THE .CLUB CLUB

Egoless Engineering

Like many of you, | was raised in the background radiation of Calvinist thought. | expected
little but redemptive hard labor, before presumably one day dying in a mine. | also read
Hackers & Painters at an impressionable age and was kind of a jerk about it for a while. This
talk is about how despite this, | got better.

The real urtext of my tradition was two people standing_on stage explaining how although

they have different jobs, they are friends, and try to help each other. It was mindblowing at
the time and led to many subsequent revelations, and ultimately a blissful state of psychic
death. It turns out misery is a shitty proxy metric.

Here are some other talks and my website.

“ @mcfunley.com

http://dotclub.club/
https://www.youtube.com/watch?v=LdOe18KhtT4
https://dotclub.club/
https://mcfunley.com/
https://bsky.app/profile/mcfunley.com

Hey everyone

Egoless Engineering

Dan McKinley 2024 https://egoless.engineering @mcfunley.com on BlueSky

I'm Dan McKinley. It's nice to talk to all
of you.

I've done engineering since the turn
of the century, and led small teams
and biggish orgs.

Hi, I’'m Dan McKinley

quant-adjacent engineering and stuff

cf. mcfunley.com

| once worked on an engineering team that

was executing very well

Choose Boring Technology Data Driven Products Now!

Dan McKinley @mcfunley

it was pretty chill | wouldn’t mind doing it again

mcfunley.com

I've spun the wheel enough times that
I've gotten a few stretches of my
career when things were going great.
Nothing gold can stay though, and
those moments were fleeting.

Welcome to my latest talk in my very-
slowly-moving series about trying to
rekindle that magic.

#

EVERYTHING
WAS
EAUTIFUL,
AND
NOTHING
HURT
M ——

At most places I've worked, things
haven't been going great. I'm not
really complaining. | was in a position
of responsibility at those places, and |
hope | did more good than harm.

I'm going to talk through some stories
about that. My hope with this is to do
more good than harm.

Maybe y'all can create more fulfilling
places to work, and hire me to work
there.

#

So | have noticed similarities when
things are going poorly, and would
like to talk about them.

#

What this talk is about

~Everyone honks up by diffusing
responsibility poorly

One big problem everywhere is that
once you have two employees, you
have to divide responsibility
somehow.

How you do that is really important.
It's a move that has both immediate
and second-order consequences
which are mostly awful to
contemplate.

So most companies don't
contemplate it that much.
#

Computer scientists are also really bad at it

Despite LITERALLY studying the asymptotic limits of work completion under various conditions

* Amdahl’s Law: you can’t just parallelize forever, coordination costs will kill
youll!

» Kingman’s formula: growth in requests for a shared resource can have
nonlinear implications for wait times!!!

One can only conclude that we care about our computers more than ourselves.

Computer scientists like me start their
career by realizing that they
accidentally joined a math major that
isn't a science, and isn't about
computers. It's about how abstract
work gets done and stuff.

And the trauma of this initial
realization is so severe that we spend
our entire careers refusing to apply
anything we learned outside the
domain of computers.

Things might be better if we tried to
think about work as much as we think
about the computers. Later in this talk
| will try, despite how much it hurts me
to do that.

#

Sad Stories

I'd like to talk through the dynamics
I've seen at different places. I'm going
to anonymize it somewhat because
even really successful companies
suffer from pathology, and my intent
is to learn rather than just shitpost.

#

The first job | want to talk about was a
startup | worked for, which ultimately
was really successful. | was in the first
20 employees there.

| worked for a startup

Javascript and Flash

python service

postgres sprocs

Dan McKinley @mcfunley - Nov 13, 2019
So the first version of Etsy (2005) was PHP talking to Postgres, written by
someone learning PHP as he was doing it, which was all fine. Postgres was
kind of an idiosyncratic choice for the time, but it didn’t matter yet and
anyway that’s a different story.

