
1

文档中心

项目相关文档

Control Plane 任务项

项目方向

🔥【项目】Dubbo Pixiu Control Panel

Pilot 服务注册发现

Draft|技术方案

调研梳理

02 Draft | Pixiu And Dubbo3

Istio 代码迁移

【项目】Pixiu 可观测性

【项目】服务注册发现

【项目】配置中心

01 Pixiu配置中心支持Nacos

技术方案（一期）

01 2022半年技术债计划

功能文档

Dubbo/Triple代理优化

调研｜负载均衡算法

控制平面部署

Pilot-Metadata

Pixiu Control Plane服务测试功能基本方案

Polit-服务映射

Dubbo-go-Pixiu适配Nacos配置中心设计文档

泛化调用直连和删除 api_config

HTTP-to-gRPC 支持 Reflection

Pixiu to SpringCloud with zookeeper

Dubbo to http 默认转换规则

gRPC 请求代理



2

Http to Dubbo默认转化规则

triple 和 dubbo 协议的相互转换

proxy 设计

trace in pixiu

prometheus pull in pixiu

Polit支持服务映射

pilot-agen

最佳实践&宣传

Cluster 健康检查

XDS-LDS

开源之夏

代理注册

websocket 支持

Proxy Mesh方案建设

与istio一起工作

部署调研和方案思考

非标准 Rete

基于离散线段树的BatchNumberRangeIn优化

Pixiu路由原理简介

模型设计

标准字典树做contains 批量判断

urlMatch 的 BatchTester 实现

WIP：开发手册

Dubbo-go-pixiu性能测试

dubbo多协议转换机制

Pixiu & gRPC：基于 Reflection 调用技术方案

Http Connection Manager & Filter Chain

调研中|Pixiu: Dubbo与SpringCloud互通方案

流量回放

鉴权

DBMesh 实现计划

Event Mesh 实现调研 && 实现方案



3

Filter 设计

dubbo 协议转换的 Filter 接口定义问题

http -> dubbo 转换策略

http to dubbo规约

配置和整体资源抽象

xDS资料

istio架构

istio metric

Pilot

协议一览

xDS API Flow

pixiu 集成xds技术设计

LDS集成设计

Listener 动态配置能力调研

go-control-plane 调研

xDS server扩展

xDS-data-panel方案调研+POC

pixiu 支持类 xDS 协议远程配置

待解决问题

🚀 Dubbo-go-pixiu 与 SpringCloud 服务发现自动映射路由

支持协议

grpc proxy

pixiu 支持 http to grpc 特性

类似网关系统

pixiu 功能简介和问题

api

admin

roadmap

配置粒度细化

Admin 测试文档

后端API接口文档

问题反馈



4

具体实现

使用文档

admin能力

plugin

Local Plugins实现方案

Plugin调研与方案

具体实现

pixiu精简配置技术方案



5

Control Plane 任务项
丛国庆、华钟明、熊聘、李凌志

支持服务元数据 蔡俊铭、李欢欢


支持服务映射 梦超、徐扬清


支持接入 Zookeeper / Naocs 岳枫博、王亚峰


支持服务查询 张国强、马兴


支持服务测试 杨博源、陈仕博


与 pixiu 数据面整合，支持管控数据面 麻志辉


面向用户的部署方案 


支持 Standalone 工作模式


下发 Dubbo 已有治理规则


探索与 tracing / metrics 组件工作的方式


支持实现应用间可信

@bobtthp

https://dubbogoproxy.yuque.com/bobtthp


6

项目方向

项目登记：

立项

项目方案

●

●



7

🔥【项目】Dubbo Pixiu Control Panel
项目步骤：

立项

背景：Dubbo Mesh 形态


目的：Pixiu 承担 Dubbo Control Panel 


Pixiu 


Istio + Sidecar（Envoy）


时间点

项目上线  2023-01-01


计划

一期

二期

三期

调研

Istio


pilot 


pilot-agent


pilot-discovery

Pixiu


pixiu-admin : xDS Server （现状）


pixiu  ： gateway/sidecar（现状）


产品

功能

方案

控制面 工程结构/仓库 形态 ： 


1、独立仓 ： fork


2、Pixiu 集成仓：集成 Istio 代码


●

○

○

●

○

●

○

○

●

○

○

○

●

○

■

●

●

○

■

■

●

○

■

●

○

■

■



8

TODO：


Merge Pixiu PR 


调整 Pixiu 目录  


合并 Isito 核心代码 @bob


○

●

●

●

@岳枫博

@岳枫博

https://dubbogoproxy.yuque.com/u148356
https://dubbogoproxy.yuque.com/u148356


9

Pilot 服务注册发现



10

Draft|技术方案

Dubbo Mesh 


dubbo-control-plane 提供 dubbo 服务注册发现的标准化能力，dubbo （数据面）通信不再关注当前

使用的是什么注册中心，数据面对接 dubbo-control-plane 以实现服务注册与发现，该能力同时支持包

括 mesh 环境 和 非 mesh 环境。


【TODO】调研 dubbo 、spring cloud、istio 服务注册发现相关的数据格式


【TODO】梳理服务信息上报和下发、监听 等流程


前言

背景

目的

方案梳理

梳理步骤

●

●

Pilot 服务发现


Pilot - Dubbo 服务发现架构




11

服务发现模型



12

pilot-discovery 主要功能是 从注册中心（k8s、nacos、zk）获取信息并汇集，也包括从 kubernetes 

API server 获取流量规则，将服务信息和流量规则转化为数据面可以理解的格式，通过标准的数据面 

API 下发到网格中的各个 Pixiu-Sidecar。


pilot-discovery 包括：

服务发现

配置规则发现

xDS配置下发


本次主要聚焦于 服务发现 相关的技术方案整理设计。


概述

●

●

●



13

Dubbo Plane 服务发现模型：


Istio Pilot 服务发现是通过 监听底层平台服务注册中心来缓存 Istio 的服务模型，并且 watch 服务模型

的变化，再服务模型更新时触发相关事件回调处理函数。



14

Pixiu Pilot Start Process


Pilot Start


ServiceControllers




15

服务发现的主要逻辑在Pilot中由ServiceController（服务控制器）实现，通过监听底层平台的服务注册

中心来缓存Istio服务模型，并监视服务模型的变化，在服务模型更新时触发相关事件回调处理函数的执

行。

初始化注册中心



16

Service事件处理器会将根据事件的类型更新缓存，然后调用serviceHandlers的事件处理器进行回

调。serviceHandlers事件处理器是在初始化DiscoveryService的时候设置的。


四种监听器，监听 k8s 资源更新


●



17

Endpoint处理器会在调用newEndpointsController创建endpointsController的时候进行注册


type Service struct {


Attributes               ServiceAttributes


Ports                    PortList   ﻿json:"ports,omitempty"﻿

ServiceAccounts          []string   json:"serviceAccounts,omitempty"﻿

CreationTime             time.Time   ﻿json:"creationTime,omitempty"﻿

Hostname                 host.Name   ﻿json:"hostname"﻿

ClusterVIPs              AddressMap ﻿json:"clusterVIPs,omitempty"﻿

DefaultAddress           string     ﻿json:"defaultAddress,omitempty"﻿

AutoAllocatedIPv4Address string     ﻿json:"autoAllocatedIPv4Address,omitempty"﻿

AutoAllocatedIPv6Address string     ﻿json:"autoAllocatedIPv6Address,omitempty"﻿

Resolution               Resolution


MeshExternal             bool


●

Service of k8s




18

ResourceVersion          string


}


Endpoint of k8s


Endpoints 


TypeMeta 对象类型


ObjectMeta 元信息 

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-

architecture/api-conventions.md#metadata


Subsets 端点集合


IstioEndpoint


●

○

○

○

//ObjectMeta


Subsets: [  
	 {  
       Addresses: [{"ip": "10.10.1.1"}, {"ip": "10.10.2.2"}],  
       Ports: [{"name": "a", "port": 8675}, {"name": "b", "port": 309}]  
     },  
     {  
      Addresses: [{"ip": "10.10.3.3"}],  
      Ports: [{"name": "a", "port": 93}, {"name": "b", "port": 76}]  
    },  
  ]

1
2
3
4
5
6
7
8
9
10
11
12

Plain Text

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#metadata


19

https://github.com/istio/api/tree/master/mcp


MCP是基于订阅的配置分发API。配置消费者（即sink）请求更新来自配置生产者（即source）的资源集

合。添加，更新或删除资源时，source会将资源更新推送到sink。如果sink接受，则回复ACK，如果被

拒绝则是NACK，例如因为资源无效。一旦对先前的更新进行了ACK/NACK，则source可以推送其他更

新。该source一次只能运行一次未完成的更新（每个集合）。


MCP是一对双向流gRPC API服务（ResourceSource和ResourceSink）。


当source是服务器而sink是客户端时，将使用 ﻿ResourceSource﻿服务。默认情况下，Galley实现 ﻿

Mesh Configuration Protocol (MCP)


●



type IstioEndpoint struct {
    Labels                labels.Instance
    Address               string
    ServicePortName       string
    EnvoyEndpoint         *endpointv3.LbEndpoint
    ServiceAccount        string
    Network               network.ID
    Locality              Locality
    EndpointPort          uint32
    LbWeight              uint32
    TLSMode               string
    Namespace             string
    WorkloadName          string
    HostName              string
    SubDomain             string
    TunnelAbility         networking.TunnelAbility
    DiscoverabilityPolicy EndpointDiscoverabilityPolicy `json:"-"`
    HealthStatus          HealthStatus
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Plain Text

https://github.com/istio/api/tree/master/mcp


20

ResourceSource﻿服务，并且Pilot连接作为客户端。


当source是客户端，而sink是服务器时，将使用 ﻿ResourceSink﻿服务。可以将Galley配置为可选

地 dial-out﻿到远程配置sink，例如 Pilot位于另一个集群中，在该集群中，它不能作为客户端启

动与Galley的连接。在这种情况下，Pilot将实现 ﻿ResourceSink﻿服务，而Galley将作为客户端进

行连接。

●



21

Resource:




22

基于Dubbo2.7, dubbo 协议， SpringCloudAlibabaDubbo 的数据格式


Nacos 服务注册数据


dubbo.metadata-service.urls


Dubbo Nacos


type Resource struct {
	 state         protoimpl.MessageState
	 sizeCache     protoimpl.SizeCache
	 unknownFields protoimpl.UnknownFields


	 // Common metadata describing the resource.
	 Metadata *Metadata `protobuf:"bytes,1,opt,name=metadata,proto3" jso
n:"metadata,omitempty"`
	 // The primary payload for the resource.
	 Body *any1.Any `protobuf:"bytes,2,opt,name=body,proto3" json:"body,omi
tempty"`
}

1
2
3
4
5
6
7

8
9

10

Go

{
	 "dubbo.metadata-service.urls": "[ \"dubbo://192.168.0.109:20880/com.ali
baba.cloud.dubbo.service.DubboMetadataService?anyhost=true&application=demo
&bind.ip=192.168.0.109&bind.port=20880&deprecated=false&dubbo=2.0.2&dynamic
=true&generic=false&group=demo&interface=com.alibaba.cloud.dubbo.service.Du
bboMetadataService&methods=getAllServiceKeys,getServiceRestMetadata,getExpo
rtedURLs,getAllExportedURLs&pid=34041&qos.enable=false&release=2.7.8&revisi
on=2.2.2.RELEASE&side=provider&timestamp=1663504121517&version=1.0.0\" ]",
	 "preserved.register.source": "SPRING_CLOUD",
	 "dubbo.protocols.dubbo.port": "20880"
}

1
2

3
4
5

Go



23

dubbo://192.168.0.109:20880/com.alibaba.cloud.dubbo.service.DubboMetadataService?

anyhost=true&application=demo&bind.ip=192.168.0.109&bind.port=20880&deprecated=false&dub

bo=2.0.2&dynamic=true&generic=false&group=demo&interface=com.alibaba.cloud.dubbo.service.

DubboMetadataService&methods=getAllServiceKeys,getServiceRestMetadata,getExportedURLs,g

etAllExportedURLs&pid=34041&qos.enable=false&release=2.7.8&revision=2.2.2.RELEASE&side=p

rovider×tamp=1663504121517&version=1.0.0


➜  ~ curl -X GET '127.0.0.1:8848/nacos/v1/ns/instance/list?serviceName=demo'


[
    "dubbo://192.168.0.109:20880/com.alibaba.cloud.dubbo.service.DubboMetad
ataService?anyhost=true&application=demo&bind.ip=192.168.0.109&bind.port=20
880&deprecated=false&dubbo=2.0.2&dynamic=true&generic=false&group=demo&inte
rface=com.alibaba.cloud.dubbo.service.DubboMetadataService&methods=getAllSe
rviceKeys,getServiceRestMetadata,getExportedURLs,getAllExportedURLs&pid=340
41&qos.enable=false&release=2.7.8&revision=2.2.2.RELEASE&side=provider×tamp
=1663504121517&version=1.0.0"
]

1
2

3

Go



24

基于Dubbo3.0.7, dubbo 协议， spring-boot 的数据格式


{
    "name":"DEFAULT_GROUP@@demo",
    "groupName":"DEFAULT_GROUP",
    "clusters":"",
    "cacheMillis":10000,
    "hosts":[
        {
            "instanceId":"192.168.0.109#8080#DEFAULT#DEFAULT_GROUP@@demo",
            "ip":"192.168.0.109",
            "port":8080,
            "weight":1,
            "healthy":true,
            "enabled":true,
            "ephemeral":true,
            "clusterName":"DEFAULT",
            "serviceName":"DEFAULT_GROUP@@demo",
            "metadata":{
                "dubbo.metadata-service.urls":"[ \"dubbo://192.168.0.109:2
0880/com.alibaba.cloud.dubbo.service.DubboMetadataService?anyhost=true&app
lication=demo&bind.ip=192.168.0.109&bind.port=20880&deprecated=false&dubbo
=2.0.2&dynamic=true&generic=false&group=demo&interface=com.alibaba.cloud.d
ubbo.service.DubboMetadataService&methods=getAllServiceKeys,getServiceRest
Metadata,getExportedURLs,getAllExportedURLs&pid=34041&qos.enable=false&rel
ease=2.7.8&revision=2.2.2.RELEASE&side=provider×tamp=1663504121517&version
=1.0.0\" ]",
                "preserved.register.source":"SPRING_CLOUD",
                "dubbo.protocols.dubbo.port":"20880"
            },
            "instanceHeartBeatInterval":5000,
            "instanceHeartBeatTimeOut":15000,
            "ipDeleteTimeout":30000
        }
    ],
    "lastRefTime":1663506386347,
    "checksum":"",
    "allIPs":false,
    "reachProtectionThreshold":false,
    "valid":true
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32

Go



25

Nacos 服务注册数据


dubbo-springboot-demo-provider
 {


	 "dubbo.metadata-service.url-params": "

{\"connections\":\"1\",\"version\":\"1.0.0\",\"

dubbo\":\"2.0.2\",\"release\":\"3.0.7\",\"side

\":\"provider\",\"port\":\"20881\",\"protocol\

":\"dubbo\"}",


	 "dubbo.endpoints": "

[{\"port\":20881,\"protocol\":\"dubbo\"}]",


	 "dubbo.metadata.revision": 

"0b317e73ddce16868430c8389f2d694b",


	 "dubbo.metadata.storage-type": "local"


}




26

providers:org.apache.dubbo.springboot.demo.

DemoService::


{


	 "side": "provider",


	 "release": "3.0.7",


	 "methods": "sayHello,sayHelloAsync",


	 "deprecated": "false",


	 "dubbo": "2.0.2",


	 "pid": "40190",


	 "interface": 

"org.apache.dubbo.springboot.demo.DemoSer

vice",


	 "service-name-mapping": "true",


	 "generic": "false",


	 "path": 

"org.apache.dubbo.springboot.demo.DemoSer

vice",


	 "protocol": "dubbo",


	 "application": "dubbo-springboot-

demo-provider",


	 "background": "false",


	 "dynamic": "true",


	 "category": "providers",


	 "anyhost": "true",


	 "timestamp": "1663505357098"


}


providers:org.apache.dubbo.metadata.Metadat

aService:1.0.0:dubbo-springboot-demo-

provider


{


	 "side": "provider",


	 "release": "3.0.7",


	 "methods": 

"getMetadataURL,isMetadataService,getExpor



27

tedURLs,serviceName,getSubscribedURLs,ver

sion,getExportedServiceURLs,getMetadataInf

o,toSortedStrings,getMetadataInfos,getServic

eDefinition",


	 "deprecated": "false",


	 "dubbo": "2.0.2",


	 "pid": "40190",


	 "interface": 

"org.apache.dubbo.metadata.MetadataService

",


	 "service-name-mapping": "true",


	 "version": "1.0.0",


	 "generic": "false",


	 "revision": "3.0.7",


	 "path": 

"org.apache.dubbo.metadata.MetadataService

",


	 "protocol": "dubbo",


	 "delay": "0",


	 "application": "dubbo-springboot-

demo-provider",


	 "background": "false",


	 "dynamic": "true",


	 "executes": "100",


	 "category": "providers",


	 "connections": "1",


	 "group": "dubbo-springboot-demo-

provider",


	 "anyhost": "true",


	 "timestamp": "1663505358165"




28

服务列表：

{"count":4,"doms":["providers:org.apache.dubbo.metadata.MetadataService:1.0.0:dubbo-

springboot-demo-provider","dubbo-springboot-demo-provider"]}


➜  ~ curl -X GET '127.0.0.1:8848/nacos/v1/ns/service?serviceName=dubbo-springboot-demo-

provider'


{"namespaceId":"public","groupName":"DEFAULT_GROUP","name":"dubbo-springboot-demo-

provider","protectThreshold":0.0,"metadata":{},"selector":

{"type":"none","contextType":"NONE"},"clusters":[{"name":"DEFAULT","healthChecker":

{"type":"TCP"},"metadata":{}}]}%


➜  ~ curl -X GET '127.0.0.1:8848/nacos/v1/ns/service?

serviceName=providers:org.apache.dubbo.metadata.MetadataService:1.0.0:dubbo-springboot-

demo-provider'


{"namespaceId":"public","groupName":"DEFAULT_GROUP","name":"providers:org.apache.dubbo.m

etadata.MetadataService:1.0.0:dubbo-springboot-demo-

provider","protectThreshold":0.0,"metadata":{},"selector":

{"type":"none","contextType":"NONE"},"clusters":[{"name":"DEFAULT","healthChecker":

{"type":"TCP"},"metadata":{}}]}


➜  ~ curl -X GET '127.0.0.1:8848/nacos/v1/ns/instance/list?serviceName=dubbo-springboot-

demo-provider'


}




29

➜  ~ curl -X GET '127.0.0.1:8848/nacos/v1/ns/instance/list?

serviceName=providers:org.apache.dubbo.metadata.MetadataService:1.0.0:dubbo-springboot-

demo-provider'


{
    "name":"DEFAULT_GROUP@@dubbo-springboot-demo-provider",
    "groupName":"DEFAULT_GROUP",
    "clusters":"",
    "cacheMillis":10000,
    "hosts":[
        {
            "ip":"192.168.0.109",
            "port":20881,
            "weight":1,
            "healthy":true,
            "enabled":true,
            "ephemeral":true,
            "clusterName":"DEFAULT",
            "serviceName":"DEFAULT_GROUP@@dubbo-springboot-demo-provider",
            "metadata":{
                "dubbo.metadata-service.url-params":"{\"connections\":\"1
\",\"version\":\"1.0.0\",\"dubbo\":\"2.0.2\",\"release\":\"3.0.7\",\"side
\":\"provider\",\"port\":\"20881\",\"protocol\":\"dubbo\"}",
                "dubbo.endpoints":"[{\"port\":20881,\"protocol\":\"dubbo
\"}]",
                "dubbo.metadata.revision":"0b317e73ddce16868430c8389f2d694
b",
                "dubbo.metadata.storage-type":"local"
            },
            "instanceHeartBeatInterval":5000,
            "instanceHeartBeatTimeOut":15000,
            "ipDeleteTimeout":30000
        }
    ],
    "lastRefTime":1663506262118,
    "checksum":"",
    "allIPs":false,
    "reachProtectionThreshold":false,
    "valid":true
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18

