

Predicting Bug-inducing Tickets

The Impact of Temporal Proximity

Daniele La Prova (Candidato)
Chiarissimo Prof. Davide Falessi (Relatore)
Ing. Emanuele Gentili (Correlatore)

21/02/2025

Roadmap

1 Introduction

2 Design

3 Results

4 Conclusion

Why Bother?

- Modern society heavily relies on **software**, permeating all aspects of our lives.
- When software fails, the **costs** can be immense.
- The later a **bug** is found, the more expensive its aftermaths are.

Figure 1: Some critical services that rely on software.

Why Bother?

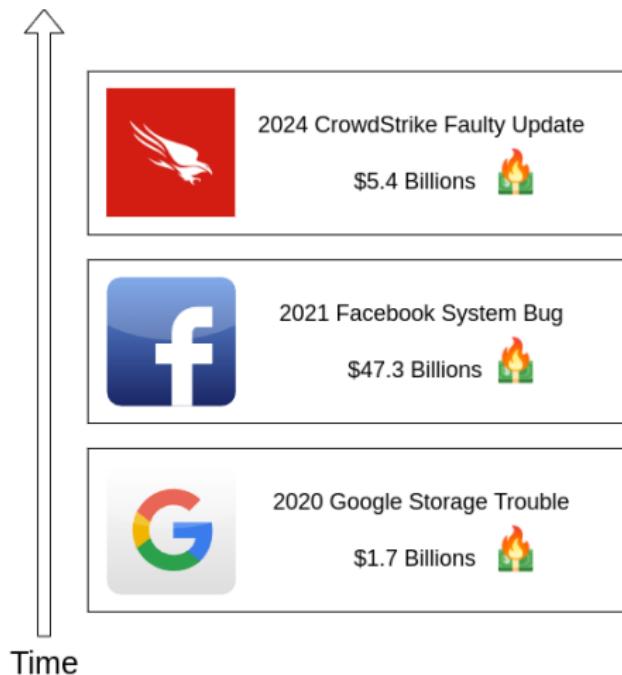


Figure 2: Most recent software outages caused by bugs, resulting in costly losses.

What is Bug Prediction?

- Given a set of entities composing the project, **bug prediction** aims to identify those that are more likely to contain bugs.
- Testing efforts focus on **predicted buggy entities**
- State-of-the-art bug prediction techniques are focused on **classes, methods, LOCs, files or commits**.
- However, these predicted entities **already contain bugs**.

What is our Aim?

- For the first time to the best of our knowledge, we predict bugs before they have been injected.
- With the idea that prevention is better than cure, our aim is to propose and evaluate a first approach for **ticket-level prediction (TLP)**;
- Our contribution is to **define, measure and evaluate 62 features** for a new task named **TLP**.

What is a Ticket?