(0K} 0 36 Q 199 ihi Q&

Dan McKinley
“ @mcfunley
| started in the long shadow of “v2,” a catastrophic attempt to rewrite it,
adding a Python middle layer. They had asked a Twisted consultant what

to do, and the Twisted consultant said they needed a Twisted middle
layer (go figure).

You'd think this would be a really
scrappy group but no, at that point
they had already managed to set
themselves up like IBM in the 1970s
or something.

| was hired to work on a python
middle layer which should not have
existed in the first place. In this
misguided attempt to scale, they
added a Python middle layer. The
theory was that web requests would
be served faster if they progressed
through more network hops.

This is a bad theory.
#

Javascript and Flash

python service

postgres sprocs

1 ~Engineering founder (unreachable)

1 Engineering founder (reachable)

~8 newer hires

1 Hunter Thompson-shaped legend in Sausalito

So to launch any feature at this
company, you needed to get a
database person to do some DDL and
write some stored procedures. You
needed to get a python person to
write some python that didn't achieve
much. You needed a PHP person to
write some frontend code. And so on.

As a result of all of this, the company
released zero features for two whole
years and everyone got fired.

(But not me, | survived by
complaining.)
#

Much later on | worked at a fairly
mature company that had more than
a thousand people and was selling a

b2b product.
#

| worked for a B2B service provider

Eng. Manager Eng. Manager Eng. Manager

'

Frontend engineers Frontend engineers Frontend engineers

DBA’s

Networking

Backend engineers

Security Engineers

s

They'd managed to avoid serializing
absolutely everything, in that they'd
divided into feature teams. And they
had shared services teams like ops,
and DBA's, and so on. That seemed
reasonable at first, or at least not
different than most places.

#

Networking

Some guy who says he
owns analytics

“Manager, analytics

Security Engineers

also somehow manages
no team

But something interesting had
happened where the roles just kept
dividing, like a bacteria colony out of
control or something.

They split engineering management
in half and created a role called
“release manager.” To ... manage
releases, | guess? It was never entirely
clear to me why. At some point things
just came unglued.

FenctEETEEESs Do all the frontend tickets

Do all the backend tickets

I

Do all the security tickets

...... for all of the development teams

And they chased that dragon into
some very dark corners.

A big mistake they made in my view
was that they conflated roles with
work a little too much. Frontend
engineers did all of the frontend work
and none of the backend work, and
vice versa.

That was survivable, but taking that
policy to the security team and
making the security team do all of the
security work was not. I'll come back
to this.

#

And then finally | worked at a
company that mostly made native
client applications. There was initially
one big hit client app, but by the
2020s a bigger, disjointed set of
efforts had grown up in parallel.

#

| worked for a native client company

client app
Vi 5

Q
Wnlng o hasm

Epically huge important client app

client app

0‘-’6\
a different corporate QCF
entity altogether \ﬂ{\\Q
\\’b'

The product portfolio as a whole had
a very weak supervisory structure.
The products didn't coordinate in any
meaningful way on tech stacks or
other decisions, since they all
independently reported up to a CEO
that made no attempt to coordinate
them.

But despite that, an attempt was
made to have a shared operations
function. This presented a lot of
difficulty because the operations
group wasn't involved in architecture
decisions.

They wouldn't have had enough time
to do that anyway, since they were
busy with hundreds of services that
dev teams had moved on from years
before. It's a tale as old as time.

#

So that was a high-level overview of
how all struggling companies are
unigue. But they're also all the same.
I've spent many nights pondering the
mistakes these places have made,
and I'd like to inflict my observations
0N you NOW.

#

Generalizing the Hellscape

Tasks and job descriptions are oft conflated

One big thing that a lot of people love
to do is create new role types. For any
new thing a company wants to do, the
tendency is to put up a new job
description.