19

20
21
22
23
24
25
26
27
28
29
30
31
32

Go



30

{
    "name":"DEFAULT_GROUP@@providers:org.apache.dubbo.metadata.MetadataSer
vice:1.0.0:dubbo-springboot-demo-provider",
    "groupName":"DEFAULT_GROUP",
    "clusters":"",
    "cacheMillis":10000,
    "hosts":[
        {
            "ip":"192.168.0.109",
            "port":20881,
            "weight":1,
            "healthy":true,
            "enabled":true,
            "ephemeral":true,
            "clusterName":"DEFAULT",
            "serviceName":"DEFAULT_GROUP@@providers:org.apache.dubbo.metad
ata.MetadataService:1.0.0:dubbo-springboot-demo-provider",
            "metadata":{
                "side":"provider",
                "release":"3.0.7",
                "methods":"getMetadataURL,isMetadataService,getExportedURL
s,serviceName,getSubscribedURLs,version,getExportedServiceURLs,getMetadata
Info,toSortedStrings,getMetadataInfos,getServiceDefinition",
                "deprecated":"false",
                "dubbo":"2.0.2",
                "pid":"40190",
                "interface":"org.apache.dubbo.metadata.MetadataService",
                "service-name-mapping":"true",
                "version":"1.0.0",
                "generic":"false",
                "revision":"3.0.7",
                "path":"org.apache.dubbo.metadata.MetadataService",
                "protocol":"dubbo",
                "delay":"0",
                "application":"dubbo-springboot-demo-provider",
                "background":"false",
                "dynamic":"true",
                "executes":"100",
                "category":"providers",
                "connections":"1",
                "group":"dubbo-springboot-demo-provider",
                "anyhost":"true",
                "timestamp":"1663505358165"
            },
            "instanceHeartBeatInterval":5000,

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Go



31

SpringCloud - Eureka


            "instanceHeartBeatTimeOut":15000,
            "ipDeleteTimeout":30000
        }
    ],
    "lastRefTime":1663506292066,
    "checksum":"",
    "allIPs":false,
    "reachProtectionThreshold":false,
    "valid":true
}

42
43
44
45
46
47
48
49
50
51



32

"instanceInfo": {
      "instanceId": "172.18.153.43:spring-cloud-producer:9000",
      "app": "SPRING-CLOUD-PRODUCER",
      "appGroupName": null,
      "ipAddr": "172.18.153.43",
      "sid": "na",
      "homePageUrl": "http://172.18.153.43:9000/",
      "statusPageUrl": "http://172.18.153.43:9000/info",
      "healthCheckUrl": "http://172.18.153.43:9000/health",
      "secureHealthCheckUrl": null,
      "vipAddress": "spring-cloud-producer",
      "secureVipAddress": "spring-cloud-producer",
      "countryId": 1,
      "dataCenterInfo": {
        "@class": "com.netflix.appinfo.InstanceInfo$DefaultDataCenterInfo"
,
        "name": "MyOwn"
      },
      "hostName": "172.18.153.43",
      "status": "UP",
      "leaseInfo": {
        "renewalIntervalInSecs": 30,
        "durationInSecs": 90,
        "registrationTimestamp": 1625476088459,
        "lastRenewalTimestamp": 1625477588519,
        "evictionTimestamp": 0,
        "serviceUpTimestamp": 1625476087664
      },
      "isCoordinatingDiscoveryServer": false,
      "metadata": {
        
      },
      "lastUpdatedTimestamp": 1625476088459,
      "lastDirtyTimestamp": 1625476087596,
      "actionType": "ADDED",
      "asgName": null,
      "overriddenStatus": "UNKNOWN"
    },

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Go



33



34

调研梳理



35

02 Draft | Pixiu And Dubbo3

思考几个问题：

为什么 dubbo3 需要架构升级？


为什么已经有 Istio 等成熟的Mesh 方案，Dubbo 还需要自己做一个控制面？


pixiu (pixiu & admin) 作为控制面后，当前已有的 gateway / sidecar 的能力如何规划？


pixiu 到底需要解决什么痛点或者说，pixiu 的价值？


Dubbo 在当下开发过程，部署形态，运行态，运维态 都存在着一些挑战（不做过多赘述），这类挑战在

云原生场景下更为突出，所以 dubbo3 的架构升级，解耦了 控制面 与 数据面，而 Pixiu 会承担 Dubbo 

控制面的职责更好的与 Dubbo 一起拥抱云原生。


Pixiu 团队通过本次同步讨论会议，明确好 pixiu 今后的发展方向：作为 Dubbo 的 Control Pannl 去支

持 Dubbo 生态。


四个视角看待：

开发态：多语言支持，编程模型单一，服务契约管理，生态组件支持

部署态：依赖冲突，启动速度慢，声明周期管理欠缺，无法适配原生基础设施与架构

前言

●

●

●

●

背景

目的

概述

Dubbo3 核心功能与规划


Dubbo 面临的挑战


●

●



36

运行态：异构体系无法互通（k8s/SC/gRPC），流量治理能力弱，吞吐量、稳定性、性能、资源利

用率低，网关穿透性差

运维态：集群管理不透明，治理能力不友好、使用成本高，可观测性差（集群、拓扑、单机）

当前服务治理架构面临的问题：

与各微服务组件直接适配、耦合度高

微服务组件间治理能力没有交互

多语言实现复杂度高

增加或升级规则成本高

现有规则亟待升级

与云原生基础设施脱节严重

Mesh体系与现有体系割裂


框架臃肿、复杂度极高

●

●

Dubbo3 当前架构


●

●

●

●

●

●

●

●

Dubbo3 未来架构




37

高内聚、低耦合！

Dubbo3


Dubbo Framework


Dubbo Control Plane


Dubbo Control Plane	  承载服务治理能力的核心，具有抽象、统一的模型，融合了之前分散的服

务治理能力，更容易扩展。

以 Control Plane 为核心分别向用户态（Dubbo Admin） 和运行态（Dubbo Framework）拓

展，使得两端更纯碎、功能更强大、实现也更简单。

●

●

Dubbo Mesh 


总体架构



38

部署形态



39

Pixiu Console （xDS Server、）


Pixiu Sidecar


Pixiu 在 Dubbo 生态

Pixiu Mesh

●

●



40

TODO


























Pixiu 与 Istio


参考文档

●

●

●

●

●

●

●

●

●

●

概念与架构

Dubbo Mesh

dubbo-awesome/D3.2-proxyless-mesh.md at master · apache/dubbo-awesome

无标题

Dubbo Ecosystem - 从微服务框架到微服务生态-阿里云开发者社区

阿里云帮助中心-kubernetes上实现 istio 分布式追踪

服务网格 ASM 产品简介 | 阿里云文档中心

The Istio service mesh

gRPC Proxyless Service Mesh

Cloud Native Computing Foundation

https://dubbo.apache.org/zh/docs3-building/docs/what/architecture/
https://dubbo.apache.org/zh/overview/whatsnew/mesh/
https://github.com/apache/dubbo-awesome/blob/master/proposals/D3.2-proxyless-mesh.md
https://dubbo.apache.org/zh/docs3-building/golang-sdk/concept/mesh/proxyless_service_mesh/
https://developer.aliyun.com/article/686020
https://www.alibabacloud.com/help/zh/cs/latest/kubernetes-istio-service-mesh
https://www.alibabacloud.com/help/zh/alibaba-cloud-service-mesh
https://istio.io/v1.12/about/service-mesh/
https://istio.io/v1.12/blog/2021/proxyless-grpc/
https://www.cncf.io/


41

Istio 代码迁移

Dubbo-go-pixiu 当前主要覆盖 gateway 与 sidecar 的能力，今后会作为 Dubbo Control Plane  的主

要形态去建设，目前开发人员都是同一波人，从代码仓库角度看，希望 Dubbo-go-pixiu 仓库能够作为

一个主仓库，构建 Control Plane 项目能力，同时兼容 Gateway 与 Sidecar 工程能力。


总结：Dubbo-go-pixiu 代码仓库包含完整的 Mesh 形态下，Control Plane 和 Sidecar 的项目代码。


当前 Pixiu 目录结构:


方案: 在根目录添加对应 Istios 的代码模块。如 operator、pilot、security... 等等


概述

背景

Dubbo-go-pixiu 仓库说明


.
├── cache
├── cmd
├── configs
├── docs
├── igt
├── log
├── operator
├── pilot
├── pkg
└── security

1
2
3
4
5
6
7
8
9
10
11

Markdown



42

Istio 的工程目录


调研

.
├── bin
├── cni
├── common
├── docker
├── istioctl
├── licenses
├── logo
├── manifests
├── operator
├── pilot
├── pkg
├── prow
├── release
├── releasenotes
├── samples
├── security
├── tests
└── tools

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Markdown

Package/Directory/Fil

e


Introduction


bin 存放初始化依赖、编译、插件证书检查、代码生成的

脚本

cni
 独立进程  Istio 容器网络接口（CNI）来安装、配置和使用 Istio 

网格。

https://github.com/istio/istio/tree/master/cni


https://istio.io/latest/zh/docs/setup/additional-

setup/cni/


https://www.servicemesher.com/blog/istio-cni-

note/


common
 配置文件和一些脚本

https://github.com/istio/istio/tree/master/cni
https://istio.io/latest/zh/docs/setup/additional-setup/cni/
https://www.servicemesher.com/blog/istio-cni-note/


43

docker


istioctl
 独立进程 Istio 的命令行工具	 


licenses


logo


manifests
 Kubernetes 的包管理器


operator
 独立进程 Operator 控制器


pilot
 独立进程 “领航员”，策略配置组件，pliot对Envoy的生命周期

进行管理，同时提供了智能路由（如A/B测试、金丝

雀部署）、流量管理（超时、重试、熔断）功能。

pkg


prow


release


releasenotes


samples


security
 独立进程 Istio 安全功能，强大的策略，透明的 TLS 加密，认

证，授权和审计（AAA）工具来保护你的服务和数

据。

tests


tools

Package/Directory/Fil

e


Introduction


addons
 一些插件，比如展示metrics的grafana和绘制服务调用图的

servicegraph


bin
 存放初始化依赖、编译、插件证书检查、代码生成的脚本

cni


common




44

docker


broker
 Istio对Open Service Broker的一种实现，该API使得外部服务能自

动访问Istio服务。broker目前还处于研发阶段。


galley
 提供了Istio的配置管理功能，目前还处于研发阶段。


install
 生成各环境（ansible、consul、ereka、kubernetes等）安装istio

时需要yaml配置清单。


istioctl
 istio终端控制工具（类似kubectl之于kubernetes），用户通过

istioctl来修改istio运行时配置，执行服务治理策略。


mixer
 “混音器”，参与到tracffic处理流程。通过对envoy上报的

attributes进行处理，结合内部的adapters实现日志记录、监控指标

采集展示、配额管理、ACL检查等功能。


pilot
 “领航员”，pliot对Envoy的生命周期进行管理，同时提供了智能路

由（如A/B测试、金丝雀部署）、流量管理（超时、重试、熔断）

功能。

pkg
 顶级公共包，包含istio版本处理、tracing、日志记录、缓存管理

等。

release
 包含Istio在各平台上进行编译的脚本。


samples
 Istio提供的微服务样例，比如bookinfo。


security
 Istio用户身份验证、服务间认证。


tests
 测试用例、脚本等。

vendor
 dep生成的第三方依赖。


Gopkg.*
 dep需要version constraint和version lock文件。


Makefile
 Istio Makefile，编译docker镜像时会引用tools/istio-docker.mk这

个Makefile。




45

参考：

https://github.com/istio/istio


Istio源码解析系列part1—Istio源码架构介绍及开发环境搭建  

https://www.servicemesher.com/blog/istio-deepin-part1-framework-and-environment/


Istio 安装 https://learnku.com/articles/70067


官方文档-Istio 安全介绍 https://istio.io/latest/zh/docs/concepts/security/


其他

●

●

●

●

https://github.com/istio/istio
https://www.servicemesher.com/blog/istio-deepin-part1-framework-and-environment/
https://learnku.com/articles/70067
https://istio.io/latest/zh/docs/concepts/security/


46

【项目】Pixiu 可观测性



47

【项目】服务注册发现



48

【项目】配置中心



49

01 Pixiu配置中心支持Nacos



50

技术方案（一期）

当前 pixiu 的配置，启动配置项（conf.yaml），日志配置（log.yml）均是从本地文件加载，没有接入动

态配置中心的能力，而日常生产环境中，配置通过配置中心集中下发管理是更为灵活和安全的方式之

一。

动态配置下发的场景还有很多扩展，接入的组件也因公司的选型有所不同，当前我们主要考虑接入 

nacos 配置中心。


注：在设计上可以考虑，如何在二次开发场景下更为“标准、安全、简单”的接入其他配置中心。


一期目的：

Pixiu 启动时从配置中心Nacos 拉取配置 conf.yaml 数据。


二期目的：

动态托管/下发用户自定义配置


动态下发Pixiu配置


Pixiu 启动流程，加载 conf.yaml  过程梳理 


Nacos Client 动态配置接口梳理  


背景

目的

●

●

●

功能

梳理步骤

技术方案

nacos-sdk-go readme

https://github.com/apache/dubbo-go-pixiu/blob/develop/configs/conf.yaml
https://github.com/apache/dubbo-go-pixiu/blob/develop/configs/log.yml
https://github.com/apache/dubbo-go-pixiu/blob/develop/configs/conf.yaml
https://github.com/apache/dubbo-go-pixiu/blob/develop/configs/conf.yaml
https://github.com/nacos-group/nacos-sdk-go/blob/master/README_CN.md


51




pixiu.go.main-->cobra.command.go.execute.(c.Run(c, argWoFlags))-->gateway.go.(Run: func(cmd 

*cobra.Command, args []string)).(bootstrap, meta, err := initApiConfig())-->pixiu.go.initApiConfig()-->


config_load.go.Load-->configLoadFunc LoadFunc = LoadYAMLConfig-->LoadYAMLConfig()


gateway.go.server.Start(bootstrap)-->pixiu_start.go.Start()-->server = NewServer()--

>server.initialize(bs)-->server.Start()-->conf := config.GetBootstrap(),


http.ListenAndServe(addr.Address+":"+strconv.Itoa(addr.Port), nil)-->server.startWG.Wait()


国强

Nacos 动态配置下发示例 


架构图

流程图

启动流程图

核心技术设计

Pixiu-Nacos 配置中心下发接口设计


Pixiu 接入配置中心标准化 Listener接口设计


@岳枫博

nacos-sdk-go/main.go at master · nacos-group/nacos-sdk-go

//get config
content, err := client.GetConfig(vo.ConfigParam{
        DataId: "test-data",
        Group:  "test-group",
    })

1
2
3
4
5

Go

https://dubbogoproxy.yuque.com/u148356
https://github.com/nacos-group/nacos-sdk-go/blob/master/example/config/main.go


52

（二期）

（二期）

开发分支 ： feature/nacos_config  （https://github.com/PhilYue/dubbo-go-

pixiu/tree/feature/nacos_config）


Pixiu Nacos Config Client 抽象适配


项目过程

https://github.com/PhilYue/dubbo-go-pixiu/tree/feature/nacos_config


53

01 2022半年技术债计划



代码重构，健壮性。

梳理步骤：

根据 pixiu 的架构、分层，基于核心功能 + 代码核心能力（register，remote client，），分离功能

模块

分析梳理评估

拆分子任务，指定负责人设计技术方案

方案评估

进入开发

测试上线

相关 Issue or PR：


develop分支上，代码重复（完全一模一样代码） https://github.com/apache/dubbo-go-

pixiu/issues/445


●

●

●

●

●

●

●

●

@岳枫博@菜夹膜

https://github.com/apache/dubbo-go-pixiu/issues/445
https://dubbogoproxy.yuque.com/u148356
https://dubbogoproxy.yuque.com/caijunming


54

Dubbo/Triple代理优化

现有dgp.filter.http.dubboproxy通过泛化调用代理dubbo，注册发现/路由/负载均衡均内置在dubbo-go

的泛化调用中，无法利用到Pixiu现有的Router和Cluster的能力。


另一方面，triple代理目前不支持应用级服务发现，而且仍需要adapters+api_config来路由


1. 废弃adapters+api_config结合将信息写到Router的方式


2. dgp.filter.http.directdubboproxy直接代理能力扩展，配合Router和Cluster完成dubbo代理


3. triple代理配合Router和Cluster完成dubbo代理，同时支持接口级与服务级代理


4. dubbo/triple协议代理/group/version可指定也可按约定根据元数据自动选择


5. dubbo/triple代理客户端连接池管理


6. dubbo/triple统一调用方式


7. 支持nacos/zk


8. 找不到路由时的友好提示

9. 增加丰富的samples演示以上功能


代理所需的信息即一个${appName}/${className}/${method} + group + version 即三元组应该被路由

到哪个Cluster，最后从Cluster中选择一个Ip后，借助dgp.filter.http.directdubboproxy即可完成一次代

理。

这部分信息可以从注册中心拿到，其中${appName}/${className}/${method} + group + version作为

路由，即Router(三元组)->Cluster(EndPoints)。


以Nacos为例


配置文件：registry/nacos/go-server/conf/dubbogo.yml（https://github.com/apache/dubbo-

go-samples）


背景

目标

How to


https://github.com/apache/dubbo-go-samples


55

服务列表

服务详情

元数据

接口级

应用级

服务名 分组名称

providers:org.apache.dubbo.UserProvider.Test2:myInterfaceVersi

on:myInterfaceGroup


myGroup


IP
 端口 健康状

态

元数据

192.168.1

28.1


20000
 true
 methods=GetUser


interface=org.apache.dubbo.UserProvider.Test2


path=/org.apache.dubbo.UserProvider.Test2


protocol=dubbo


group=myInterfaceGroup


version=myInterfaceVersion


application=myApp


192.168.1

28.1


20001
 true
 methods=GetUser


interface=org.apache.dubbo.UserProvider.Test2


path=/org.apache.dubbo.UserProvider.Test2


protocol=dubbo


group=myInterfaceGroup


version=myInterfaceVersion


application=myApp


服务名 分组名称



56

应用详情

服务映射

服务映射详情（应用名）

myApp,myApp2,myApp3


对于接口级，考虑将${appName}/${className}/${method} + group + version拼接起来做为一个

Router项，并将EndPoints生成一个Cluster


对于应用级，则更为简单，以${appName}做为Router项，并将EndPoints生成一个Cluster即可。


接口级注册则可利用协议元数据中protocol=dubbo/triple自动选择dubbo/triple client调用。


实现

myApp
 myGroup


IP
 端口 元数据

192.168.128.1
 20001
 ...


192.168.128.1
 20000 ...


