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Proteins perform their biological functions through motion. Although high throughput
prediction of the three-dimensional static structures of proteins has proved feasible
using deep-learning-based methods, predicting the conformational motions remains
a challenge. Purely data-driven machine learning methods encounter difficulty for
addressing such motions because available laboratory data on conformational motions
are still limited. In this work, we develop a method for generating protein allosteric
motions by integrating physical energy landscape information into deep-learning-based
methods. We show that local energetic frustration, which represents a quantification
of the local features of the energy landscape governing protein allosteric dynamics,
can be utilized to empower AlphaFold2 (AF2) to predict protein conformational
motions. Starting from ground state static structures, this integrative method generates
alternative structures as well as pathways of protein conformational motions, using a
progressive enhancement of the energetic frustration features in the input multiple
sequence alignment sequences. For a model protein adenylate kinase, we show that
the generated conformational motions are consistent with available experimental and
molecular dynamics simulation data. Applying the method to another two proteins
KaiB and ribose-binding protein, which involve large-amplitude conformational
changes, can also successfully generate the alternative conformations. We also show
how to extract overall features of the AF2 energy landscape topography, which has
been considered by many to be black box. Incorporating physical knowledge into deep-
learning-based structure prediction algorithms provides a useful strategy to address the
challenges of dynamic structure prediction of allosteric proteins.
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Large-scale conformational motions of proteins are essential for many biological processes,
such as catalysis, signal transduction, and transport. Natural proteins have evolved their
sequences to shape unique energy landscapes, which not only determine the corre-
sponding three-dimensional native structures, but also dictate their functionally relevant
motions (1). Finding the key local features of the protein energy landscape controlling
the folding and functional motions gives insights into intricate relationships between
sequence, structure, and functional dynamics (2). Many of these key features can also be
inferred from evolutionary patterns embedded in the sequences of a protein family (3–8).
The successes of AlphaFold2 (AF2) (9) and RoseTTAFold (10) in directly generating
structure from sequence were made possible by harnessing the evolutionary data.

AF2 leverages state-of-the-art transformer architectures to predict protein structures
from sequences with near experimental accuracy (9, 11). AF2 was specialized to provide
a single predicted structure, but it provides a basis for much wider applications. Recent
research has started to delve into the capabilities of AF2 in predicting alternative
conformations, dynamics, functions, and mutational effects of proteins, fully utilizing
the wealth of evolutionary information derived from multiple sequence alignment
(MSA) (12–21). Jussupow and Kaila have shown that there exists a strong correlation
between the statistical prediction scores given by AF2 and the intrinsic conformational
fluctuations of proteins sampled by molecular dynamics (MD) simulations (13). Roney
and Ovchinnikov also showed that AF2 has effectively learned an information-based
energy function that can be used to rank the quality of output protein predictions (14).
These studies highlight the untapped potential of AF2 in harnessing evolutionary data
from MSAs to provide insights into the energy landscapes of proteins. There have also
been successes at steering AF2 to predict alternative structures by using shallow MSAs
and other pipelines. These studies show that reducing the MSA information, either by
restricting the MSA depth or by masking the amino acid identity at certain positions
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of the sequences, acts as a perturbation to the predicted results
of AF2 allowing one to obtain alternative structures (16, 18,
19, 22, 23). More recently, Wayment-Steele and coworkers
showed that AF2 can be used to predict multiple conformational
states with high confidence by clustering the MSAs with high
sequence similarity(17). By combining AF2 structure prediction,
all-atom enhanced sampling MD, and induced-fit docking, Gu
et al. developed a workflow named AF2RAVE-Glide, which
can successfully generate the metastable conformations for three
different kinases (24). These works pave the way for using AF2
to predict conformational dynamics. In addition to these AF2-
based pipelines, other strategies that utilize improved predictions
of residue–residue distance distribution and contact maps to
predict protein multiple conformations also show successes (25–
27). Applying energy filtering to the generated conformational
ensemble can further improve the predictions as shown by
Audagnotto et al. using the trRosetta pipeline (25, 28). A
diffusion-based generative model trained with MD simulation
trajectories and force-field information developed by Zheng
and coworkers can successfully generate diverse and functionally
relevant structures for several proteins (29).

AF2 has often been perceived as a complex “black box” whose
underlying processes are largely unexplored. Our understanding
of the physical principles governing protein folding and allosteric
motions however has already reached a level of maturity during
the past decades. The principle of minimal frustration reveals
how kinetic and thermodynamic constraints are encoded in the
sequence of foldable proteins (30, 31). Evolution has molded a
globally funnel-shaped energy landscape, but the exceptions to
the perfect funnel usually encode function. Local frustration at
the residue level pinpoints the linchpins of protein allosteric
motions (2, 32–34). Enzyme catalytic pathways also rely on
the specifically sculptured spatial distribution pattern of local
frustration (2, 35, 36). Ideally, one would like to use these physical
ideas to predict and design protein functional dynamics. The
great success of AF2 and RoseTTAFold in directly generating
protein three-dimensional structures inspired us to ask: Is it
possible to combine such data-driven methods with available
physical ideas about the energy landscape to directly predict
large-scale protein conformational motions without carrying out
molecular dynamics simulations?

