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Why Bother?

@ Modern society heavily relies on software, permeating all aspects of

our lives.
@ When software fails, the costs can be immense.

@ The later a bug is found, the more expensive its aftermaths are.

¥
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Figure 1: Some critical services that rely on software.

Daniele La Prova Thesis Defense 21/02/2025 3/38



Introduction
oe

Why Bother?

Time

N

2024 CrowdStrike Faulty Update

$5.4 Billions &

2021 Facebook System Bug

$47.3 Billions ﬁ

~
J

2020 Google Storage Trouble

$1.7 Billions &

Figure 2: Most recent software outages caused by bugs, resulting in costly losses.
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What is Bug Prediction?

@ Given a set of entities composing the project, bug prediction aims to
identify those that are more likely to contain bugs.

Testing efforts focus on predicted buggy entities

@ State-of-the-art bug prediction techniques are focused on classes,
methods, LOCs, files or commits.

However, these predicted entities already contain bugs.
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What is our Aim?

@ For the first time to the best of our knowledge, we predict bugs
before they have been injected.

o With the idea that prevention is better than cure, our aim is to propose
and evaluate a first approach for ticket-level prediction (TLP);

@ Our contribution is to define, measure and evaluate 62 features
for a new task named TLP.
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What is a Ticket?
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Figure 3: Ticket lifecycle. Developers use tickets to track project work.
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What is a Ticket?
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Figure 5: Ticket Example vs Commit Example. We focus on the Tickets.
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When do we make prediction?

@ The earlier, the better.
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Figure 6: Weather forecast
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When do we make prediction?
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Figure 7: Ticket timeline
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Figure 7: Ticket timeline with Measurement Dates.
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Research Questions

Does temporal proximity impact the accuracy of TLP?

Does temporal proximity impact the predictive power of TLP features?
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Measurement Procedure
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Figure 8: Phases overview
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Features

@ Since TLP is an innovative approach implemented by no one before,
we had to define, measure and evaluate the features to feed the
models.

o Leveraging SE principles, we propose and measure 62 features
belonging to 7 families:

>

vV v v vV VY

Code: 4 features

Developer: 2 features

External Temperature: 6 features
Internal Temperature: 10 features
Intrinsic: 22 features

Requirement to Requirements: 3 features

JIT: 15 features

Daniele La Prova Thesis Defense 21/02/2025 15 /38



Design
0O@000000

@ The code base on which a ticket is implemented impacts the
bugginess of the ticket

@ The same ticket could lead to a bug according to how easy the code
base is to accept its implementation.

@ 4 features:

» Quality: Number of code smells in the code base.
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Developer

@ We take into account the assigned developer to the ticket.

@ SE gives to the human factor a crucial role in the ticket
implementation process.

o 2 features:

» Familiarity: How many tickets have been historically assigned to the
developer divided by the total number of project tickets.
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External Temperature

@ The family takes into account how often the project is subject to
changes.

@ Implementing a ticket in an ever-changing environment can be hard.

o 6 features:

» Temporal Locality: The proportion of bug-inducing tickets among all
tickets prior to the measured ticket in a limited time horizon.
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Internal Temperature

@ We measure when, how and how often the ticket was changed.

o "Hot" tickets can be suspected to be problematic at least.

o 10 features:

» Comments count: Ticket participants use comments to express their
opinions, ask for clarifications, provide additional information, etc.
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Intrinsic

@ We measure the ticket intrinsic characteristics.

@ Intuitively, SE practitioners consider some tickets inherently more
difficult to implement than others.

o 22 features:

> Priority: A level of importance telling what ticket should be
implemented first.

> Type: i.e: bug, improvement, new feature, subtask, etc.
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@ We measure the similarity between the ticket and the previous tickets
that induced a bug.

@ It is intuitive that tickets semantically similar to tickets that induced
a bug are more prone to induce a bug.

o 3 features:
» Levenshtein Max Title: Max Levenshtein distance calculated on Title.
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@ We consider the aggregated features of the commits linked to the
ticket when they are available according to the measurement date.