Data Id
 Group


org.apache.dubbo.UserProvider.Test2
 mapping




57

调研｜负载均衡算法

轮询法 


将请求按顺序轮流地分配到后端服务器上，它均衡地对待后端的每一台服务器，而不关心服务器实际的

连接数和当前的系统负载。

加权轮询法 


不同的后端服务器可能机器的配置和当前系统的负载并不相同，因此它们的抗压能力也不相同。给配置

高、负载低的机器配置更高的权重，让其处理更多的请；而配置低、负载高的机器，给其分配较低的权

重，降低其系统负载，加权轮询能很好地处理这一问题，并将请求顺序且按照权重分配到后端。

最小连接数法 


最小连接数算法比较灵活和智能，由于后端服务器的配置不尽相同，对于请求的处理有快有慢，它是根

据后端服务器当前的连接情况，动态地选取其中当前。积压连接数最少的一台服务器来处理当前的请

求，尽可能地提高后端服务的利用效率，将负责合理地分流到每一台服务器。

加权最少连接数法 


根据当前连接数和权重比例选择最佳的后端服务器进行请求处理。

响应时间加权法 


按后端服务器的响应时间来分配请求，响应时间短的优先分配。

随机法 



调研了 nginx、haproxy、envoy、spring cloud 四款产品中的负载均衡算法。

加权法

随机法

nginx spring cloud haproxy envoy

nginx envoy

nginx spring cloud haproxy envoy

envoy

nginx spring cloud

spring cloud envoy



58

通过系统的随机算法，根据后端服务器的列表大小值来随机选取其中的一台服务器进行访问。由概率统

计理论可以得知，随着客户端调用服务端的次数增多，其实际效果越来越接近于平均分配调用量到后端

的每一台服务器，也就是轮询的结果。

源地址哈希法/一致性哈希法 


源地址哈希的思想是根据获取客户端的IP地址，通过哈希函数计算得到的一个数值，用该数值对服务器

列表的大小进行取模运算，得到的结果便是客服端要访问服务器的序号。采用源地址哈希法进行负载均

衡，同一IP地址的客户端，当后端服务器列表不变时，它每次都会映射到同一台后端服务器进行访问。


uri 哈希法 


根据请求 URI 的 hash 值，将同一个 URI 的请求分配给同一个后端服务器。


url 哈希法 


按访问url的hash结果来分配请求，使每个url定向到同一个后端服务器，后端服务器为缓存时比较有效。


请求参数哈希法 


根据请求参数的 hash 值，选择一个服务实例进行请求处理。同一个参数的请求总是分配给同一个实例。


MAGLEV 算法 


由 Google 发明，目的是为了解决现有负载均衡算法的扩展性和性能问题。


MAGLEV 算法的核心思想是将请求映射到一组虚拟桶（Virtual Buckets），每个桶又映射到一个实际的

后端服务器。每个虚拟桶使用哈希函数计算出一个哈希值，该哈希值可以与后端服务器列表中的一个唯

一 ID 相对应，然后将请求路由到该服务器上。


与传统的哈希算法不同，MAGLEV 算法使用了多个哈希函数，以增加桶分布的均匀性和冲突的概率。在

路由请求之前，MAGLEV 算法会将请求按照所有哈希函数的结果排序，并选择一个第一个未被占用的

桶，然后将该请求路由到该桶对应的服务器上。

RING HASH 算法 


哈希法

nginx haproxy

haproxy

nginx haproxy

spring cloud

envoy

envoy



59

RING HASH 算法常被用于解决分布式系统中的负载均衡问题，其主要思想是将请求哈希到一个环状结构

中，然后在该环上选择一个离请求哈希值最近的节点作为路由目标。

RING HASH 算法的核心思想是将节点的 IP 地址或主机名通过哈希函数映射到一个环上，然后将请求哈

希到环上的一个位置，最后选择离请求哈希值最近的节点进行路由。具体实现过程如下：

1. 将所有节点的 IP 地址或主机名通过哈希函数映射到一个范围在 [0, 2^32-1] 的整数值上，称为哈希

值

2. 将所有节点的哈希值按照顺时针排序，并构建成一个环状结构

3. 将请求的哈希值映射到环上的一个位置，然后按照顺时针方向选择离该位置最近的节点进行路由



60

Pilot-Metadata

服务发现元数据

CRD 定义




61

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
  # name must match the spec fields below, and be in the form: <plural>.<g
roup>
  name: metadata.networking.dubbo.io
spec:
  # group name to use for REST API: /apis/<group>/<version>
  group: metadata.networking.dubbo.io
  # list of versions supported by this CustomResourceDefinition
  versions:
    - name: v1
      # Each version can be enabled/disabled by Served flag.
      served: true
      # One and only one version must be marked as the storage version.
      storage: true
      schema:
        openAPIV3Schema:
          type: object
          properties:
            spec:
              type: object
              properties:
                applicationName:
                  type: string
                revision:
                  type: string
                metadataInfo:
                  type: string
                
  # either Namespaced or Cluster
  scope: Namespaced
  names:
    # plural name to be used in the URL: /apis/<group>/<version>/<plural>
    plural: metadata
    # singular name to be used as an alias on the CLI and for display
    singular: metadata
    # kind is normally the CamelCased singular type. Your resource manifes
ts use this.
    kind: Metadata
    # shortNames allow shorter string to match your resource on the CLI
    shortNames:
    - md

1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41

YAML



62

1. 服务启动时上报元数据到控制面，通过控制面注册到 k8s CRD 中


2. 监听服务下线，对于 application 维度下的所有服务均下线时，移除对应的元数据


在服务发现中增加监听器监听对应的上下线事件

为元数据设置一个时间戳，控制面以一天的频率去监听这部分数据的更新状态，客户端以更高的频

率上报数据，若在一天之内的数据没有更新则视作服务下线，将对应的元数据删除。

Proto


流程设计

●

●

syntax = "proto3";


package pixiu.pkg.metadata;


option go_package = "pixiu/pkg/metadata/protos"


service MetadataService {
    rpc Publish(MetadataPublishRequest) returns (MetadataPublishResponse);
    rpc Get(GetMetadataRequest) returns (GetMetadataResponse);
}


message PublishMetadataRequest {
    string application_name = 1;
    string revision = 2;
    string metadata_info = 3;
}


message PublishMetadataResponse {
}


message GetMetadataRequest {
    string application_name = 1;
    string revision = 1;
}


message GetMetadataResponse {
    string metadata_info = 1;
}



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Plain Text



63

1. 由于控制面不关心 revision 参数的生成，需要考虑出现重复的情况	 


在数据面更换其他的哈希算法

直接更新对应 revision 的数据


2. 服务下线时的监听

存疑

●

●

服务定义

CRD




64

Proto


apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
  # name must match the spec fields below, and be in the form: <plural>.<g
roup>
  name: service-definition.networking.dubbo.io
spec:
  # group name to use for REST API: /apis/<group>/<version>
  group: service-definition.networking.dubbo.io
  # list of versions supported by this CustomResourceDefinition
  versions:
    - name: v1
      # Each version can be enabled/disabled by Served flag.
      served: true
      # One and only one version must be marked as the storage version.
      storage: true
      schema:
        openAPIV3Schema:
          type: object
          properties:
            spec:
              type: object
              properties:
                identifier:
                  type: string
                serviceDefinition:
                  type: string
                	
  # either Namespaced or Cluster
  scope: Namespaced
  names:
    # plural name to be used in the URL: /apis/<group>/<version>/<plural>
    plural: serviceDefinitions
    # singular name to be used as an alias on the CLI and for display
    singular: serviceDefinition
    # kind is normally the CamelCased singular type. Your resource manifes
ts use this.
    kind: ServiceDefinition
    # shortNames allow shorter string to match your resource on the CLI
    shortNames:
    - sd

1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39

YAML



65

1. proto 中的错误信息处理均通过 grpc error handling 进行处理


2. 元数据中心以及服务定义中的数据保存时只保存原始字符串？

1. K8s 的核心是 API 而非容器：从理论到 CRD 实践（2022）  http://arthurchiao.art/blog/k8s-is-

about-apis-zh/#33-api-%E6%98%AF-sql


注

参考连接

syntax = "proto3";


package pixiu.pkg.metadata;


option go_package = "pixiu/pkg/metadata/protos"


service ServiceDefinitionService {
    rpc Publish(ServiceDefinitionPublishRequest) returns (ServiceDefinitio
nPublishResponse);
    rpc Get(GetServiceDefinitionRequest) returns (GetServiceDefinitionResp
onse);
}


message PublishServiceDefinitionRequest {
    string identitfier = 1;
  	 string serivce_definition = 2;
}


message PublishServiceDefinitionResponse {
}


message GetServiceDefinitionRequest {
   string identitfier = 1;
}


message GetServiceDefinitionResponse {
    string serivce_definition = 1;
}



1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

YAML

http://arthurchiao.art/blog/k8s-is-about-apis-zh/#33-api-%E6%98%AF-sql


66



67

Pixiu Control Plane服务测试功能基本方案
1.采用grpccurl的请求控制面


JSON格式(参数待定)


2.控制面向数据面下发请求


3.进行协议转换


4.数据面返回相关数据给控制面(数据格式待定)


5.控制面返回数据给gtpccurl


注：参考功能类似 Dubbo Admin 的服务测试。




68

Polit-服务映射

服务映射的逻辑是提供一个 com.example.DemoInterface => demo-application 的查找逻辑，此信息由Client

（provider）主动上报，由consumer按interface的颗粒度订阅，用以根据interface查找provider的endpoints。


对于基本的服务网格体系，首选的也是目前可以优先实现的选项是存储至k8s的注册中心。对此唯一的方式是创

建一条该类型的CRD（k8s不允许执行操作其集群的etcd），然后自定义controller，通过informer来监听资源变

动，大部分代码都可以用工具生成。具体地，分为两步。

Xds本身获取的信息大都是声明式的，所以并无客户端主动上报的途径。所以在xds的grpc server上注册一个新

的service name mapping服务，用来给客户端主动上报。


存在的问题：

1.鉴权


2.app name是什么，此处可能应该是一个完全限定名，例如 demoapp-default.pod.cluster.local


引语

实现

1.上报


2.存储




69

3.监听与下发


apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
  name: servicenamemappings.networking.dubbo.io
spec:
  group: networking.dubbo.io
  scope: Namespaced
  names:
    kind: ServiceNameMapping
    plural: servicenamemappings
    singular: servicenamemapping
    shortNames:
      - snp
  versions:
    - name: v1alpha1
      served: true
      storage: true
      schema:
        openAPIV3Schema:
          type: object
          properties:
            spec:
              description: >-
                it's the spec of Service Name Mapping, which is used to ma
p the interface name 
                to the application name in application discovery.
              type: object
              properties:
                interfaceName:
                  type: string
                applicationName:
                  type: array
                  items:
                    type: string
            status:
              type: object
      # subresources for the custom resource
      subresources:
        # enables the status subresource
        status: { }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

yaml YAML



70



71

Dubbo-go-Pixiu适配Nacos配置中心设计文档

方式 ：


Load函数时从本地文件路径读取配置的


从远端nacos读取yaml配置生成bootstrap结构体就行了


远端nacos的host和password等信息可以作为cmd的参数传入


参考配置：

https://github.com/apache/dubbo-go-

pixiu/blob/develop/pkg/config/config_load.go

·

文档说明


该文档为Dubbo-go-pixiu适配Nacos的设计文档

●

适配参考







之前使用nacos作为服务注册发现中心的nacos配置很简单，

"nacos":


          protocol: nacos


          address: "127.0.0.1:8848"


           timeout: "5s"

○

○

○

https://github.com/apache/dubbo-go-pixiu/blob/develop/pkg/config/config_load.go


72

举例：

读取配置文件


为达成读取配置文件的目标，可以使用Nacos-client-go SDK



73

package main


import (
	 "fmt"
	 "github.com/nacos-group/nacos-sdk-go/clients"
	 "github.com/nacos-group/nacos-sdk-go/common/constant"
	 "github.com/nacos-group/nacos-sdk-go/vo"
	 "time"
)


func main() {
	 // 至少一个ServerConfig
	 serverConfigs := []constant.ServerConfig{
	 	 {
	 	 	 IpAddr:      "192.168.72.146",
	 	 	 Port:        8848,
	 	 },
	 }


	 // 创建clientConfig
	 clientConfig := constant.ClientConfig{
	 	 NamespaceId:         "1cf91be1-d0e3-4494-aef7-b3cb8177e04e", // 如
果需要支持多namespace，我们可以场景多个client,它们有不同的NamespaceId。当namespac
e是public时，此处填空字符串。
	 	 TimeoutMs:           5000,
	 	 NotLoadCacheAtStart: true,
	 	 LogDir:              "tmp/nacos/log",
	 	 CacheDir:            "tmp/nacos/cache",
	 	 RotateTime:          "1h",
	 	 MaxAge:              3,
	 	 LogLevel:            "debug",
	 }
	 // 创建动态配置客户端的另一种方式 (推荐)
	 configClient, err := clients.NewConfigClient(
	 	 vo.NacosClientParam{
	 	 	 ClientConfig:  &clientConfig,
	 	 	 ServerConfigs: serverConfigs,
	 	 },
	 )
	 if err != nil {
	 	 panic(err)
	 }
	 //获取配置信息
	 //content, err := configClient.GetConfig(vo.ConfigParam{
	 //	 DataId: "user-web.yaml",

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

读取Nacos配置文件 Go



74

如上述代码的的方式去创建

总结

可以将两者结合起来

	 //	 Group:  "dev"})
	 //if err != nil {
	 //	 fmt.Println("GetConfig err: ",err)
	 //}
	
	 //监听配置
	 err = configClient.ListenConfig(vo.ConfigParam{
	 	 DataId: "user-web.yaml",
	 	 Group:  "dev",
	 	 OnChange: func(namespace, group, dataId, data string) {
	 	 	 fmt.Println("group:" + group + ", dataId:" + dataId + ", dat
a:" + data)
	 	 },
	 })
	 if err!=nil{
	 	 return
	 }
	 time.Sleep(time.Second*1000)
}



44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62



75

泛化调用直连和删除 api_config
api_config 删除，使用 route 和 cluster 代替


泛化调用从服务发现模式修改成直连模式


目前 http to dubbo 协议转换时，需要使用 api_config 配置从 http 请求中获取诸如 application，

interface，method 等元信息，从而为 dubbo 泛化调用做准备。


其使用必须使用本地的 api_config.yaml 文件进行配置，并且需要为每个path 进行相应的配置。如下所

示，具体可见 samples/dubbogo/simple/body,query,proxy。


●

●

将 api_config 删除，使用 route 和 cluster代替


- name: dgp.filter.http.apiconfig
config:
  dynamic: true
  dynamic_adapter: test
- name: dgp.filter.http.dubboproxy
config:
  dubboProxyConfig:
    registries:
      "zookeeper":
        protocol: "zookeeper"
        timeout: "3s"
        address: "127.0.0.1:2181"
        username: ""
        password: ""

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Java



76

缺点：


泛化调用服务发现模式还会进行一次服务发现，增加复杂度并且影响性能；


xDS 协议等需要进行统一，api_config 无法兼容。


负载均衡机制不统一


现在已经有 http to dubbo 默认转换规约。详见 

https://dubbogoproxy.yuque.com/docs/share/0c2f8c7a-42a2-4a83-9a0a-8a4f302622a9?

# 《Dubbo to http 默认转换规则》


所以希望将 api_config 删除掉或进行简化。使用 route 确定请求会转发给哪个上游 cluster 的 

endpoint，然后 dubboproxy 使用默认转换规约从 http 请求中获取到泛化调用所需的元信息，再加上 

endpoint 的 host 信息，进行泛化请求的直连调用。


涉及改动：


https://github.com/apache/dubbo-go-pixiu/tree/develop/pkg/filter/http/apiconfig


https://github.com/apache/dubbo-go-pixiu/tree/develop/pkg/adapter


●

●

●

●

●

●

  - path: '/api/v1/test-dubbo/user'
    type: restful
    description: user
    methods:
      - httpVerb: POST
        enable: true
        timeout: 1000ms
        inboundRequest:
          requestType: http
        integrationRequest:
          requestType: dubbo
          mappingParams:
            - name: requestBody._all
              mapTo: 0
              mapType: "object"
          applicationName: "UserProvider"
          interface: "com.dubbogo.pixiu.UserService"
          method: "CreateUser"
          group: "test"
          version: 1.0.0
          clusterName: "test_dubbo"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Java

https://dubbogoproxy.yuque.com/docs/share/0c2f8c7a-42a2-4a83-9a0a-8a4f302622a9?#
https://github.com/apache/dubbo-go-pixiu/tree/develop/pkg/filter/http/apiconfig
https://github.com/apache/dubbo-go-pixiu/tree/develop/pkg/adapter


77

泛化直连调用参考：


https://github.com/apache/dubbo-go-

pixiu/blob/develop/pkg/filter/network/dubboproxy/filter/proxy/proxyfilter.go


https://github.com/apache/dubbo-go-pixiu/blob/develop/pkg/filter/network/dubboproxy/filter/proxy/proxyfilter.go


78

HTTP-to-gRPC 支持 Reflection

该版本主要是在 http-to-gRPC 的场景，支持 gRPC Reflection，pixiu 不用加载 proto 文件，也可以

正常代理 http to gRPC 的请求，前提是，gRPC 服务必须开启 Reflection，即在当前 gRPC 服务上注

册服务器反射服务。


注册服务器反射服务通过代码： ﻿reflection.Register(gs)﻿，启动代码完整示例如下：


基于 pixiu 支持 gRPC 的迭代升级方案


概述


func main() {
	 l, err := net.Listen("tcp", ":50001") //nolint:gosec
	 if err != nil {
	 	 panic(err)
	 }


	 s := &server{users: make(map[int32]*proto.User)}
	 initUsers(s)


	 gs := grpc.NewServer()


	 proto.RegisterUserProviderServer(gs, s)


	 // registers the server reflection service on the given gRPC server.
	 reflection.Register(gs)


	 logger.Info("grpc test server is now running...")
	 err = gs.Serve(l)
	 if err != nil {
	 	 panic(err)
	 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Go



79

http to gRPC 场景，不配置 proto 文件，基于 Reflection Server 可以完整正常代理请求


http to gRPC 场景，配置 proto 文件，未开启 Reflection Server 也可以完整正常代理请求


http to gRPC 场景，配置 proto 文件，并且服务端也开启了 Reflection Server ，pixiu 可以完整

正常代理请求


功能


●

●

●



80

Pixiu to SpringCloud with zookeeper

项目 README.md


启动 Zookeeper 作为 SpringCloud 的注册中心


启动 SpringCloud Server ： ﻿pixiu-springcloud-server﻿，项目路径： ﻿samples/springclo
ud/zookeeper﻿


检查一下 SpringCloud 服务是否启动：


响应结果，表示 SpringCloud Server 正常启动：


操作手册


services:
  zookeeper:
    image: zookeeper
    ports:
      - "2181:2181"

1
2
3
4
5

Shell

mvn spring-boot:run1

Shell

curl http://localhost:9127/hi1

Shell

https://github.com/apache/dubbo-go-pixiu/blob/develop/samples/springcloud/README.md


81

develop-0.5.0 分支 配置文件 ：conf.yaml


通过 Pixiu 代理请求 SpringCloud 服务


Start Pixiu


Hello Pixiu World! from org.springframework.cloud.zookeeper.serviceregistr
y.ServiceInstanceRegistration@63a45760

1

Shell

gateway start -c samples/springcloud/pixiu/conf.yaml1

Shell

curl http://127.0.0.1:8888/pixiu-springcloud-server/hi1

Shell

https://github.com/apache/dubbo-go-pixiu/blob/develop-0.5.0/samples/springcloud/zookeeper/pixiu/conf.yaml


82

Dubbo to http 默认转换规则
我们以 Http to dubbo 默认转换规则为例，将 dubbo 请求转换为 http 请求。


接收 dubbo 请求的实现：


为了能接收 dubbo 协议请求，pixiu 引入了 tcp_listener,它使用getty，接收tcp报文，然后交给 

dgp.filter.network.dubboconnectionmanager 来解序列化为 rpc_invocation 实例，也就是 dubbogo 

中代表依次 rpc 请求的实例。然后交给 dgp.filter.dubbo.proxy 使用 URI 和 Invoker 来发送该 

invocation 给 upstream 的 triple server，然后将 rpcresult 返回。


具体代码可见：


pkg/listener/tcp


pkg/filter/network/dubboproxy/manager.go 的 OnEncode，OnDecode，OnData 三个函数


具体转换实现代码见：pkg/filter/network/dubboproxy/filter/http/httpfilter.go


案例：samples/dubbohttpproxy，可以启动 pixiu 和 对应的 http server，然后执行

dubbo2http_test.go


具体转换规则：


其中 ${host} 和 ${port} 是根据 route 指向 cluster 后，选取的 endpoint 的信息，#{xx}则是从 dubbo 

请求中获取的信息。


其中 body 应该就是泛化调用的参数，泛化调用和 http server 接口处理的对应代码如下所示。


●

●

POST ${host}:${port}/#{interfaceKey}/#{method}


"x-dubbo-http1.1-dubbo-version": 1.0.0
"x-dubbo-service-protocol": #{protocol}
"x-dubbo-service-version": #{version}
"x-dubbo-service-group": #{group}