By exploiting AF2’s ability to use evolutionary data from
MSAs in this paper, we introduce a method that synergizes the
structure prediction prowess of AF2 with the analysis of protein
energetic frustration to predict protein conformational motions
(Fig. 1). The concept of frustration, which highlights the role
of conflicting interactions in protein folding, dynamics, and
function, provides the key to unlocking this deeper capability
of AF2. By harnessing available energetic frustration patterns

of allosteric proteins extracted based on established biophysical
tools (37), we aim to extend the capabilities of AF2 beyond
static structure prediction to include the dynamic aspects of
allosteric proteins, thereby improving our understanding of
the genotype–phenotype mapping. The present method not
only successfully predicts alternative conformations of some
typical allosteric proteins, but also provides information on the
dynamic pathway of the predicted conformational motions. This
computational approach combining AF2 and biophysical rules
will allow efficient in-depth investigation of protein dynamics,
potentially relevant to therapeutic strategies.

Results

Allosteric Feature of Protein Energy Landscape. Although to
achieve robust protein folding globally requires a funnel-shaped
energy landscape with relatively few energetic conflicts in
the native structures (30, 31), allosteric proteins often show
significant regions of high local frustration. These frustrated
regions are essential for functionally relevant conformational
motions (2, 32). The local frustration index characterizes how
energetically favorable a given contact between two residues is
in a native structure compared to all other possible random
contacts made in alternative configurations. The protein regions
with minimally frustrated interactions are often relatively rigid.
In comparison, the highly frustrated regions can adopt different
configurations and therefore are potentially more flexible. The
local frustration index can be readily calculated using the
Frustratometer developed by Ferreiro et al. (37). Adenylate
kinase (AdK), a multidomain protein composed of the LID
domain, the NMP domain, and the core domain (Fig. 2A and SI
Appendix, Fig. S1) (38), has become a paradigmatic system for
the study of allostery. It has already been used to illustrate the
interplay between localized energetic frustration, conformational
motions, and catalytic functions (33, 39–43). AdK plays a vital
functional role in all kingdoms of life by reversibly catalyzing the
phosphate transfer between adenosine triphosphate (ATP) and
adenosine monophosphate to produce two adenosine diphos-
phate molecules (44), thereby maintaining the cellular ATP level.
The kinase exhibits large-amplitude conformational transitions
between open and closed conformations during the enzymatic
cycle (SI Appendix, Fig. S1) involving several intermediate
structures (45). It has been shown that local energetic frustration
plays a crucial role in sculpting the catalytic pathways by
promoting specific conformational motions (33–36, 39, 42). In
this paper, we will also employ this enzyme as a model to show
how one can predict protein conformational motions with AF2
by making use of the local features of energy landscape that are
quantified by the local energetic frustration scores.
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Fig. 1. Schematic illustration of physical rule dictated protein dynamics prediction with AF2.
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Fig. 2. Localized energetic frustration of AdK. (A) Cartoon representation of the three-dimensional structure of AdK at closed (Protein Data Bank (PDB) code:
1AKE) and open (PDB code: 4AKE) states. The LID domain, NMP domain, and core domain are colored in red, blue, and gray, respectively. The contacts with
minimal frustration (green lines) and high frustration (red lines) are indicated. (B) The density fraction of highly frustrated contacts (red) and minimally frustrated
contacts (green) around a 5 Å sphere of the C� of each residue. (C) Cartoon representation of the three-dimensional structure of AdK at closed state showing
the contacts with high Fsij (red) and low Fsij (green). The residues are colored according to the residue-wise frustration index Fi . The residue-wise frustration
becomes higher with the color changing from green to red. (D) Distribution of Fsij for the shared contacts and the specific contacts. Larger Fsij values indicate
higher frustrations. (E) MSA sequences of AdK are projected onto the energy space formed by total energy ΔET and the energy of highly frustrated contacts
ΔEHF. Here, ΔET and ΔEHF represent the energy differences relative to the reference values.

