
Quantum query algorithms

Download the slides for this lesson.

Access the YouTube video for this lesson.

This course investigates computational advantages offered by quantum
information — or what we can do better with quantum computers than we
can with ordinary classical computers. Our focus will be on what we can
do with a single quantum computer, as opposed to a distributed setting
where multiple quantum computers interact over a network, for instance.
(There are quantum advantages to be found in distributed settings, where

Introduction

https://learning-api.quantum.ibm.com/assets/1de08431-0c08-4feb-ba3a-9db85d98ee8c
https://youtu.be/2wticzHE1vs?list=PLOFEBzvs-VvqKKMXX4vbi4EB1uaErFMSO

communication and cryptography come into play, but they're outside of
the scope of this course.)

Let's begin with a natural question: What advantages might a quantum
computer potentially offer?

The most important advantage is that a quantum computer might provide
faster solutions to some computational problems. Time is a precious
resource. And it is this potential — that quantum computers may allow us
to solve certain computational problems that classical computers are too
slow to solve — that has driven quantum computing research for the past
few decades. This will be our primary focus.

Other computational resources besides time can also be considered,
such as the amount computer memory required to perform computations,
which is typically referred to as the space required for computations. But,
as it turns out, quantum computers have a limited potential to offer
advantages in space usage over classical computers — and classical
memory happens to be quite a bit less expensive than quantum memory
— so we won't consider it further in this course.

One thing that quantum computers cannot do is to provide solutions to
computational problems that classical computers cannot solve
irrespective of the resources required. For example, the famous halting
problem formulated by Alan Turing in the 1930s cannot be solved (or
decided using more precise terminology) by a classical computer, and so
it follows that it can't be solved by a quantum computer either. This is
because quantum computers can be simulated by classical computers,
so any computational problem that can be solved by a quantum
computer can also be solved by a classical computer (though the
classical computer might take much, much longer).

While the time required to solve problems will be our main concern in this
course, we'll deviate slightly from this focus for the purposes of this first
lesson. What we'll do is to formulate a simple algorithmic framework —
known as the query model — and explore the advantages that quantum
computers offer within this framework. The query model of computation
is like a petri dish for quantum algorithmic ideas. It's rigid and unnatural,
in the sense that it doesn't accurately represent the sorts of
computational problems we generally care about in practice, but it has
nevertheless proved to be incredibly useful as a tool for developing
quantum algorithmic techniques, including ones that power the most
well-known quantum algorithms (such as Shor's factoring algorithm). It
also happens to be a very useful framework for explaining quantum
algorithmic techniques.

After introducing the query model itself, we'll discuss the very first
quantum algorithm discovered, which is Deutsch's algorithm, along with
an extension of Deutsch's algorithm known as the Deutsch-Jozsa
algorithm. These algorithms demonstrate quantifiable advantages of
quantum over classical computers within the context of the query mode.
We'll then discuss a quantum algorithm known as Simon's algorithm,
which offers a more robust and satisfying advantage of quantum over
classical computations, for reasons that will be explained when we get to
it.

Before we begin, please take a moment to complete our
pre-course survey, which is important to help improve our content
offerings and user experience.

Pre-course Survey

https://your.feedback.ibm.com/jfe/form/SV_cZ20ssflsjutfcG

Powered by Qualtrics A

Fundamentals of Quantum Algorithms: Pre-
Course Survey

Taking the "Fundamentals of Quantum Algorithms" course from

IBM? Please fill out this short form about your experience and

expectations.

Your insights will help us improve our IBM Quantum Learning

offerings. Your responses will be kept confidential and will only be

accessed by the IBM Quantum design research and learning teams.

If you have questions about this survey or how the data will be used,

please email quantum.design@us.ibm.com.

When we model computations in mathematical terms, we typically have
in mind the sort of process represented by the following figure, where
information is provided as input, a computation takes place, and output is
produced.

The query model of computation

High-level description

https://www.qualtrics.com/powered-by-qualtrics/?utm_source=internal%2Binitiatives&utm_medium=survey%2Bpowered%2Bby%2Bqualtrics&utm_content=ibmxm&utm_survey_id=SV_cZ20ssflsjutfcG

While it is true that the computers we use today continuously receive
input and produce output, essentially interacting with both us and with
other computers in a way not reflected by the figure, the intention is not
to represent the ongoing operation of computers. Rather, it is to create a
simple abstraction of computation, focusing on isolated computational
tasks. For example, the input might encode a number, a vector, a matrix, a
graph, a description of a molecule, or something more complicated, while
the output encodes a solution to the computational task we have in mind.
The key point is that the input is provided to the computation, usually in
the form of a binary string, with no part of it being hidden.

In the query model of computation, on the other hand, the entire input is
not provided to the computation in this way. Rather, the input is made
available in the form of a function, which the computation accesses by
making queries. Alternatively, we may view that computations in the
query model have to bits (or segments of bits) of the
input.

random access

We often refer to the input as being provided by an oracle or black box in
the context of the query model. Both terms suggest that a complete
description of the input is hidden from the computation, with the only
way to access it being to ask questions. It is as if we're consulting the
Oracle at Delphi about the input: she won't tell us everything she knows,
she only answers specific questions. The term black box makes sense
especially when we think about the input as being represented by a
function: we cannot look inside the function and understand how it
works, we can only evaluate it on arguments we select.

We're going to be working exclusively with binary strings in this lesson, as
opposed to strings containing different symbols, so let's write

 hereafter to refer to the binary alphabet for convenience. We'll be
thinking about different computational problems, with some simple
examples described shortly, but for all of them the input will be
represented by a function taking the form

for two positive integers and Naturally, we could choose a different
name in place of but we'll stick with throughout the lesson.

To say that a computation makes a query means that some string
is selected, and then the string is made available. The
precise way that this works for quantum algorithms will be discussed
shortly — we need to make sure that this is possible to do with a unitary
quantum operation allowing queries to be made in superposition — but
for now we can think about it intuitively at a high level.

Finally, the way that we'll measure efficiency of query algorithms is
simple: we'll count the number of queries they require. This is related to
the time required to perform a computation, but it's not exactly the same
because we're ignoring the time required for operations other than the
queries, and we're also treating the queries as if they each have unit cost.
We could take the operations besides the queries into account if we
wanted to (and this is sometimes done), but restricting our attention just
to the number of queries helps to keep things simple.

Here are a few simple examples of query problems.

Σ =
{0, 1}

f : Σ →n Σm

n m.
f , f

x ∈ Σn

f(x) ∈ Σm

Examples of query problems

OR. The input function takes the form (so for this
problem). The task is to output if there exists a string for
which and to output if there is no such string. If we think

– f : Σ →n Σ m = 1
1 x ∈ Σn

f(x) = 1, 0

Sometimes we also consider query problems where we have a promise
on the input. What this means is that we're given some sort of guarantee
on the input, and we're not responsible for what happens when this
guarantee is not met. Another way to describe this type of problem is to
say that some input functions (the ones for which the promise is not
satisfied) are considered as "don't care" inputs. No requirements at all
are placed on algorithms when they're given "don't care" inputs.

Here's one example of a problem with a promise:

All four of the examples just described are natural, in the sense that
they're easy to describe and we can imagine a variety of situations or
contexts in which they might arise.