#

| think a lot of people notice this and
chafe at it when the role is for the new
hotness. For example, every company
wants to rub some Al on their stuff

We need code running on servers Backend engineers should do it . .
now, so they are putting up job
We need javascript written Frontend engineers should do it descriptions for Al engineers.
We need analysis completed Data scientists should do it sitting in such a Co,mpan.y' youre
annoyed that they're doing this (and
Releases need to be coordinated There should be release managers potentially paying that person more
_ _ than you) when you could easily rub
We need database queries A DBA should write them some Al on some stuff.
Our code is insecure We need a security engineer to fix it

This is just a salient example of a
dumb mistake that happens in many,
many more dimensions all the time.
#

A mundane example of that is the ops
and development divide (or these
days maybe the divide between SRE
and development).

That divide has been very
pronounced at nearly every place I've
worked.

#

The devops revolution is ... unevenly

distributed

- “
f: > .«-'
See you know how to say “devops”

——

'
' Wy
And that’s really the most important
part of the devops .

S

~%
3

Na
A

e

e
~ELE

‘;.y

But you don’t know how to do the devops

.
-
o

N

L}

Anybody can just say “devops”

And that's despite every single one of
those companies claiming that they
quote-unguote “do devops.”

Devops as a portmanteau was meant
to communicate something about
breaking down the divide, and
building empathy between these two
groups. | have worked hard to
cultivate this, personally, but rarely
found it in the wild in reality.

#

Once people have subdivided work,
they naturally try to arrange people
into assembly lines. If you have Al
work, hand it over to the Al person. If
you have ops work, give it to the ops
person.

That's the kind of thing that feels
obvious to leaders, but | think it's

wrong and also sucks wrong. And sometimes it's wrong in a
k mathematically provable way. Let's

digin.
#

Strict division of labor feels obvious, but is

Deriving the Equation for a Disaster

Here are some constraints from three executives

* The CPO says every release has to be assessed for potential revenue impact
by a data scientist.

* The CFO says we can add 10 headcount this year.

* The CEO wants to jump the S-curve or something and thus is using all of that
headcount on new products and new features.

Here's a very typical set of executive
constraints. They might say: we have
to measure everything. We aren't
going to hire more data scientists.
We're going to focus on building new
products and only hire new engineers
for that.

#

Those are inputs to a very simple
equation.

Engineers produce work that needs

to be analyzed at a rate, and the

analysis takes a finite amount of time.
It takes 2 days on average to do an analysis. Remember the premise is that we are
trying to go faster by adding
engineers.

What happens to feature release wait times as we add engineers? #

One feature per week is produced on average per engineer.

0.5°+ 0.25°
wait time for analysis = (1 f .)(+2 >>< 16 hours

expected hours spent waiting

2000

1500

1000

500

25 50 75

percentage of time the data scientists are doing an analysis (o)

100

@

But, whoops! We made everything go
slower, actually.

With that simple setup, it doesn't take
very long at all for things to get
extremely out of hand. We added a
few engineers and wound up with a
nonlinear increase in how long people
need to wait before they can ship
things.

By the time the data scientists are
fully busy, the individual feature
waiting for analysis is absolutely
doomed.

(Source for the math is here.)
#

https://docs.google.com/spreadsheets/d/1OIoTVnOmSPpWAnu5QCwvf7bjNjPKWfnZQ3RjQ4hoQG0/edit?usp=sharing

It’s so much worse though

Since the data scientists are dying,
* You can only interact with them by submitting tickets.
* Nobody can explain their feature 100% correctly in a ticket.
* 120 hours later is a bad time to be told you asked the question wrong.

* They’ve also got no time to make tools or datasets you might use to do the work
yourself.

Executives are:
» Typically graph and equation blind.

* Well-adapted to insisting on fundamentally contradictory goals.

Of course, organizational dynamics
are stacked against analyzing this
problem in a clearheaded way.
Everyone thinks the other groups are
sandbagging. We come into petty
conflicts that obscure the physics of
the situation.

#

Bad organization is a radioactive source of

extra work

That kind of setup is one in which
ticketing things can generate more
work than you'd have if people had
time to talk to each other.