Fig. 2A illustrates the local frustration patterns in the closed
and open structural forms of AdK. The pairwise frustration index
Fij calculated by means of the Frustratometer (37) were used.
As also observed in a previous paper by Ferreiro et al. (34),
the interiors of the AdK domains are enriched in minimally
frustrated interactions (green lines), forming densely connected
networks. In contrast, the interactions at the domain interfaces
and the hinge regions are often highly frustrated (red lines).
The density fraction of the highly frustrated contacts around the
residues of AdK shows discontinuous patches along the sequence
(Fig. 2B). To more clearly demonstrate the key features of
the frustration patterns, we also calculated smoothed frustration
scores F s

ij = −(Fi + Fj), with Fi and Fj being the residue-wise
frustration index given by the Frustratometer. Therefore, high F s

ij
contacts correspond to the interface of the highly frustrated sites.
We see that the domain interfaces of the closed structure of AdK
are enriched in contacts with high F s

ij values (Fig. 2C, red lines),
which seems to be an important energetic feature facilitating
the domain motions. We further calculated the distributions
of the smoothed frustration scores for two classes of contacts,
i.e., the shared contacts and specific contacts. Here, we classify
the native contacts as “shared contacts” if they were fully formed
in both structural forms and as “specific contacts” if the contact
only exists in one of the structures. These specific contacts need to
break during the conformational change with domain motions
and often are located at the domain interfaces of the closed

structure only. Residue pairs (i, j) with C� distances less than
10 Å and sequence separation larger than 8 were considered in
classifying the shared and specific contacts and in calculating F s

ij.
As shown in Fig. 2D, the specific contacts tend to be more
frustrated than the shared contacts, consistent with previous
observations on the connection between frustration and allostery
(33, 34). Surveys of allosteric proteins show that this feature of
the protein energy landscape observed for AdK is general for
other allosteric proteins (33, 34). Interestingly, a recent work
by Raisinghani et al. showed that the low-populated inactive
conformation of ABL kinase is featured by presence of large high-
frustration residue clusters, which tends to introduce difficulty
for structure prediction with AF2 (46).

Predicting Alternative Structures of Allosteric Proteins with
AF2 by Frustration Filtering. For Escherichia coli AdK, with
the input of the full set of MSA sequences, AF2 returns a
predicted structure having a closed conformation, highly similar
to the corresponding crystal structure (SI Appendix, Fig. S1).
The energetic frustrations calculated based on this predicted
structure also exhibit the nearly same patterns as those of the
crystal structure. We will next demonstrate that such local
frustration information can be used to force AF2 to predict
protein conformational motions. Considering that the MSA
sequences containing coevolutionary information provide hints
for structure prediction, we therefore use the energetic frustration
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Fig. 3. Predicting alternative structures of AdK by frustration-filtering strategy. (A) The workflow of the frustration-filtering strategy in predicting protein
conformational motions. (B) RMSD with respect to the reference open structure (RMSD-O, PDB code: 4AKE) for the predicted structures with the input MSA
sequences taken from different locations of the two-dimensional energy space. Inset: the RMSD with respect to the reference closed structure (RMSD-C, PDB
code: 1AKE). (C and D) Cartoon representations of the predicted three-dimensional structures of AdK with the low EHF (C) and high EHF (D) MSA sequences.

profiles of the MSA sequences on a given reference structure to
encourage AF2 to generate alternative structures.

As previously mentioned, the conformational transition from
a closed to an open state of AdK involves the disruption of specific
contacts, which are often characterized by high frustration. We
can direct AF2 to model the structural dynamics associated
with the reconfiguration of these high-frustration sites. We first
thread the MSA sequences onto the closed structure of AdK and
calculate the total energies for all the native contacts (ET) as well as
for the highly frustrated contacts (EHF) using the Rosetta energy
function (Materials and Methods) (47). The MSA sequences can
then be classified based on the two-dimensional “evolutionary”
reaction coordinates, ΔET and ΔEHF (Fig. 2E). These describe
the overall stability and extent of local frustration of the closed
structure for a given sequence relative to those of the reference
E. coli AdK sequence. The sequences with higher ΔEHF tend to
have more pronounced local frustration for these highly frustrated
sites, which are often involved in the specific contacts (Fig. 2D).
It is reasonable to assume that the sequences demonstrating
lower energies for these specific contacts will take on a closed
conformation in AF2 structure prediction (Fig. 3A). On the
contrary, sequences that exhibit higher contact energies for the
specific contacts are likely to favor an open structure, as these
contacts are destabilized. Consequently, we see that we can use
AF2 to generate closed and open structures by manipulating the
MSA as informed by characterizing the local energetic frustration.

Based on this physical picture of frustration filtering, we
introduced an energy threshold approach for MSA sequence
subsampling and prediction of alternative conformations of