In contrast, some query problems aren't "natural" like this at all. In fact,
in the study of the query model, we sometimes come up with very
complicated and highly contrived problems where it's difficult to imagine
that anyone would ever actually want to solve them in practice. This
doesn't mean that the problems aren't interesting, though! Sometimes
things that seems contrived or unnatural at first can provide unexpected
clues or inspire new ideas. Shor's quantum algorithm for factoring, which
was inspired by Simon's algorithm, is a great example. It's also an

about the function as representing a sequence of bits to which we
have random access, the problem is to compute the OR of these bits.

f 2n

Parity. The input function again takes the form The task
is to determine whether the number of strings for which

 is even or odd. To be precise, the required output is if the
set has an even number of elements and if it
has an odd number of elements. If we think about the function as
representing a sequence of bits to which we have random access,
the problem is to compute the parity (or exclusive-OR) of these bits.

– f : Σ →n Σ.
x ∈ Σn

f(x) = 1 0
{x ∈ Σ :n f(x) = 1} 1

f

2n

Minimum. The input function takes the form for any
choices of positive integers and The required output is the string

 that comes first in the lexicographic (i.e.,
dictionary) ordering of If we think about the function as
representing a sequence of integers encoded as strings of length
in binary notation to which we have random access, the problem is to
compute the minimum of these integers.

– f : Σ →n Σm

n m.
y ∈ {f(x) : x ∈ Σ }n

Σ .m f

2n m

Unique search. The input function takes the form and
we are promised that there is exactly one string for which

 with for all strings The task is to find this
unique string

– f : Σ →n Σ,
z ∈ Σn

f(z) = 1, f(x) = 0 x = z.
z.

important part of the study of the query model to look for extremes,
which can shed light on both the potential advantages and the limitations
of quantum computing.

When we're describing computations with circuits, queries are made by
special gates called query gates. The simplest way to define query gates
for classical Boolean circuits is to simply allow them to compute the input
function directly, as the following figure suggests.

When a Boolean circuit is created for a query problem, the input function
 is accessed through these gates, and the number of queries that the

circuit makes is simply the number of query gates that appear in the
circuit. The input wires of the Boolean circuit itself are initialized to fixed
values, which should be considered as part of the algorithm (as opposed
to being inputs to the problem).

For example, here's a Boolean circuit with classical query gates that
solves the parity problem described above for a function of the form

:

Query gates

f

f

f :
Σ → Σ

This algorithm makes two queries because there are two query gates.
The way it works is that the function is queried on the two possible
inputs, and and the results are plugged into a Boolean circuit that
computes the XOR. (This particular circuit appeared as an example of a
Boolean circuit in the Quantum circuits lesson of the
Basics of quantum information course.)

For quantum circuits, this definition of query gates doesn't work, because
these gates will be non-unitary for some choices of the function So,
what we do instead is to define unitary query gates that operate as this
figure suggests on standard basis states:

Here, our assumption is that and are arbitrary strings.
Note that the notation refers to the bitwise exclusive OR of two
strings, which have length in this case. For example,

f

0 1,

f .

x ∈ Σn y ∈ Σm

y ⊕ f(x)
m 001 ⊕ 101 =

100.

https://learning.quantum.ibm.com/course/basics-of-quantum-information/quantum-circuits
https://learning.quantum.ibm.com/course/basics-of-quantum-information

Intuitively speaking, what the gate does (for any chosen function) is
to echo the top input string and XOR the function value onto the
bottom input string which is a unitary operation for every choice for the
function To be more precise, as a matrix is always a permutation
matrix, meaning a matrix with a single in each row and each column,
with all other entries being Applying a permutation matrix to a vector
simply shuffles the entries of the vector (hence the term permutation
matrix), and therefore does not change that vector's Euclidean norm —
revealing that permutation matrices are always unitary.

Notice that when we analyze query algorithms by simply counting the
number of queries that a query algorithm makes, we're completely
ignoring the difficulty of physically constructing the query gates (for both
the classical and quantum versions just described). Intuitively speaking,
the construction of the query gates is part of the preparation of the input,
not part of finding a solution. That might seem unreasonable — but we
must keep in mind that we're not trying to describe practical computing
or fully account for the resources required. Rather, we're defining a
theoretical model that helps to shed light on the potential advantages of
quantum computing. We'll have more to say about this point in the lesson
following this one when we turn our attention to a more standard model
of computation where inputs are given explicitly to circuits as binary
strings.

Deutsch's algorithm solves the parity problem described above for the
special case that In the context of quantum computing this
problem is sometimes referred to as Deutsch's problem, and we'll follow
that nomenclature in this lesson — but really it's just the simplest
nontrivial version of the parity problem.

To be precise, the input is represented by a function from
one bit to one bit. There are 4 such functions:

U ​f f

x f(x)
y,

f . U ​f

1
0.

Deutsch's algorithm

n = 1.

f : Σ → Σ

​ ​ ​ ​​ ​

a

0
1

f ​(a)1

0
0

​ ​

a

0
1

f ​(a)2

0
1

​ ​

a

0
1

f ​(a)3

1
0

​ ​

a

0
1

f ​(a)4

1
1

The first and last of these functions are constant and the middle two are
balanced, meaning that the two possible output values for the function
occur the same number of times as we range over the inputs. Deutsch's
problem is to determine which of these two categories the input function
belongs to: constant or balanced.

Deutsch's problem
Input: a function
Output: if is constant, if is balanced

If we view the input function in Deutsch's problem as representing
random access to a string, we're thinking about a two-bit string:

When viewed in this way, Deutsch's problem is to compute the parity (or,
equivalently, the exclusive-OR) of the two bits.

Every classical query algorithm that correctly solves this problem must
query both bits: and If we learn that for instance,
the answer could still be or depending on whether or

 respectively. Every other case is similar; knowing just one of
two bits doesn't provide any information at all about their parity. So, the
Boolean circuit described in the previous section is the best we can do in
terms of the number of queries required to solve this problem.

Deutsch's algorithm solves Deutsch's problem using a single query,
therefore providing a quantifiable advantage of quantum over classical
computations. This may be a modest advantage — one query as opposed
to two — but we have to start somewhere. Scientific advancements often
have seemingly humble origins.

Here is a quantum circuit that describes Deutsch's algorithm:

f : {0, 1} → {0, 1}
0 f 1 f

f

f(0)f(1).

​​ ​

function
f ​1

f ​2

f ​3

f ​4

string
00
01
10
11

f(0) f(1). f(1) = 1,
0 1, f(0) = 1

f(0) = 0,

Quantum circuit description

To analyze Deutsch's algorithm, we will trace through the action of the
circuit above and identify the states of the qubits at the times suggested
by this figure:

The initial state is and the two Hadamard operations on the left-
hand side of the circuit transform this state to

As always, we're following Qiskit's ordering convention, which puts the
top qubit to the right and the bottom qubit to the left.

Next, the gate is performed. According to the definition of the
gate, the value of the function for the classical state of the
top/rightmost qubit is XORed onto the bottom/leftmost qubit, which
transforms into the state

Analysis

∣1⟩∣0⟩,

∣π ⟩ =1 ∣−⟩∣+⟩ = ​(∣0⟩ −
2
1

∣1⟩)∣0⟩ + ​(∣0⟩ −
2
1

∣1⟩)∣1⟩.