That's a specific case of a general
issue. Poorly factored organizational
boundaries create work.

#

“Let’s make a security
team to do these
security tickets”

Idealized conception

task

task

task

task

task

task

I
e
)
)
T

Earlier | talked about a company that
tried to use its security team to do all
of the security remediation work.

By adding a queue for security
tickets, they were hoping for a result
like this. There'd be the same total
volume of work getting through the
system, and fewer context switches.
#

The problem with that is the horrible
things development can get up to
@theONION when it's not encouraged to worry
et i G s it about security.
#

Point/Counterpoint

This Regex-based Framework that
Rewrites Every SQL Query Will Plague us
with Injection Bugs for Decades vs. No It
Won't

This Regex-based Framework that Rewrites
Every SQL Query Will Plauge us with
Injection Bugs for Decades

NethanEclat My colleagues in product development may think that
i

ng. Everything is going to

automatically re ally overreacting.

es using regexes is a neat
idea, but I for o vill want to use

words such as " data sometimes.

If you thought Osama bin Laden was bad, just wait until the

“Let’s make a security
team to do these
security tickets”

Typical results

T

tasl

I

3

We can generate extra security work
with our engineering activity if we
erect a wall between those things.

On a long enough timescale of course
something horrible precipitates, but
that's a problem for future you. In the
here and now it's only a minor
humanitarian catastrophe which we
can ignore.

An undercurrent of all of this is how
people conceive of themselves, and
how they are to one another.

#

Humans have an impressive capacity for

chauvinism

There can be a general tendency
among some of us to imagine that
other peoples' jobs are easy
compared to ours.

Obviously it's not a majoritarian view
that working on the server is so easy

“"Why hasn't SRE shipped this yet? il Seenndl ™
We already did the hard part™.” there do hold this view.

* We thought of it and typeset some high-level proofs in IATEX

Those vibes can absolutely run in the
other direction though, and thinking
that product work is less technical
might be even more common.
Platform teams are full of folks who
aren't very worried about what the
company they work for even does.

“We’ll make the platform, youcan *
worry about the business logic™”

* term of art meaning “your bullshit” (as opposed to my code, which is beautiful)

Although the results of these

. : : : tendencies are very stupid, puntin
The “frontend/backend/SRE/DBA/DS/native client/etc is the offenders inte ’E/he Sﬁn ugua”y 9
easy” flywheel of dipshit garbage eludes us a solution. That's because
or: how to be stupid while feeling smart this behavior can be coded as

“smart” and “valuable"” to outside
observers.

1. Be a big jerk

Demortvate the psopis you havs While a CEO may not endorse the
behavior, they imagine that it gets
. - results. Except it doesn't. Driving
3. Reinforce prejudices 2. Observe results other workers out reduces total

Avoid introspection of any kind

Convince leadership that your behavior is a Strongest people leave th I’O U g h p Ut 5 O bVlO LI S | y

necessary evil Remnant performs less well while job hunting

New hires are always starting from scratch
The biggest problem with brilliant
jerks is not necessarily even that

they're jerks. When you take a
systemic perspective, they aren't
even brilliant! They're dumb!

#

Parochialism

& Ego

Recurring themes throughout every
chapter of this for me are
parochialism and ego, the yin and
yang of dysfunction. Both of these
have positive and negative spins.

Parochialism might be deference, and
not wanting to step on someone
else’s toes. Or it might be lack of
curiosity. Ego might be pride in your
work, or it might be territoriality, or
dismissiveness in the abilities of
others.

These are the primal urges that lead
to the breakdowns in empathy that fill
our lives with pain.

#

A Happier Story

Thank you for allowing me to trauma
dump for a while. Like | said at the
beginning of this talk, I'm motivated to
make things better, not just complain.

I've spent a long time thinking about
how the most functional engineering
team | ever worked on got that way,
and | want to give you a vignette from
those times.