allosteric proteins. We separately sampled sequences from specific
different regions of the two-dimensional energy space and
provided only these sequences, along with the input query
sequence, to AF2 for structural predictions. From each region,
50 MSA sequences are used for structure prediction. Remarkably,
AF2 predominantly returns the closed structures for the MSA
sequences with low ΔEHF and returns open structures for those
with high ΔEHF, in each case with high confidence (Fig. 3B and
SI Appendix, Figs. S2 and S3). Particularly, when the subsampled
MSA sequences with the lowest ΔEHF (500 sequences) are used,
AF2 returns a nearly fully closed structure having RMSD =
0.80 Å with respect to the crystal structure at closed state
(PDB code: 4AKE). Likewise, when only the MSA sequences
with high ΔEHF and low ΔET (50 sequences) are used, AF2
yields an open structure having RMSD = 1.63 Å from the
crystal structure of the open state (PDB code: 4AKE) (Fig. 3
C and D). Correspondingly, the MSA sequences generating the
open structures tend to have higher ΔEHF values and decreased
contact energies of the specific contacts (SI Appendix, Figs. S4
and S5). We see that the information of local energetic frustration
can be utilized to force AF2 to predict meaningful alternative
structures for allosteric proteins. As a control, we also conducted
additional test calculations following a similar pipeline but with
the frustration scores shuffled. When the frustration scores
are shuffled, no correspondence between the MSA energetics
and the conformations of the predicted structures is observed
(SI Appendix, Fig. S5), demonstrating again the crucial role of the
local energetic frustration in determining meaningful alternative
states.
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Characterizing the Pathways of Protein Conformational
Motions. In this subsection, we introduce an approach for
visualizing the conformational motions with AF2 by examining
how the conformations of predicted structures change when
we sample different organized sets of sequences from the MSA
pools. Starting from the MSA pools that produce the above
fully closed conformation and the nearly open conformation
of AdK, we then randomly resample the sequences using new
probability weights w for the closed pool and (1 − w) for the
open pool, respectively (Fig. 4A). These linearly combined MSA
sequences were then used to generate predicted structures with
AF2. By changing the weight parameter w, which is independent
of ΔEHF, one generates different MSA sequence sets with varying
relative proportions of the high-ΔEHF and low-ΔEHF sequences.
Interestingly, we find AF2 gives rise to a continuous structural
transition between the closed and the open conformation as
one gradually changes the relative weight w (Fig. 4 A and B).
Not only are the fully closed and open structures produced, but
other conformations having different degrees of opening of the
LID and NMP domains are generated. As the relative weight
(1−w) of the high-frustration sequences increases, the predicted
structure tends to have a more open conformation. These results
demonstrate the high sensitivity of AF2’s prediction to local
energetic frustration features, again suggesting the crucial role
of the physical energy landscape in dictating the AF2 structure
prediction.

In addition to using the sequence remixing approach, we
investigated how the predicted structures change with continuous
increasing of the ΔEHF values for the input MSA sequences. For
this purpose, we designed a sequence sliding approach for the

prediction of the protein motions, in which the MSA sequences
in a sliding window (containing 50 sequences) were fed to the
AF2 to generate the prediction structures. With the continuous
sliding of the sequence window from the low-ΔEHF end to the
high-ΔEHF end with the restraint of ΔET < 50 Rosetta Energy
Unit (REU) (arrowhead line in Fig. 4C, Inset), AF2 also generates
a continuous trajectory with the predicted structures gradually
changing from the nearly closed conformation to the fully open
conformation (Fig. 4C ).

While the integration of AF2 with physical energy data can
yield continuous transition pathways between two functional
states for AdK, it is essential to determine whether the re-
sulting pathways are physically meaningful. Fortunately, the
pathways of conformational transitions for AdK have already
been extensively characterized by experiments and molecular
simulations, which can be used as a reference to assess the
predicted pathways. We plotted the predicted structures along
two reaction coordinates, i.e., “Angle NMP–Core” and “Angle
LID–Core,” which describe the opening angles of the LID and
NMP domains, respectively, with respect to the core domain (Fig.
4D). As a comparison, we also plotted the experimentally resolved
structures along the conformational transitions (SI Appendix,
Text) (48). Interestingly, we can observe two major pathways.
In one pathway, the LID domain opens partially first, followed
by the full opening of the NMP domain and the further opening
of the LID domain. In another pathway, the NMP domain
opens largely first, followed by the full opening of the LID
domain. One can see that the predicted pathways in this work
align very well with the experimental structures captured along
nearly the same pathways of conformational motions (Fig. 4D).
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coefficients between the Cartesian PC1 and different strain (cracking) PCs for the predicted structures. (C) Correlation plots of the predicted structures along
the strain PC1 (cracking PC1) and Cartesian PC1. (D) Contact map (Upper triangle) and frustration pattern (Lower triangle) of AdK. The shared contacts (green)
and state-specific contacts (red) were assigned by comparing the crystal structures at the closed and open states. The highly frustrated contacts and minimally
frustrated contacts are color-coded with red and green, respectively. The specific contacts along the LID–NMP interface, NMP–Core interface, and LID–Core
interface are circled by cyan, blue, and purple lines, respectively. (E) The strain PC1 (Upper triangle) and the cracking PC1 (Lower triangle) along the residue
pairs. (F ) Upper, correlation coefficients between the Cartesian PC1 of the predicted structures and different Cartesian PCs of the structures sampled by MD
simulations; Lower, correlation coefficients between the Cartesian PC1 of the structures sampled by MD simulations and the different Cartesian PCs of the
predicted structures.