U ​f U ​f

f

∣π ​⟩1

∣π ​⟩ =2 ​(∣0 ⊕
2
1

f(0)⟩ − ∣1 ⊕ f(0)⟩)∣0⟩ + ​(∣0 ⊕
2
1

f(1)⟩ − ∣1 ⊕ f(1)

We can simplify this expression by observing that the formula

works for both possible values More explicitly, the two cases are
as follows.

Thus, we can alternatively express like this:

Something interesting just happened! Although the action of the gate
on standard basis states leaves the top/rightmost qubit alone and XORs
the function value onto the bottom/leftmost qubit, here we see that the
state of the top/rightmost qubit has changed (in general) while the state
of the bottom/leftmost qubit remains the same — specifically being in the

 state before and after the gate is performed. This phenomenon is
known as the phase kickback, and we will have more to say about it
shortly.

With one final simplification, which is to pull the factor of
outside of the sum, we obtain this expression of the state :

Notice that in this expression, we have in the exponent of
 as opposed to which is what we might expect from a

purely algebraic viewpoint, but we obtain the same value either way. This
is because the value for any integer depends only on whether
is even or odd.

Applying the final Hadamard gate to the top qubit leaves us with the state

∣0 ⊕ a⟩ − ∣1 ⊕ a⟩ = (−1) (∣0⟩ −a ∣1⟩)

a ∈ Σ.

​ ​

∣0 ⊕ 0⟩ − ∣1 ⊕ 0⟩

∣0 ⊕ 1⟩ − ∣1 ⊕ 1⟩

= ∣0⟩ − ∣1⟩ = (−1) (∣0⟩ − ∣1⟩)0

= ∣1⟩ − ∣0⟩ = (−1) (∣0⟩ − ∣1⟩)1

∣π ​⟩2

​ ​

∣π ​⟩2 = ​(−1) (∣0⟩ − ∣1⟩)∣0⟩ + ​(−1) (∣0⟩ − ∣1⟩)∣1⟩
2
1 f(0)

2
1 f(1)

= ∣−⟩(​).
​2

(−1) ∣0⟩ + (−1) ∣1⟩f(0) f(1)

U ​f

∣−⟩ U ​f

(−1)f(0)

∣π ​⟩2

​ ​

∣π ​⟩2 = (−1) ∣−⟩(​)f(0)

​2

∣0⟩ + (−1) ∣1⟩f(0)⊕f(1)

= ​ ​{
(−1) ∣−⟩∣+⟩f(0)

(−1) ∣−⟩∣−⟩f(0)

if f(0) ⊕ f(1) = 0

if f(0) ⊕ f(1) = 1.

f(0) ⊕ f(1)
−1 f(1) − f(0),

(−1)k k k

∣π ​⟩ =3 ​ ​{
(−1) ∣−⟩∣0⟩f(0)

(−1) ∣−⟩∣1⟩f(0)

if f(0) ⊕ f(1) = 0

if f(0) ⊕ f(1) = 1,

which leads to the correct outcome with probability when the
right/topmost qubit is measured.

Before moving on, let's look at the analysis above from a slightly different
angle that may shed some light on the phase kickback phenomenon.

First, notice that the following formula works for all choices of bits

This can be verified by checking it for the two possible values and
:

Using this formula, we see that

for every choice of bits Because this formula is true for
and we see by linearity that

for all qubit state vectors and therefore

The key that makes this work is that In mathematical
terms, the vector is an eigenvector of the matrix having eigenvalue

 We'll discuss eigenvectors and eigenvalues in greater detail in the
upcoming lesson on Phase estimation and factoring, where the phase
kickback phenomenon is generalized to other unitary operations.

Keeping in mind that scalars float freely through tensor products, we find
an alternative way of reasoning how the operation transforms
into in the analysis above:

1

Further remarks on the phase kickback

b, c ∈
Σ.

∣b ⊕ c⟩ = X ∣b⟩c

c = 0
c = 1

​ ​

∣b ⊕ 0⟩

∣b ⊕ 1⟩

= ∣b⟩ = I∣b⟩ = X ∣b⟩0

= ∣¬b⟩ = X∣b⟩ = X ∣b⟩.1

U ​(∣b⟩∣a⟩) =f ∣b ⊕ f(a)⟩∣a⟩ = (X ∣b⟩)∣a⟩f(a)

a, b ∈ Σ. b = 0
b = 1,

U ​(∣ψ⟩∣a⟩) =f (X ∣ψ⟩)∣a⟩f(a)

∣ψ⟩,

U ​(∣−⟩∣a⟩) =f (X ∣−⟩)∣a⟩ =f(a) (−1) ∣−⟩∣a⟩.f(a)

X∣−⟩ = −∣−⟩.
∣−⟩ X

−1.

U ​f ∣π ​⟩1

∣π ​⟩2

https://learning.quantum.ibm.com/course/fundamentals-of-quantum-algorithms/phase-estimation-and-factoring

Now let's see how we can implement Deutsch's algorithm in Qiskit. We'll
start with a version check and then perform the imports required just for
this implementation. For the implementations of other algorithms that
follows, we'll perform the required imports separately for the sake of
greater modularity.

First we'll define a quantum circuit that implements a query gate for one
of the four functions or from one bit to one bit described
previously. As we already mentioned, the implementation of query gates
is not really a part of Deutsch's algorithm itself; here we're essentially just
showing one way to prepare the input, in the form of a circuit
implementation of a query gate.

​ ​

∣π ​⟩2 = U ​(∣−⟩∣+⟩)f

= ​U ​(∣−⟩∣0⟩) + ​U ​(∣−⟩∣1⟩)
​2

1
f

​2
1

f

= ∣−⟩(​).
​2

(−1) ∣0⟩ + (−1) ∣1⟩f(0) f(1)

Implementation in Qiskit

Output:

1.4.1

from qiskit import __version__
print(__version__)

1
2

No output produced

from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator

1
2

f ​,1 f ​,2 f ​,3 f ​4

def deutsch_function(case: int):
 # This function generates a quantum circuit for o
 # from one bit to one bit

1
2
3
4

We can see what each circuit looks like using the method. Here's
the circuit for the function

Next we will create the actual quantum circuit for Deutsch's algorithm,
substituting the query gate with a quantum circuit implementation given
as an argument. Shortly we'll plug in one of the four circuits defined by
the function we defined earlier. Barriers are included
to show the visual separation between the query gate implementation
and the rest of the circuit.

No output produced

 if case not in [1, 2, 3, 4]:
 raise ValueError("`case` must be 1, 2, 3, or

 f = QuantumCircuit(2)
 if case in [2, 3]:
 f.cx(0, 1)
 if case in [3, 4]:
 f.x(1)
 return f

5
6
7
8
9

10
11
12
13

draw

f ​.3

Output:

display(deutsch_function(3).draw(output="mpl"))1

deutsch_function

def compile_circuit(function: QuantumCircuit):
 # Compiles a circuit for use in Deutsch's algorit

 n = function.num_qubits - 1
 qc = QuantumCircuit(n + 1, n)

1
2
3
4
5

Again we can see what the circuit looks like using the method.

Finally, we'll create a function that runs the circuit just defined one time
and outputs the appropriate result: "constant" or "balanced."

