
THE .CLUB CLUB

Egoless Engineering
Like many of you, I was raised in the background radiation of Calvinist thought. I expected
little but redemptive hard labor, before presumably one day dying in a mine. I also read
Hackers & Painters at an impressionable age and was kind of a jerk about it for a while. This
talk is about how despite this, I got better.

The real urtext of my tradition was two people standing on stage explaining how although
they have different jobs, they are friends, and try to help each other. It was mindblowing at
the time and led to many subsequent revelations, and ultimately a blissful state of psychic
death. It turns out misery is a shitty proxy metric.

Here are some other talks and my website.

@mcfunley.com

http://dotclub.club/
https://www.youtube.com/watch?v=LdOe18KhtT4
https://dotclub.club/
https://mcfunley.com/
https://bsky.app/profile/mcfunley.com

Hey everyone
#

I’m Dan McKinley. It’s nice to talk to all
of you.

I’ve done engineering since the turn
of the century, and led small teams
and biggish orgs.
#

I’ve spun the wheel enough times that
I’ve gotten a few stretches of my
career when things were going great.
Nothing gold can stay though, and
those moments were fleeting.

Welcome to my latest talk in my very-
slowly-moving series about trying to
rekindle that magic.
#

At most places I’ve worked, things
haven’t been going great. I’m not
really complaining. I was in a position
of responsibility at those places, and I
hope I did more good than harm.

I’m going to talk through some stories
about that. My hope with this is to do
more good than harm.

Maybe y’all can create more fulfilling
places to work, and hire me to work
there.
#

So I have noticed similarities when
things are going poorly, and would
like to talk about them.
#

One big problem everywhere is that
once you have two employees, you
have to divide responsibility
somehow.

How you do that is really important.
It’s a move that has both immediate
and second-order consequences
which are mostly awful to
contemplate.

So most companies don’t
contemplate it that much.
#

Computer scientists like me start their
career by realizing that they
accidentally joined a math major that
isn’t a science, and isn’t about
computers. It’s about how abstract
work gets done and stuff.

And the trauma of this initial
realization is so severe that we spend
our entire careers refusing to apply
anything we learned outside the
domain of computers.

Things might be better if we tried to
think about work as much as we think
about the computers. Later in this talk
I will try, despite how much it hurts me
to do that.
#

I’d like to talk through the dynamics
I’ve seen at different places. I’m going
to anonymize it somewhat because
even really successful companies
suffer from pathology, and my intent
is to learn rather than just shitpost.
#

The first job I want to talk about was a
startup I worked for, which ultimately
was really successful. I was in the first
20 employees there.
#

You’d think this would be a really
scrappy group but no, at that point
they had already managed to set
themselves up like IBM in the 1970s
or something.

I was hired to work on a python
middle layer which should not have
existed in the first place. In this
misguided attempt to scale, they
added a Python middle layer. The
theory was that web requests would
be served faster if they progressed
through more network hops.

This is a bad theory.
#

So to launch any feature at this
company, you needed to get a
database person to do some DDL and
write some stored procedures. You
needed to get a python person to
write some python that didn’t achieve
much. You needed a PHP person to
write some frontend code. And so on.

As a result of all of this, the company
released zero features for two whole
years and everyone got fired.

(But not me, I survived by
complaining.)
#

Much later on I worked at a fairly
mature company that had more than
a thousand people and was selling a
b2b product.
#

They’d managed to avoid serializing
absolutely everything, in that they’d
divided into feature teams. And they
had shared services teams like ops,
and DBA’s, and so on. That seemed
reasonable at first, or at least not
different than most places.
#

But something interesting had
happened where the roles just kept
dividing, like a bacteria colony out of
control or something.

They split engineering management
in half and created a role called
“release manager.” To … manage
releases, I guess? It was never entirely
clear to me why. At some point things
just came unglued.
#

And they chased that dragon into
some very dark corners.

A big mistake they made in my view
was that they conflated roles with
work a little too much. Frontend
engineers did all of the frontend work
and none of the backend work, and
vice versa.

That was survivable, but taking that
policy to the security team and
making the security team do all of the
security work was not. I’ll come back
to this.
#

And then finally I worked at a
company that mostly made native
client applications. There was initially
one big hit client app, but by the
2020s a bigger, disjointed set of
efforts had grown up in parallel.
#

The product portfolio as a whole had
a very weak supervisory structure.
The products didn’t coordinate in any
meaningful way on tech stacks or
other decisions, since they all
independently reported up to a CEO
that made no attempt to coordinate
them.