In addition, the predicted pathways are highly consistent with
those generated by molecular simulations in this work and other
previous works (SI Appendix, Fig. S6 and Text) (48, 49). It
is worth mentioning that other alternative pathways were also
generated in the previous molecular simulations, depending
on the simulation methods and force fields. However, most
of these previous studies reproduce these main representative
pathways. The close resemblance between the predicted pathways
and the reference pathways suggests that the combination of
AF2 and frustration filter is not only able to precisely predict
the alternative conformations, but also can provide physically
reasonable pathways of the protein conformational transitions.

To better characterize the conformational dynamics predicted
by the aforementioned method, we conducted a series of
principal component analyses (PCA) based on the predicted
structural ensemble. First, we conducted conventional Cartesian
PCA, in which the Cartesian coordinates of residues in three-
dimensional space were used in constructing the covariance
matrix. Comparison between the Cartesian PC1 (the first-
principle component) and the RMSDs with respect to the open
and closed structures suggest that the Cartesian PC1 captures
the majority of the conformational fluctuations (Fig. 5A). PCA’s
based on coordinates show the elastic response of the protein (50).
More important are stages of “cracking” where regions become
somewhat disordered (39). To detect these cracking motions we
use the collective coordinates introduced by Potoyan et al. (51).
We carried out therefore two kinds of PCA’s, i.e., strain PCA and
cracking PCA, for the predicted structural ensemble. In the strain

PCA, the covariance matrix is constructed using the interresidue
distances of contacts, allowing the derived principal components
(PCs) to capture the collective stretching and contraction of
the residue contacts. In the cracking PCA, a binary variable
representing the rupture or formation of contacts was used to
construct the covariance matrix, thus the derived PCs describe
the cracking of structures. It is observed that both the strain PC1
(Fig. 5 B, Upper and C ) and the cracking PC1 (Fig. 5 B, Lower
and C ) are well correlated with the Cartesian PC1 and therefore
the dominant mode of conformational fluctuations. Remarkably,
both the strain PC1 and the cracking PC1 constructed based
on the predicted structural ensemble captured well the specific
contacts along the domain interfaces which need to be broken
during the closed to open conformational changes (Fig. 5 D
and E). Consistent with the above discussion, these specific
contacts tend to be highly frustrated and localized as shown
in the frustration pattern (Fig. 5 D, Lower). Compared to the
LID–Core interface, there are also some specific contacts with
low frustration along the NMP–Core interface. Such a result is
in line with the observation that the predicted structures with
open NMP and closed LID are less probable compared to the
structures along the alternative pathway (Fig. 4D). In addition,
the Cartesian PC1s derived from the predicted structures and
from the structural ensemble obtained from MD simulations
are highly correlated (Fig. 5F and SI Appendix, Text). Overall,
these PCA results suggest that the predicted structures reasonably
describe the local cracking and deformation involved in the
conformational motions of AdK.
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Inferring the Overall Topography of AF2 Energy Landscape.
A recent work showed that AF2 has learned an energy function
with its optimum corresponding to the native structure (14).
The coevolutionary information from MSA plays a strong role
in locating the global minimum, so that the searching of the
native structure in the subsequent optimization step becomes
possible. However, the overall topography of the AF2 learned
energy landscape is not so easy to extract and remains a black
box. With the MSA manipulation guided by the information
of the physical energy landscape, one can effectively seed the
initial structures of the prediction along different locations of the
AF2 energy landscape. By mapping the MSA inputs to the final
AF2 predicted structures, it may be possible to infer the overall
topography of the AF2 energy landscape.

In the above-mentioned energy threshold approach, AF2
predominantly generates the closed and open conformations,
respectively, when the low-frustration sequences and high-
frustration sequences with low ΔET were used in the MSA
step (as illustrated in Fig. 3B). We then further investigated
how the predicted structures change with the increase of ΔET
for the input MSA sequences. We fixed the ΔEHF value at
∼5.0 REU and randomly sample sequences from different ΔET
intervals. When theΔET is less than a threshold value (∼50 REU
for AdK), AF2 predominantly returns an open conformation,
which is in line with the above discussion that MSA sequences
with high ΔEHF tend to hint an open structure (Fig. 6A).
Interestingly, when theΔET exceeds the threshold value, both the
closed conformation and open conformation can be sufficiently
sampled with high probabilities. Particularly, at high ET values,
the closed conformation becomes dominant, although the open
conformation can still be sampled. Such results may suggest that
the closed state and open state of AdK in the AF2 energy landscape
are separated by a high energy barrier (Fig. 6B). When the MSA
inputs seed the initial structure of the AF2 prediction at the basins
of the two states (with ΔET < 50 REU), the optimization steps
at the later stage can unambiguously find the optimum at the
respective basins and cannot cross the energy barrier. However,
when the sequences used in the MSA have high energies, further
optimization either leads to the closed basin or open basin.
Compared to the open basin, there is a higher probability of
leading to the closed basin (Fig. 6B). These results may suggest
that one can extract information on the overall topography of
the AF2 energy landscape by integrating the physical energy
landscape information with AF2 structure prediction.