No output produced

 qc.x(n)
 qc.h(range(n + 1))

 qc.barrier()
 qc.compose(function, inplace=True)
 qc.barrier()

 qc.h(range(n))
 qc.measure(range(n), range(n))

 return qc

6
7
8
9

10
11
12
13
14
15
16
17

draw

Output:

display(compile_circuit(deutsch_function(3)).draw(outp1

def deutsch_algorithm(function: QuantumCircuit):
 # Determine if a one-bit function is constant or

 qc = compile_circuit(function)

 result = AerSimulator().run(qc, shots=1, memory=T
 measurements = result.get_memory()

1
2
3
4
5
6
7

We can now run Deutsch's algorithm on any one of the four functions
defined above.

Deutsch's algorithm outperforms all classical algorithms for a query
problem, but the advantage is quite modest: one query versus two. The
Deutsch-Josza algorithm extends this advantage — and, in fact, it can be
used to solve a couple of different query problems. Here's a quantum
circuit description of the Deutsch-Jozsa algorithm. (An additional
classical post-processing step, not shown in the figure, may also be
required depending on the specific problem being solved.)

No output produced

 if measurements[0] == "0":
 return "constant"

t "b l d"

8
9

10

Output:

'balanced'

f = deutsch_function(3)
display(deutsch_algorithm(f))

1
2

The Deutsch-Jozsa algorithm

Of course, we haven't actually discussed what problems this algorithm
solves; that's done in the subsections that follow.

We'll begin with the query problem the Deutsch-Josza algorithm was
originally intended to solve, which is known as the Deutsch-Jozsa
problem. The input function takes the form for an arbitrary
positive integer Like Deutsch's problem, the task is to output if is
constant and if is balanced, which again means that the number of
input strings on which the function takes the value is equal to the
number of input strings on which the function takes the value .

Notice that, when is larger than there are functions of the form
 that are neither constant nor balanced. For example, the

function defined as

falls into neither of these two categories. For the Deutsch-Jozsa problem,
we simply don't worry about functions like this — they're considered to be
"don't care" inputs. That is, for this problem we have a promise that is
either constant or balanced.

The Deutsch-Jozsa problem

f : Σ →n Σ
n. 0 f

1 f

0
1

n 1, f :
Σ →n Σ

f : Σ →2 Σ

​ ​

f(00)

f(01)

f(10)

f(11)

= 0

= 0

= 0

= 1

f

Deutsch-Jozsa problem
Input: a function
Promise: is either constant or balanced
Output: if is constant, if is balanced

The Deutsch-Jozsa algorithm, with its single query, solves this problem in
the following sense: if every one of the measurement outcomes is
then the function is constant; and otherwise, if at least one of the
measurement outcomes is then the function is balanced. Another
way to say this is that the circuit described above is followed by a
classical post-processing step in which the OR of the measurement
outcomes is computed to produce the output.

To analyze the performance of the Deutsch-Jozsa algorithm for the
Deutsch-Jozsa problem, it's helpful to begin by thinking about the action
of a single layer of Hadamard gates. A Hadamard operation can be
expressed as a matrix in the usual way,

but we can also express this operation in terms of its action on standard
basis states:

These two equations can be combined into a single formula,

which is true for both choices of

Now suppose that instead of just a single qubit we have qubits, and a
Hadamard operation is performed on each. The combined operation on
the qubits is described by the tensor product (times),
which we write as for succinctness and clarity. Using the formula
from above, followed by expanding and then simplifying, we can express

f : {0, 1} →n {0, 1}
f

0 f 1 f

n 0,
f

1, f

Algorithm analysis

H = ​ ​ ,(
​

​2
1

​

​2
1

​

​2
1

− ​

​2
1)

​ ​

H∣0⟩

H∣1⟩

= ​∣0⟩ + ​∣1⟩
​2

1
​2

1

= ​∣0⟩ − ​∣1⟩.
​2

1
​2

1

H∣a⟩ = ​∣0⟩ +
​2

1
(−1) ∣1⟩ =

2

1 a
​ ​(−1) ∣b⟩,
​2

1

b∈{0,1}

∑ ab

a ∈ Σ.

n

n H ⊗ ⋯ ⊗ H n

H⊗n

the action of this combined operation on the standard basis states of
qubits like this:

Here, by the way, we're writing binary strings of length as
and following the same numbering convention used in Qiskit.

This formula provides us with a useful tool for analyzing the quantum
circuit above. After the first layer of Hadamard gates is performed, the
state of the qubits (including the leftmost/bottom qubit, which is
treated separately from the rest) is

When the operation is performed, this state is transformed into

through exactly the same phase kick-back phenomenon that we saw in
the analysis of Deutsch's algorithm.

Then the second layer of Hadamard gates is performed, which (by the
same formula as above) transforms this state into

This expression looks somewhat complicated, and little can be concluded
about the probabilities to obtain different measurement outcomes
without more information about the function

Fortunately, we just need to know the probability that every one of the
measurement outcomes is — because that's the probability that the
algorithm determines that is constant — and this probability has a
simple formula.

n

H ∣x ​ ⋯x ​x ​⟩⊗n
n−1 1 0

= (H∣x ​⟩) ⊗ ⋯ ⊗ (H∣x ​⟩)n−1 0

= (​(−1) ∣y ​⟩) ⊗ ⋯ ⊗ (​ ​(−1)
2

1

y ​∈Σn−1

∑ x ​y ​n−1 n−1
n−1

​2

1

y ​∈Σ0

∑ x ​y0 0

= ​ ​(−1) ∣y ​ ⋯ y ​⟩
​2n

1

y ​⋯y ​∈Σn−1 0
n

∑ x ​y ​+⋯+x y ​n−1 n−1 0 0
n−1 0

n x ​ ⋯x ​n−1 0

y ​ ⋯ y ,n−1 0

n + 1

(H∣1⟩)(H ∣0 ⋯ 0⟩) =⊗n ∣−⟩ ⊗ ​ ​ ∣x ​ ⋯x ​⟩.
​2n

1

x ​⋯x ​∈Σn−1 0 n

∑ n−1 0

U ​f

∣−⟩ ⊗ ​ ​(−1) ∣x ​ ⋯x ​⟩
​2n

1

x ​⋯x ∈Σn−1 0
n

∑ f(x ​⋯x ​)n−1 0
n−1 0

∣−⟩ ⊗ ​ ​ ​(−1) ∣y ​

2n
1

x ​⋯x ​∈Σn−1 0 n

∑
y ​⋯y ​∈Σn−1 0 n

∑ f(x ​⋯x ​)+x ​y ​+⋯+x ​y ​n−1 0 n−1 n−1 0 0
n−1

f .

0
f

In greater detail, if is constant, then either for
every string in which case the value of the sum is or

 for every string in which case the value
of the sum is Dividing by and taking the square of the absolute
value yields

If, on the other hand, is balanced, then takes the value on half of
the strings and the value on the other half, so the terms
and terms in the sum cancel and we're left with the value

So, we conclude that the algorithm operates correctly provided that the
promise is fulfilled.

The Deutsch-Jozsa algorithm works 100% of the time, always giving us
the correct answer when the promise is met, and requires a single query.
How does this compare with classical query algorithms for the Deutsch-
Jozsa problem?

First, any deterministic classical algorithm that correctly solves the
Deutsch-Jozsa problem must make exponentially many queries:

 queries are required in the worst case. The reasoning is that, if a
deterministic algorithm queries on or fewer different strings, and
obtains the same function value every time, then both answers are still
possible. The function might be constant, or it might be balanced but
through bad luck the queries all happen to return the same function
value. The second possibility might seem unlikely, but for deterministic
algorithms there's no randomness or uncertainty — so they will fail
systematically on certain functions. We therefore have a significant
advantage of quantum over classical algorithms in this regard.

