Unit Testing Progress Report for EasyGraph

July 1, 2025

1 Coverage Statistics

The table below compares the coverage before and after the recent testing improvements:

Table 1: Test Coverage Improvement

Metric Before | After
Total Number of Tests 261 786
Classes Module Coverage 57% 67%
Functions Module Coverage | 38% 67%

2 Visualizations

2.1 Growth in Total Number of Tests

800

600

400

Number of Tests

200

Total Number of Tests Over Time

Initial

Progress Phase

Figure 1: Growth in Total Unit Tests

Current

2.2 Coverage Improvement by Module

100 - N

Coverage (%)

20

T T
Classes Functions

’ OoBeforell After

Figure 2: Code Coverage Improvement by Module

3 Coverage Report Screenshots

3.1 Total tests comparison

BLEMS ~ OUTPUT D
tests/test_convert.py [166%]

short test summary info
SKIPPED [1] readwrite/tests/test graphv: uld not import 'pygraphvi: o module named ‘pygraphv:
SKIPPED [1] classes/tests/test hypergraph.p) skip
SKIPPED [1] readwrite/tests/test graphml. uld not import ‘lxml.etree’: No module named Ixml®
SKIPPED [1] readwrite/tests/test graphml.py: c not import ‘lxml.etree’: No module named ‘lxml’
SKIPPED [1] readwrite/tests/test graphml.py: not import 'lxml.etree’: No module named 'lxml®
SKIPPED [1] readwrite/tests/test_graphml.py: not import ‘lxml.etree’: No module named ‘lxml'
SKIPPED [1] readwrite/tests/test graphml.py: C not import 'lxml.etree’ module named 'Ixml®
SKTPPED [1] i s St .py:1186 not import ‘lxml.etree’: No module named ‘lxml'
SKIPPED [1] i s st_g -py: not import ‘lxml.etree’: No module named ‘lxml’
SKIPPED [1] readwrite/tests/test graphml.py: E not import 'lxml.etree’: No module named 'lxml®
SKIPPED [1] readwrite/tests/test graphml.py: 1d not import 'lxml.etree': No module named ‘lxml’
SKIPPED [1] readwrite/tests/test_graphml.p) not import 'lxml.etree’: No module named 'Ixml®
SKIPPED [1] readwrite/tests/test graphml.py: < not import 'lxml.etree’: module named 'lxml®
SKIPPED [1] i sts/test_graphml.py: not import ‘lxml.etree’: No module named ‘Ixml®
SKTPPED [1] i /test_graphml. not import ‘lxml.etree’: No module named ‘lxml’
SKIPPED [1] i sts/test_graphml. not import 'lxml.etree’: No module named 'lxml®
SKTPPED [1] i sts/test_graphml.py:136 not import ‘lxml.etree’: No module named ‘lxml'

SKIPPED [1] readwrite/tests/test graphml.py: C not import 'lxml.etree’: No module named 'lxml®
SKIPPED [1] readwrite/tes s . not import ‘lxml.etree’: No module named ‘lxml'
SKIPPED [1] readwrite/tes s .py: not import 'lxml.etree’ module named 'Ixml®
SKTPPED [1] :1464: not import ‘lxml.etree’: No module named ‘lxml'
SKIPPED [1] not import ‘lxml.etree’: No module named ‘lxml’
, 22 skipped, 62 warnings in 7.26s

(venv) sama@noded:
3 SSH: amd181.utah.cloudlab.us

= , 22 skipped, 88 warnings in 33.74s =
** 0On entry to DGEEV parameter number had an illegal value
** On entry to DGEEV parameter number had an illegal value

(venv) sama@node@:

<SSt o 2

Figure 4: Current total tests

3.2 Classes module test coverage comparison

tests coverage
_ coverage: platform linux, python 3.10.12-final-0 __

Name

classes/__init _.py
classes/base.py
classes/directed_graph.py
classes/directed multigraph.py
classes/graph.py
classes/graphviews.py
classes/hypergraph. py
classes/multigraph.py
classes/operation.py
classes/test base graph clas

short test summary info

, 1 skipped, 1 warning in 4.14s
(venv) sama@nodeo:
X SSH: amd181.utah.cloudlabus]

tests coverage
_ _ coverage: platform linux, python 3.10.12-final-@

Name

classes/__init__.py
classes/base.py
s/directed graph.py
classes/directed multigraph.py
classes/graph.py
classes/graphviews.py
classes/hypergraph.py
classes/multigraph.py
classes/operation.py
classes/test_base graph class.py
TOTAL
short test summary info
SKIPPED [1] classes/tests/test hypergraph.py:973
, 1 skipped, 1 warning in 4.27s
(venv) sama@nodes $ D
< SSH: amd181.utah.cloudlabus | [Easy-Graph §° feature/tests* & ®0A0 Wo

Figure 6: Current classes test coverage

3.3 Functions module test coverage comparisson

functions/hypergraph/null_model/lattice.py
functions/hypergraph/null_model/random.py
functions/hypergraph/null_model/simple.py
functions/hypergraph/null_model/uniform. py
functions/isolate.py
functions/path/__init__.py
functions/path/average_shortest_path_length.py
functions/path/bridges . py
functions/path/diameter.py
functions/path/mst. py
functions/path/path.py
functions/structural_holes/AP_Greedy.py
functions/structural_holes/HAM.py
functions/structural_}
functions/structural_holes/ICC.p
functions/structural_holes/MaxD.py
functions/structural_holes
functions/structural_holes/SHIT_metric.py
functions/structural_holes/__init__.py
functions/structural_holes/evaluation.py
functions/structural_holes/maxBlock.py
functions/structural_holes/metrics.py
functions/structural_holes/weakTie.py

, 7 warnings in 12.12s
(venv) sama@node
< SSH: amd181.utah.cloudlab.us [Easy-Graph §° pybind

BLEMS ~ OUTPUT D E TERMINAL youph +v M @ ~ ~ X

functions/hypergraph/null model/simple.py
functions/hypergraph/null_model/uniform.py
functions/isolate.py
functions/path/__init__.py
functions/path/average shortest path length.py
functions/path/bridges.py
functions/path/diameter.py
functions/path/mst.py
functions/path/path.py
functions/structural_holes/AP_Greedy.py
functions/structural holes/HAM.py
functions/structural_holes/HIS.py
functions/structural_holes/ICC.py
functions/structural_holes/MaxD. py
functions/structural_holes/NOBE. py
functions/structural_holes/SHIT metric.py
functions/structural holes/ _init .py
functions/structural_holes/evaluation.py
functions/structural_holes/maxBlock.py
functions/structural_holes/metrics.py
functions/structural_holes/weakTie.py
TOTAL

, 31 warnings in 85.10s (0:01:25) =

** On entry to DGEEV parameter number 5 had an illegal value
** On entry to DGEEV parameter number 5 had an illegal value
(venv) sama@node@:

X SSH: amd181.utah.cloudlabus [raph §° feature/tests

Figure 8: Current functions test coverage

4 Conclusion

The number of unit tests in EasyGraph increased by over 3x, from 261 to 786. Test coverage for the classes
module rose from 57% to 67%, and for the functions module from 38% to 67%. These improvements
significantly enhance code reliability, encourage safe refactoring, and contribute to the long-term quality of
the project.