Predicting Protein Conformational Changes with AF2 by Pro-
gressively Masking Highly Frustrated Sites. In the frustration-
filtering strategy discussed above, the physical energy information
was utilized to select homologous sequences in the MSA initial-
ization step, by which we can generate alternative conformation
and even the transition pathway with AF2. In a previous study,
Stein and Mchaourab proposed an algorithm to model the
alternative conformations with AF2 via the manipulation of the
MSA columns (22). By mutating the residues at the interaction
surface within the structure to alanine, they successfully generated
alternative conformations for several proteins. One challenge
of such a strategy is that prior knowledge is often needed
for appropriately choosing those mutational sites in order to
correctly generate the functionally relevant alternative structures.
To address this issue, we explore the feasibility of utilizing
physical energy information from frustration analysis to guide
the manipulation of the MSA columns.

Protein energy landscape analysis suggests that native contacts
specific to only a single conformational state will tend to be
highly frustrated. This observation then suggests that masking
the coevolutionary information from the highly frustrated sites
of one conformational state (e.g., the closed state for AdK) may
favor the prediction of the alternative conformational state (e.g.,
open state for AdK). To explore this idea, we first identified
residues with high frustration according to the calculated density
fraction of highly frustrated contacts (Materials andMethods). For
these highly frustrated sites, we masked the amino acid identities
and replaced them with a gap sign (“-”) in the MSA (Fig. 7A).
The MSA contains 50 sequences from the low-EHF region and
half of these sequences were randomly sampled for applying
the site-masking. This masking process effectively reduces the
coevolutionary constraints between the highly frustrated sites,
potentially removing some of the bias to the existing structures in
the structural prediction. We see that with the progressive mask-
ing of the highly frustrated sites, the predicted structure from
AF2 for adenylate kinase changes from the closed conformation
to the largely open conformation (Fig. 7 A and B). Depending
on the precise criterion used in identifying the high-frustration
sites, different ranges of the covered conformations are revealed.
For example, when 10 sites with the highest frustration scores
were progressively masked, the RMSD of the resulting predicted
structures with respect to the closed structure (PDB code: 1AKE)
range from 2.7 Å to 4.5 Å. In comparison, when 30 sites with the
highest frustration scores are progressively masked, the RMSD
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Fig. 6. Inferring the overall topography of AF2 learned energy landscape. (A) The distribution of RMSD with respect to the reference open structure (red) and
closed structure (blue) at different ΔET with the ΔEHF fixed at 5.0 REU. The dashed line schematically indicates the change in the peak position of the RMSD
distributions. (B) Schematic illustration of the inferred overall topography of the AF2 energy landscape.
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Fig. 7. Predicting conformational motions of AdK by the site-masking strategy. (A) Schematic illustration for the site masking strategy to generate
conformational motions of AdK. (B) Projection of the generated structures by the site masking strategy along the RMSDs with respect to the reference
closed and open structures. The error bars were calculated based on 20 independent AF2 predictions. (C) Distribution of the RMSDs with respect to the
reference open structure for the predicted structures with different site-masking strategies, in which the masking sites were selected from the minimally
frustrated sites (MF-sites), from the highly frustrated sites (HF-sites), and from the sites involved in specific contacts (Reference), respectively. For comparison,
the results by randomly masking the same number of sites involved in shared contacts are also shown (Random). The dashed line corresponds to the case
before site masking.

ranges further from 2.7 Å now to 5.5 Å, covering a larger
range of the conformational space. The RMSD distribution of
the predicted structures by masking the high-frustration sites
can well reproduce the reference distribution, i.e., the RMSD
distribution of the predicted structures found by masking the
sites involved in the specific contacts (Fig. 7C and SI Appendix,
Fig. S7). As controls, we also manipulated the MSA by masking
the same number of the minimally frustrated sites and also
by randomly masking the same number of the sites involved
in the shared contacts. Both approaches failed to generate the
reference distribution. These results again demonstrate that
physical energy landscape information can be utilized to persuade
AF2 to predict realistic protein motions. More detailed analysis
shows that the conformations of predicted structures can be
modulated by residue-resolved manipulation of MSA sequences
(SI Appendix, Fig. S8), which may have significant implications
for the prediction of the single-mutation effects on proteins
with AF2.