There is a catch, however, which is that probabilistic classical algorithms
can solve the Deutsch-Jozsa problem with very high probability using just
a few queries. In particular, if we simply choose a few different strings of
length randomly, and query on those strings, it's unlikely that we'll
get the same function value for all of them when is balanced. To be
specific, if we choose input strings uniformly at
random, evaluate and answer if the function values
are all the same and if not, then we'll always be correct when is
constant, and wrong in the case that is balanced with probability just

​ ​ ​(−1) ​ =
2n
1

x ​⋯x ​∈Σn−1 0
n

∑ f(x ​⋯x ​)n−1 0

2

​ ​{
1

0

if f is constant

if f is balanced

f f(x ​ ⋯x ​) =n−1 0 0
x ​ ⋯x ​,n−1 0 2 ,n

f(x ​ ⋯x ​) =n−1 0 1 x ​ ⋯x ​,n−1 0

−2 .n 2n

1.

f f 0
x ​ ⋯xn−1 0 1 +1

−1 0.

Classical difficulty

2 +n−1

1
f 2n−1

n f

f

k x , … ,x ∈1 k Σn

f(x), … , f(x),1 k 0
1 f

f

 If we take for instance, this algorithm will answer
correctly with probability greater than %.

So, for this reason, we do still have a rather modest advantage of
quantum over classical algorithms — but it is nevertheless a quantifiable
advantage representing an improvement over Deutsch's algorithm.

To implement the Deutsch-Jozsa algorithm in Qiskit, we'll start by
defining a function that generates a quantum circuit
implementing a query gate, for a randomly selected function satisfying
the promise for the Deutsch-Jozsa problem. With a 50% chance, the
function is constant, and with 50% change the function is balanced. For
each of those two possibilities, the function is selected uniformly from
the functions of that type. The argument is the number of input bits of the
function.

2 .−k+1 k = 11,
99.9

Implementation

No output produced

from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator
import numpy as np

1
2
3

dj_query

def dj_query(num_qubits):
 # Create a circuit implementing for a query gate
 # satisfying the promise for the Deutsch-Jozsa pr

 qc = QuantumCircuit(num_qubits + 1)

 if np.random.randint(0, 2):
 # Flip output qubit with 50% chance
 qc.x(num_qubits)
 if np.random.randint(0, 2):
 # return constant circuit with 50% chance
 return qc

 # Choose half the possible input strings
 on_states = np.random.choice(
 range(2**num_qubits), # numbers to sample fr
 2**num_qubits // 2, # number of samples
 replace=False, # makes sure states are only
)

 def add_cx(qc, bit_string):
 for qubit, bit in enumerate(reversed(bit_stri

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

We can show the quantum circuit implementation of the query gate using
the method as usual.

Next we define a function that creates the Deutsch-Jozsa circuit, taking a
quantum circuit implementation of a query gate as an argument.

No output produced

 if bit == "1":
 qc.x(qubit)
 return qc

 for state in on_states:
 qc.barrier() # Barriers are added to help vi
 qc = add_cx(qc, f"{state:0b}")
 qc.mcx(list(range(num_qubits)), num_qubits)
 qc = add_cx(qc, f"{state:0b}")

 qc.barrier()

return qc

23
24
25
26
27
28
29
30
31
32
33
34
35

draw

Output:

display(dj_query(3).draw(output="mpl"))1

def compile_circuit(function: QuantumCircuit):
 # Compiles a circuit for use in the Deutsch-Jozsa

 n = function.num_qubits - 1
 qc = QuantumCircuit(n + 1, n)
 qc.x(n)
 qc.h(range(n + 1))
 qc.compose(function, inplace=True)

1
2
3
4
5
6
7
8

Finally, a function that runs the Deutsch-Jozsa circuit once is defined.

We can test our implementation by choosing a function randomly,
displaying the quantum circuit implementation of a query gate for this
function, and then running the Deutsch-Jozsa algorithm on that function.

No output produced

 qc.h(range(n))
 qc.measure(range(n), range(n))

9
10

No output produced

def dj_algorithm(function: QuantumCircuit):
 # Determine if a function is constant or balanced

 qc = compile_circuit(function)

 result = AerSimulator().run(qc, shots=1, memory=Tr
 measurements = result.get_memory()
 if "1" in measurements[0]:
 return "balanced"
 return "constant"

1
2
3
4
5
6
7
8
9

10

Output:

'balanced'

f = dj_query(3)
display(f.draw("mpl"))
display(dj_algorithm(f))

1
2
3

The Bernstein-Vazirani problem

Next we'll discuss a problem known as the Bernstein-Vazirani problem.
It's also called the Fourier sampling problem, although there are more
general formulations of this problem that also go by that name.

First let's introduce some notation. For any two binary strings
 and of length we define

We'll refer to this operation as the binary dot product. An alternative way
to define it is like so.

Notice that this is a symmetric operation, meaning that the result doesn't
change if we swap and so we're free to do that whenever it's
convenient. Sometimes it's useful to think about the binary dot product

 as being the parity of the bits of in positions where the string
has a or equivalently, the parity of the bits of in positions where the
string has a

With this notation in hand we can now define the Bernstein-Vazirani
problem.

Bernstein-Vazirani problem
Input: a function
Promise: there exists a binary string for which

 for all
Output: the string

We don't actually need a new quantum algorithm for this problem; the
Deutsch-Jozsa algorithm solves it. In the interest of clarity, let's refer to
the quantum circuit from above, which doesn't include the classical post-
processing step of computing the OR, as the Deutsch-Jozsa circuit.

To analyze how the Deutsch-Jozsa circuit works for a function satisfying
the promise for the Bernstein-Vazirani problem, we'll begin with a quick
observation. Using the binary dot product, we can alternatively describe
the action of Hadamard gates on the standard basis states of qubits
as follows.

x =
x ​ ⋯x ​n−1 0 y = y ​ ⋯ y ​n−1 0 n,

x ⋅ y = x ​y ​ ⊕n−1 n−1 ⋯ ⊕ x ​y ​.0 0

x ⋅ y = ​ ​{
1

0

if x ​y ​ + ⋯ + x ​y ​ is oddn−1 n−1 0 0

if x ​y ​ + ⋯ + x ​y ​ is evenn−1 n−1 0 0

x y,

x ⋅ y x y

1, y

x 1.

f : {0, 1} →n {0, 1}
s = s ​ ⋯ s ​n−1 0

f(x) = s ⋅ x x ∈ Σn

s

Algorithm analysis

n n

Similar to what we saw when analyzing Deutsch's algorithm, this is
because the value for any integer depends only on whether is
even or odd.

Turning to the Deutsch–Jozsa circuit, after the first layer of Hadamard
gates is performed, the state of the qubits is

The query gate is then performed, which (through the phase kickback
phenomenon) transforms the state into

Using our formula for the action of a layer of Hadamard gates, we see that
the second layer of Hadamard gates then transforms this state into

Some simplifications can be made to this state, in the exponent of
inside the sum. We're promised that for some string

 so we can express the state as

Because and are binary values, we can replace the addition
with an XOR — again because the only thing that matters for an integer in
the exponent of is whether it is even or odd. Making use of the
symmetry of the binary dot product, we obtain this expression for the
state:

(Parentheses have been added for clarity, though they aren't really
necessary because it's conventional to treat the binary dot product as
having higher precedence than the exclusive-OR.)