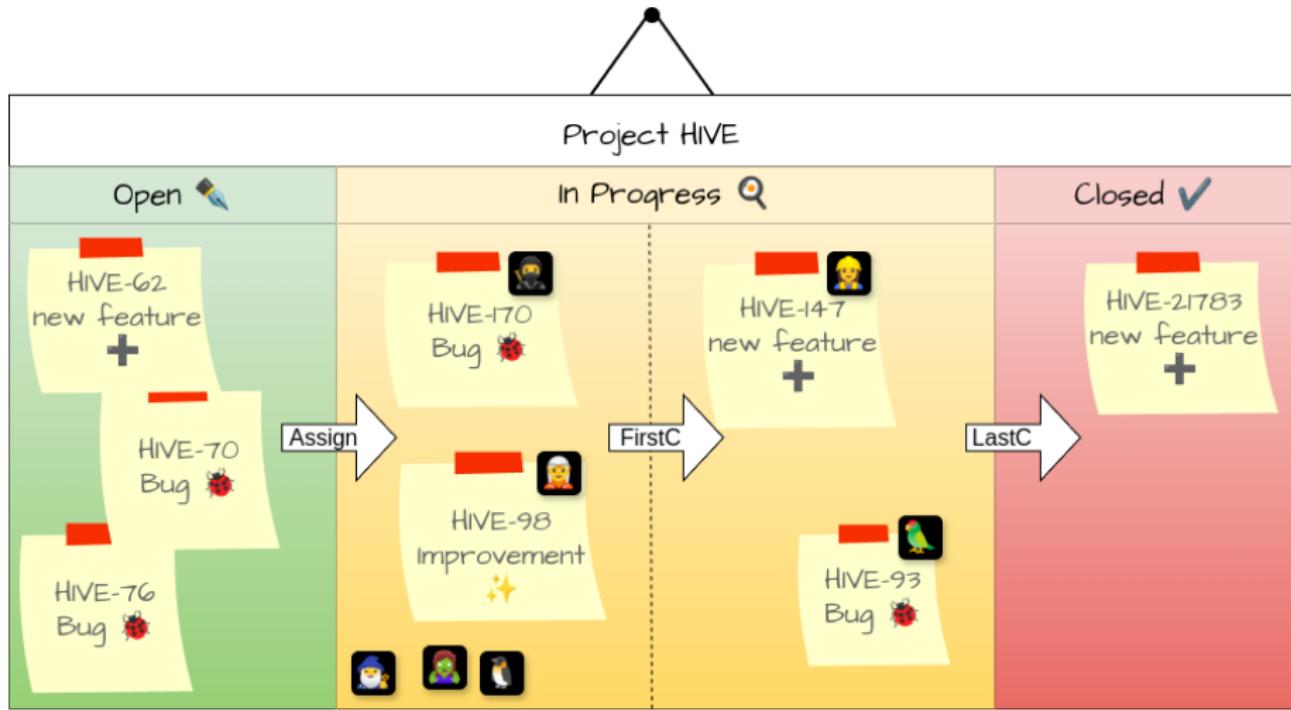


Figure 3: Ticket lifecycle. Developers use tickets to track project work.

What is a Ticket?

Hive / HIVE-21783

Avoid authentication for connection from the same domain

HIVE-21783

Details

Type: [New Feature](#) Status: [CLOSED](#)
Priority: [Major](#) Resolution: [Fixed](#)
Affects Version/s: [None](#) Fix Version/s: [4.0.0-alpha-1](#)
Component/s: [HiveServer2](#)
Labels: [pull-request-available](#)
Target Version/s: [4.0.0](#)

Description
When a connection comes from the same domain do not authenticate the user. This is similar to NONE authentication but only for the connection from the same domain.

Attachments

HIVE-21783.01.patch	13 kB	30/May/19 16:01
HIVE-21783.02.patch	27 kB	04/Jun/19 10:22

Issue Links
contains [HIVE-21801 Tests using miniH2 with HTTP as transport are cr...](#) [RESOLVED](#)
relates to [HIVE-21892 Trusted domain authentication should look at X-F...](#) [CLOSED](#)
links to [GitHub Pull Request #648](#)
[GitHub Pull Request #675](#)

Activity

All Comments Work Log History Activity Transitions

Ashutosh Bapat created issue - 23/May/19 13:33

People

Ashutosh Bapat	Assigned:
Ashutosh Bapat	Reporter:
Vote for this issue	Votes:
Start watching this issue	Watchers:

Dates

Created:	23/May/19 13:33
Updated:	17/Nov/22 08:51
Resolved:	13/Jun/19 08:37

Time Tracking

Estimated:	<div style="width: 50%;"></div> Not Specified
Remaining:	<div style="width: 100%;"></div> 0h
Logged:	<div style="width: 100%;"></div> 4h 10m

Git

ea96ca	c440236
b386328	636890f
24313ab	67240e7
ab79fc	1475050

Figure 4: Ticket Example

What is a Ticket?

Hive / HIVE-21783

Avoid authentication for connection from the same domain

HIVE-21783

Details

Type: New Feature Status: **CLOSED**
Priority: Major Resolution: Fixed
Affects Version/s: None Fix Version/s: 4.0.0-alpha-1
Components: HiveServer2
Labels: pull-request-available
Target Version/s: 4.0.0

People

Assignee: Ashutosh Bapat
Reporter: Ashutosh Bapat
Votes: **1** Vote for this issue
Watchers: **1** Start watching this issue

Description

When a connection comes from the same domain do not authenticate the user. This is similar to NONE authentication but only for the connection from the same domain.