#{body}

1
2
3
4
5
6
7
8

Go



83

tripleRefConf := newDubboRefConf("com.dubbogo.pixiu.TripleUserService", dub
bo.DUBBO)
resp, err := tripleRefConf.GetRPCService().(*generic.GenericService).Invoke
(
    context.TODO(),
    "GetUserById",
    []string{"java.lang.String"},
    []hessian.Object{"0001"},
)

1

2

3
4
5
6
7

Go

func main() {
	 http.HandleFunc("/com.dubbogo.pixiu.TripleUserService/GetUserById", us
er)
	 log.Println("Starting sample server ...")
	 log.Fatal(http.ListenAndServe("127.0.0.1:20001", nil))
}


func user(w http.ResponseWriter, r *http.Request) {
	 switch r.Method {
	 case constant.Post:
	 	 byts, err := ioutil.ReadAll(r.Body)
	 	 if err != nil {
	 	 	 w.Write([]byte(err.Error()))
	 	 }
	 	 var name string
	 	 var user User
	 	 err = json.Unmarshal(byts, &name) // 解析出来为 "0001"
	 	 if err != nil {
	 	 	 w.Write([]byte(err.Error()))
	 	 }
        .......
    }
}

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Go



84

gRPC 请求代理
pixiu 作为网关，代理外侧客户端发送的 gRPC 请求，按照其请求的 path 根据route 确定转发的

upstream 服务，构造对应的 http2 请求进行转发。目前仅支持 unary call。


涉及的组件有 Http2Listener 用来接收 http2 请求，GrpcConnectionManager 用来处理 http2 报文，

生成新的 http2 请求，转发请求，将返回的response的body，header和tailer写回。


具体案例：samples/grpc


测试用例：


static_resources:
  listeners:
    - name: "net/http"
      protocol_type: "HTTP2"  # 需要使用 HTTP2 的 Listener
      address:
        socket_address:
          address: "0.0.0.0"
          port: 8881
      filter_chains:
          filters:
            - name: dgp.filter.grpcconnectionmanager  # 需要使用 GrpcConnec
tionManager
              config:
                route_config:
                  routes:
                    - match:
                        prefix: "/provider.UserProvider/"  
                        # 表示 provider.UserProvider相关path的grpc请求都转发
到 test-grpc cluster 上
                      route:
                        cluster: "test-grpc"
                        cluster_not_found_response_code: 505

1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17

18
19
20

YAML



85

序号
 测试描述
 结果
 备注


1
 启动samples的server，和

pixiu，启动test，查看单测

是否正式通过


PIXIU返回结果


2022-02-

25T02:47:23.427+0800    

�[35mDEBUG�[0m  

grpc/manager.go:69      

[dubbo-go-pixiu] client 

choose endpoint from 

cluster :test-grpc


单侧的控制台


=== RUN   TestGet


--- PASS: TestGet 

(0.11s)


PASS


2
 将 server 关闭，启动

test，查看pixiu 是否能否

处理 upstream down场

景，应该返回 connect 

refused


PIXIU返回结果


2022-02-

25T02:43:30.066+0800    

�[34mINFO�[0m   

grpc/manager.go:90      

GrpcConnectionManager 

forward request error dial 

tcp 127.0.0.1:50001: 

connectex: No 

connection could be 

made because the target 

machine actively refused 

it.


3
 启动server和pixiu，client

端发送不在pixiu配置的可

识别的 grpc请求，查看 

pixiu 的处理，应该返回

404




86

4
 启动server和pixiu，client

发送请求较大的request，

查看是否正常，可以参考

grpc benchmark 的案例 


funcDoUnaryCall(tc 

testgrpc.BenchmarkServiceClie

nt, reqSize, respSizeint) error {


，将 request的参数之一设

置为可控大小




87

Http to Dubbo默认转化规则
http to dubbo 协议是 pixiu 作为重要的功能之一，之前需要从 api_config.yaml 文件或者从注册中心

中读取元数据生成对应的 api_config 实例。


对于大量的dubbo api，就需要大量的 api_config 配置，相对较为麻烦。


所以，考虑从 http 请求的 path 或者 header 中读取到对应的元信息，进行 dubbo 泛化调用。


具体的转换规则详见


https://www.yuque.com/docs/share/4f82b71e-fa2b-4e65-8007-ba3afe2a1740?#


目前 protocol 只能支持 dubbo 


技术实现：


在 dgp.filter.http.dubboproxy 中添加一个bool 开关，开启后，会从 http 请求获取原数据


案例：


samples/dubbogo/simple/resolve


测试用例


func (f *Filter) Decode(c *contexthttp.HttpContext) filter.FilterStatus {


	 if f.conf.Dpc.AutoResolve {
	 	 if err := f.resolve(c); err != nil {
	 	 	 c.SendLocalReply(http.StatusInternalServerError, []byte(fmt.Sprintf
("auto resolve err: %s", err)))
	 	 	 return filter.Stop
	 	 }
	 }


	 api := c.GetAPI()
  .....
  }

1
2
3
4
5

6
7
8
9
10
11
12

YAML

序号
 测试用例
 结果
 备注


https://www.yuque.com/docs/share/4f82b71e-fa2b-4e65-8007-ba3afe2a1740?#


88

启动对应的samples中的

server 和 pixiu，单测能够正

常通过


启动对应的samples中的

server 和 pixiu，将单测中的

http请求中的version和group

进行修改，查看是否生效(对应

server配置的group和version

也要修改)


启动对应的samples中的

server 和 pixiu，将单测中的 

http 请求的 interface 和 

method 进行修改，pixiu 应该

能返回404




89

triple 和 dubbo 协议的相互转换

添加了 triple 和 dubbo 协议的相互转换，为了做 dubbo2 集群和 dubbo3 集群的中转，方便推进整体 

dubbo 集群分批升级。


为了能接收 dubbo 协议请求，pixiu 引入了 tcp_listener,它使用getty，接收tcp报文，然后交给 

dgp.filter.network.dubboconnectionmanager 来解序列化为 rpc_invocation 实例，也就是 dubbogo 

中代表依次 rpc 请求的实例。然后交给 dgp.filter.dubbo.proxy 使用 URI 和 Invoker 来发送该 

invocation 给 upstream 的 triple server，然后将 rpcresult 返回。


为了接收 triple 协议请求，pixiu 引入了 triple_listener，它使用 triple 的 server proxy 功能，可以接

受任意的triple请求，然后同样交给 dgp.filter.dubbo.proxy 处理。同样的也可以交给 

dgp.filter.dubbo.http来将其转换为 http 请求。


案例：具体看 


案例：samples/dubbohttpproxy


案例：samples/dubbotripleproxy https://github.com/apache/dubbo-go-

pixiu/tree/develop/samples/dubbotripleproxy


https://github.com/apache/dubbo-go-pixiu/tree/develop/samples/dubbotripleproxy


90

  listeners:
    - name: "dubbo-listener"
      protocol_type: "TCP"  # tcp_listner
      address:
        socket_address:
          address: "0.0.0.0"
          port: 8888
      filter_chains:
          filters:
            - name: dgp.filter.network.dubboconnectionmanager
              config:
                route_config:
                  routes:
                    - match:
                        prefix: "/com.dubbogo.pixiu.TripleUserService"
                        methods:
                          - "*"
                      route:
                        cluster: "triple-server"
                        cluster_not_found_response_code: 505
                dubbo_filters:
                  - name: dgp.filter.dubbo.proxy # dubbo.proxy 使用 tri 来
转换为 triple协议请求
                    config:
                      protocol: tri
    - name: "triple-listener"
      protocol_type: "TRIPLE" # triple_listener
      address:
        socket_address:
          address: "0.0.0.0"
          port: 9999
      filter_chains:
        filters:
          - name: dgp.filter.network.dubboconnectionmanager
            config:
              route_config:
                routes:
                  - match:
                      prefix: "com.dubbogo.pixiu.DubboUserService"
                      methods:
                        - "*"
                    route:
                      cluster: "dubbo-server"
                      cluster_not_found_response_code: 505
              dubbo_filters:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

YAML



91

                - name: dgp.filter.dubbo.proxy
                  config:
                    protocol: dubbo # ubbo.proxy 将其转换为 dubbo 请求
  clusters:
    - name: "triple-server" # triple-server 的集群
      lb_policy: "lb"
      endpoints:
        - id: 1
          socket_address:
            address: 127.0.0.1
            port: 20001
    - name: "dubbo-server"  # dubbo-server 的集群
      lb_policy: "lb"
      endpoints:
        - id: 1
          socket_address:
            address: 127.0.0.1
            port: 20000

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

序号
 测试用例
 结果
 备注


1
 dubbotripleproxy 案

例运行起来，两个单

测能正常通过


2
 只将 pixiu启动，运

行两个单测，pixiu 

应该返回正常的错误

信息




92

trace in pixiu

pixiu中tracing实现了http流量的追踪，通过设置dgp.filters.tracing，可以追踪http流量。设置如下：




93

static_resources:
  listeners:
    - name: "net/http"
      protocol_type: "HTTP"
      address:
        socket_address:
          address: "0.0.0.0"
          port: 8881
      filter_chains:
        filters:
          - name: dgp.filter.httpconnectionmanager
            config:
              route_config:
                routes:
                  - match:
                      prefix: "/api/v1"
              http_filters:
                - name: dgp.filters.tracing
                  config:
                - name: dgp.filter.http.apiconfig
                  config:
                    path: $PROJECT_DIR/pixiu/api_config.yaml
                - name: dgp.filter.http.dubboproxy
                  config:
                    dubboProxyConfig:
                      registries:
                        "zookeeper":
                          protocol: "zookeeper"
                          timeout: "3s"
                          address: "127.0.0.1:2181"
                          username: ""
                          password: ""
                      timeout_config:
                        connect_timeout: 5s
                        request_timeout: 5s
              server_name: "test_http_dubbo"
              generate_request_id: false
tracing:
  name: "jaeger"
  servicename: "dubbo-go-pixiu"
  sampler:
    type: "always"
  config:
    url: "http://127.0.0.1:14268/api/traces"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

YAML



94

�然而，要实现整体流程的追踪和traceID的传递，需要实现dubbo流量的追踪，应该子啊dubboproxy中增

加trace组件。


from traceparent -> 00-8189d1cb128fb8fa475ad8c8966b0bfe-29334edeaa281415-01


to 


JaegerDebugHeader = {string} "jaeger-debug-id"


JaegerBaggageHeader = {string} "jaeger-baggage"


TraceContextHeaderName = {string} "uber-trace-id"


TraceBaggageHeaderPrefix = {string} "uberctx-"


key of jeager when extract




95

prometheus pull in pixiu

pixiu 目前具备采集相关指标，发送给 pushgateway，从而接入 prometheus 的能力。用户可以根据自

身业务需要，部署 prometheus，设置其每次从 pushgateway 拉取数据。这虽然已经完成了对基础指标

的实时上报，但根据官方推荐和目前业界广泛使用的情况来看，prometheus pull 方式的实现仍是必要

的。

定义端口：在 pixiu 的配置文件中配置一个端口，以便 prometheus server 通过该端口访问 pixiu 的数

据

定义指标：采取现在定义的请求总数、请求延时、请求体大小和返回体大小四个指标

指标上报：保持大部分现有逻辑，将收集到的数据不发送给 pushgateway，直接暴露出来


方式选择：可在配置文件配置使用 pull 还是 push 模式


在程序加载的同时初始化所有的监控指标，开启一个协程定期采集和更新指标数据，同时新开一个协程

每隔固定周期（30秒或1分钟）检查指标的状态，如果在5分钟内指标没有更新就自动清理掉。

优点

1. 避免并发采样带来的资源消耗和抢占

2. 易于控制采样频率

3. 可自动清理掉失效的采集对象

4. 避免了是过期数据，一定程度上保证了即时性

缺点

并不是即时采样，比如在采样协程夯住后存在一定的延时

背景

流程

方案

方案一



96

每次接收到 pull 请求时，都初始化新的监控指标，开启一个采样协程，返回请求时结束掉协程。在请求

期间，协程会去采集所有的指标数据上报。

优点

数据即时性和一致性

缺点

暂无，可能增加对资源的占用

方案二



97

Polit支持服务映射

对于Provider，启动时上报自身应用名与要注册的服务列表，尽量一次性以列表的形式上报，但是做不到

也没关系，Polit会针对性的merge一部分请求。


对于dubbo-go，直接replace istio.io/api为https://github.com/dubbo-go-pixiu/operator-api/即可

调用该grpc service，对于dubbo-java，可能需要将该proto文件下载并生成stub再调用。


API: https://github.com/dubbo-go-pixiu/operator-api/blob/release-

1.14/dubbo/v1alpha1/snp.proto


对于Consumer，与其他Xds协议使用的方式完全一致，订阅方式如下所示，其中typeUrl为固定值，

resourceNames则为要订阅的interface，默认订阅同namespace接口，若需跨namespace订阅，形

如‘a.b.c.HelloInterface|dubbo-demo’。


Provider


Consumer


// Provides an service for reporting the mapping relationship between inte
rface => cluster
// the cluster name will be versioned FQDN. such as "demo.default.svc.clus
ter.local"
service ServiceNameMappingService{
  rpc registerServiceAppMapping(ServiceMappingRequest) returns (ServiceMap
pingResponse);
}


// When dubbo provider start up, it reports its applicationName and its in
terfaceName,
// and Dubbo consumer will get the service name mapping info by xDS.
message ServiceMappingRequest{
  // This is namespace of proxyless dubbo server
  string namespace = 1;
  string applicationName = 2;
  repeated string interfaceNames = 3;
}

1

2

3
4

5
6
7

8
9
10
11
12
13
14

proto Protobuf

https://github.com/dubbo-go-pixiu/operator-api/
https://github.com/dubbo-go-pixiu/operator-api/blob/release-1.14/dubbo/v1alpha1/snp.proto


98

关于响应：

订阅时会异步地返回要订阅的服务的列表，如果有更新，会通过ads推送下来。


对于dubbo-go，直接将其转换为https://github.com/dubbo-go-pixiu/operator-api/blob/release-

1.14/dubbo/v1alpha1/snp.pb.go中的ServiceMappingXdsResponse即可。


对于dubbo-java，使用API: https://github.com/dubbo-go-pixiu/operator-api/blob/release-

1.14/dubbo/v1alpha1/snp.proto生成的对应ServiceMappingXdsResponse即可。


对于Polit，直接压QPS没什么意义，那就变成单纯的压测api-server，所以压测一下两个场景。


一个单主节点，8c16G


一个新应用上线，应用有100个interface，验证上线实例的qps。


结论：足够满足需求，单应用上线600个实例无压力

请求数60000，并发数100

Polit服务注册压测


配置

场景1 单应用上线实例，并发100


typeUrl = "dubbo.networking.v1alpha1.v1.servicenamemapping"
resourceNames = ['a.b.c.HelloInterface','a.b.c.HelloInterface|default',
'a.b.c.HelloInterface|dubbo-demo']

1
2
3

Protobuf

https://github.com/dubbo-go-pixiu/operator-api/blob/release-1.14/dubbo/v1alpha1/snp.pb.go
https://github.com/dubbo-go-pixiu/operator-api/blob/release-1.14/dubbo/v1alpha1/snp.proto


99

请求数60000，并发数500

100个新应用同时上线，每个应用100个实例


请求数10000，并发100


结论：请求QPS达到900，但由于是异步分批提交，10000条服务映射提交用时4分01秒。


优化：针对此种大批量上线情况，可以调整环境变量PILOT_SNP_DEBOUNCE_MAX为10s，副作用是，

大批量上线时最晚会在10s后才能订阅到对应的服务映射。


场景二 多应用上线，并发100




100

"PILOT_SNP_DEBOUNCE_MAX"，此参数代表当持续收到注册请求时，合并请求的最大时长，默认为1s

"PILOT_SNP_DEBOUNCE_AFTER"，此参数代表多久没收到新的注册请求时立即提交，默认100ms


两者结合，即注册请求最短在100ms后提交，最长在1s后开始提交（异步做实际提交，并非提交完成），



101

最佳实践&宣传

一、最佳实践案例


对外暴露的 http 接口 http to dubbo


http to dubbo 协议 https://github.com/apache/dubbo-go-

pixiu/tree/develop/samples/dubbogo/simple/registry


nacos注册中心 https://github.com/apache/dubbo-go-

pixiu/tree/develop/samples/dubbogo/simple/registry 将 zk 修改成 nacos


ratelimiter https://github.com/apache/dubbo-go-

pixiu/tree/develop/samples/plugins/ratelimit


断路器  详见 https://github.com/apache/dubbo-go-pixiu/tree/develop/pkg/filter/sentinel


tracer + jaeger https://github.com/apache/dubbo-go-

pixiu/tree/develop/samples/dubbogo/simple/jaeger


jwt 认证 https://github.com/apache/dubbo-go-

pixiu/tree/develop/samples/dubbogo/simple/jwt


●

●

●

●

●

●

https://github.com/apache/dubbo-go-pixiu/tree/develop/samples/dubbogo/simple/registry
https://github.com/apache/dubbo-go-pixiu/tree/develop/samples/dubbogo/simple/registry
https://github.com/apache/dubbo-go-pixiu/tree/develop/samples/plugins/ratelimit
https://github.com/apache/dubbo-go-pixiu/tree/develop/pkg/filter/sentinel
https://github.com/apache/dubbo-go-pixiu/tree/develop/samples/dubbogo/simple/jaeger
https://github.com/apache/dubbo-go-pixiu/tree/develop/samples/dubbogo/simple/jwt


102

Cluster 健康检查

目前系统中的定义:


在我们 Pixiu 当前的 statics_resource﻿ 配置中, 其实是包含了对静态的 ﻿cluster﻿ 集群的健康
检查配置. 但是未开启相关实现。


本期功能希望针对 ﻿HTTP﻿ 形式的集群节点增加健康检查功能. 对齐配置约定.


功能目的


功能实现方案


目前系统已有的请求流程


type Cluster struct {
    Name                 string           `yaml:"name" json:"name"` // Nam
e the cluster unique name
    TypeStr              string           `yaml:"type" json:"type"` // Typ
e the cluster discovery type string value
    Type                 DiscoveryType    `yaml:"-" json:"-"`       // Typ
e the cluster discovery type
    EdsClusterConfig     EdsClusterConfig `yaml:"eds_cluster_config" jso
n:"eds_cluster_config" mapstructure:"eds_cluster_config"`
    LbStr                LbPolicyType     `yaml:"lb_policy" json:"lb_polic
y"` // Lb the cluster select node used loadBalance policy
    HealthChecks         []HealthCheck    `yaml:"health_checks" json:"heal
th_checks"`
    Endpoints            []*Endpoint      `yaml:"endpoints" json:"endpoint
s"`
    PrePickEndpointIndex int
}

1
2

3

4

5

6

7

8

9
10

Go



103

Add Cluster


新增一个新的 ﻿cluster﻿同时检测, 如果符合 ﻿static_resouces﻿的条件(静态配置启动cluster),  新

开协程针对这个 ﻿cluster 内部的节点进行健康检查.


BackgroudChecker


新增方案, 进行异步的健康检查。 将健康检查失败的节点进行标记。


Pick Endpoint


获取 ﻿cluster﻿内的节点, 检测是否属于健康状态.


Cluster Manager 改动


Cluster 变动




104

将健康检查的能力实现在 Cluster 内部. 针对不同的健康检查类型维护不同的 Checker. 方便后续扩展其

他类型的检查.