At this point we will make use of the following formula.

H ∣x⟩ =⊗n
​ ​(−1) ∣y⟩
​2n

1

y∈Σn

∑ x⋅y

(−1)k k k

n + 1

∣−⟩ ⊗ ​ ​ ∣x⟩.
​2n

1

x∈Σn

∑

∣−⟩ ⊗ ​ ​(−1) ∣x⟩.
​2n

1

x∈Σn

∑ f(x)

∣−⟩ ⊗ ​ ​ ​(−1) ∣y⟩.
2n
1

x∈Σn

∑
y∈Σn

∑ f(x)+x⋅y

−1
f(x) = s ⋅ x s =

s ​ ⋯ s ​,n−1 0

∣−⟩ ⊗ ​ ​ ​(−1) ∣y⟩.
2n
1

x∈Σn

∑
y∈Σn

∑ s⋅x+x⋅y

s ⋅ x x ⋅ y

−1

∣−⟩ ⊗ ​ ​ ​(−1) ∣y⟩.
2n
1

x∈Σn

∑
y∈Σn

∑ (s⋅x)⊕(y⋅x)

We can obtain the formula through a similar formula for bits,

together with an expansion of the binary dot product and bitwise
exclusive-OR:

This allows us to express the state of the circuit immediately prior to the
measurements like this:

The final step is to make use of yet another formula, which works for
every binary string

Here we're using a simple notation for strings that we'll use several more
times in the lesson: is the all-zero string of length

A simple way to argue that this formula works is to consider the two
cases separately. If then for every string so
the value of each term in the sum is and we obtain by summing and
dividing by On the other hand, if any one of the bits of is equal to
then the binary dot product is equal to for exactly half of the
possible choices for and for the other half — because the value
of the binary dot product flips (from to or from to) if we flip
any bit of in a position where has a

If we now apply this formula to simplify the state of the circuit prior to the
measurements, we obtain

owing to the fact that if and only if Thus, the
measurements reveal precisely the string we're looking for.

(s ⋅ x) ⊕ (y ⋅ x) = (s ⊕ y) ⋅ x

(ac) ⊕ (bc) = (a ⊕ b)c,

​

(s ⋅ x) ⊕ (y ⋅ x) = (s ​x ​) ⊕ ⋯ ⊕ (s ​x ​) ⊕ (y ​x ​) ⊕ ⋯ ⊕n−1 n−1 0 0 n−1 n−1

= (s ​ ⊕ y ​)x ​ ⊕ ⋯ ⊕ (s ​ ⊕ y ​)x ​n−1 n−1 n−1 0 0 0

= (s ⊕ y) ⋅ x

∣−⟩ ⊗ ​ ​ ​(−1) ∣y⟩.
2n
1

x∈Σn

∑
y∈Σn

∑ (s⊕y)⋅x

z = z ​ ⋯ z ​.n−1 0

​ ​(−1) =
2n
1

x∈Σn

∑ z⋅x
​ ​{

1
0

if z = 0n

if z = 0 n

0n n.

z = 0 ,n z ⋅ x = 0 x ∈ Σ ,n

1, 1
2 .n z 1,

z ⋅ x 0
x ∈ Σn 1

z ⋅ x 0 1 1 0
x z 1.

∣−⟩ ⊗ ​ ​ ​(−1) ∣y⟩ =
2n
1

x∈Σn

∑
y∈Σn

∑ (s⊕y)⋅x ∣−⟩ ⊗ ∣s⟩,

s ⊕ y = 0n y = s.
s

While the Deutsch-Jozsa circuit solves the Bernstein-Vazirani problem
with a single query, any classical query algorithm must make at least
queries to solve this problem. This can be reasoned through a so-called
information theoretic argument. Each classical query reveals a single bit
of information about the solution, and there are bits of information that
need to be uncovered. It is, in fact, possible to solve the Bernstein-
Vazirani problem classically by querying the function on each of the
strings having a single in each possible position, and for all other
bits, which reveals the bits of one at a time. So, the advantage of
quantum over classical algorithms for this problem is query versus
queries.

We've already implemented the Deutsch-Jozsa circuit above, and here
we will make use of it to solve the Bernstein-Vazirani problem. First we'll
define a function that implements a query gate for the Bernstein-Vazirani
problem given any binary string

Classical difficulty

n

n

n

1, 0
s

1 n

Implementation

s.

Output:

def bv_query(s):
 # Create a quantum circuit implementing a query ga
 # Bernstein-Vazirani problem.

 qc = QuantumCircuit(len(s) + 1)
 for index, bit in enumerate(reversed(s)):
 if bit == "1":
 qc.cx(index, len(s))
 return qc

display(bv_query("1011").draw(output="mpl"))

1
2
3
4
5
6
7
8
9

10
11

Now we can create a function that runs the Deutsch-Jozsa circuit on the
function, using the function that was defined
previously.

In the context of the Bernstein-Vazirani problem, it is common that the
Deutsch-Jozsa algorithm is referred to as the "Bernstein-Vazirani
algorithm." This is slightly misleading, because the algorithm is the
Deutsch-Jozsa algorithm, as Bernstein and Vazirani clearly stated in their
work.

compile_circuit

Output:

'1011'

def bv_algorithm(function: QuantumCircuit):
 qc = compile_circuit(function)
 result = AerSimulator().run(qc, shots=1, memory=Tr
 return result.get_memory()[0]

display(bv_algorithm(bv_query("1011")))

1
2
3
4
5
6

Remark on nomenclature

What Bernstein and Vazirani did after showing that the Deutsch-Jozsa
algorithm solves the Bernstein-Vazirani problem (as it is stated above)
was to define a much more complicated problem, known as the recursive
Fourier sampling problem. This is a highly contrived problem where
solutions to different instances of the problem effectively unlock new
levels of the problem arranged in a tree-like structure. The Bernstein-
Vazirani problem is essentially just the base case of this more
complicated problem.

The recursive Fourier sampling problem was the first known example of a
query problem where quantum algorithms have a so-called super-
polynomial advantage over probabilistic algorithms, thereby surpassing
the advantage of quantum over classical offered by the Deutsch-Jozsa
algorithm. Intuitively speaking, the recursive version of the problem
amplifies the versus advantage of quantum algorithms to something
much larger. The most challenging aspect of the mathematical analysis
establishing this advantage is showing that classical query algorithms
can't solve the problem without making lots of queries. This is quite
typical; for many problems it can be very difficult to rule out creative
classical approaches that solve them efficiently.

Simon's problem, and the algorithm for it described in the next section,
does provide a much simpler example of a super-polynomial (and, in fact,
exponential) advantage of quantum over classical algorithms, and for this
reason the recursive Fourier sampling problem is less often discussed. It
is, nevertheless, an interesting computational problem in its own right.

Simon's algorithm is a quantum query algorithm for a problem known as
Simon's problem. This is a promise problem with a flavor similar to the
Deutsch-Jozsa and Bernstein-Vazirani problems, but the specifics are
different. Simon's algorithm is significant because it provides an
exponential advantage of quantum over classical (including probabilistic)
algorithms, and the technique it uses inspired Peter Shor's discovery of
an efficient quantum algorithm for integer factorization.