Attachments

HIVE-21783.01.patch	13 kB	30/May/19 16:01
HIVE-21783.02.patch	27 kB	04/Jun/19 10:22

Issue Links

contains

HIVE-21801	Tests using miniHS2 with HTTP as transport are cr...	RESOLVED
----------------------------	--	-----------------

relates to

HIVE-214892	Trusted domain authentication should look at X...	CLOSED
-----------------------------	---	---------------

links to

GitHub Pull Request #648
GitHub Pull Request #675

Activity

All Comments Work Log History Activity Transitions

Ashutosh Bapat created issue - 23/May/19 13:33

Git

ea1f96ca
c440236
b386328
636890f
24313ab
67240e7
ab79fcb
1475050

Dates

Created: 23/May/19 13:33
Updated: 17/Nov/22 08:51
Resolved: 13/Jun/19 08:37

Time Tracking

Estimated: Not Specified
Remaining: 0h
Logged: 4h 10m

Figure 5: Ticket Example vs Commit Example. We focus on the Tickets.

When do we make prediction?

- The earlier, the better.

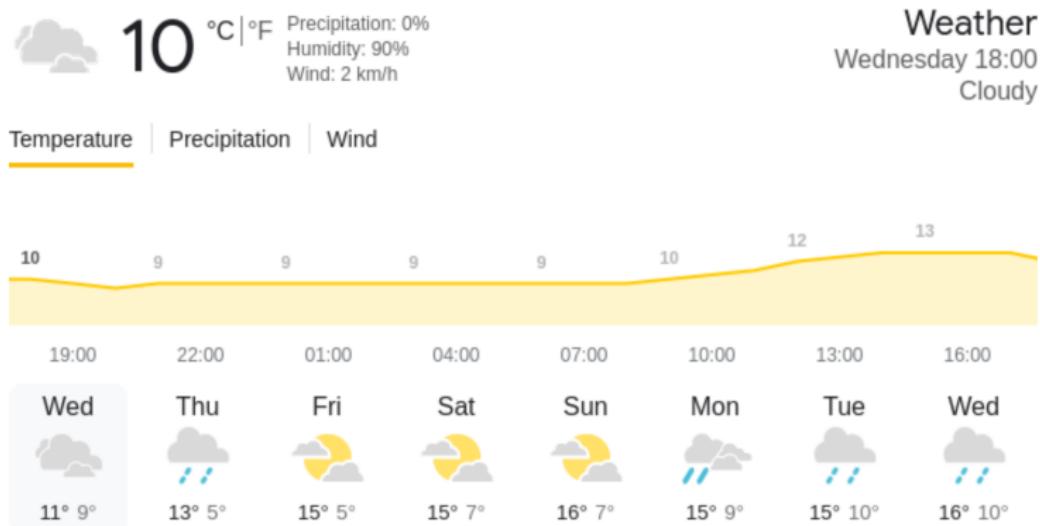


Figure 6: Weather forecast

When do we make prediction?

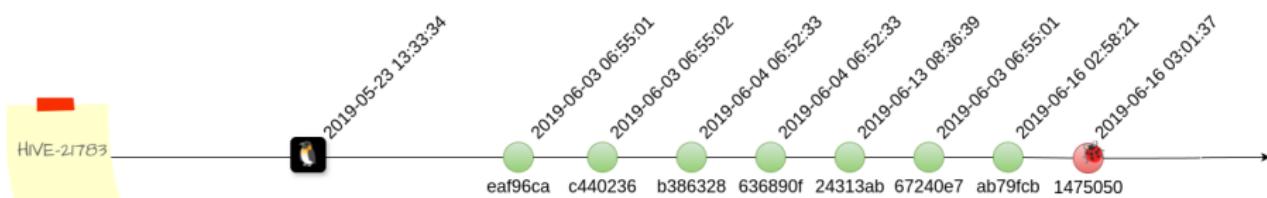


Figure 7: Ticket timeline

When do we make prediction?