105

XDS-LDS
xds与pixiu的生命周期


Ready 检查点：


成功连接控制面


Listener启动完成


结论：


分为两部分，第一步初始化所有的listener，第二部监听并动态刷新


●

●



106

代理注册

pixiu目前希望能提供一套接入dubbo集群的多语言解决方案，简化整个接入的流程。例如让python，nodejs等

各种语言的server 都可以依赖pixiu接入到dubbo/dubbogo 集群中，和集群中的dubbo server进行无感的相互

调用。


使用pixiu代理注册可以分为代理单个和多个服务(实例)


1. 代理多个服务的优点和缺点：


a. 代理多个服务 简化部署以及运维成本， 一个pi xiu代理多个服务实例，pixiu的部署运维

成本相对较小。


b. 存在中心化问题 需要考虑单点可用性问题。代理的服务实例越多，pi xiu的压力会越大，

除了


2. 负责流量转发还需要维护多个实例的心跳。


a. 代理单个服务，一个pi xiu 对应单个服务实例，利用sidecar模式


b. 部署和运维成本增加


相比较之下感觉利用pixiu sidecar模式进行代理注册更适合，因为pixiu 目前代码中已有提供

sidecar模式，只不过还没有具体的实现(主要功能都已经存在，可以复用gateway模式的代码)。

调研mosn的流量劫持方案也是在sidecar模式基础上工作。


1. 首先服务提供者(python/c++/rust...)推送代理注册请求(provider的ip和port 1.2.3.4:8080)到

pixiu(sidecar模式)

2. pixiu将自身的ip和端口(1.2.3.4:8081)注册到注册中心(nacos,etcd,zk等)


3. 服务消费者(python/c++/rust...)推送代理注册请求(Consumer的ip和port1.2.3.5:8080)到

背景


方案


代理注册流程


https://mosn.io/docs/concept/traffic-hijack/


107

pixiu(sidecar模式)

4. pixiu将自身的ip和端口(1.2.3.5:8081)注册到注册中心(nacos,etcd,zk等)


5. pixiu目前已有的订阅功能会将注册中心的服务（provider的pixiu注册信息）通知到consumer 

pixiu,consumer pixiu 会在路由树中注册provider 的路由


6. 在pixiu代理注册成功后会主动对Provider/Consumer进行健康检查


注册实例Struct


代理注册设计


type ServiceInstance struct {


    ServiceName     string
    Host            string
    Port            int
    Healthy         bool
    Metadata        map[string]string
    GroupName       string
    Namespace 	 	 string


}

1
2
3
4
5
6
7
8
9
10
11

Go



108

1. 在sidecar 启动时开启http server/grpc server 提供代理注册服务，等待被代理方发起请

求。在代理注册成功后，由pixiu发起心跳检测，心跳检测失败时，取消代理注册


2. 提供获取代理注册配置接口，主要由http,grpc等不同的方式去实现，通过接收到的请求转换

为ServiceInstance


a. 代理注册的信息来源可以是http/grpc/直接配置等


3. 提供代理注册接口,nacos,etcd,zk等各自按需实现


1. pixiu启动时并且是sidecar模式，则开启http 或者 grpc server接收对客户端的请求，待接收

到请求后进行解析，获取到请求参数后将ServiceInstance 注册到注册中心。 


2. 将代理的ip和端口存储在内存中。


3. 如果是服务级代理注册 相当于需要对到达pixiu sidecar的所有请求转发到代理实例上。将根

路径/注册到pixiu router上即可。


4. 接口级别注册可能一个pi xiu 会代理同一个实例的多个接口进行注册，要求ip和端口必须一

致，将接口注册到pixiu router上


实现思路


proxyRegisterConfig{


	 GetProxyServiceInstance()instance ServiceInstance
}

1
2
3
4

Go

ProxyRegister{


    Register(instance ServiceInstance)


    UnRegister(instance ServiceInstance)
}

1
2
3
4
5
6

Go



109

websocket 支持

1. Pixiu websocket网关的基本能力：


a. 连接功能


ⅰ. 与终端建立连接，提供验证功能；验证扩展接口；


ⅱ. 维持与终端的长链接。


ⅲ. 实现基本通讯信令，特别是ping/pong，在web端没有提供ping 的 api。

（https://developer.mozilla.org/en-US/docs/Web/API/WebSocket ; 和WebSocket 

API Specification）;一般由服务端发送ping;


ⅳ. 提供编程接口：：onConnection; onClose; closeConnection；auth;


ⅴ.

b. session功能：


ⅰ. 维护session与连接的映射；


ⅱ. 提供消息路由能力；


ⅲ. 具备session的编程接口onSessionCreate；onSessionClose； closeSession; 


c. 消息转发功能：


ⅰ. 提供可以定制消息格式模版。


ⅱ. 接受消息，转发到应用（dubbo 服务）


ⅲ. 提供dubbo服务，对session发消息；


ⅳ. 消息暂存。对于消息没有对应连接；进行暂存；


d. 统计功能：


ⅰ. 对connection; session; message统计metrics接口。


https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://www.w3.org/TR/websockets/


110

Proxy Mesh方案建设

1. 应用启动生命周期对齐


2. 健康检查与服务状态控制


3. 服务代注册


4. 服务发现


5. 服务调用


6. Ingress


7. Engress


Ref: Dubbo Proxy mesh方案


Dubbo 方案


主要诉求:


Pixiu侧关注主要流程


https://www.yuque.com/docs/share/73337002-325e-465f-83d7-5c21c1e5ac12?


111

方案结构初览




112

功能点沟通








和 Dubbo 这边同学沟通下来, 一期我们主要关心以下功能和 Envoy 对齐满足方案上线需求.

一期方案采用半 Proxyless 方案, 客户端直连代理模式。



113



114

设计方案:


设计方案: 


设计方案:


设计方案:https://www.yuque.com/xiguataizao/nqpt6u/rftqhh


设计方案:


一期主要启动功能

启动流程


服务发现适配


请求转发


服务代注册


Control Panel


https://www.yuque.com/xiguataizao/nqpt6u/rftqhh


115

设计方案:


Cli工具部署




116

与istio一起工作

当dubbo部署istio + k8s环境中，pixiu可以作为dubbo provider的ingress gateway，接收

dubbo/triple/http的流量，并将请求转发到dubbo provider中。


在这个过程，需要pixiu，与istiod通信，基于ADS/CDS发现dubbo服务。


一个典型的配置包括：

dubbo provider + service:


用例

配置



117

dubbo:
  application:
    version: 1.0.0
  registries:
    xds:
      protocol: xds
      address: istiod.istio-system.svc.cluster.local:15010
  protocols:
    dubbo:
      name: dubbo
      port: 20000
  provider:
    services:
      GreetingService:
        protocol: dubbo
        version: 1.0.0
        group: default
        serialization: hessian2
        interface: com.dubbo.demo.GreetingService





1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

YAML



118

gateway配置包括 使用dynamic_resources， 并在 dgp.filter.httpconnectionmanager 的route中使用

cluster为dubbo-go-server。 dubbo-go-server并不是静态配置的cluster，而是有CDS生成的。


---
apiVersion: v1
kind: Service
metadata:
  annotations:
    meta.helm.sh/release-name: dubbo-go-app
    meta.helm.sh/release-namespace: default
  labels:
    app.kubernetes.io/instance: dubbo-go-app
    app.kubernetes.io/managed-by: Helm
    app.kubernetes.io/name: dubbo-go-app
    app.kubernetes.io/version: 1.16.0
    helm.sh/chart: dubbo-go-app-0.0.1
  name: dubbo-go-app
  namespace: default
spec:
  internalTrafficPolicy: Cluster
  ipFamilies:
  - IPv4
  ipFamilyPolicy: SingleStack
  ports:
  - name: triple
    port: 20000
    protocol: TCP
    targetPort: triple
  selector:
    app.kubernetes.io/instance: dubbo-go-app
    app.kubernetes.io/name: dubbo-go-app
  sessionAffinity: None
  type: ClusterIP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

YAML



119

node:
  id: "test-id"
  cluster: "pixiu"


dynamic_resources:
  cds_config:
    cluster_name: ["xds-server"]
    api_type: "ISTIO"
    refresh_delay: "5s"
    request_timeout: "10s"
    grpc_services:
      - timeout: "5s"
static_resources:
  clusters:
    - name: "xds-server"
      type: "Static"
      endpoints:
        - socket_address:
            address: "istiod.istio-system.svc.cluster.local"
            port: 15010
  listeners:
    - name: "net/http"
      protocol_type: "HTTP"
      address:
        socket_address:
          address: "0.0.0.0"
          port: 8883
      filter_chains:
        filters:
          - name: dgp.filter.httpconnectionmanager
            config:
              route_config:
                routes:
                  - match:
                      prefix: "/UserService"
                    route:
                      cluster: "dubbo-go-app"
              http_filters:
                - name: dgp.filter.http.directdubboproxy
                  config:
  shutdown_config:
    timeout: "5s"
    step_timeout: "2s"
    reject_policy: "immediacy"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

YAML



120

完整的应用运行在istio + k8s环境中，包括


deployment: dubbo-go-app：dubbo-go provider


service :dubbo-go-app : dubbo-go-app对应的service


deployment: pixiu-gateway�: pixiu 以gateway部署


service: pixiu-gateway: pixiu gateway对应service


具体参考  https://github.com/apache/dubbo-go-pixiu-samples/tree/xds-istio/xds/dubbo-go-

istio


pixiu-gateway 部署依赖pixiu的基础 image，可以自行编译。


dubbo-go-pixiu> make image﻿


�部署

编译pixiu docker image


技术设计

https://github.com/apache/dubbo-go-pixiu-samples/tree/xds-istio/xds/dubbo-go-istio


121

AggGrpcApiClient：实现基于ADS xds client over gRPC. 实现与istio对接。


GrpcExtensionApiClient: 实现基于extension discover service的服务发现；实现与pixiu admin对接。


配置上的区别是 api_type = ISTIO / GRPC：


dynamic_resources:
  cds_config:
    cluster_name: ["xds-server"]
    api_type: "ISTIO"
    refresh_delay: "5s"
    request_timeout: "10s"
    grpc_services:
      - timeout: "5s"

1
2
3
4
5
6
7
8

Plain Text



122

部署调研和方案思考

一个 helm 的仓库 https://github.com/dubbo-go-pixiu/pixiu-helm-chart


helm 入门必看 https://helm.sh/zh/docs/chart_template_guide/getting_started/


参考 https://github.com/apache/apisix-helm-chart


准备一个仓库 pixiu-on-kubernetes


kubectl apply -f pixiu.yaml﻿


ingress-controller


图来自 apisix 


安装

一、通过 Helm 安装
●

●

二、通过 yaml 文件安装

●

○

CRD


https://github.com/dubbo-go-pixiu/pixiu-helm-chart
https://helm.sh/zh/docs/chart_template_guide/getting_started/
https://github.com/apache/apisix-helm-chart


123



124

非标准 Rete

网关的核心之一是他的路由逻辑，决定一个请求需要经过怎样的加工，被转发到哪个下行服务。


目前基于url匹配可以完成80%的路由需求表达


例如


/test/** 开头的url 路由到测试环境集群


但不可避免的，有一些需求，需要根据header信息或者body信息来做一些路由判断。


以我们公司的实际业务场景为例


header中 env这个key 对应的value 包含 sandBox 字符串的情况下，需要路由转发到沙箱环境。


类似的需求都要求gateway 具有更强的规则表达能力。


同时网关作为所有请求的入口，每一毫秒的延时都会做用在全量的业务下，在mesh 场景下，延时还会

随着调用链路的加深，被倍数放大。按照生产环境业务相应<=7毫秒的标准来看，规则匹配的性能要求

也是十分苛刻的。一定不能随着规则数目的增加而性能退化。


引入rete的beta 网络来表达复杂规则，似乎成了唯一解？


需求与背景


rete核心思想




125

1.把所有的复杂条件拆分成最简单的子条件


2.使用根据最子条件构建alpha 网络，完成子条件的批量测试


3.根据alpha 网络的批量测试结果（alpha网络产出 所有match 的子条件集合）输入到beta网络做复杂

条件匹配。


4.复杂条件匹配结果对应的rule 集合 就是所有匹配的规则


标准rete大量使用了实例数据匹配结果的缓存，取巧的通用的解决了批量规则匹配问题，比较重量级，

适合动态匹配场景。我们没有动态匹配需求，非标准rete 不使用缓存，alpha网络根据oprator 做每个场

景的细分优化，beta网络使用动态规划避免全量计算更轻量。理论上每个operator的batch test 逻辑都

优化到O1 的情况下性能不输标准rete命中缓存的情况。


1. request.header.shadowflag == request.header.flag 类似这样的配置需求不考虑，这种动态的规

则匹配需要循环迭代，很影响性能，不考虑支持。


2. 由1 推出，表达式可以简化为  变量 + 操作符 + 静态值


3. 第一版本仅支持变量位于操作符左边的语法 a == 1 支持， 1==a 不支持。


4. 操作符带有方向性，少数操作符无方向性。  a==1  等价 1==a  ，这种为无方向性， a > 1 不等价 

1 > a  这种为有方向性。


a. 有方向性的操作符需要有对应反向的操作符来表达对应的变量在右侧的需求，exp: 1 > a  需要

由 a < 1 表达。


b. request.header.str1  contains "abca"  属于有方向性的操作符，但暂时不考虑反向操作符。

业务上没意义。


5. 考虑到需要支持结构化的树形的组织形式，变量需要描述清楚两部分内容，通过metaPath这个结构

来描述


a. 变量从哪个结构下获取          rootInstance


b. 变量根据怎样的逻辑对应结构下获取    path


6. 暂时所有模型都不考虑持久化 上rds再考虑。 


α node 核心模型如下：


编码前的思考




126

目前的trie 实现的url 匹配 ，作为 urlMatch 操作符的 batch Tester 实现。


每种操作符，必定存在逐个匹配的 match 方案，但是性能不一定优秀。经过优化的batchTester 不一定

容易实现，所以在没有对应的batchTester 优化方案的前提下，退化为  逐个调用singleTester，这时候

匹配的效率会随着匹配规则的增长线性退化。复杂度O（n）。


以urlmatch 为例，目前已经优化到了O（1）所以按照标准的rete 实现对匹配结果做缓存没有必要，读

取缓存的复杂度也可以看作是O（1），两者没有差距。


单条复杂规则可以是多个小规则的 且逻辑拼接，或逻辑拼接。


拆分到最小元素不可被拆分的小规则对应一个alpha Node。


一个完成的规则输入以后，按照&&和｜｜对规则进行拆分，拆分后的子rule作为规则判断的最小单元。


规则的拆分




127

这种允许多个规则组合的需求导致单纯的树状推理结构不能满足要求，以入度大于1 的节点为区分，称

之为β node。


Beta node 的描述方式决定了组网的方式，组网逻辑可以自由发挥，这次暂时只支持 && ｜｜ 两种beta node 


所有最子节点不可被拆分的判断条件称之为alphaNode，都可以做批量优化，比如  == 操作符， 利用互斥关系容易得

到 一旦 a==1 成立 a==2  ，a==3 等其他value 一定不成立，所有描述a 且操作符号为 ==的规则存放在一起，构建

hash table ，就能把一批条件同时做出判断。这种优化逻辑称的实现之为 batchTester。batchTester的优化思路需要

按照oprator 分类讨论。


规则天然以 metapath 为分区，同一metapath 的情况下，还可继续以oprator 为分区，不同分区下的

alpha node成立与否互不影响，可以并行计算。数据量足够大有必要的情况下可以做shard，目前无必

要，单节点下内存存储足够了。但是并行计算可以用上。


上图是alpha node 分区后的存储结果，每个value set 里的一个value 代表了一个拆分到不可拆分状态

的一条rule


上图等价于如下 rule 集合


request!= null


request==null


request.header.count>100


request.header.count>200


alphaNode分区




128

request.header.count>400


request.header.count<101


request.header.count<201


request.header.count<401


request.url  urlMatch /a/b/:c/**


request.url  urlMatch /a/b/d


request.url  urlMatch /test/v1/rules


解释一下为什么可以并行计算每个value set 


如下case


下面的解释是不是有必要？。。好像有点废话


这样一个请求作为待匹配的实例数据，找到他吻合哪些rule，很容易得出结论 描述header的信息一定不

会影响body信息的匹配结果。如果header结构比较复杂那么需要用metapath 来描述具体是哪个属性需

要满足哪个规则，metapath之间也一定不会相互影响。所以按照metapah 分区，可并发一定成立。


再来看一下不同的operator


看毛啊明显也不相互影响。


废话结束


所以匹配过程可以认为是把输入数据的每个字段的值，逐个与静态期望值的一个对比过程。


alpha 网络 匹配逻辑伪代码如下：


for each 每个对象的属性 属性的每个属性 in 对象


for each  alphaNode  in  excepted value set


判断 属性 是否 match alphaNode


if（match）


request{
	 body{
	 	 "a":"a"
	 },
	 header{
  	 isTest:"true",
    token:"asidufjasdhjfklsahdfjklasdhfldsakjhf"
  }
}

1
2
3
4
5
6
7
8
9

JSON



129

作为alpha 网络结果输出


第一层for循环可以并发处理，第二层for循环通常可以优化到O1，是在没办法的时候逐个match。


或逻辑在一边条件为true 的情况下，可以做出短路判断。


假设存在如下 规则描述，满足这个规则的前提下需要执行 filter1


request.header.count<401  ||  request.url  urlMatch /a/b/:c/**      --->  rule 1 then do filter1 


那么根据短路原理可以等价描述成如下两个 子rule 到fillter 的映射：


request.header.count<401  ---> rule 1 then do filter1 


request.url  urlMatch /a/b/:c/**  ----> rule 1 then do filter1 


看一个略复杂的例子


a&&(b||c)&&d&&（e||f）    then do filter1 


其实可以拆分成等价的


a&&b&&d&&e   then do filter1 


a&&c&&d&&e   then do filter1 


a&&b&&d&&f   then do filter1 


a&&c&&d&&f   then do filter1 


可以得到推论，复杂的或逻辑可以被拆分成多条等价只包含且逻辑的子rule。


且逻辑在一边条件为false 的情况下，可以做出短路判断。


a&&b&&c&&d&&e  在a 为false 的情况下就没有必要继续判断后面的bcde条件。


是不是又联想到了字典树


以单个条件作为字典树的node，字典树的路径代表且逻辑，字典树上的路径等价于一个仅包含且逻辑的

复杂rule。


值得思考的点在于 a&&b&&c&&d&&e 与 e&&d&&c&&b&&a  是完全等价的，但是放入字典树的顺序

会影响短路的先后，越后面的条件被计算的概率越低，相应的一些匹配复杂度较高的rule 可以设置较低

的组网优先级，使得该节点再beta网络里靠后，整个排序算法可以自定。目前一个rule 必须关联一个

或逻辑分析 （ || ）


且逻辑分析（ && ）




130

batch tester ，batch tester 上维护一个排序优先级，url match 之类的 产出唯一的值，优先级最高，

优先级相同情况下字母序排序。


如上一段落说明， 按照一定规则排序后 假定 三个规则排序顺序如下（蓝色node）


构造字典树后形成红色node 的beta 网络，可以由多个betaNode 指向同一个rule，来表达或逻辑。


按照 operator 和 metapath 分区后 ，区内按照batch tester 优化逻辑不同，对应多种组网方式。


1. equals 等 基于hash table 优化的操作符   平铺组“网”


beta 组网


Alpha 组网




131

在batchTester.test("yq") 调用时 ，本质上去hashTable 看有没有value 为yq 的元素，match到的情况

下把对应的alpha node 作为输出，然后执行beta 网络匹配


2. urlMatch 等 基于非标准trie 的组“网”


详见 https://dubbogoproxy.yuque.com/dubbogoproxy/vld1hq/cyxixw


3. 基于标准trie的 contains 操作符 组网


详细见 https://dubbogoproxy.yuque.com/dubbogoproxy/vld1hq/apfc9k


4. > ，< 操作符 组网


d. 基于有序队列的  >  < 组网  (比对等读操作OlogN ，写入等维护操作OlogN）)   

https://dubbogoproxy.yuque.com/dubbogoproxy/vld1hq/cyxixw
https://dubbogoproxy.yuque.com/dubbogoproxy/vld1hq/apfc9k


132

e. 基于线段树的 > <  组网 （读O1 ， 写入触发resize情况下Onlogn ）


详见 


5.  in 同 equals


6.  ！=  ，  not in 同 equals


7. 暂时不考虑其他操作符了




133

基于离散线段树的BatchNumberRangeIn优化
数字范围类型的规则描述通常也是常见的一种匹配操作符。

MatchContext.startTime > toLong(前一天 0点0分) and MatchContext.endTime < toLong(今天 0点0

分) 