@ Since commits can contain the bug, they have been consistently
studied in the SE domain.

o 15 features:
» Sum LOCs Added

> Number of Commits
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Figure 9: TLP dataset creation overview.
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@ We selected the projects HIVE and HBASE since they have the
highest buggy linkage while having lots of usable tickets.

» Other project had too much noise in data, which would have made the
evaluation less reliable.

» A priori, there is no evidence suggesting that HIVE and HBASE make
TLP more effective than other projects.

o We analyzed ~ 11 000 tickets in total
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RQ1: Does temporal proximity impact the accuracy of TLP?

Independent variables:
» Temporal Proximity (Open, InProgress, Closed).

Dependent variables:
» Accuracy metrics (AUC, Precision, Recall, Kappa, Specificity, GMean)

@ H10: Temporal proximity does not impact TLP accuracy.

Models: Random Forest (RF), Logistic Regression (LR), Neural
Network (NN)
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RQ2: How do TLP features perform across different
temporal points?

@ Independent variables:
» Temporal Proximity, Features.

@ Dependent variables:
» IGR, Backward FS result (selected, not selected).

@ H20: The power of TLP features does not vary across feature family,
temporal points, and their combination.

o Models: same as RQ1.
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Validation Technique

@ Moving Window:
» Addresses Concept Drift.

» Feature Selection: FS and No FS.
» Balancing: SMOTE and no SMOTE.
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Figure 10: Sliding Window example using the first commit date as measurement
date.
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RQ1: Temporal Proximity impacts Accuracy
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Figure 11: Distributions of TLP accuracy using moving-window in three proximity
points.
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Figure 11: Distributions of TLP accuracy using moving-window in three proximity
points.
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RQ1: Temporal Proximity impacts Accuracy
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Figure 11: Distributions of TLP accuracy using moving-window in three proximity
points.
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RQ1: Temporal Proximity impacts Accuracy

Table 1: Average gain across classifiers in TLP accuracy using moving-window in
HBASE when increasing the proximity.

HBASE
Precision Recall F1 AUC GMean Specificity Kappa
OpenTolnProgress 4% 7% -2% 6% 44% 45% 22%
InProgressToClosed 15% 8% 13% 29% 154% 49% 42%

Table 2: Average gain across classifiers in TLP accuracy using moving-window in
HIVE when increasing the proximity.

HIVE
Precision Recall F1 AUC GMean Specificity Kappa
OpenTolnProgress 9% 13% 14% 17% 120% -18% 11%
InProgressToClosed 12% 0% 6% 27% 234% 137% 84%
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RQ2: Temporal Proximity impacts Feature Power
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Figure 12: Distributions of feature family power, in terms of IGR, across different
proximity points, in specific projects.
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RQ2: Temporal Proximity impacts Feature Power

Table 3: Statistical test comparison on the impact on IGR of Feature Family,
Proximity and their interaction using moving-window.

. Pvalue
Independent Variable HBASE HIVE
FeatureFamily 0.0001 0.0001
Proximity 0.0001 0.0001

Proximity x FeatureFamily 0.0001 0.0001

@ Most powerful features include:
» 4 Participants, # Parallel Commits when in Open;

» # Activities when InProgress;

» JIT and # languages when in Closed.
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Conclusion

@ This work aimed to leverage SE principles in order to define,
measure and evaluate 62 features for a new task named TLP.
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RQ1: Does temporal proximity impact the accuracy of TLP?

@ TLP accuracy improves as proximity to the ticket closing event
increases.

@ Practitioners should favor a Moving Window strategy when
implementing TLP.
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RQ2: How do TLP features perform across different
temporal points?

o Predictive power of TLP features changes according to the Family,
the Temporal Proximity, and their combination.

@ Prediction models should dynamically adapt feature selection based
on the proximity stage.
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Future Work

e Expanding the dataset scope (more projects, both open and
proprietary);

o Explore additional feature families;

@ Investigate how TLP insights can be leveraged to teach better bug
prevention strategies.
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Thank you!

@ More details can be found in the Thesis.

» Other validation techniques, statistical tests, complete feature set, and
more.

o We are going to publish this work in a journal paper.

e Any questions?

14
Made with ® and ® (lots of).
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