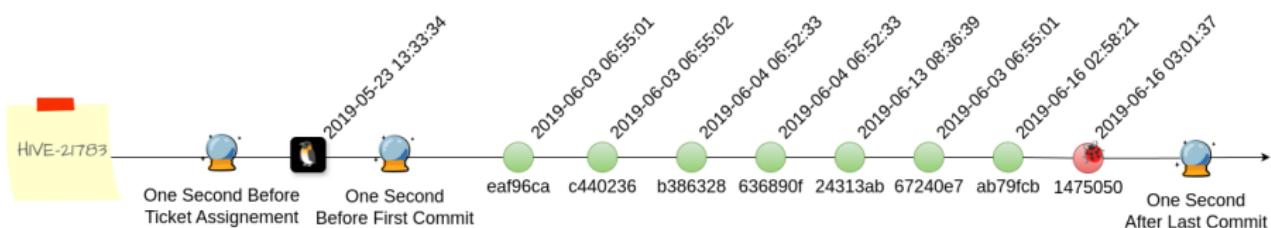


Figure 7: Ticket timeline with Measurement Dates.

Roadmap

1 Introduction

2 Design

3 Results

4 Conclusion

Research Questions

RQ1

Does temporal proximity impact the **accuracy** of TLP?

RQ2

Does temporal proximity impact the predictive **power** of TLP features?

Measurement Procedure

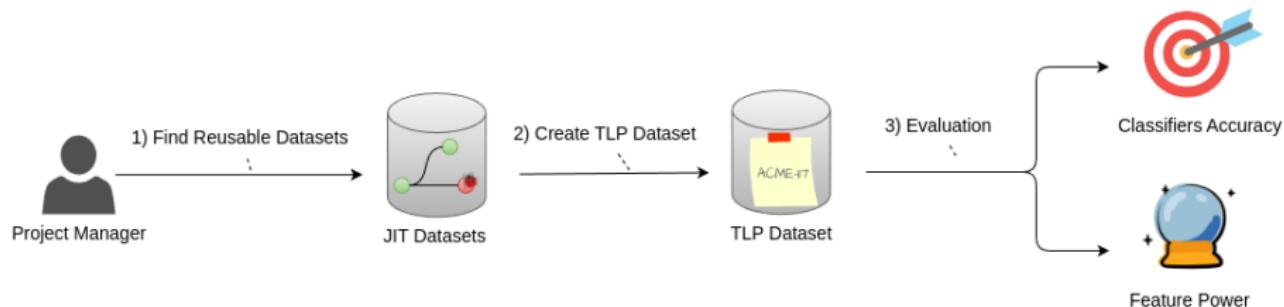


Figure 8: Phases overview

Features

- Since TLP is an innovative approach implemented by no one before, we had to **define, measure and evaluate the features** to feed the models.
- Leveraging **SE principles**, we propose and measure **62 features** belonging to **7 families**:
 - ▶ **Code**: 4 features
 - ▶ **Developer**: 2 features
 - ▶ **External Temperature**: 6 features
 - ▶ **Internal Temperature**: 10 features
 - ▶ **Intrinsic**: 22 features
 - ▶ **Requirement to Requirements**: 3 features
 - ▶ **JIT**: 15 features

Code

- The **code base** on which a ticket is implemented impacts the bugginess of the ticket
- The same ticket could lead to a bug according to how easy the code base is to accept its implementation.
- 4 features:
 - ▶ **Quality:** Number of code smells in the code base.

Developer

- We take into account the **assigned developer** to the ticket.
- SE gives to the human factor a crucial role in the ticket implementation process.
- 2 features:
 - ▶ **Familiarity**: How many tickets have been historically assigned to the developer divided by the total number of project tickets.

External Temperature

- The family takes into account **how often the project is subject to changes**.
- Implementing a ticket in an ever-changing environment can be hard.
- 6 features:
 - ▶ **Temporal Locality**: The proportion of bug-inducing tickets among all tickets prior to the measured ticket in a limited time horizon.

