Chemokine Ligand;Cytokine-Cytokine-Re
29 RNF43	8	[RNF43,ENSG00000285897]	[48,8]	[8,8]	false		2 ENSG00000108375	8		1 Tumor
30 MCEMP1	8	[MCEMP1,ENSG00000269711]	[16,2]	[8,2]	false		2 ENSG00000183019	8		1 Macrophage
31 CD79B	4	[ENSG00000285947,CD79B]	[3,11]	[3,4]	false		2 ENSG0000007312	4		1 B Cell;Proliferative;CD Molecule
32 LILRA4	10	[LILRA4,ENSG00000275210]	[10,1]	[10,1]	false		2 ENSG00000239961	10		1 Dendritic Cell;Plasmacytoid
33 UBE2C	6	[UBE2C,UBE2CP4]	[18,1]	[6,1]	false		2 ENSG00000175063	4		1 Natural Killer Cell
34 ICOSLG	12	[ICOSLG,ENSG00000277117]	[72,10]	[12,10]	false		2 ENSG00000160223	8		1 T Cell;Dendritic Cell;Oncogene
35 ACE2	8	[ACE2,ENSG00000285602]	[71,6]	[8,6]	false		2 ENSG00000130234	8		1 Hormone Processing
36 IL2RG	9	[IL2RG,ENSG00000285171]	[17,8]	[9,8]	false		2 ENSG00000147168	8		1 Immune Cell Regulation;T Cell
37 CEACAM6	8	[CEACAM6,ENSG00000267881]	[8,1]	[8,1]	false		2 ENSG00000086548	8		1 Epithelial Cell

Spatial Transcriptomics Resources at NIH

- **Spatial Biology Interest Group Listserv / Email List**
 - <https://oir.nih.gov/sigs/spatial-biology-interest-group>
- **Specialized Instrumentation at NIH:**
 - NCI CCR
 - 10X Xenium <https://ostr.ccr.cancer.gov/emerging-technologies/spatial-biology/xenium/>
 - 10X Visium <https://ostr.ccr.cancer.gov/emerging-technologies/spatial-biology/visium/> (FFPE samples can be processed with CytAssist instrument)
 - SCAF https://ostr.ccr.cancer.gov/resources/provider_details/nci-ccr-single-cell-analysis-facility-scaf
 - CosMX and GeoMX at Spatial Imaging Technology Resource (SpITR) <https://spitr.ccr.cancer.gov/>
 - Vizgen said that **NIA** (Baltimore) and **NEI** both each have a MERSCOPE instrument
 - Xenium and Visium CytAssist are also at **NIAMS, NINDS, NIAID VRC** also acquiring both this year
 - **NIAID RTB** (Research Technologies Branch): <https://rtb.nih.gov/section/STR> have Visium and GeoMX DSP
- **Software on Biowulf:**
 - GeoMX NGS Pipeline: https://hpc.nih.gov/apps/geomx_ngs_pipeline.html
 - Xenium Ranger: <https://hpc.nih.gov/apps/xeniumranger.html>
 - Space Ranger (for Visium): <https://hpc.nih.gov/apps/spaceranger.html>
- **Looking for bioinformatic and genomics analysis expertise? Contact us at bioinformatics@niaid.nih.gov**