#

+2 years: new team, simpler stack, new ethos

&

EVERYTHING
WAS

BEAUTIFUL,
AND
NOTHING
HURT

The startup | worked at fought its way
from horizontally layered fiefdoms to
a simpler architecture and a smaller
team. We imported some leaders that
took devops very seriously, as they
had come up with the idea in the first
place.

The most important bit that we took
from that movement was that we
should tear down existing barriers
between roles. So after about two
years of creative destruction pretty
much everybody was pitching in on
pretty much everything.

#

That approach was ultimately
successful, and we found
infrastructure stability and gained
some ability to ship software again.
We crawled out the other end of the
scaling tunnel clean.

#

That, combined with several CEO
changes due to some other chaos,
morphed the company into an
engineering-led organization.

You know an engineering team
with power is a little like the
mule with a spinning wheel.

No one knows how they got it,
and danged if they know how
to use it.

As an engineering team we found
ourselves reaping an infrastructure
dividend that gave us a bit of free
time, and we had an unusual level of
permission from the rest of the
company to dictate how that time was
used.

#

That's a rare situation, and | think we
knew it at the time. Ideas were thrown
around about how we should use our
extra capacity.

What should we do with our spinrning-wheel

new mandate?

Proposition 1: Boil the Ocean

1. Feature freeze Imao
2. Embark on five-year rewrite into Seala Gelang Clejure Swift.
3. [Get fired early in year two and be legends.]

I've been part of several other teams
that found themselves in this situation
and decided to rewrite various things
they hated. | think this is the most
common outcome.

But we had already tried this, so it
wasn't popular.
#

The other thing people seem to do in
this situation is buy merch and strut.

Proposition 2: Dress Like Big Dorks We did a bit of that, but not as a
primary strategy.
Uber's leathel_' qus -

aaaaaaaaa ler’s horror story is destined to become a textbook case in workplace discrimination.

“Uber decided to buy the SREs
leather jackets, and gave fittings to -
all. But after the company learned ‘
that it had enough men’s sizes to
qualify for a discount but would
have to pay retail for the women’s
jackets, it decided to give jackets
only to male SREs.”

None of that felt right. It just wasn't
us. So we didn't do anything drastic
for a while.

#

Neither of these felt right, so we continued

with business as usual

Then one day, our designer broke the
build in the middle of the night.

---then one day, our . Everyone came in the next day and

designer broke the build couldn't work until they figured out
: what had happened.

late at night. 4

Randy, our deSigner / |

(presumably reacting to
a more recent debacle) EEPEES

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
////////////////////////////////

He was obviously really apologetic
about the whole thing. An apology

Re: drive-by commits to zma” thread ensued.

main branch -

Hello!

I think I'm the guilty party here. I
commit to trunk. I don't have the
keys to deploy.

I can't really express how sorry I
am that this happened.

I owe everybody involved a massive
and sincere apology.

Randy

The temptation was there to be huge

jerks, and rebuild fiefdoms.

. Perfectly reasonable people thought

“An Engineer should review all of that maybe we should DUt more of a

Randy's non-trivial code changes.” wall between designers and the css
" source code.

. oy It was suggested that designers
should just design, and coders should
do all of the coding.

#

“The issue is that Randy doe'i't.wn tests, and wouldn't.
know how to fix test failures:

“Randy should focus on design, and Engineers
should focus on functionality and code quality.”

Something Interesting Happened Instead
Being high on our own supply was beneficial for once

M Re: drive-by commits to main branch

Randy is in the deploy group now. The how and when can
be worked out off-1list, but it is now *possible* for
him to deploy to prod.

- Kastner

But instead a miracle happened.
There was an inspired person who
decided to do the opposite. They just
yolo'd giving the designer the deploy
keys.

I've come to understand this event as
being entirely contingent, but it was
also very special.

And it was great. Designers started
shipping code.

We spent our free time building
everything we needed to in terms of
monitoring, test suites, et cetera to
Yes! make that safe for them to do.