Internal Temperature

- We measure when, how and **how often the ticket was changed**.
- "Hot" tickets can be suspected to be problematic at least.
- 10 features:
 - ▶ **Comments count:** Ticket participants use comments to express their opinions, ask for clarifications, provide additional information, etc.

Intrinsic

- We measure the **ticket intrinsic characteristics**.
- Intuitively, SE practitioners consider some tickets **inherently more difficult** to implement than others.
- 22 features:
 - ▶ **Priority**: A level of importance telling what ticket should be implemented first.
 - ▶ **Type**: i.e: bug, improvement, new feature, subtask, etc.

R2R

- We measure the similarity between the ticket and the previous tickets that induced a bug.
- It is intuitive that tickets **semantically similar** to tickets that induced a bug are more prone to induce a bug.
- 3 features:
 - ▶ **Levenshtein Max Title**: Max Levenshtein distance calculated on Title.

JIT

- We consider the **aggregated features of the commits** linked to the ticket when they are available according to the measurement date.
- Since commits can contain the bug, they have been consistently studied in the SE domain.
- 15 features:
 - ▶ **Sum LOCs Added**
 - ▶ **Number of Commits**

Features Measurement

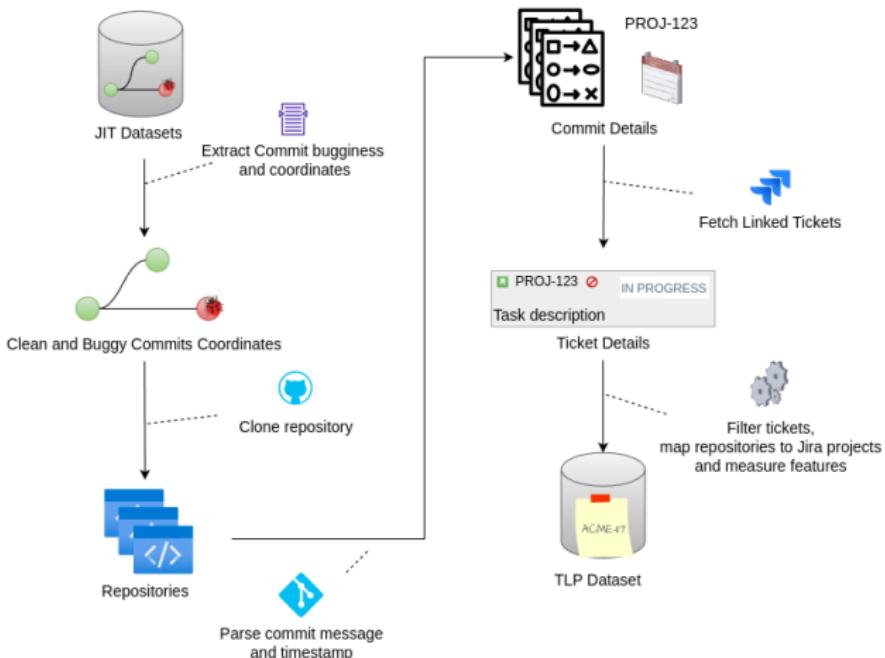


Figure 9: TLP dataset creation overview.

Features Measurement

- We selected the projects **HIVE** and **HBASE** since they have the highest buggy linkage while having lots of usable tickets.
 - ▶ Other project had too much noise in data, which would have made the evaluation less reliable.
 - ▶ *A priori*, there is no evidence suggesting that HIVE and HBASE make TLP more effective than other projects.
- We analyzed $\sim 11\,000$ tickets in total

RQ1: Does temporal proximity impact the accuracy of TLP?

- Independent variables:
 - ▶ Temporal Proximity (Open, InProgress, Closed).
- Dependent variables:
 - ▶ Accuracy metrics (**AUC**, Precision, Recall, Kappa, Specificity, GMean)
- H10: Temporal proximity does not impact TLP accuracy.
- Models: Random Forest (RF), Logistic Regression (LR), Neural Network (NN)

RQ2: How do TLP features perform across different temporal points?