The input function for Simon's problem takes the form

1 n

Simon's algorithm

Simon's problem

for positive integers and We could restrict our attention to the case
 in the interest of simplicity, but there's little to be gained in

making this assumption — Simon's algorithm and its analysis are basically
the same either way.

Simon's problem
Input: a function
Promise: there exists a string such that

 for all
Output: the string

We'll unpack the promise to better understand what says momentarily,
but first let's be clear that it requires that has a very special structure —
so most functions won't satisfy this promise. It's also fitting to
acknowledge that this problem isn't intended to have practical
importance. Rather, it's a somewhat artificial problem tailor-made to be
easy for quantum computers and hard for classical computers.

There are two main cases: the first case is that is the all-zero string
and the second case is that is not the all-zero string.

It's important to recognize that there can only be one string that works
if the promise is met, so there's always a unique correct answer for
functions that satisfy the promise.

Here's an example of a function taking the form that
satisfies the promise for the string

f : Σ →n Σm

n m.
m = n

f : Σ →n Σm

s ∈ Σn [f(x) = f(y)] ⇔
[(x = y) ∨ (x ⊕ s = y)] x, y ∈ Σn

s

f

s 0 ,n

s

Case 1: If is the all-zero string, then we can simplify the if
and only if statement in the promise so that it reads

 This condition is true for all strings if and
only if is a one-to-one function.

– s = 0 .n s

[f(x) =
f(y)] ⇔ [x = y]. x, y ∈ Σn

f

Case 2: If is not the all-zero string, then the promise being
satisfied for this string implies that is two-to-one, meaning that for
every possible output string of there are exactly two input strings
that cause to output that string. Moreover, these two input strings
must take the form and for some string

– s = 0 .n s

f

f ,
f

x x ⊕ s x.

s

f : Σ →3 Σ5

s = 011.

There are different input strings and different output strings, each of
which occurs twice — so this is a two-to-one function. Moreover, for any
two different input strings that produce the same output string, we see
that the bitwise XOR of these two input strings is equal to which is
equivalent to saying that either one of them equals the other XORed with

Notice that the only thing that matters about the actual output strings is
whether they're the same or different for different choices of input
strings. For instance, in the example above, there are four strings

 and that appear as outputs of We
could replace these four strings with different strings, so long as they're
all distinct, and the correct solution would not change.

Here's a quantum circuit diagram representing Simon's algorithm.

​ ​

f(000)

f(001)

f(010)

f(011)

f(100)

f(101)

f(110)

f(111)

= 10011

= 00101

= 00101

= 10011

= 11010

= 00001

= 00001

= 11010

8 4

011,

s.

(10011, 00101, 00001, 11010) f .

s = 011

Quantum circuit description

To be clear, there are qubits on the top that are acted upon by
Hadamard gates and qubits on the bottom that go directly into the
query gate. It looks very similar to the algorithms we've already
discussed in the lesson, but this time there's no phase kickback; the
bottom qubits all go into the query gate in the state

To solve Simon's problem using this circuit will actually require several
independent runs of it followed by a classical post-processing step, which
will be described later after the behavior of the circuit is analyzed.

The analysis of Simon's algorithm begins along similar lines to the
Deutsch-Jozsa algortithm. After the first layer of Hadamard gates is
performed on the top qubits, the state becomes

When the is performed, the output of the function is XORed onto
the all-zero state of the bottom qubits, so the state becomes

n

m

m ∣0⟩.

Analysis

n

​ ​ ∣0 ⟩∣x⟩.
​2n

1

x∈Σn

∑ m

U ​f f

m

When the second layer of Hadamard gates is performed, we obtain the
following state by using the same formula for the action of a layer of
Hadamard gates as before.

At this point the analysis diverges from the ones for the previous
algorithms in this lesson. We're interested in the probability for the
measurements to result in each possible string Through the
rules for analyzing measurements described in the Multiple systems
lesson of Basics of quantum information, we find that the probability

 to obtain the string is equal to

To get a better handle on these probabilities, we'll need just a bit more
notation and terminology. First, the range of the function is the set
containing all of its output strings.

Second, for each string we express the set of all input
strings that cause the function to evaluate to this output string as

The set is known as the preimage of under We can
define the preimage under of any set in place of in an analogous
way — it's the set of all elements that maps to that set. (This notation
should not be confused with the inverse of the function which may not
exist. The fact that the argument on the left-hand side is the set
rather than the element is the clue that allows us to avoid this
confusion.)

Using this notation, we can split up the sum in our expression for the
probabilities above to obtain

​ ​ ∣f(x)⟩∣x⟩.
​2n

1

x∈Σn

∑

​ ​ ​(−1) ∣f(x)⟩∣y⟩
2n
1

x∈Σn

∑
y∈Σn

∑ x⋅y

y ∈ Σ .n

p(y) y

p(y) = ​ ​ ​(−1) ∣f(x)⟩ ​ .
2n
1

x∈Σn

∑ x⋅y

2

f

range(f) = {f(x) : x ∈ Σ }n

z ∈ range(f),
z

f ({z}).−1

f ({z}) =−1 {x ∈ Σ :n f(x) = z}

f ({z})−1 {z} f .
f {z}

f

f ,
{z}

z

https://learning.quantum.ibm.com/course/basics-of-quantum-information/multiple-systems
https://learning.quantum.ibm.com/course/basics-of-quantum-information

Every string is represented exactly once by the two summations
— we're basically just putting these strings into separate buckets
depending on which output string they produce when we
evaluate the function and then summing separately over all the
buckets.

We can now evaluate the Euclidean norm squared to obtain

To simplify these probabilities further, let's take a look at the value

for an arbitrary selection of

If it happens to be the case that then is a one-to-one function
and there's always just a single element for every

 The value of the expression is in this case.

If, on the other hand, then there are exactly two strings in the set
 To be precise, if we choose to be any one of

these two strings, then the other string must be by the promise in
Simon's problem. Using this observation we can simply as follows.

So, it turns out that the value is independent of the specific choice of
 in both cases.

p(y) = ​ ​ ​(​(−1))∣z⟩ ​ .
2n
1

z∈range(f)

∑
x∈f ({z})−1

∑ x⋅y

2

x ∈ Σn

z = f(x)
f ,

p(y) = ​ ​ ​ ​(−1) ​ .
22n

1

z∈range(f)

∑
x∈f ({z})−1

∑ x⋅y

2

​ ​(−1) ​

x∈f ({z})−1

∑ x⋅y

2

(1)

z ∈ range(f).

s = 0 ,n f

x ∈ f ({z}),−1 z ∈
range(f). (1) 1

s = 0 ,n

f ({z}).−1 w ∈ f ({z})−1

w ⊕ s

(1)

​ ​

​ ​(−1) ​

x∈f ({z})−1

∑ x⋅y

2

= ​(−1) + (−1) ​

w⋅y (w⊕s)⋅y
2

= ​(−1) (1 + (−1)) ​

w⋅y s⋅y
2

= ​1 + (−1) ​

y⋅s
2

= ​ ​{
4

0

y ⋅ s = 0

y ⋅ s = 1

(1)
z ∈ range(f)

We can now finish off the analysis by looking at the same two cases as
before separately.

We now know what the probabilities are for the possible measurement
outcomes when we run the quantum circuit for Simon's algorithm. Is this
enough information to determine ?