But despite that, an attempt was
made to have a shared operations
function. This presented a lot of
difficulty because the operations
group wasn’t involved in architecture
decisions.

They wouldn’t have had enough time
to do that anyway, since they were
busy with hundreds of services that
dev teams had moved on from years
before. It’s a tale as old as time.
#

So that was a high-level overview of
how all struggling companies are
unique. But they’re also all the same.
I’ve spent many nights pondering the
mistakes these places have made,
and I’d like to inflict my observations
on you now.
#

One big thing that a lot of people love
to do is create new role types. For any
new thing a company wants to do, the
tendency is to put up a new job
description.
#

I think a lot of people notice this and
chafe at it when the role is for the new
hotness. For example, every company
wants to rub some AI on their stuff
now, so they are putting up job
descriptions for AI engineers.

If you’re an engineer interested in AI
sitting in such a company, you’re
annoyed that they’re doing this (and
potentially paying that person more
than you) when you could easily rub
some AI on some stuff.

This is just a salient example of a
dumb mistake that happens in many,
many more dimensions all the time.
#

A mundane example of that is the ops
and development divide (or these
days maybe the divide between SRE
and development).

That divide has been very
pronounced at nearly every place I’ve
worked.
#

And that’s despite every single one of
those companies claiming that they
quote-unquote “do devops.”

Devops as a portmanteau was meant
to communicate something about
breaking down the divide, and
building empathy between these two
groups. I have worked hard to
cultivate this, personally, but rarely
found it in the wild in reality.
#

Once people have subdivided work,
they naturally try to arrange people
into assembly lines. If you have AI
work, hand it over to the AI person. If
you have ops work, give it to the ops
person.

That’s the kind of thing that feels
obvious to leaders, but I think it’s
wrong. And sometimes it’s wrong in a
mathematically provable way. Let’s
dig in.
#

Here’s a very typical set of executive
constraints. They might say: we have
to measure everything. We aren’t
going to hire more data scientists.
We’re going to focus on building new
products and only hire new engineers
for that.
#

Those are inputs to a very simple
equation.

Engineers produce work that needs
to be analyzed at a rate, and the
analysis takes a finite amount of time.

Remember the premise is that we are
trying to go faster by adding
engineers.
#

But, whoops! We made everything go
slower, actually.

With that simple setup, it doesn’t take
very long at all for things to get
extremely out of hand. We added a
few engineers and wound up with a
nonlinear increase in how long people
need to wait before they can ship
things.

By the time the data scientists are
fully busy, the individual feature
waiting for analysis is absolutely
doomed.

(Source for the math is here.)
#

https://docs.google.com/spreadsheets/d/1OIoTVnOmSPpWAnu5QCwvf7bjNjPKWfnZQ3RjQ4hoQG0/edit?usp=sharing

Of course, organizational dynamics
are stacked against analyzing this
problem in a clearheaded way.
Everyone thinks the other groups are
sandbagging. We come into petty
conflicts that obscure the physics of
the situation.
#

That kind of setup is one in which
ticketing things can generate more
work than you’d have if people had
time to talk to each other.

That’s a specific case of a general
issue. Poorly factored organizational
boundaries create work.
#

Earlier I talked about a company that
tried to use its security team to do all
of the security remediation work.

By adding a queue for security
tickets, they were hoping for a result
like this. There’d be the same total
volume of work getting through the
system, and fewer context switches.
#

The problem with that is the horrible
things development can get up to
when it’s not encouraged to worry
about security.
#

We can generate extra security work
with our engineering activity if we
erect a wall between those things.

On a long enough timescale of course
something horrible precipitates, but
that’s a problem for future you. In the
here and now it’s only a minor
humanitarian catastrophe which we
can ignore.
#

An undercurrent of all of this is how
people conceive of themselves, and
how they are to one another.
#

There can be a general tendency
among some of us to imagine that
other peoples’ jobs are easy
compared to ours.

Obviously it’s not a majoritarian view
that working on the server is so easy
“it’s not clear it’s even technical,” but I
can report that some crazies out
there do hold this view.
#

Those vibes can absolutely run in the
other direction though, and thinking
that product work is less technical
might be even more common.
Platform teams are full of folks who
aren’t very worried about what the
company they work for even does.
#

Although the results of these
tendencies are very stupid, punting
the offenders into the sun usually
eludes us a solution. That’s because
this behavior can be coded as
“smart” and “valuable” to outside
observers.