- Independent variables:
 - ▶ Temporal Proximity, Features.
- Dependent variables:
 - ▶ **IGR**, Backward FS result (selected, not selected).
- H20: The power of TLP features does not vary across feature family, temporal points, and their combination.
- Models: same as RQ1.

Validation Technique

- **Moving Window:**
 - ▶ Addresses Concept Drift.
 - ▶ Feature Selection: FS and No FS.
 - ▶ Balancing: SMOTE and no SMOTE.

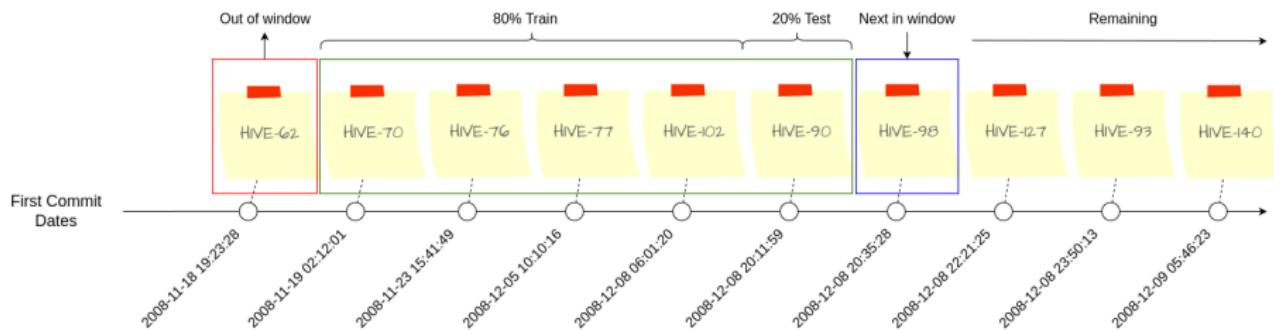


Figure 10: Sliding Window example using the first commit date as measurement date.

Roadmap

1 Introduction

2 Design

3 Results

4 Conclusion

RQ1: Temporal Proximity impacts Accuracy

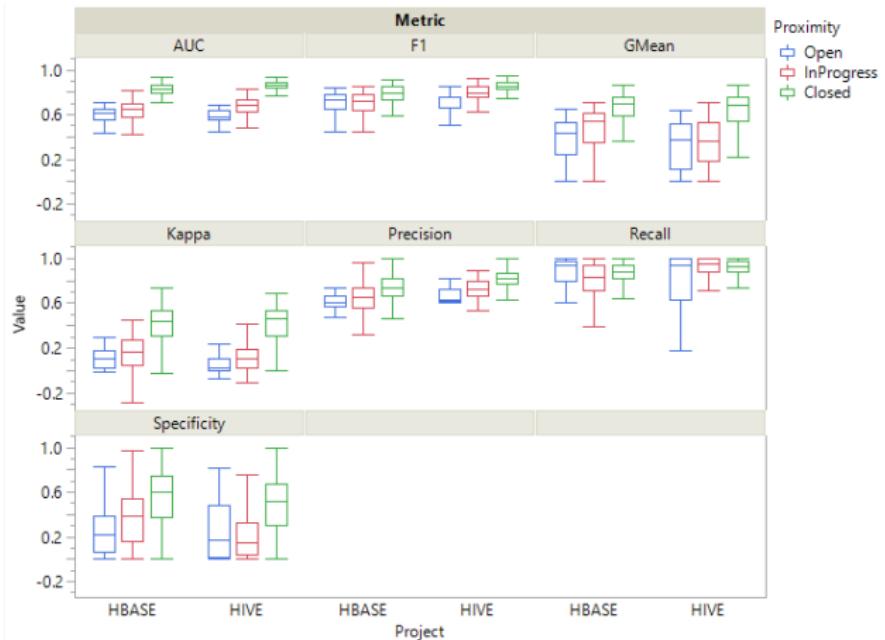


Figure 11: Distributions of TLP accuracy using moving-window in three proximity points.