如上，一组描述生效时间范围的规则通常会被这样表达。本质上代表了一组区间。

区间表达 按照数学描述 分为如下几类


1. 前开后开	 	 (A,B）


2. 前开后闭	 	 (A,B]


3. 前闭后开	 	 [A,B)


4. 前闭后闭  	 	 [A,B]


直接用于Beta 网络面临的问题


目前beta网络设计初衷在于优化规则匹配的性能到与存量规则数量无关。但是一些细节上并不能完全做

到这个设计初衷。根本原因在于 如果 阿尔法node 产出的结果集非常的大，那么是要逐一添加命中节点

到bfsQueue下的。本质上是一次匹配到条件的全量遍历。所以在设置规则


那么这类区间问题会被表达为  两个条件的and 拼接。假设区间数为N。节点数为2N，单次节点做判断的

时候，总会有一半的节点在

用

容易想到 先进行一次排序后根据




134

Pixiu路由原理简介

网关的核心之一是路由逻辑，决定一个请求需要经过怎样的加工，被转发到哪个下行服务。


其中 80% 的路由需求表达都以 URL 为基础。需要描述清楚具有某个特征的 URL 或者 URL 集合对应

怎样的一系列下游处理策略。


例如，'/test/**' 开头的 URL 路由到测试环境集群，'/release/user/**' 开头的 URL 会被路由到正式

环境的 user 服务集群。


同时网关作为所有请求的入口，每一毫秒的延时都会做用在全量的业务下，在 mesh 场景下，延时还会

随着调用链路的加深，被倍数放大。按照生产环境业务相应 <=7 毫秒的标准来看，规则匹配的性能要求

也是十分苛刻的。一定不能随着规则数目的增加而性能退化。


简介


使用介绍




135

仅从使用方的角度阐述 pixiu 的配置文件如何描述 URL 相关的路由规则。（下面，我们介绍一下如何

配置 URL 路由规则）


如下是一份 pixiu 的 api 配置文件，这份配置文件会被解析后生成一份对应的内存模型，作为 pixiu 路

由相关配置的初始状态。之后由 RDS 协议修改解析后得到的内存模型，实现路由逻辑动态生效的效

果。RDS 协议（RDS：xDS 协议下描述路由规则的部分）相关内容是后话不详细阐述。我们把注意力

聚焦到resource部分。


resource 下 path 部分就是上文阐述的，URL 相关的路由描述。意思是满足 path 描述特征的 URL 会

被成功匹配。


name: server
description: server sample
resources:
  - path: '/api/v1/test-dubbo/user/name/:name'
    type: restful
    description: user
    methods:
      - httpVerb: GET
        enable: true
        timeout: 1000ms
        inboundRequest:
          requestType: http
          uri:
            - name: name
              required: true
        integrationRequest:
          requestType: dubbo
          mappingParams:
            - name: uri.name
              mapTo: 0
              mapType: "string"
          applicationName: "UserProvider"
          interface: "com.dubbogo.server.UserService"
          method: "GetUserByName"
          group: "test"
          version: 1.0.0
          clusterName: "test_dubbo"





1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

JSON



136

被匹配后的请求会被转化成 dubbo 协议转发到 test_dubbo 集群调用 

com.dubbogo.server.UserService 下的 GetUserByName 服务。


我们继续聚焦到如下范围：


为了描述清楚一个 URL 或者一组 URL，路由引擎需要拥有以下能力：


1. URL 可以包含变量，'/api/v1/test-dubbo/user/name/:name' 代表 URL 用“/”分割后，第六个部

分的值作为变量 name 的值，向下游 filter 传递供filter使用。


2. 需要有通配符


a. * 代表一个层级任意字符的通配 '/api/*/test-dubbo/user/name/:name' 这样的一个 path 描

述代表了可能并不关心具体的版本，不论什么版本下的 URL 只要匹配都使用相同的逻辑加工

数据并转发。


b. ** 代表多个层级的通配，从这个层级以后，子层级也可以是任意字符，**只可能存在于 URL 

的末尾，不然会有二义性。'/api/v1/**' 这样的 path 表达了所有 V1 版本下的 URL 都采用相

同的逻辑。


为了正确的使用 pixiu 您可能还需要了解如下内容。


并非是独创的，类似 java 下的 spring 以及其他框架统一具有的优先级逻辑：


1. 通配的优先级低于特指 。 '/api/v1/**' 低于 '/api/v1/test-dubbo/user/name/:name' 的优先

级，假设有两个 resource 分别采用了如上两个path 配置，request 为 '/api/v1/test-

dubbo/user/name/yqxu' 的请求到达pixiu 后应该生效哪个 resource？按照通配低于特指的原

则，'/api/v1/test-dubbo/user/name/:name' 这条规则会生效。


2. 深度更深的，优先级更高 。 '/api/v1/**' 对比 /api/v1/test-dubbo/**' ，如果请求同时满足如上

两个描述， '/api/v1/test-dubbo/**' 深度更深，会生效。


3. 通配符之间 '/*' 优先级高于 '/**'


4. 变量等同于通配。


优先级


冲突处理


path: '/api/v1/test-dubbo/user/name/:name'1

JSON



137

优先级规则只是冲突解决策略的一种，才同时匹配多个url描述时，优先级更高的那一种将会生效，然而

优先级策略并不能涵盖所有的情况。


如果强行配置两条 resource path 完全相同，但是转发到不同的下游服务，这时候就会冲突。pixiu 下

应对冲突的方案是 failfast，在 pixiu 初始化阶段，发现配置文件中有冲突的两项规则，则启动失败，让

开发者今早发现问题并处理。


技术选型之初，以及确定使用pixiu后为了处理一些突发情况，以及应付一些pixiu自身可能存在的bug，

开发者需要对pixiu 的路由原理有更深刻的了解。


下面，我们将详细介绍路由引擎的相关原理和实现，供感兴趣的同学了解。


相信阅读这部分内容的同学一定会有人下意识联想到字典树这个结构。使用字典树这个结构能实现存量

规则数无关的匹配性能优化。


一个存放字符串作为node的字典树，具有表达url 的能力。


原理介绍




138

如上图描述等价于URL集合 '/api/v1' ，'/api/v2' ，'/web'


维护一个标准字典树有几个关键的操作


1. 字典树指定节点的查找（find）: 从root 开始遍历字典书，'/api/v2' 称之为路径，在当前层级寻找

指定路径，如果存在就继续在子树下完成剩下的路径匹配。'/api/v2' 先从 logic root 找到 '/api' 

，并在 '/api' 的子树下继续查找剩下的路径 '/v2' 。


2. 字典树节点的添加（add）： 尝试查找指定节点，如果指定节点不存在则新建一个节点。假设一个

空树状态下添加 '/api/v1' ，因为是空树那么logic root 下查找 '/api' 一定不存在，则在 root 下创

建 '/api' ，继续在创建的 '/api' 节点下查找 '/v1' 因为 '/api' 是新建的 v1 一定也不存在，则继续创

建v1


3. 字典树url匹配（match）：在这个最简单的版本下，匹配逻辑与指定节点的查找逻辑没有区别。


还有一些不涉及递归或者复用上面逻辑递归操作的简单操作


4. 修改字典树节点（modify）：通过 find 逻辑找到指定节点，调用 set 方法或者直接赋值的方式修

改节点内容。


5. 删除字典树节点（delete）: 通过 modify 逻辑修改 isdeleted 标为 true，并把节点内容 modify 为

空。节点本身的内存不释放。


6. 重建字典树（rebuild）：遍历所有节点，添加到新树，如果 isdeleted为 true 则不添加到新树，通

过rebuild 操作创建副本。


由上可知，标准字典树结构距离通用的路由引擎底层数据结构能力还有一定差距，缺乏统配描述能力，

缺乏变量表达的能力，下面我们来看一下如何进行改进。


添加 描述统配逻辑的子树，作为子树中默认存在的一部分




139

现在我们的变种字典树多了变量表达能力


'/web/:appname/test/*' 这样的url 在图中应该怎么表达？


没错就是这个路径




140

继续分析字典树几个关键的操作是否需要做变化？


1. 字典树指定节点的查找  ： 


a. 如果不改动使用前一版本逻辑在 '/*' 节点处理之前都不会有问题： 从root 开始遍历字典

书，'/api/v2/*' 称之为路径，在当前层级寻找指定路径，如果存在就继续在子树下完成剩下的

路径匹配。 /api/v2 先从  logic root 找到 '/api' ，并在 '/api' 的子树下继续查找剩下的路径 

'/v2' 。


b. 这版本我们加上对 '/*' 节点的处理：'/v2' 后是 '/*' ，'/*' 对应单级通配节点，继续递归查找 

'/v2' 节点下一级通配节点是否为空。如果 path 是 '/api/v2/*/test2' 这样的路径则继续在统

配子树下完成递归过程。


2. 字典树节点的添加   ： 


a. 在添加 '/*' 节点之前，所有逻辑上一版本就足够处理：尝试查找指定节点，如果指定节点不存

在则新建一个节点。假设一个空树状态下添加 '/api/v1/*' ，因为是空树那么 logic root 下查

找 '/api' 一定不存在，则在 root 下创建 '/api' ，继续在创建的 '/api' 节点下查找 '/v1' 因为 

'/api' 是新建的 v1 一定也不存在，则继续创建 v1。


b. 这版本加上 '/*' 的特殊处理 ：'/v1' 新建后，查看通配子树，通配子树不存在，则为V1 节点添



141

加内容为空的单级通配子树并在子树中继续递归。


3. 字典树url匹配：在这个版本下，对比查找逻辑需要增加回朔逻辑。


a. 在遇到通配节点前逻辑与find 依旧相同 ： 从root 开始遍历字典书，'/api/v2/*' 称之为路径，

在当前层级寻找指定路径，如果存在就继续在子树下完成剩下的路径匹配。 '/api/v2' 先从 

logic root 找到 '/api' ，并在 '/api' 的子树下继续查找剩下的路径 '/v2' 。


b. 在处理统配节点的时候会与 find 逻辑有所不同：'/v2' 下普通子树无匹配节点，回朔到通配子

树，查看是否能匹配，这个例子中 '/v2' 下无通配子树，查询不到节点 。值得注意的是回朔逻

辑的先后顺序，是先找普通子树再回朔到通配子树还是先查找通配子树再回朔到普通子树是取

决于优先级规则的，按照需求必须是先查找普通子树。


但是我们目前还是缺乏 '/**' 这种通配的表达能力代表了多级通配，可以分析需求得到结论，这种通配

符，一定不存在子树，是一种特殊的叶子结点，仅用于 match 逻辑回朔时做特殊判断。继续加点特殊 

node 后演化为：


好了至此，需求都能满足了。


'/api/**' 等价路径为：




142

其他逻辑大同小异，match 逻辑回朔再多一级判断，如果一级通配子树也匹配不到结果，则再看一下多

级通配子树是否为空（其实留一个标位就可以，为了统一模型好理解，还是用一个子树去描述）


到目前这个版本所有上文提到的能力已经都能有效支撑，回头分析一下时间复杂读。


url 被 '/' 分割出一个一个的段，容易理解在匹配一个url 过程中复杂度是 O(n) n= url 段数。与树中存有

的规则数量无关。再分析 n 的范围，n 其实不是一个可以无限大的数字，一部分浏览器甚至约束 url 长

度必须小于 2000，按照一个单词长度为 5 来计算，可以大概估计段数最多会在 400 左右，n 如果可以

被视为一个常数，那么复杂读可以看作是 O（1）。


稍微解释一下find 和 match 有什么不同，为什么需要两种查找节点的方法。看下这个例子 :假设树中已

经add 了 '/api/v1/:name/add' 这个 path，那么


find（"/api/v1/:name/add"），find（"/api/v1/*/add"）两个调用应该能够拿到结果，在add 的过程

中用于冲突判断。


假设有请求进来url 为 '/api/v1/:name/add' 那么match（"/api/v1/:name/list"）也应该能 match 到结

果且变量name 为 :name。


再假设有请求进来 url 为 '/api/v1/yq/add' 那么match（"/api/v1/yq/list"）也应该能 match 到结果且

变量name 为 yq 。find（"/api/v1/yq/add" ） 则不会匹配到结果。


后续改进




143

目前实现在读树和写树之前，竞争一把全局锁，竞争失败后自旋直到竞争成功，然后完成读写。


解释一下为什么读都需要上锁，因为代码中大量运用了go 的 map 结构。这个结构只要并发读写直接会

报如下错误：concurrent map read and map write


目前实现如下


引入 command 队列，所有对 trie 的用户写操作先入列，同时做读写分离，分为读树和写树，维护一个

线程负责追 log 把 command 写入到写树，读树因为只读，没有写入线程操作读树所以可以不加锁。写

树因为只有一条线程向树内写入，没有竞争问题，也可以不加锁。（写入操作并不会很频繁单线程完全

能负荷）


定义一个配置延迟生效的时间，比如3s


每3秒，读树和写树角色切换，每个 trie 分别维护一个 command 队列的游标，游标代表当前这个 

trie，追 log 追到了哪条记录，写入线程每3s 切换写游标引用。




144

如上图，最上面部分是一个先进先出的 command 队列，追 log 线程从这个队列中读取用户写操作，这

个队列维护了两个游标 index1，index2，index1 代表了trie1 追 log 追到了 index1 的位置，index2 代

表了 trie2 追 log 追到了 index2 的位置。追 log 线程同一时间内只会使用一个引用进行写操作，每次

写完树对应的 index 游标下移一格，另一个 trie 引用将被用于读操作，一切读请求将从读引用对应的树

中读取。因为追的是同一份 log ，最终一致性是能保证的。


切换逻辑：


1. 先使追 log 线程空转（不挂起，避免上下文切换，因为马上要恢复）


2. 保证两个树都没有写入线程操作


3. 切换读引用到另一个树


4. 切换写引用到另一个树


5. 恢复追 log 线程


pr：


https://github.com/apache/dubbo-go-pixiu/pull/262


https://github.com/apache/dubbo-go-pixiu/pull/262


145

pkg/common/router/trie/trie.go:26




146

模型设计

Node

type
ruleSet
andSet
orSet
value
status

asConditionOf(): Node[] //当前节点被哪些节点作为判断状态的条件
asAndConditionOf() //当前节点被哪些 and 节点引⽤（引⽤ == 作为判断状态的条件）
asOrConditionOf() //当前节点被哪些 or 节点引⽤（引⽤ == 作为判断状态的条件）
rules()

AlphaNode

metaPath
operator
value
orSet

BetaNode

depends //判断当前节点激活状态所依赖的节点
AlphaNodeRepositoryBetaNodeRepository



147

标准字典树做contains 批量判断
contains 是一个相对常用的操作符， “abcde” contains “cd”   结果为true


假设有如下alpha 规则集合


header.source   contains  "__test"


header.source   contains  "_test"


header.source   contains  "test"


header.source   contains  "shadow"


header.source   contains  "_shadow"


header.source   contains  "_t"


header.source   contains  "app1"


header.source   contains  "app2"


header.source   contains  "pixiu"


header.source   contains  "__pixiu"


分别在不同的条件下被使用，实例数据


header{


source:"_tes_win_the_game___routeBy_pixiu"


}


进入batch tester如何复杂度较低的批量完成测试？


构建如下结构标准字典树：


字典树做contains 批量判断




148

构造输入传前缀集合


_tes_win_the_game___routeBy_pixiu


tes_win_the_game___routeBy_pixiu


es_win_the_game___routeBy_pixiu


s_win_the_game___routeBy_pixiu


_win_the_game___routeBy_pixiu


win_the_game___routeBy_pixiu


in_the_game___routeBy_pixiu


n_the_game___routeBy_pixiu


_the_game___routeBy_pixiu


the_game___routeBy_pixiu


he_game___routeBy_pixiu


e_game___routeBy_pixiu


_game___routeBy_pixiu


game___routeBy_pixiu




149

ame___routeBy_pixiu


me___routeBy_pixiu


e___routeBy_pixiu


___routeBy_pixiu


__routeBy_pixiu


_routeBy_pixiu


routeBy_pixiu


outeBy_pixiu


uteBy_pixiu


teBy_pixiu


eBy_pixiu

By_pixiu


y_pixiu


_pixiu


pixiu


ixiu


xiu


iu


u


拿前缀集合中的单条记录 _tes_win_the_game___routeBy_pixiu 分析


以_tes_win_the_game___routeBy_pixiu 作为路径在字典树种寻路 能够走出如下路径




150

到_win开始 已经无法在字典树中找到路径了，途经了一个红点，红点代表“_t”就是这个字符串

contains 的 一个value，对应的rule 就是合法的alpha node 需要添加到输出集合。


前缀集合每个字符串都重复上述步骤可得到所有满足条件的alpha node set。


在待匹配集合恰好为输入串的前缀集合时，性能最差


复杂度O（n平方） n = 输入字符串长度，也能做到与字典树内待匹配条数无关。

一般对象建模时字段都会有相应长度约束，在适当的建模约束的前提下复杂度可以视为O1 ，例如规定 

header.source.length <= 300。


可能不是很有必要的一些优化，牺牲了易读性，读取效率从 N方 优化到 N，写入效率从ON 退化到 N

方，权衡普通需要被路由的业务请求 与 通过网关RDS接口变更路由信息的比例。决定是否使用有限状

态自动机。


有限状态自动机




151

可以发现上面的match 过程 在发现能匹配上 "_pixiu" 的前提下，居然还需要好几步计算遍历很多中间

无意义结果(回朔过程)才能得出结论同时还 匹配上了  "pixiu"