While a CEO may not endorse the
behavior, they imagine that it gets
results. Except it doesn’t. Driving
other workers out reduces total
throughput. Obviously.

The biggest problem with brilliant
jerks is not necessarily even that
they’re jerks. When you take a
systemic perspective, they aren’t
even brilliant! They’re dumb!
#

Recurring themes throughout every
chapter of this for me are
parochialism and ego, the yin and
yang of dysfunction. Both of these
have positive and negative spins.

Parochialism might be deference, and
not wanting to step on someone
else’s toes. Or it might be lack of
curiosity. Ego might be pride in your
work, or it might be territoriality, or
dismissiveness in the abilities of
others.

These are the primal urges that lead
to the breakdowns in empathy that fill
our lives with pain.
#

Thank you for allowing me to trauma
dump for a while. Like I said at the
beginning of this talk, I’m motivated to
make things better, not just complain.

I’ve spent a long time thinking about
how the most functional engineering
team I ever worked on got that way,
and I want to give you a vignette from
those times.
#

The startup I worked at fought its way
from horizontally layered fiefdoms to
a simpler architecture and a smaller
team. We imported some leaders that
took devops very seriously, as they
had come up with the idea in the first
place.

The most important bit that we took
from that movement was that we
should tear down existing barriers
between roles. So after about two
years of creative destruction pretty
much everybody was pitching in on
pretty much everything.
#

That approach was ultimately
successful, and we found
infrastructure stability and gained
some ability to ship software again.
We crawled out the other end of the
scaling tunnel clean.
#

That, combined with several CEO
changes due to some other chaos,
morphed the company into an
engineering-led organization.

As an engineering team we found
ourselves reaping an infrastructure
dividend that gave us a bit of free
time, and we had an unusual level of
permission from the rest of the
company to dictate how that time was
used.
#

That’s a rare situation, and I think we
knew it at the time. Ideas were thrown
around about how we should use our
extra capacity.
#

I’ve been part of several other teams
that found themselves in this situation
and decided to rewrite various things
they hated. I think this is the most
common outcome.

But we had already tried this, so it
wasn’t popular.
#

The other thing people seem to do in
this situation is buy merch and strut.
We did a bit of that, but not as a
primary strategy.
#

None of that felt right. It just wasn’t
us. So we didn’t do anything drastic
for a while.
#

Then one day, our designer broke the
build in the middle of the night.
Everyone came in the next day and
couldn’t work until they figured out
what had happened.
#

He was obviously really apologetic
about the whole thing. An apology
email thread ensued.
#

The temptation was there to be huge
jerks, and rebuild fiefdoms.

Perfectly reasonable people thought
that maybe we should put more of a
wall between designers and the css
source code.

It was suggested that designers
should just design, and coders should
do all of the coding.
#

But instead a miracle happened.
There was an inspired person who
decided to do the opposite. They just
yolo’d giving the designer the deploy
keys.

I’ve come to understand this event as
being entirely contingent, but it was
also very special.
#

And it was great. Designers started
shipping code.

We spent our free time building
everything we needed to in terms of
monitoring, test suites, et cetera to
make that safe for them to do.
Everyone rejoiced and got shit done.
Nothing bad happened.
#

That was an epiphany: the thing we
were actually going to do was use our
rare and precious organizational
power, and the free time that came
with it, to lift up other teams and
make them more effective.
#

There were a lot of epiphanies in that
era but they all kind of felt like that
one.

We did the thing we did with
designers with tons of other groups,
in technical and nontechnical
disciplines.
#

That was the process of getting from
a place of not executing to executing
really well. I want to spend a bit of
time talking about what good felt like.
#

We tried really hard to have domain
experts, but never really domain
owners.
#

Let’s go back and consider the
company I worked at where the
security team was responsible for all
of the security tickets, again.
#

The way we approached that when
we were executing well was that
everyone was responsible for
security. The security team was the
set of domain experts focused on
leveling everyone up in that regard,
and making sure we all got to a
secure place.

(I think this is thankfully not that
uncommon when it comes to security
as a discipline.)
#

But it’s a lot less common in my
experience to buy into that model for
other disciplines.

