first-fit decreasing — first-fit
j— address-ordered fit —

roving point —— next-fit
worst-fit
j— sized-ordered fit —— ordering = —
best-fit decreasing —— best-fit
random-fit — random-ordered fit —
first-fit —
best-fit ~
roving poiint —— next-fit —
worst-fit fit type = —~
exact-fit —
optimal-fit — ;
— fit and reuse —

fast fit
} indexed fit — exact list

bitmapped fit
bitmapped fit
address-ordered fit =
first-fit decreasing first-fit —— sequential

roving point —— next-fit =

worst-fit
j— simple-fit
best-fit decreasing —— best-fit

conventional binary buddy —

generalized Fibonacci buddy —— Fibonacci buddy —
— buddy system = —— strict size classes w/ rounding —
weighted buddy

double buddy —

first-fit decreasing

j— strict-size classes w/ range lists =
best-fit decreasing

double-linked list =—— fast —— immediate
j— coalescing
speed optimization —— delay

splitting threshold —— block-splitting —— splitting

segregated fit [PSC71]

segregated storage —

— strict-size class —

random-fit =

=

allocation request

free() calls

uniform size increment
'— sizing streaming

exponential sizing

live predetermination

performance pattern =

ordering
phase behavior
:)— process behavior

sudden death, group of —— random-decay —— statistical delay process —— statistical distribution
portability —
compatibility —~
space efficiency —

plateau —

forward
j— slow ramp —— time performance -

backward

coalescing bug

reuse bug

array slot
I —/
circular doubly-linked Llist } arena e
j— linked list

fast peak —

— segregated free list —

} coalescing & splitting —

j— frequency (reuse timeline) —t— strategy /

— design objective —

} anomalies —— error detection —

per-run
} binning —
size bin

fixed-size

rounded-size

indexed size

block pool for a size-class
} run -~

free list managed

chain-style list

size-class —~

— allocation —

malloc

boundary tag —— coalesce support
~— header block size
header fields in-use bit
— block metadata — prev-in-use
flags —E
alignment
“~ footer — boundary tag =
immediate —— fast —— double-linked list
— coalescing of free blocks —[
delayed —— speed optimization
— block splitting —— splitting threshold
l— memory block —— block — block tail reuse
~— end of block —E
. exact-fit reuse
mechanism —
-~ reuse — ~— list order
L— optimal fit
-~ free block selection strategy = —t— half fit
size-ordered
“— ordering = address-ordered
random-fit
end of heap —— top chunk / wilderness block —— high watermark
“— arena —[
multiple arenas
~— free memory
L — kernel memory
~— locale —
N~ userspace
"~ NUMA node (implied)
solid state drive
— type RAM
swap
policy —_ storage-based RAM —E

allocation

N free list policy

— allocator design —— lookup table

f-run{

“— layout —

— size-class

remote memory system (disaggregate memory)

ordering strategy
per-size vs global lists

immediate vs. deferred reuse

high-mark, end block of heap

per-run binning
~— binning —E

size bins (per-size class)

fixed-sized

power of two
rounded-size —[

local coalescing
free subpool —E

per-arena or global structures

alignment constraint

block pool for a single size-class

free list
managed —E
bitmap

— page/chunk management

L— cache locality

N fragmentation management —E

N memory tagging or protection —E

~ allocator-specific structure

array slot —— tcache indexing
(— arena l circular doubly-linked list
linked list —E
chain-style list
large vs. small chunk
page alignment and mapping
multiple page size (huge page)
NUMA-aware placement
cache-line alignment
prefetching hints
per-thread arenas
— thread-local storage —E
thread cache (tcache)
slab allocation layout
run-based layout =

lock-free vs. locked in arena or bin
N locking strategy —[

fine-grained locking per-arena or size-class

guard page

metadata isolation

inline metadata in header
" metadata storage —'

separate metadata pool
bitmaps

hash table

tree — radix