参考KMP 生成模式串的思路，在构建字典树的时候添加回朔指针，形成有限状态自动机。可以进一步

优化到On n=输入字符串长度，至此已经优化到了理论极限。（你不可能字符串都不遍历一遍就有足够

的信息判断）


todo：


1. 回朔指针构建方式


2. 添加回朔指针后的遍历过程


以下部分未完成




152

回朔指针的构建是一次BFS的过程，依赖


已经遍历  _tes   未遍历  __te__testCharge


到了S 节点以后发现无'_'子节点且发现无回朔指针，重新回朔到logicRoot（默认回朔到root的指针都省

略维护因为root 很好获取），继续遍历输入到如下状态


已经遍历  _tes   未遍历  __te__testCharge


到如下状态后 期望的w 子状态不存在，且无回朔指针，又回到logicRoot


继续往后遍历中间步骤不画了，直到这样一个遍历状态


已经遍历  _tes_win_the_game___routeBy_pixiu  未遍历


回朔指针的构造方式




153

urlMatch 的 BatchTester 实现

主流网关能力


1. 请求转发


2. 协议转换


3. 认证鉴权


4. 基于转发能力之上，做LB 


5. 链路跟踪 （trace）


6. 服务发现


7. 流程编排？


这些能力在网关中都被抽象成 filter ，网关启动时根据配置动态组装filter 链，不同的filter 链决定了处

理这个request 的流程。

因为http协议主流浏览器都支持以及用于实现http 请求的三方包成熟稳定且使用成本较低，一般网关入

口流量大部分为http 请求。在这种情况下配置必须描述清楚什么特征的url，需要被什么样的filter 链处

理。


同时因为网关需要对每一个请求都做处理，因此对于生产环境平均7毫秒的响应要求来说，对网关的性

能要求是十分苛刻的。因此url匹配的逻辑一定不能随配置的url 数目变多而出现性能退化。


讨论后 需要实现的点包含


1. 与规则数目无关的匹配效率


2. url 可以包含变量，/a/b/:c/d 代表url 用“/”分割后，第三个部分的值作为变量c 的值，向filter 传

递，


a. request url 为 a/b/asa/d 就能匹配成功，且c = asa


3. 需要有通配符 * 代表一个层级任意字符的通配，** 代表从这个层级以后，子层级也可以是任意字

符


a.  规则为 /a/b/*   的例子下，能匹配/a/b/xxx , /a/b/bbb 等url 但不能匹配 /a/b/sd/d 这样

多了一个层级的url


b. 规则为 /a/b/**  能够匹配上 /a/b/sd/d 


4. 能够根据header 等其他信息决定rule 是否匹配（下版本支持）


结合以上三个需求点容易联想到规则引擎，特殊的点在于规则引擎需要对url路径匹配做特殊的优化。


规则引擎可以参考rete 算法的图组织逻辑，路径匹配作为其中的一个阿尔法node ，单node下优化成字

典树做路径匹配。


header信息匹配逻辑（rete 算法相关）实现会在下一迭代补齐，重点记录一下已经实现的字典树路径匹

配。


需求以及背景介绍




154

字典树


普通的入门教程常见的字典树结构用于单词匹配，abb，abc，bca，bc 这四个单词组织成树是这样的

一个结构


其中对字典树从根开始到每个叶子结点的路径代表了单词本身 ，每个节点存储了一个字母。遍历路径能

得到hello


容易得出结论字典树的匹配逻辑算法复杂度是o（n）的但是n 指代被匹配的字符串长度（hello 的长度 

为5）而和一共有多少个单词被存储到了树内无关。


字典书变种


如果每个节点不存储单个字母，而存储 url path 下 两个“/” 之间的内容会发生什么？没错从根到叶子

遍历这样构建起来的字典树的到的就是url path，能找到这样的一个叶子结点就代表这个路径能匹配

上。同理，找到和url path 相匹配的rule 的算法复杂度是O（n） n= url path 的 “/”分割后的字符串数

目。在某些浏览器版本甚至会要求url 长度不超过2048字节。是一种能完全避免性能退化的算法。


变量处理


分析带变量的 rule 


1.
/a/:b/c/d


/a/:c/c/d 


这样的两个变量尽管命名不同，但是逻辑上其实无法区分应该匹配到哪条filter 链，所以应该提示冲突




155

得出结论：变量名不同的变量节点在树中应该是同一个node


1.
2. /a/:b/a   


3. /a/:b/d/c


分析 :b 后的情况 在匹配到/a/:b 的前提下，变量后的处理逻辑与正常的字典树完全相同，/a 与 /d/c 

组成的子树可以满足后续匹配


3. 单级通配处理


/a/*/a 处理逻辑其实等价于变量处理，区别在于变量需要记录下来当级url的值写到header 后向后传

递，通配不需要，单级通配的逻辑是变量逻辑的简化。


4. 多级通配处理


多级通配意味着搜索到到这个node 的场景下就一定能完成匹配了，但是需要注意的是多级通配优先级

应该是最低的，如果同级的变量子树和子树能match 的情况下应该返回子树match 结果。


5. header 匹配处理（未实现）


计划参考rete 的组图方式，对比字典树，可以发现字典树是逻辑相对简单的一种rete，等于rete退化到

只有alpha node 的情况。可以添加node 的种类加上beta node ，beta node 入度可以是2，引入beta 

node 后字典树会从树形结构演化成DGA。


核心思想演变流程如下，下意识认为是个字典树表达结构。但是简单变种还缺了一些能力。


一个存放字符串作为node的变种字典树，具有表达url 的能力。


思路演化




156

如上图描述等价于URL集合


/api/v1


/api/v2


/web


但距离我们的需求尚有一定距离，缺乏通配描述的能力，缺乏变量描述的能力，我们再加点料。


添加 描述统配逻辑的子树，作为子树中默认存在的一部分




157

现在我们的变种字典树多了变量表达能力


/web/:appname/test/* 这样的url 在图中应该怎么表达？


没错就是这个路径




158

但是我们目前还是缺乏 /** 这种通配的表达能力代表了多级通配，可以分析需求得到结论，这种通配

符，一定不存在子树，是一种特殊的叶子结点，用于回朔做特殊判断。继续加点特殊node后演化为：




159

好了至此，需求都能满足了。


/api/** 等价路径为：




160

目前实现在读树和写树之前，竞争一把全局锁，竞争失败后自旋直到竞争成功，然后完成读写。


解释一下为什么读都需要上锁，因为代码中大量运用了go的 map 结构。这个结构在写的过程中存在

size 满后的resize 问题（确切表达是 超过某个阈值，简单理解为满），如果仅针对写加锁，读写不互

斥，在写触发resize 过程的时候很可能会形成脏读。脏读在不同的使用场景下可能引发死循环等问题。


目前实现如下


TODO 字典树无锁化改造




161

引入 command 队列，做读写分离分为读树和写树，维护一个线程负责追log 把 command 写入到写

树，读树因为只读，没有写入线程操作读树所以可以不加锁。写树因为只有一条线程向树内写入，没有

竞争问题，也可以不加锁。


定义一个配置延迟生效的时间，比如3s


每3秒读树和写树角色切换，每个trie 分别维护一个command队列的游标，游标代表当前这个trie，追

log追到了哪条记录，写入线程每3s 切换写游标引用。




162

切换逻辑：


1. 先使追log线程空转（不挂起，避免上下文切换，因为马上要恢复）


2. 保证两个树都没有写入线程操作


3. 切换读引用到另一个树


4. 切换写引用到另一个树


5. 恢复追log线程


pr：


https://github.com/apache/dubbo-go-pixiu/pull/262


pkg/common/router/trie/trie.go:26


https://github.com/apache/dubbo-go-pixiu/pull/262


163

WIP：开发手册
Pixiu Develop Document


具体可以参考 readme 中的 quick start。start.sh 可以快速启动 dubbogo/simple 中的案例，其

他的 samples 目前暂时只能手动启动，或者参考 start_integration_test.sh 进行启动。


较为重要的samples如下：


samples/http/simple 常见的 Http 请求代理功能，作为常见的 API 网关；


samples/http/grpc 将http请求转换为 grpc 请求，支持配置 proto 文件或动态从开启反射

功能的 grpc server中获取 proto 信息；


samples/springcloud http代理功能，从 spring cloud 服务注册中心中获取集群信息，动态

管理 cluster 和 route 功能；


samples/dubbogo/simple/resolve 将 http 请求转换为 dubbo 请求，按照默认http to 

dubbo转换规则；


samples/dubbogo/simple/registry 从 dubbo 集群注册中心获取信息，动态配置相关路由

和集群；


samples/dubbotripleproxy dubbo2 协议和 triple 协议请求相互转换的案例（尚未

merge）。


pixiu 的整体目录结构和架构划分类似于 envoy，由Server、Listener、NetwrokFilter、Filter、

Route 和 Cluster等组件构成，除此之外，还有 Adapter 用于和外界通信，动态获取集群信息，

生成 route 和 Cluster。


其中，Listener 主要监听网络，并可能进行相关的编解码工作。NetworkFilter 是网络 Filter。主

要工作是负责管理 Filter链，整合 cluster 和其他能力。Filter 则是主要提供扩展能力，提供协议

转换和限流等基础功能。


一、快速启动


●

●

●

●

●

●

二、框架介绍


2.1 总览




164

环境准备: 


dubbo-go-pixiu的源码


dubbo-server(provider注册的样例)


   ps: mac m1可能需要重新编译delve已编于创建debug进程


pixiu gateway启动需要的配置文件:


路由规则配置（api_config.yml):  samples/dubbogo/simple/proxy/pixiu/api_config.yaml


pixiu各个组件的 (conf.yml):  samples/dubbogo/simple/proxy/pixiu/conf.yaml


api_config.yaml


2.2 源码调试


●

●

●

●



165

name: pixiu
description: pixiu sample
resources:
    // 请求uri 
  - path: '/api/v1/test-dubbo/:application/:interface'
    type: restful
    description: user
    methods:
      // 协议请求
      - httpVerb: POST
        enable: true
        // 是否上线
        onAir: true
        // 超时时间
        timeout: 1000ms
        // 入站请求
        inboundRequest:
          requestType: http
        // 转发请求
        integrationRequest:
          requestType: dubbo
           // 参数映射配置
          mappingParams:
             // url 参数名
            - name: requestBody.values
             // 映射到dubbo 接口第几个参数,不知道位置可以如下变量代替
              mapTo: opt.values
            - name: requestBody.types
              mapTo: opt.types
            //基于path中的路径进行参数匹配 /api/v1/application/interface
            - name: url.application
              mapTo: opt.application
            - name: url.interface
              mapTo: opt.interface
            - name: queryStrings.method
              mapTo: opt.method
            - name: queryStrings.group
              mapTo: opt.group
            - name: queryStrings.version
              mapTo: opt.version
          // provider 服务名
          applicationName: "UserProvider"
          // dubbo 接口类全路径名
          interface: "com.dubbogo.pixiu.UserService"
          method: "GetUserByName"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Plain Text



166

conf.yaml


          // dubbo 参数类型, 如果有多个, 按顺序一次填写(可以缺省)
          paramTypes: [ "string" ]
          // dubbo provider 端 group
          group: "test"
          // dubbo provider 接口版本
          version: 1.0.0
          // 集群名
          clusterName: "test_dubbo"

46
47
48
49
50
51
52
53



167

static_resources:
  listeners:
    - name: "net/http"
      protocol_type: "HTTP"
      address:
        socket_address:
          address: "0.0.0.0"
          port: 8883
      filter_chains:
          filters:
            - name: dgp.filter.httpconnectionmanager
              config:
                route_config:
                  routes:
                    - match:
                        prefix: "/api/v1"
                      route:
                        cluster: "test-dubbo"
                        cluster_not_found_response_code: 505
                http_filters:
                  - name: dgp.filter.http.apiconfig
                    config:
                      path: ~/samples/dubbogo/simple/proxy/pixiu/api_confi
g.yaml
                  - name: dgp.filter.http.dubboproxy
                    config:
                      dubboProxyConfig:
                        registries:
                          "zookeeper":
                            protocol: "zookeeper"
                            timeout: "3s"
                            address: "node1:2181" //zk需要用户自己配置
                            username: ""
                            password: ""
                        timeout_config:
                          connect_timeout: 5s
                          request_timeout: 5s


                server_name: "test_http_dubbo"
                generate_request_id: false
      config:
        idle_timeout: 5s
        read_timeout: 5s
        write_timeout: 5s
  clusters:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Plain Text



168

listeners用来匹配在api_config.yaml 当中我们设置的服务路由path，所要进行的协议转换


adapter代表动态从注册中心比如zk,nacos获取相关服务实例


filter 代表拦截网络请求 比如拦截从 /api/v1/test-dubbo/SayHello 发出的rpc请求会在 访问zk的

相关节点 拿到/dubbo/com.apache.dubbo.sample.basic.IGreeter/providers 下的相关实例可以

获取所有调用相关接口的请求 如下图所示


cluster可以配置一些集群的负载均衡策略


route 跟dubbo类似 条件路由，标签路由功能


接着,启动goland 在本地IDE配置如下:


●

●

●

●

●

    - name: "test_dubbo"
      lb_policy: "RoundRobin"
      registries:
        "zookeeper":
          timeout: "3s"
          address: "node1:2181"
          username: ""
          password: ""
  shutdown_config:
    timeout: "60s"
    step_timeout: "10s"
    reject_policy: "immediacy"

45
46
47
48
49
50
51
52
53
54
55
56



169

ps: $PROJECT_DIR 指的是用户配置的项目路径


在上述配置当中 各个参数配置如下


出现如下界面说明pixiu gateway启动


Ouput Directory :


$PROJEDT_DIR/samples/dubbogo/simple/proxy/dist/


Program arguments:


gateway start -a samples/dubbogo/simple/proxy/pixiu/api_config.yaml -c samp
les/dubbogo/simple/proxy/pixiu/conf.yaml



1
2
3
4
5
6
7

8

Plain Text



170

接着 再建立一个注册provider实例的go-server




171

其中rpc接口定义


samples/dubbogo/simple/body/server/app/user.go




172

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.
0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implie
d.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


package main


import (
	 "context"
	 "errors"
	 "fmt"
	 "sync"
	 "time"
)


import (
	 "dubbo.apache.org/dubbo-go/v3/config"
	 hessian "github.com/apache/dubbo-go-hessian2"
)


func init() {
	 config.SetProviderService(new(UserProvider))
	 // ------for hessian2------
	 hessian.RegisterPOJO(&User{})


	 cache = newUserDB()


	 t1, _ := time.Parse(
	 	 time.RFC3339,
	 	 "2021-08-01T10:08:41+00:00")



1
2
3
4
5

6
7
8
9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Plain Text



173

	 cache.Add(&User{ID: "0001", Code: 1, Name: "tc", Age: 18, Time: t1})
	 cache.Add(&User{ID: "0002", Code: 2, Name: "ic", Age: 88, Time: t1})
}


var cache *userDB


// userDB cache user.
type userDB struct {
	 // key is name, value is user obj
	 nameIndex map[string]*User
	 // key is code, value is user obj
	 codeIndex map[int64]*User
	 lock      sync.Mutex
}


// userDB create func
func newUserDB() *userDB {
	 return &userDB{
	 	 nameIndex: make(map[string]*User, 16),
	 	 codeIndex: make(map[int64]*User, 16),
	 	 lock:      sync.Mutex{},
	 }
}


// nolint
func (db *userDB) Add(u *User) bool {
	 db.lock.Lock()
	 defer db.lock.Unlock()


	 if u.Name == "" || u.Code <= 0 {
	 	 return false
	 }


	 if !db.existName(u.Name) && !db.existCode(u.Code) {
	 	 return db.AddForName(u) && db.AddForCode(u)
	 }


	 return false
}


// nolint
func (db *userDB) AddForName(u *User) bool {
	 if len(u.Name) == 0 {
	 	 return false
	 }


	 if _, ok := db.nameIndex[u.Name]; ok {
	 	 return false

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91



174

	 }


	 db.nameIndex[u.Name] = u
	 return true
}


// nolint
func (db *userDB) AddForCode(u *User) bool {
	 if u.Code <= 0 {
	 	 return false
	 }


	 if _, ok := db.codeIndex[u.Code]; ok {
	 	 return false
	 }


	 db.codeIndex[u.Code] = u
	 return true
}


// nolint
func (db *userDB) GetByName(n string) (*User, bool) {
	 db.lock.Lock()
	 defer db.lock.Unlock()


	 r, ok := db.nameIndex[n]
	 return r, ok
}


// nolint
func (db *userDB) GetByCode(n int64) (*User, bool) {
	 db.lock.Lock()
	 defer db.lock.Unlock()


	 r, ok := db.codeIndex[n]
	 return r, ok
}


func (db *userDB) existName(name string) bool {
	 if len(name) <= 0 {
	 	 return false
	 }


	 _, ok := db.nameIndex[name]
	 if ok {
	 	 return true
	 }



92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139



175

	 return false
}


func (db *userDB) existCode(code int64) bool {
	 if code <= 0 {
	 	 return false
	 }


	 _, ok := db.codeIndex[code]
	 if ok {
	 	 return true
	 }


	 return false
}


// User user obj.
type User struct {
	 ID   string    `json:"id,omitempty"`
	 Code int64     `json:"code,omitempty"`
	 Name string    `json:"name,omitempty"`
	 Age  int32     `json:"age,omitempty"`
	 Time time.Time `json:"time,omitempty"`
}


// UserProvider the dubbo provider.
// like: version: 1.0.0 group: test
type UserProvider struct{}


// CreateUser new user, PX config POST.
func (u *UserProvider) CreateUser(ctx context.Context, user *User) (*Use
r, error) {
	 outLn("Req CreateUser data:%#v", user)
	 if user == nil {
	 	 return nil, errors.New("not found")
	 }
	 _, ok := cache.GetByName(user.Name)
	 if ok {
	 	 return nil, errors.New("data is exist")
	 }


	 b := cache.Add(user)
	 if b {
	 	 return user, nil
	 }


	 return nil, errors.New("add error")
}

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186



176



// GetUserByName query by name, single param, PX config GET.
func (u *UserProvider) GetUserByName(ctx context.Context, name string) (*
User, error) {
	 outLn("Req GetUserByName name:%#v", name)
	 r, ok := cache.GetByName(name)
	 if ok {
	 	 outLn("Req GetUserByName result:%#v", r)
	 	 return r, nil
	 }
	 return nil, nil
}


// GetUserByCode query by code, single param, PX config GET.
func (u *UserProvider) GetUserByCode(ctx context.Context, code int64) (*U
ser, error) {
	 outLn("Req GetUserByCode name:%#v", code)
	 r, ok := cache.GetByCode(code)
	 if ok {
	 	 outLn("Req GetUserByCode result:%#v", r)
	 	 return r, nil
	 }
	 return nil, nil
}


// GetUserTimeout query by name, will timeout for pixiu.
func (u *UserProvider) GetUserTimeout(ctx context.Context, name string) 
(*User, error) {
	 outLn("Req GetUserByName name:%#v", name)
	 // sleep 10s, pixiu config less than 10s.
	 time.Sleep(10 * time.Second)
	 r, ok := cache.GetByName(name)
	 if ok {
	 	 outLn("Req GetUserByName result:%#v", r)
	 	 return r, nil
	 }
	 return nil, nil
}


// GetUserByNameAndAge query by name and age, two params, PX config GET.
func (u *UserProvider) GetUserByNameAndAge(ctx context.Context, name stri
ng, age int32) (*User, error) {
	 outLn("Req GetUserByNameAndAge name:%s, age:%d", name, age)
	 r, ok := cache.GetByName(name)
	 if ok && r.Age == age {
	 	 outLn("Req GetUserByNameAndAge result:%#v", r)
	 	 return r, nil
	 }

187
188
189

190
191
192
193
194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224

225
226
227
228
229
230



177

	 return r, nil
}


// UpdateUser update by user struct, my be another struct, PX config POS
T or PUT.
func (u *UserProvider) UpdateUser(ctx context.Context, user *User) (boo
l, error) {
	 outLn("Req UpdateUser data:%#v", user)
	 r, ok := cache.GetByName(user.Name)
	 if ok {
	 	 if user.ID != "" {
	 	 	 r.ID = user.ID
	 	 }
	 	 if user.Age >= 0 {
	 	 	 r.Age = user.Age
	 	 }
	 	 return true, nil
	 }
	 return false, errors.New("not found")
}


// UpdateUserByName update by user struct, my be another struct, PX confi
g POST or PUT.
func (u *UserProvider) UpdateUserByName(ctx context.Context, name strin
g, user *User) (bool, error) {
	 outLn("Req UpdateUserByName data:%#v", user)
	 r, ok := cache.GetByName(name)
	 if ok {
	 	 if user.ID != "" {
	 	 	 r.ID = user.ID
	 	 }
	 	 if user.Age >= 0 {
	 	 	 r.Age = user.Age
	 	 }
	 	 return true, nil
	 }
	 return false, errors.New("not found")
}


// nolint
func (u *UserProvider) Reference() string {
	 return "UserProvider"
}


// nolint
func (u User) JavaClassName() string {
	 return "com.dubbogo.pixiu.UserService"
}

231
232
233
234

235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274



178

启动后日志输出如下:


另外启动一个demo工程，新建单元测试如下




// nolint
func outLn(format string, args ...interface{}) {
	 fmt.Printf("\033[32;40m"+format+"\033[0m\n", args...)
}



275
276
277
278
279
280



179

执行效果图如下： 


红框代表user.go文件中注册provider实例的全部接口，都注册到了Directory服务接口列表当中


黄框代表这一次http请求所需要调用的方法，由于在server.yml中配置为dubbo协议.所以在

api_config.yaml配置文件中需要配置转入协议inboundRequest为http,以及转出协议为

integrationRequest为dubbo


func TestPost(t *testing.T) {
	 url := "http://localhost:8883/api/v1/test-dubbo/UserProvider/com.dubbog
o.pixiu.UserService?" +
	 	 "group=dubbo-test&version=1.0.0&method=GetUserByName"
	 data := "{\"types\":\"string\",\"values\":\"tc\" }"
	 client := &http.Client{Timeout: 5 * time.Second}
	 req, err := http.NewRequest("POST", url, strings.NewReader(data))
	 assert.NoError(t, err)
	 req.Header.Add("Content-Type", "application/json")
	 resp, err := client.Do(req)
	 assert.NoError(t, err)
	 assert.NotNil(t, resp)
	 assert.Equal(t, 200, resp.StatusCode)
	 s, _ := ioutil.ReadAll(resp.Body)
	 assert.True(t, strings.Contains(string(s), "0001"))
}