Predicting Alternative Conformations for Other Allosteric
Proteins. In the above discussions, we mainly focused on a model
protein AdK. For this protein, the conformational motions can be
pictured as domain motions, with negligible secondary structure
changes. Recently, the AF-cluster method was successfully used
to predict an alternative conformation of the protein KaiB,
for which the conformational change involves fold switching
between a ground state (G-state) and a fold-switch state (FS-state)

(17). The standard AF2 protocol returns an FS-state structure.
To further test the frustration-informed method, we employed
the above-proposed strategy to KaiB. Following the frustration-
filtering strategy, we separately fed the MSA sequences from
different locations of the two-dimensional energy space to AF2
for structure predictions (Fig. 8 A–D). Overall, the predicted
structures are closer to the reference FS-state structure (PDB code:
5JYT) for the low ΔEHF MSA sequences while the algorithm
led to the G-state structure (PDB code: 2QKE) when high
ΔEHF sequences were in MSA (Fig. 8 B–D). Correspondingly,
the RMSD distributions of the predicted structures with the
subcollections of the MSA sequences (with the size of 50)
sampled from the “low-EHT” region and the “high-EHT” region
are highly biased to the FS-state and G-state, respectively. In
comparison, when the subcollections of the MSA sequences were
sampled randomly, the AF2 dominantly gives the FS-state-like
structures, and the G-state-like structures are rather rare (Fig.
8E and SI Appendix, Fig. S9). As expected, the MSA sequences
generating the G-state structures tend to have higherΔEHF values
(Fig. 8F ). These results suggest that local energetic frustration
information can also be used to predict protein motions involving
more complex conformational changes. We also tested the
above methodology for ribose-binding protein, which is another
allosteric protein with large amplitude conformational motions
for its biological function, and the overall correlation between
the energetics of MSA sequences and the predicted structures
can again be observed (SI Appendix, Fig. S10).
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Fig. 8. Prediction of the alternative structure of KaiB with the frustration filtering strategy. (A) MSA sequences are projected onto the energy space formed
by total energy ΔET and the energy of highly frustrated contacts ΔEHF. (B) RMSD with respect to the reference fold-switch structure (RMSD-FS, PDB code:
5JYT) for the predicted structures with the input MSA sequences taken from different locations of the two-dimensional energy space. Inset: the RMSD with
respect to the reference ground-state structure (RMSD-G, PDB code: 2QKE). (C and D) Cartoon representations of the predicted three-dimensional structures of
KaiB with the low-frustration MSA sequences (C) and high-frustration MSA sequences (D), respectively. (E) Violin plot showing the distributions of RMSDs with
respect to the reference FS-state structure for the predicted structures with the input MSA sequences from “low-EHF” and “high-EHF” regions, respectively. For
comparison, the results for randomly selected MSA sequences with the sizes of 100 and 10 are also shown. (F ) Violin plot showing the distributions of ΔEHF for
the MSA sequences generating FS-state structure and G-state structure, respectively.

Discussion and Conclusion

Great progress on the sequence–structure–function relationship
has been made through the recent advent of AF2, which usually
can predict three-dimensional structures with near experimental
accuracy based solely on sequences. Nevertheless, to function,
proteins often need to move. Therefore, predicting protein
conformational motions is also fundamental to fully addressing
the sequence-function relationship. In its default mode, AF2 only
provides the static structure of a protein. On the other hand, en-
ergy landscape analysis of allosteric proteins has taught us the key
physical rules and sequence design principles governing protein
conformational motions. Directly predicting protein motions
based on such physical rules using even coarse-grained simulation
techniques often encounters computational challenges. In this
work, we have shown that by combining AF2 and local energetic
frustration scores, it is possible to directly predict the alternative
structures of allosteric proteins and even the pathways of protein
conformational motions from their sequences.

In this paper, we have put forward two strategies to extract
information about large-scale protein motions, i.e., frustration-
filtering of the MSA and frustrated site-masking. For the
frustration-filtering strategy, we ranked the MSA sequences
according to the contact energies of the highly frustrated native
contacts. Using a model protein, AdK, as an illustration, we
showed that the predicted structure by AF2 changes from
a fully closed conformation to a fully open conformation
with the increasing destabilization of the highly frustrated
sites. Following this strategy, we developed energy threshold,
sequence remixing, and sequence sliding approaches to predict

the alternative conformations and to characterize the pathways
of protein conformational motions. For the frustrated site-
masking strategy, AF2 generates alternative structures through
the progressive masking of the highly frustrated residue sites. We
see that combining integrative data-driving and physics-based
methodologies can generate physically meaningful pathways of
conformational motions. We expect that these physical principle–
guided integrative strategies will be useful for addressing the
explainability issue in AF2-based structure predictions and for
rational design of proteins by fine-tuning the relative distributions
of different conformations. In addition to predicting protein mo-
tions, this work also provides useful implications for inferring the
overall topography of the AF2 learned protein energy landscape,
which has often been considered a black box, by mapping the
energy space of the MSA sequences to the conformational space
of the AF2 predicted structures.