RQ1: Temporal Proximity impacts Accuracy

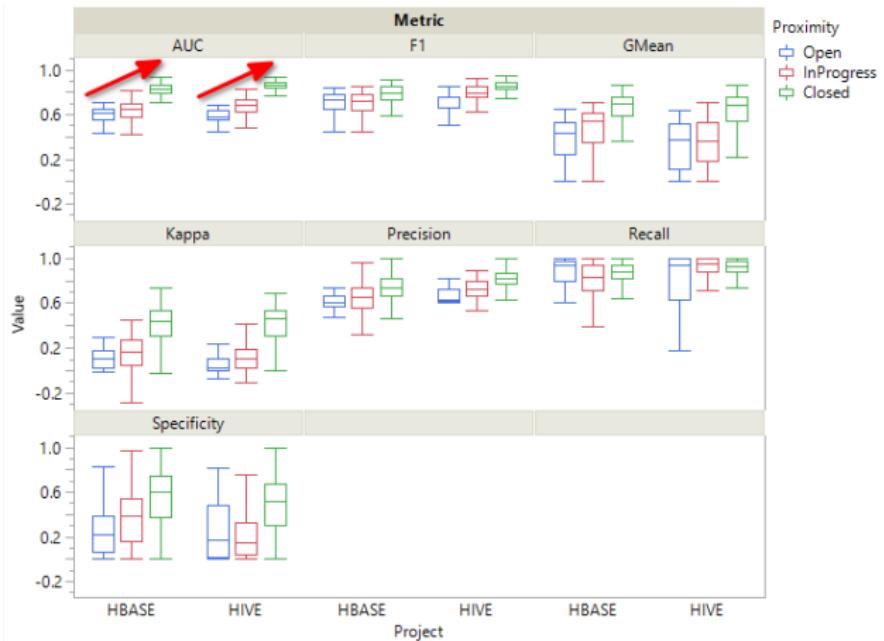


Figure 11: Distributions of TLP accuracy using moving-window in three proximity points.

RQ1: Temporal Proximity impacts Accuracy

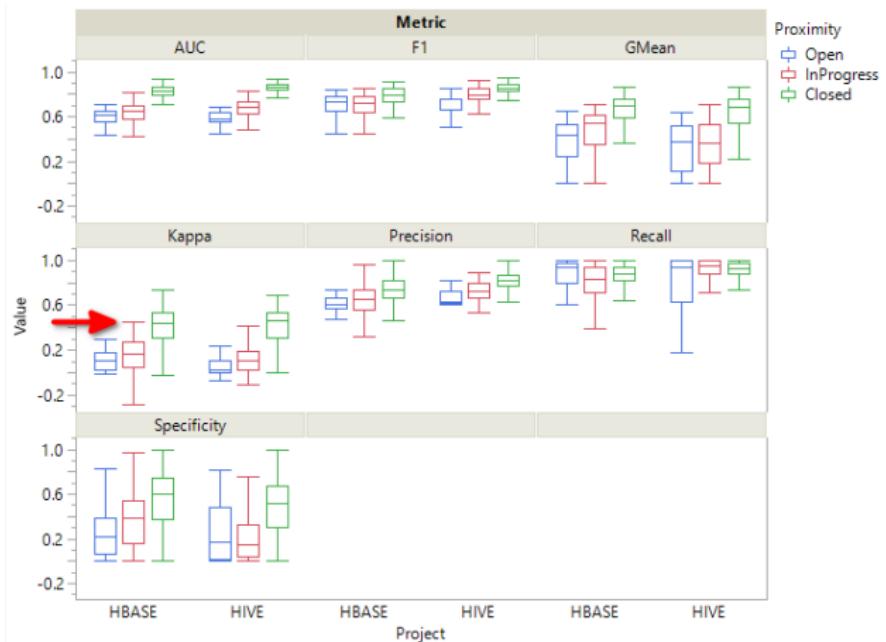


Figure 11: Distributions of TLP accuracy using moving-window in three proximity points.

RQ1: Temporal Proximity impacts Accuracy

Table 1: Average gain across classifiers in TLP accuracy using moving-window in HBASE when increasing the proximity.