I dub thee, Engineer. Everyone rejoiced and got shit done.
- Mike Nothing bad happened.

#

> PRODUCTION deployed by *rhunt* build:
> 32944-trunk-20100810-230300-

> UTC took: 185.038392 seconds diff:

> http://deployinator.etsycorp.com/diff/web/32930/32944

That was an epiphany: the thing we
.] were actually going to do was use our
PFOPOSItIOH 3: Empower EverybOdy Else rare and precious organizational
power, and the free time that came
with it, to lift up other teams and

make them more effective.
#

| pass the test

There were a lot of epiphanies in that
Commlttlng to the Bit Ce):]ae.but they all kind of felt like that
What happens when engineering gets really into force multiplication
We did the thing we did with
designers with tons of other groups,
in technical and nontechnical

« Customer support can deploy help updates. disciplines.
#

» Designers can deploy css.

* Product managers can run analytics queries.
» The lawyer can handle takedowns.
* Board members can deploy the website as a stunt when they visit.

* Engineers are automatically emailed / followed up with in person after they
ship a dangerous PHP function, of which there are many.

That was the process of getting from
a place of not executing to executing
really well. want to spend a bit of
time talking about what good felt like.
#

What Executing Well Felt Like

We tried really hard to have domain
experts, but never really domain
OWners.

#

Domain experts, not domain owners

Let's go back and consider the
company | worked at where the
security team was responsible for all

of the security tickets, again.

© © °
“Let’s make a security
team to do these
security tickets” ! |

i.e. the wrong way

I
Security experts build
tooling, partner with

devs and level them up

(Hopefully not actually that uncommon
in the case of security, geez)

S —_
L2
| |
L © 3
Q.‘O

The way we approached that when
we were executing well was that
everyone was responsible for
security. The security team was the
set of domain experts focused on
leveling everyone up in that regard,
and making sure we all gotto a
secure place.

(I think this is thankfully not that
uncommon when it comes to security
as a discipline.)

That’s the model for other expertises too, tho

8
’a

ssel
sise}
ssel
ssel

-0&-0000
______ (cool brand
i
> g Dev X g i
(BE) 2 E

>ise}
>isey
>ise}
>isey
>isey
sisey
sise}
sisey

e}
e}
e}
e}
e}

»se)
»se)
sisey

—

sel
>se}

.l
*
” R,
3 .
- g
*
e

But it's a lot less common in my
experience to buy into that model for
other disciplines.

We had a word for the idea that SRE
and developers should share tasks, it
was “devops.” But like | said nearly all
teams I've worked on since have not
actually done this.

And many teams |'ve worked on have
also failed to extrapolate, and have
had frontend or client engineers
strictly siloed from backend
engineers. They get up to building
entire GraphQL monstrosities to avoid
talking to each other.

You want someone that's an expert in
frontend work, but | think you
probably do not want people with
“frontend” and “backend” in their title.
#

Make your discipline more accessible
This should be part of your job!

M Re: drive-by commits to main branch

Randy is in the deploy group now. iRl TN ‘\ .
I IR B R but it is now *possible* for (Lots of tooling
him to deploy to prod. work happened

- Kastner off camera)

Domain experts, not domain owners.

An important thing that distinguishes
a expert as distinct from an owner is
that you encourage the expert to
devote some of their time to helping
others work in their discipline.

#

That we needed to give people slack
time like that to sustain the level of
overall teamwork was a general
principle.

There were other ways in which we
didn't just wait for the streams to
cross themselves. We injected
sustaining energy into this system
very intentionally.

#

Proactive cross-pollination

Understand your colleagues’ work!
Scaling up in-group behavior

* New hire bootcamps: spend your first few weeks doing tours of teams you
won’t be joining.

» Senior bootcamps: spend the month of your hire date every year working on
some other team.

* Hack weeks: go do something weird, ideally with someone you don’t
normally work with.

Human beings are limited by their in-
group.