We had a word for the idea that SRE
and developers should share tasks, it
was “devops.” But like I said nearly all
teams I’ve worked on since have not
actually done this.

And many teams I’ve worked on have
also failed to extrapolate, and have
had frontend or client engineers
strictly siloed from backend
engineers. They get up to building
entire GraphQL monstrosities to avoid
talking to each other.

You want someone that’s an expert in
frontend work, but I think you
probably do not want people with
“frontend” and “backend” in their title.
#

Domain experts, not domain owners.

An important thing that distinguishes
a expert as distinct from an owner is
that you encourage the expert to
devote some of their time to helping
others work in their discipline.
#

That we needed to give people slack
time like that to sustain the level of
overall teamwork was a general
principle.

There were other ways in which we
didn’t just wait for the streams to
cross themselves. We injected
sustaining energy into this system
very intentionally.
#

Human beings are limited by their in-
group.

You feel psychological safety within
your in group. You feel like you can
experiment and learn new things
within your in group. You can exercise
curiosity about the people in your in-
group and what they do.

So we invested time in making
people’s in-groups larger. Bootcamps
were one of those ways: we forced
people to work on other teams
occasionally.

Hack weeks were another institution
that achieved similar ends.
#

A decade later, I can articulate what
our organization’s principles were. I
can explain the higher-level reasons
we were doing bootcamps, or code
reviews, or a million other things. This
is a victory of being intentional and
vocal about what our team values
were.
#

It was important to us to articulate
that elitism as an attitude was poison.
To the contrary, we do windows here.
If a ditch needs digging, our tech
leads will line up to dig it.

We also needed to create the strong
expectation that you’d leave things in
a better state as you messed with
other people’s stuff. That made
people overjoyed to have you
messing with their stuff.
#

Let me leave you with a few things.
#

Inside and outside of tech the world is
rife with cult leaders who lack the
gene for humility - bullies who inspire
and encourage cruelty in their
followers to no end other nihilism.

At a certain genetic equilibrium, NPD
is evolutionarily adaptive, so these
people are out there. But in tech
we’ve grown a tendency to see it as
useful rather than parasitic. The
industry believes in assholes.

Valuing others around you should not
be a radical act, but that’s where
things are unfortunately.
#

It shouldn’t be a radical act because
results are better if we can cooperate.
And life is better without cult leaders.

How do we tear down parochialism
and ego?
#

I’ve tried. I’ve got some notes about
trying.

Yes, growth hacking is a bad word
and everything. But I have started
growth teams twice and the one
weird trick to making marketing start
to work is to … try to help? It’s crazy.

I inherited a situation where SRE was
doing all of the deploys for the
company, like it was the 90s. I pushed
to switch that to developers shipping
their own code. There was some
hesitation, the worry being that
developers would break stuff and not
fix it. But the better angels of our
nature prevailed, engineers largely
resolved their own incidents right
away. Product engineers actually
asked to be handed the pagers! It
was heartwarming.
#

The missing ingredient in those
situations was just permission. Mainly
what I needed to do was give people
the permission they needed to be
curious, and to cooperate.

I don’t think you can grass roots that,
beyond what I’m trying to do here by
making the idea more popular.

It’s on leaders to value cooperation
and to reward curiosity.
#

In addition to permission, there has to
be slack in the system. This requires
persistent commitment.
When you start skipping the
bootcamps, they’ll die out as a
practice.

We don’t let our machines run at
100% utilization. But again, we have a
tendency to love our computers more
than ourselves.
#

The things we value and reward as
leaders trickle down. Leaders can
reward our worst or our best
impulses.

Most CEO’s I’ve worked for have tried
to kill feel-good programs like
bootcamps and hack weeks, but I’ve
never worked for a CEO that tried to
end feel-bad programs like
mandatory code review.

None of them would admit this, but I
think there’s an industry instinct that
misery gets results. I think this is
mistaken. Misery is a shitty proxy
metric for results.

#

#

@mcfunley.com

Thanks to many folks who have inspired me over the years but particularly Coda Hale, Kellan Elliot-McCrea, Camille Fournier, and Marc

Hedlund.

CHECK OUT MY OTHER CLUBS

Generated with keynote-export.

https://bsky.app/profile/mcfunley.com
http://dotclub.club/
https://github.com/mcfunley/better-keynote-export