HBASE							
	Precision	Recall	F1	AUC	GMean	Specificity	Kappa
OpenToInProgress	4%	-7%	-2%	6%	44%	45%	22%
	15%	8%	13%	29%	154%	49%	42%

Table 2: Average gain across classifiers in TLP accuracy using moving-window in HIVE when increasing the proximity.

HIVE							
	Precision	Recall	F1	AUC	GMean	Specificity	Kappa
OpenToInProgress	9%	13%	14%	17%	120%	-18%	11%
	12%	0%	6%	27%	234%	137%	84%

RQ2: Temporal Proximity impacts Feature Power

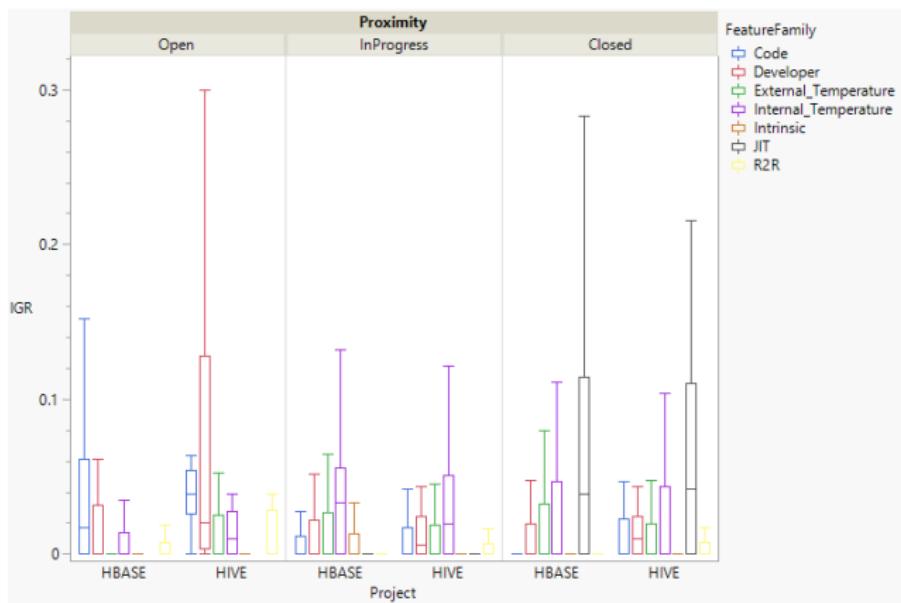


Figure 12: Distributions of feature family power, in terms of IGR, across different proximity points, in specific projects.

RQ2: Temporal Proximity impacts Feature Power

Table 3: Statistical test comparison on the impact on IGR of Feature Family, Proximity and their interaction using moving-window.

Independent Variable	Pvalue	
	HBASE	HIVE
FeatureFamily	0.0001	0.0001
Proximity	0.0001	0.0001
Proximity × FeatureFamily	0.0001	0.0001

- Most powerful features include:
 - ▶ **# Participants, # Parallel Commits** when in **Open**;
 - ▶ **# Activities** when **InProgress**;
 - ▶ **JIT** and **# languages** when in **Closed**.

Roadmap

1 Introduction

2 Design

3 Results

4 Conclusion

Conclusion

- This work aimed to leverage SE principles in order to **define, measure and evaluate 62 features** for a new task named **TLP**.

RQ1: Does temporal proximity impact the accuracy of TLP?

- **TLP accuracy improves** as proximity to the ticket closing event increases.
- Practitioners should favor a **Moving Window strategy** when implementing TLP.

RQ2: How do TLP features perform across different temporal points?

- Predictive power of TLP features changes according to the **Family, the Temporal Proximity, and their combination**.
- Prediction models should **dynamically adapt** feature selection based on the proximity stage.

Future Work

- Expanding the dataset scope (more projects, both open and proprietary);
- Explore additional feature families;
- Investigate how TLP insights can be leveraged to teach better **bug prevention strategies**.

Thank you!

- More details can be found in the **Thesis**.
 - ▶ Other validation techniques, statistical tests, complete feature set, and more.
- We are going to publish this work in a **journal paper**.
- Any questions?

Made with ❤ and ☕ (lots of).