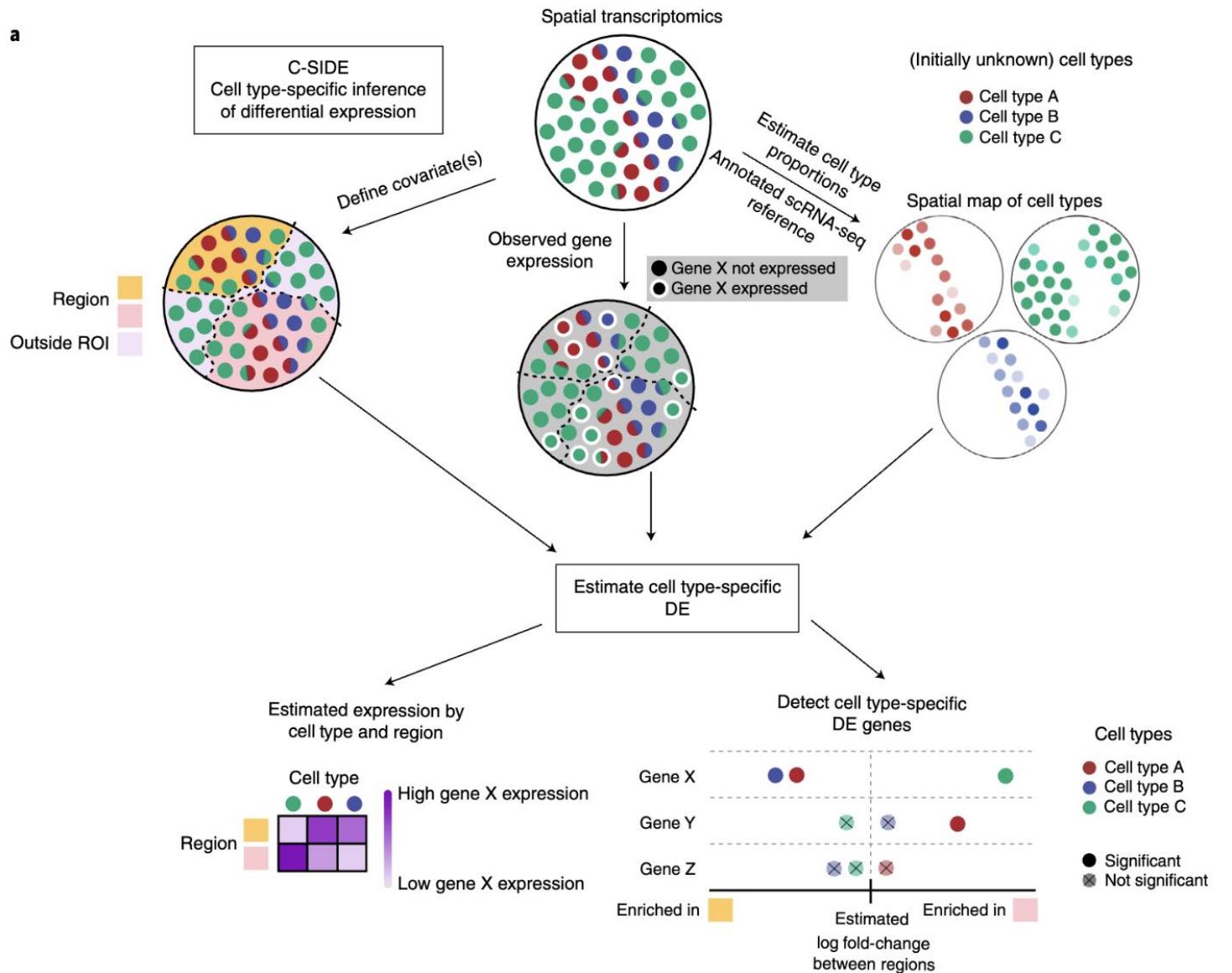
Further Reading / Resources

- Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R., & Haque, A. (2022). **An introduction to spatial transcriptomics for biomedical research.** *Genome Medicine*, 14(1), 68. [REVIEW]
- Longo, S. K., Guo, M. G., Ji, A. L., & Khavari, P. A. (2021). **Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics.** *Nature Reviews. Genetics*, 22(10), 627–644.
- Walker, B. L., Cang, Z., Ren, H., Bourgain-Chang, E., & Nie, Q. (2022). **Deciphering tissue structure and function using spatial transcriptomics.** *Communications Biology*, 5(1), 220.
- Heumos, L., Schaar, A.C., Lance, C. et al. **Best practices for single-cell analysis across modalities.** *Nat Rev Genet* (2023)
- **Rafa Irizarry 2024 lecture on Statistical Methods for Single-Cell RNA-Seq Analysis and Spatial Transcriptomics**
<https://bioinformatics.ccr.cancer.gov/btep/classes/rafael-irizarry>
- Li, B et al. (2022). **Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution.** *Nat Methods*, 19(6), 662–670
- Jeon, H., Xie, J., Jeon, Y., Jung, K. J., Gupta, A., Chang, W., & Chung, D. (2023). **Statistical power analysis for designing bulk, single-cell, and spatial transcriptomics experiments: Review, tutorial, and perspectives.** *Biomolecules*, 13(2), 221.
- Cable, DM et al. (2022). **Robust decomposition of cell type mixtures in spatial transcriptomics.** *Nat Biotech*, 40(4), 517–526.
- Choudhary, S., & Satija, R. (2022). **Comparison and evaluation of statistical error models for scRNA-seq.** *Genome Biology*, 23(1), 27.
- Moffitt, J. R., & Zhuang, X. (2016). **RNA Imaging with Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH).** *Methods in Enzymology*, 572, 1–49.
- Wang, Y., Liu, B., Zhao, G., Lee, Y., Buzdin, A., Mu, X., Zhao, J., Chen, H., & Li, X. (2023). **Spatial transcriptomics: Technologies, applications and experimental considerations.** *Genomics*, 115(5), 110671.

Spatial Differential Gene Expression analyses

C-SIDE as part of spacexr Package (Irizarry Lab)

a



Spatial Differential Gene Expression analyses

C-SIDE as part of spacexr Package (Irizarry Lab) will perform DE across a covariate (e.g. proximity to pathology or discrete regions)