Although the capability of the methodology integrating
energetic frustration analysis and AF2 in predicting protein
conformational motions has been clearly demonstrated for three
paradigm proteins, further improvements to the implementation
of the current methodology are expected in order to achieve
high-throughput predictions. First, the performance of the
methodology proposed in this work depends on the accuracy
of the physical energy function used to calculate the frustration
scores. Consequently, the calculated frustration scores may have
large noise and therefore may not always fully capture the realistic
frustration pattern encoded by the physical energy landscape.
It is also worth noting that the proteins studied in this work
involve large-amplitude conformational changes featured by low-
dimensional dynamics. It seems likely, however, that many
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allosteric proteins may perform their biological functions by
small-amplitude conformational fluctuations, which would then
involve more complex contributions of different conformational
modes. In such cases, more accurate energy models and frus-
tration calculations may be essential for correctly predicting the
conformational motions. Even so, the results of this work demon-
strate that the currently available energy functions and frustration
quantification are already able to provide significant hints in
forcing AF2 to return physically relevant predictions on protein
conformational motions. Second, for many allosteric proteins,
ligand binding could be the key driving force for the conforma-
tional motions. However, in the calculations of the frustration
index and the AF2 structure prediction pipeline, the contribution
of ligand binding is not explicitly considered. As a consequence,
the alternative conformation for these proteins may not be
easily captured by using the current methodology. Including the
ligand binding information in the energetic analysis and structure
prediction may further improve the prediction accuracy. A recent
work by Qiao et al. showed that including the ligand binding
information in a deep generative model NeuralPLexer, which
is developed for predicting protein–ligand complex structures,
can provide improved prediction of the representative structure
pairs of allosteric proteins with large conformational changes
(52). We expect that with further improvements in physical
energy functions, frustration quantification, and ligand binding
modeling, the current methodology of integrating deep-learning-
based structure prediction algorithms and energy landscape
ideas will provide more accurate predictions of the protein
conformational motions, which may inspire progress in the
rational design of functional proteins and therapeutic strategies.

Materials and Methods

Structure Prediction with AF2 Dictated by Physical Energy Landscape.
The MSA and AF2 structure prediction were performed using ColabFold (53).
The MSA sequences were further filtered by using the DBSCAN method, so that
the final MSA sequences have high similarity to each other and all the MSA
sequences are within a given distance from the query sequence (E. coli AdK
sequence).

The frustration index and the density fraction of highly frustrated contacts
around the residues of AdK were computed with Frustratometer 2 based on the
AF2 prediction structure (or available crystal structure) and the query sequence
(37). The frustration index for a contact formed between residue pair (i,j) is
defined as the Z-score of the corresponding contact energy in the native structure
compared with the distribution of decoy energies. The decoy is constructed by
randomizing amino acid identities and local structures for the residue pair
(i,j). The associative memory Hamiltonian water-mediated potential energy
function is used in Frustratometer 2 for calculating the frustration index (54).
The residue-wise frustration index is calculated in a similar way. The MSA
sequences were then threaded onto this structure. The side chains of the threaded
structure were relaxed by using Rosetta (with REF2015 force field) (47). The

total energy of the structure for each threading sequence was calculated as
ΔET =

∑N
i (Ei − Ei,ref). Similarly, the total energy of the highly frustrated

contacts was calculated as ΔEHF =
∑N

i Di,HF × (Ei − Ei,ref). Here, Di,HF
represents the density fraction of the highly frustrated contacts within 5 Å around
the residue i given by Frustratometer (37) (Fig. 2B). Ei and Ei,ref represent the
energies of the site i for a given MSA sequence and for the reference query
sequence, respectively, which were calculated as Ei =

∑N
j Eij with Eij being

the contact energy between residues i and j given by Rosetta. N is the total
residue number of a protein. By feeding the MSA sequences with different
total energy (ΔET) and frustration extent (ΔEHF) to AF2 together with the
query sequence, we obtained a predicted structure dictated by physical energy
landscape information. More detailed descriptions of the methods are given in
SI Appendix, Text.

Data Analysis and Structure Visualization. We performed several types of
PCA to characterize the conformational motions of AdK. In addition to the
conventional Cartesian PCA, we also performed strain PCA and cracking PCA
as discussed in previous work (51). In strain PCA, the covariance matrix was
constructed based on the fluctuations of mutual distance (dij) between the C�
atoms of two residues for the predicted structures. In cracking PCA, the covariance
matrix was constructed based on the fluctuations of a two-value observable for
a residue pair that takes 0 (dij > 10 Å) or 1 (dij ≤ 10 Å).

The three-dimensional structures were visualized by PyMOL (55). In the
visualization of the frustration pattern, we calculated the smoothed frustration
score Fsij = −(Fi + Fj) for each pair of residues i and j forming a contact, where
Fi and Fj are the residue-wise frustration indices of the two residues. Contacts
with Fsij higher (lower) than 0.8 (−1.2) were shown by red and green lines in the
cartoon illustration (Fig. 2C) and contact map (Fig. 5 D, Lower).

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix. The example code can be found in Github (56).
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