You feel psychological safety within
your in group. You feel like you can
experiment and learn new things
within your in group. You can exercise
curiosity about the people in your in-
group and what they do.

So we invested time in making
people's in-groups larger. Bootcamps
were one of those ways: we forced
people to work on other teams
occasionally.

Hack weeks were another institution
that achieved similar ends.
#

Intentional team values

A decade later, | can articulate what
our organization’s principles were. |
can explain the higher-level reasons
we were doing bootcamps, or code
reviews, or a million other things. This
is a victory of being intentional and
vocal about what our team values
were.

#

We are a team that...

» Digs ditches. Nobody is too good for
any task.

* Returns shopping carts (even if
nobody’s watching). We leave things
better than we found them.

It was important to us to articulate
that elitism as an attitude was poison.
To the contrary, we do windows here.
If a ditch needs digging, our tech
leads will line up to dig it.

We also needed to create the strong
expectation that you'd leave things in
a better state as you messed with
other people’s stuff. That made
people overjoyed to have you
messing with their stuff.

#

Let me leave you with a few things.
#

Parting Thoughts

Inside and outside of tech the world is
rife with cult leaders who lack the
gene for humility - bullies who inspire
and encourage cruelty in their
followers to no end other nihilism.

At a certain genetic equilibrium, NPD
is evolutionarily adaptive, so these
people are out there. But in tech
we've grown a tendency to see it as
useful rather than parasitic. The
industry believes in assholes.

Valuing others around you should not
be a radical act, but that's where
things are unfortunately.

#

It shouldn't be a radical act because
results are better if we can cooperate.
And life is better without cult leaders.

How do we tear down parochialism
and ego?
#

| have attempted to live the movement
With varying degrees of success

* Growth teams: what if we took marketing seriously and tried to help them,
instead of just shitposting?

» Continuous delivery: turns out product developers actually love being
empowered to fix the stuff they break.

I've tried. I've got some notes about
trying.

Yes, growth hacking is a bad word
and everything. But | have started
growth teams twice and the one
weird trick to making marketing start
to work is to ... try to help? It's crazy.

| inherited a situation where SRE was
doing all of the deploys for the
company, like it was the 90s. | pushed
to switch that to developers shipping
their own code. There was some
hesitation, the worry being that
developers would break stuff and not
fix it. But the better angels of our
nature prevailed, engineers largely
resolved their own incidents right
away. Product engineers actually
asked to be handed the pagers! It
was heartwarming.

#

The missing ingredient in those
situations was just permission. Mainly
what | needed to do was give people
the permission they needed to be
curious, and to cooperate.

| don't think you can grass roots that,

i - beyond what I'm trying to do here by
ermission

It's on leaders to value cooperation
and to reward curiosity.
#

Slack in the System

9

In addition to permission, there has to
be slack in the system. This requires
persistent commitment.

When you start skipping the
bootcamps, they'll die out as a
practice.

We don't let our machines run at
100% utilization. But again, we have a
tendency to love our computers more
than ourselves.

#

The things we value and reward as
- . leaders trickle down. Leaders can
Leadership’s values trickle down reward our worst or our best

The choice is yours impulses.

Most CEQO's |'ve worked for have tried
to kill feel-good programs like
bootcamps and hack weeks, but I've
never worked for a CEO that tried to
= end feel-bad programs like

e mandatory code review.

M Re: drive-by commits to main branch

None of them would admit this, but |
think there's an industry instinct that
misery gets results. | think this is
mistaken. Misery is a shitty proxy
metric for results.

nnn

#

B35

Thank you

https://egoless.engineerin @mcfunley.com on BlueSky

“ @mcfunley.com

Thanks to many folks who have inspired me over the years but particularly Coda Hale, Kellan Elliot-McCrea, Camille Fournier, and Marc
Hedlund.

CHECK OUT MY OTHER CLUBS

Generated with keynote-export.

https://bsky.app/profile/mcfunley.com
http://dotclub.club/
https://github.com/mcfunley/better-keynote-export