The answer is yes, provided that we're willing to repeat the process
several times and accept that it could fail with some probability (which
we can make very small by running the circuit enough times). The
essential idea is that each execution of the circuit provides us with
statistical evidence concerning and we can use that evidence find
with very high probability if we run the circuit sufficiently many times.

Let's suppose that we run the circuit independently times, for
 There's nothing special about this particular number of

iterations — we could take to be larger (or smaller) depending on the
probability of failure we're willing to tolerate, as we will see. Choosing

 will ensure that we have greater than a % chance to
recover

Case 1: In this case the function is one-to-one, so there are
 strings and we obtain

In words, the measurements result in a string chosen
uniformly at random.

– s = 0 .n f

2n z ∈ range(f),

p(y) = ⋅
22n

1
2 =n

​.
2n
1

y ∈ Σn

Case 2: In this case is two-to-one, so there are
elements in Using the formula from above we conclude that
the probability to measure each is

In words, we obtain a string chosen uniformly at random from the set
 which contains strings. Because

exactly half of the binary strings of length have binary dot product
with and the other have binary dot product with as we already
observed in the analysis of the Deutsch-Jozsa algorithm for the
Bernstein-Vazirani problem.

– s = 0 .n f 2n−1

range(f).
y ∈ Σn

p(y) = ​ ​ ​ ​(−1) ​ =
22n

1

z∈range(f)

∑
x∈f ({z})−1

∑ x⋅y

2

​ ​{
​

2n−1
1

0

y ⋅ s = 0

y ⋅ s = 1

{y ∈ Σ :n y ⋅ s = 0}, 2n−1 s = 0 ,n

n 1
s 0 s,

Classical post-processing

s

s, s

k k =
n + 10.

k

k = n + 10 99.9
s.

By running the circuit times, we obtain strings To be
clear, the superscripts here are part of the names of these strings, not
exponents or indexes to their bits, so we have

We now form a matrix having rows and columns by taking the bits
of these string as binary-valued entries.

Now, we don't know what is at this point — our goal is to find this string.
But imagine for a moment that we do know the string and we form a
column vector from the bits of the string as follows.

If we perform the matrix-vector multiplication modulo — meaning
that we perform the multiplication as usual and then take the remainder
of the entries of the result after dividing by — we obtain the all-zero
vector.

That is, treated as a column vector as just described, the string will
always be an element of the null space of the matrix provided that we
do the arithmetic modulo This is true in both the case that and

 To be more precise, the all-zero vector is always in the null space
of and it's joined by the vector whose entries are the bits of in case

k y , ..., y ∈1 k Σ .n

​ ​

y1

y2

yk

= y ​ ⋯ y ​n−1
1

0
1

= y ​ ⋯ y ​n−1
2

0
2

⋮

= y ​ ⋯ y ​n−1
k

0
k

M k n

M = ​ ​ ​ ​ ​

y ​n−1
1

y ​n−1
2

⋮

y ​n−1
k

⋯

⋯

⋱

⋯

y ​0
1

y ​0
2

⋮

y ​0
k

s

s,
v s = s ​ ⋯ s ​n−1 0

v = ​ ​ ​

s ​n−1

⋮
s ​0

Mv 2

2

Mv = ​ ​ ​ =

y ⋅ s1

y ⋅ s2

⋮

y ⋅ sk

​ ​ ​

0
0

⋮
0

v s

M ,
2. s = 0n

s = 0 .n

M , s

s = 0 .n

The question remaining is whether there will be any other vectors in the
null space of besides the ones corresponding to and The answer
is that this becomes increasingly unlikely as increases — and if we
choose the null space of will contain no other vectors in
addition to those corresponding to and with greater than a %
chance. More generally, if we replace with for a
arbitrary choice of a positive integer the probability that the vectors
corresponding to and are alone in the null space of is at least

Using linear algebra, it is possible to efficiently calculate a description of
the null space of modulo Specifically, it can be done using Gaussian
elimination, which works the same way when arithmetic is done modulo

 as it does with real or complex numbers. So long as the vectors
corresponding to and are alone in the null space of which
happens with high probability, we can deduce from the results of this
computation.

How many queries does a classical query algorithm need to solve Simon's
problem? The answer is: a lot, in general.

There are different precise statements that can be made about the
classical difficulty of this problem, and here's just one of them. If we have
any probabilistic query algorithm, and that algorithm makes fewer than

 queries, which is a number of queries that's exponential in
then that algorithm will fail to solve Simon's problem with probability at
least Sometimes, proving impossibility results like this can be very
challenging, but this one isn't too difficult to prove through an elementary
probabilistic analysis. Here, however, we'll only briefly examine the basic
intuition behind it.

We're trying to find the hidden string but so long as we don't query the
function on two strings having the same output value, we'll get very
limited information about Intuitively speaking, all we'll learn is that the
hidden string is not the exclusive-OR of any two distinct strings we've
queried. And if we query fewer than strings, then there will
still be a lot of choices for that we haven't ruled out. This isn't a formal
proof, it's just the basic idea.

So, in summary, Simon's algorithm provides us with a striking advantage
of quantum over classical algorithms within the query model. In
particular, Simon's algorithm solves Simon's problem with a number of

M 0n s.
k

k = n + 10, M

0n s 99.9
k = n + 10 k = n + r

r,
0n s M

1 − 2 .−r

M 2.

2
0n s M ,

s

Classical difficulty

2 −n/2−1 1 n,

1/2.

s,

s.
s

2 −n/2−1 1
s

queries that's linear in the number of input bits of our function,
whereas any classical algorithm, even if it's probabilistic, needs to make a
number of queries that's exponential in in order to solve Simon's
problem with a reasonable probability of success.

First let us take care of the required imports. Note that we'll be using the
galois extension for NumPy to perform the null space computation, and
you'll need to install it to run this code on your own if you haven't already.

To implement Simon's algorithm in Qiskit, we'll use the fact that we can
convert unitary matrices into gates in Qiskit using the method.
Specifically, we'll use this methodology to define a query gate for a
randomly chosen function satisfying Simon's problem for a given string

n

n

Implementation

No output produced

from qiskit import QuantumCircuit
from qiskit_aer import AerSimulator
import numpy as np
import galois

1
2
3
4

.unitary

s.

def simon_function(s: str):
 # Create a QuantumCircuit implementing a query ga
 # promise for the hidden string `s`

 # The quantum circuit will have 2n qubits for n b
 n = len(s)
 qc = QuantumCircuit(2 * n)

 # Define a random permutation of all n bit string
 # effectively hide the string s.
 pi = np.random.permutation(2**n)

 # Now we'll define a query gate explicitly. The i
 # g(x) = min{x,x ^ s}, which is a very simple fun
 # (The operation ^ is the bitwise XOR.) Then we t
 # and the random permutation pi. This gives us a
 # promise for s.

 query_gate = np.zeros((4**n, 4**n))
 for x in range(2**n):
 for y in range(2**n):
 z = y ^ pi[min(x, x ^ int(s, 2))]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

https://pypi.org/project/galois/

Mark as complete

No output produced

 query_gate[x + 2**n * z, x + 2**n * y] =

 # Our circuit has just this one query gate
 qc.unitary(query_gate, range(2 * n))

24
25
26
27

Complete

Quantum algorithmic
foundations

https://learning.quantum.ibm.com/course/fundamentals-of-quantum-algorithms/quantum-algorithmic-foundations