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15

Plain Text



180

cmd/pixiu/pixiu.go 文件是主要启动的入口，获取命令行参数，然后 pixiu 目前有 sidecar 和 

gateway 两个字命令，目前只有 gateway 可用，详见 gateway.go。


gateway.go 中 startGatewayCmd 中 initApiConfig 首先读取配置文件，然后

server.Start(bootstrap) 来调用 server 进行启动。


pixiu_start.go 中有 server 启动的相关代码。主要分为 initialize 和 Start 两个阶段，会包含各类

资源的 manager 的初始化，如：ListenerManager，ClusterManager， AdapterManager 和 

RouterManager 等。


下面，我们以最为复杂的 ListenerManager 为例进行讲解，因为它也涉及了 Networkfilter 和 

Filter 的初始化。


CreateDefaultListenerManager 是创建LisnterManager 的函数，为配置文件中的每一个 

Listner 调用 CreateListenerService 创建一个 ListenerService。ListenerService 有多个类型的

实现，分别是 http， http2，和 tcp，详情可以查看 listener 文件夹。


server 的 start 函数则会调用 ListenerManager 的 StartListen 函数，让每个 ListenerService 

进行各自的启动监听操作。我们以 HttpListenerService 为例子，进行后续介绍。其 start函数中

区分了 http 和 https 两种情况，分别启动了对应的http.Server，并进行监听。


在 HttpListenerService 初始化时，会进行其下 NetworkFilterChain，具体可看 

filterchain.CreateNetworkFilterChain。在NetworFilter中，我们以 HttpConnectionManager 

为例，进行介绍。


CreateHttpConnectionManager 用以创建 HttpConnectionManager，其中会创建 

filterManager 和 routerCoordinator。并调用 Load 函数进行 Filter 的初始化。


Filter 的初始化依赖于 Plugin 机制。具体定义详见 common.extension.filter中对于 

HttpFilterPlugin ， HttpFilterFactory ， HttpDecodeFilter 和 HttpEncodeFilter ` 的定义。


插件的各个函数及其初始化过程需要详细讲解，具体见 FilterManager的 Load 函数 @梦超


2.2 启动




181

需要注意自定义插件需要在 pluginregistry 中进行import。


以 http 为例，首先是 http_listener 的 ServerHttp 函数，它直接将 http 请求的 request 和 

response 交给 NetworkFilterChain 处理，然后按照配置，chain 中第一个为 

HttpConnectionManager。则交由其 ServeHttp 函数处理。


在 HttpConnectionManager 的 ServeHttp 函数中，将 request 和 response 封装成 HttpContext，

交由 Handle 函数处理。


Handle 函数首先调用 findRoute 来获取路由信息，然后交给其 handleHTTPRequest 函数处理。


分别由 filterchain 的 onDecode 和 onEncode 分别在pre 和 post 两个阶段进行处理。

后续涉及到具体 Filter 的实现，可以查看 filter 包下的各种 filter 实现。


2.3 请求处理


2.4 Adapter 逻辑 




182

如上图，Adapter的作用在于当用户设置不同的组件作为配置中心(nacos,zk)，可以通过Adapter

动态抓取实例信息推送到pixiu的gateway,目前支持两种类型:


dgp.adapter.springcloud 


        用户使用springcloud作为配置中心,动态推送到pixiu gateway


dgp.adapter.dubboregistrycenter


�        用户使用zk,nacos等其他一些注册中心


在conf.yml当中配置如下


●

●



183

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
#
---
static_resources:
  listeners:
    - name: "net/http"
      protocol_type: "http"
      address:
        socket_address:
          address: "0.0.0.0"
          port: 8883
      filter_chains:
        filters:
          - name: dgp.filter.httpconnectionmanager
            config:
              route_config:
                routes:
                  - match:
                      prefix: "/api/v1"
              http_filters:
                - name: dgp.filter.http.apiconfig
                  config:
                    path: ~/simple/proxy/pixiu/api_config.yaml 
                - name: dgp.filter.http.dubboproxy
                  config:
                    dubboProxyConfig:
                      registries:
                        "zookeeper":
                          protocol: "zookeeper"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Plain Text



184

社区推荐代码的 import 块按照所属进行拆分，有一个工具可以自动将import拆分 


imports-formatter -path . -module github.com/apache/dubbo-go-pixiu -bl false 


三、代码工具


3.1 import 拆分


                          timeout: "3s"
                          address: "node1:2181" //需要用户自己配置zk
                          username: ""
                          password: ""
                      timeout_config:
                        connect_timeout: 5s
                        request_timeout: 5s
              server_name: "test_http_dubbo"
              generate_request_id: false
      config:
        idle_timeout: 5s
        read_timeout: 5s
        write_timeout: 5s


  #配置dubbogo的负载均衡策略
  clusters:
    - name: "test-grpc"
      lb_policy: "RoundRobin"
      endpoints:
        - socket_address:
            address: 127.0.0.1
            port: 50001
            protocol_type: "GRPC"
  adapters:
    - id: "zookeeper"
      name: "dgp.adapter.dubboregistrycenter"
      config:
        freshInterval: 60s
        registry:
          name: zookeeper
          protocol: zookeeper
          timeout: 3s
          address: node1:2181



46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79



185

社区代码必须有 apache的 license，可以通过下列命令自动判断检查或增加license


https://github.com/apache/skywalking-eyes


排版检查


go fmt ./... && git status && [[ -z `git status -s` ]]


golint 静态检查


GO111MODULE=on golangci-lint run --timeout=10m -v --disable-all --enable=govet --

enable=staticcheck --enable=ineffassign --enable=misspell


单测


go mod vendor && go test ./pkg/... -coverprofile=coverage.txt -covermode=atomic


集成测试


chmod +x start_integrate_test.sh && chmod +x integrate_test.sh && ./start_integrate_test.sh


3.2 证书检查


3.3 ci 相关命令


https://github.com/apache/skywalking-eyes


186

Dubbo-go-pixiu性能测试

机器配置 :


芯片: Apple M1 


核数:8 core  


内存 16GB 


系统盘 560G


根据开发手册进行部署环境


https://dubbogoproxy.yuque.com/docs/share/e7aca6d0-1957-4f85-af4e-306104c2bbe4?# 


性能产出报告需要参照: https://www.jianshu.com/p/b6a588affd96


以下测试基于http->dubbo进行协议转换


配置lua脚本
○

https://dubbogoproxy.yuque.com/docs/share/e7aca6d0-1957-4f85-af4e-306104c2bbe4?#
https://www.jianshu.com/p/b6a588affd96


187





local counter = 1
local threads  = {}


--local json = require("json")


local req  = {


    --group = "dubbo-test",
    --version = "1.0.0",
    --method= "GetUserByName",
    types = "types",
    values = "tcccccccc"
}


function setup(thread)
    -- 给每个线程设置一个id参数
    thread:set("id",counter)
    table.insert(threads,thread)
    counter = counter + 1


end


function init(args)
    -- 初始化两个参数 每个线程都有独立的 requests, response 参数
    requests = 0
    response = 0
    -- 打印线程被创建的消息，打印完后，线程正式开始运行
    local msg = " thread %d created"
    print(msg.format(counter))
end


function request()


    wrk.headers["Content-Type"] = "application/x-www-form-urlencoded; char
set=UTF-8"
    wrk.headers["User-Agent"] = "wrk"
    wrk.headers["Connection"] = "keep-alive"
    wrk.body = "{\"types\":\"string\",\"values\":\"tc\" }"


    print("本次请求包体为: %s",wrk.body)
    return wrk.format("POST",wrk.path,wrk.headers,wrk.body)
end



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44

Plain Text



188

性能测试部分: (consumer请求是否经过pixiu网关)


不经过pixiu网关的测试方式:  采用dubbo-go-benchmark的测试方式


https://github.com/dubbogo/dubbo-go-benchmark/tree/feat/adasvc/3.0/adaptivesvc


经过pixu网关的测试方式:  启动一个httpserver注册provider,再启动pixiu gateway设置路由规则拦截

consumer请求


对照组1:在不同连接数下的性能测试●

●

function response(status,headers,body)
    if status ~= 200 then
        print(body)
    return
    end


    -- 打印响应体
    local resp = json.decode(body)
    print(json.encode(body)..'-->'..body)


end




--function done(summary,latency,requests)
--    print("99 latency:"..latency:percentile(99.0))
--    for index,thread in ipairs(threads) do
--        local id = thread:get("id")
--        local requests = thread:get("requests")
--        local responses = thread:get("responses")
--        -- 打印每个线程发起了多少请求 得到了多少响应
--        print(wrk:format(id,requests,responses))
--    end
--    print(latency)
--end









45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

https://github.com/dubbogo/dubbo-go-benchmark/tree/feat/adasvc/3.0/adaptivesvc


189

压力测试部分:


分别在不同运行时间，不同连接数，不同线程数，不同包体的情况下做测试


对照组1: 在不同连接数下的性能测试


case1:


运行时间: 3s   连接数: 10  线程数: 1 包体: 33字节


结果： 每个线程的平均延迟在166.03ms, 每秒请求数 2.76k个/s，延迟分布在t99的 主要延迟时长是

166.03ms


接口对总体请求的平均处理时长为 2671.24 /s


case2: 


运行时间: 3s   连接数: 20  线程数: 1 包体: 33字节


●

Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency     9.41ms   26.34ms 214.80ms   95.53%
    Req/Sec     2.76k   684.49     3.55k    79.31%
  Latency Distribution
     50%    2.88ms
     75%    6.28ms
     90%   11.55ms
     99%  166.03ms
  8038 requests in 3.01s, 1.53MB read
Requests/sec:   2671.24
Transfer/sec:    521.73KB

1
2
3
4
5
6
7
8
9
10
11

Plain Text



190

结果： 每个线程的平均延迟在285.15ms, 每秒请求数 9个/s，延迟分布在t99的 主要延迟时长是

285.28ms


接口对总体请求的平均处理时长为 0.97 /s


对照结论: 在连接数增加的情况下平均延迟增大,每秒接受的请求数变少，平均处理时长降低


对照组2: 在不同线程下的性能测试:


case1: 


运行时间: 3s   连接数: 20  线程数: 1 包体: 33字节


●

Thread Stats   Avg      Stdev     Max   +/- Stdev
             (平均值)    (标准差)  (最大值)    (正负一个标准差所占比例)
    Latency   285.15ms  152.23us 285.28ms   66.67%
    (延迟)
    Req/Sec     9.00      0.00     9.00    100.00%
   (每秒请求数 tps)
  Latency Distribution
       (延迟分布)
     50%  285.18ms
     75%  285.28ms
     90%  285.28ms
     99%  285.28ms
  3 requests in 3.09s, 600.00B read  (3.09s内处理了3个请求，耗费流量600.00B)
Requests/sec:      0.97     (QPS 0.97 即平均每秒数处理请求数0.97  )
Transfer/sec:     194.20B   (平均每秒流量194.20B )

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Plain Text



191

结果： 每个线程的平均延迟在285.15ms, 每秒请求数 9个/s，延迟分布在t99的 主要延迟时长是

285.28ms


接口对总体请求的平均处理时长为 0.97 /s


case2: 


运行时间: 3s   连接数: 20  线程数: 5 包体: 33字节 (不稳定 pixiu网关很长一段时间连不到注册中心)


Thread Stats   Avg      Stdev     Max   +/- Stdev
             (平均值)    (标准差)  (最大值)    (正负一个标准差所占比例)
    Latency   285.15ms  152.23us 285.28ms   66.67%
    (延迟)
    Req/Sec     9.00      0.00     9.00    100.00%
   (每秒请求数 tps)
  Latency Distribution
       (延迟分布)
     50%  285.18ms
     75%  285.28ms
     90%  285.28ms
     99%  285.28ms
  3 requests in 3.09s, 600.00B read  (3.09s内处理了3个请求，耗费流量600.00B)
Requests/sec:      0.97     (QPS 0.97 即平均每秒数处理请求数0.97  )
Transfer/sec:     194.20B   (平均每秒流量194.20B )

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Plain Text



192

结果： 每个线程的平均延迟在6.81ms,  每秒平均请求数 582.34个/s，延迟分布在t99的 主要延迟时长

是27.15ms


接口对总体请求的平均处理时长为 1621.19


对照结论：在仅提升处理线程数的情况下，每个线程的平均延迟降低，每秒平均请求数提升.t99的延迟

时长降低


对照组3: 在不同运行时间的情况下测试


case1: 


运行时间: 3s   连接数: 20  线程数: 5 包体: 33字节 (不稳定 pixiu网关很长一段时间连不到注册中心)


●

Thread Stats   Avg     Stdev     Max   +/- Stdev
              (平均值)  (标准差)  (最大值)   (正负一个标准差所占比例) 
    Latency     6.81ms    5.90ms  58.48ms   83.17%
    (延迟)
    Req/Sec   582.34    127.02     0.95k    74.12%
(每秒请求数 tps)
  Latency Distribution
       (延迟分布)
     50%    4.91ms
     75%    9.68ms
     90%   14.63ms
     99%   27.15ms
  4941 requests in 3.05s, 0.94MB read  (3.05s内处理了4941个请求，耗费流量0.94M
B)
Requests/sec:   1621.19 (QPS 163.76即平均每秒数处理请求数163.76 )
Transfer/sec:    316.64KB (平均每秒流量316.64KB)

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15

Plain Text



193

结果： 每个线程的平均延迟在6.81ms,  每秒平均请求数 582.34个/s，延迟分布在t99的 主要延迟时长

是27.15ms


接口对总体请求的平均处理时长为 1621.19


case2: 


运行时间: 60s   连接数: 20  线程数: 5 包体: 33字节 (不稳定 pixiu网关很长一段时间连不到注册中心)


Thread Stats   Avg     Stdev     Max   +/- Stdev
              (平均值)  (标准差)  (最大值)   (正负一个标准差所占比例) 
    Latency     6.81ms    5.90ms  58.48ms   83.17%
    (延迟)
    Req/Sec   582.34    127.02     0.95k    74.12%
(每秒请求数 tps)
  Latency Distribution
       (延迟分布)
     50%    4.91ms
     75%    9.68ms
     90%   14.63ms
     99%   27.15ms
  4941 requests in 3.05s, 0.94MB read  (3.05s内处理了4941个请求，耗费流量0.94M
B)
Requests/sec:   1621.19 (QPS 163.76即平均每秒数处理请求数163.76 )
Transfer/sec:    316.64KB (平均每秒流量316.64KB)

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15

Plain Text

wrk -d60s -c20 -t5 --latency  -s test.lua "http://localhost:8883/api/v1/tes
t-dubbo/UserProvider/com.dubbogo.pixiu.UserService?group=dubbo-test&version
=1.0.0&method=GetUserByName"

1

Plain Text



194

结果： 每个线程的平均延迟在6.29ms,  每秒平均请求数 618.23个/s，延迟分布在t99的 主要延迟时长

是23.92ms


接口对总体请求的平均处理时长为 102.74


对照结论：在不同运行时长的情况下，运行时间越久，平均处理的请求数越多，接口对总体请求的平均

处理时长越短，其余参数没有变化


对照组4: 在不同请求包体的情况下测试
●

Thread Stats   Avg      Stdev     Max   +/- Stdev
             (平均值)   (标准差)  (最大值)   (正负一个标准差所占比例) 
    Latency     6.29ms    5.38ms  53.31ms   81.72%
      (延迟)
    Req/Sec   618.23    142.44     0.91k    70.00%
 (每秒请求数 tps)
  Latency Distribution
      (延迟分布)
     50%    4.45ms
     75%    8.94ms
     90%   13.46ms
     99%   23.92ms
  6172 requests in 1.00m, 1.18MB read (一分钟内处理了6172个请求，耗费流量1.18M
B)
Requests/sec:    102.74  (QPS 102.74即平均每秒数处理请求数102.74 )
Transfer/sec:     20.07KB  (平均每秒流量20.07KB )

1
2
3
4
5
6
7
8
9
10
11
12
13

14
15

Plain Text



195

dubbo多协议转换机制

背景是这样的，用户想上云或者跨环境互通，他们的已有服务或云上服务已经是 grpc 的，但是迁移过程很困

难，涉及依赖的应用很多，没办法统一先迁移 provider 到 grpc 协议，所以需要先通过协议转换让云上的能互

通


client (grpc+ wrapper + dubbo 泛化 ) --> 网关 --> upstream (dubbo)


client(dubbo 泛化) -> 网关 -> upstream(grpc )


此外，希望有一套机制来抽象整个协议转换过程，方便后续扩展


利用 Pixiu 原有的 Listener, NetworkFilter 和 Filter(原HttpFilter) 三层抽象，分别对应网络监听，原始

请求解析和代理请求转换能力。


一、背景


二、机制




196

比如说，目前 Pixiu 的 Listener 支持 http、http2和tcp协议。其中(名称是代指，未和源码一一对应) 

：


HttpListener 用于提供 HTTP 网络监听能力，和 HttpConnectionManager 搭配，选择不同的 

UpStreamFilter(原HttpFilter)可以进行不同的协议转换：


dubbo2Filter：将原始 http 请求转换成代理 dubbo2 协议请求；


tripleFilter: 将原始 http 请求转换为代理 triple hessian序列化的协议请求


grpcFilter: 将原始 http 请求转换为代理 grpc 请求；


httpFilter: 将原始 http 请求进行代理 http 请求，


Http2Listener 用于提供 HTTP2 网络监听能力，和 GrpcConnectionManager 进行配合，转发对

应的请求，从而实现 grpc 请求代理；


Http2Listener 和 TripleConnectionManager 进行配合(待开发)：


dubbo2Filter：将原始的 triple 请求转换为代理 dubbo2 请求；


TcpListener 用于提供 TCP 网络监听能力，和 Dubbo2ConnectionManager 进行配合，可以解析

出 Dubbo2 协议请求，后续提供多种 UpStreamFilter 进行协议转换：


tripleFilter: 将原始 dubbo2请求转换为 triple hessian 序列化请求(待开发)；


httpFIlter：将原始 dubbo2 请求按照默认转换规则转换为 http 请求


网关模式 or sidecard模式


路由场景


服务发现模式


●

○

○

○

○

●

●

○

●

○

○

三、需要沟通

●

●

●



197

不同协议栈是使用在多个 Filter 进行传递的抽象结构无法进行通用定义。


比如说 HttpConnectionManager 是处理和传递 request, response，而 Tcp + 

dubboConnectionManager 是处理和传递 RPCInvocation 和 RPCResult。


所以 http to dubbo 和 triple to dubbo，需要将不同结构转换为 dubbo 请求


而 dubbo to http 和 dubbo to triple 则需要将 dubbo 请求转换为不同结构体


需要一种多通道或者转接口适配机制


dubbo 多个版本，要切两个分支？


pixiu 转发的路由如何获取，要对接内部的注册中心？


性能损耗测试


四、实现问题


●

●

●



198

Pixiu & gRPC：基于 Reflection 调用技术方案

一期由 蔡俊铭 实现了 Pixiu（HTTP）调用 gRPC能力，基于本地 proto 文件实现 Pixiu & gRPC 的通

信。


本期继续迭代，基于 GRPC Server Reflection Protocol 实现动态获取gRPC对象的Proto文件。


概述


背景&目的


方案




199

将 HTTP/JSON 转码为 gRPC https://cloud.google.com/endpoints/docs/grpc/transcoding


根据配置加载proto文件到内存中形成参考：

https://github.com/fullstorydev/grpcurl/blob/master/desc_source.go 的

DescriptorSourceFromProtoFiles函数


发起调用参考：

https://github.com/fullstorydev/grpcurl/blob/cd242fe1ed8a8b34cf71cb84c452864a8cfd55a

5/invoke.go 的InvokeRPC 函数


Ref

●

●

●

https://cloud.google.com/endpoints/docs/grpc/transcoding
https://github.com/fullstorydev/grpcurl/blob/master/desc_source.go#L61
https://github.com/fullstorydev/grpcurl/blob/cd242fe1ed8a8b34cf71cb84c452864a8cfd55a5/invoke.go#L87


200

Http Connection Manager & Filter Chain

func (hcm *HttpConnectionManager) handleHTTPRequest(c *pch.HttpContext) {
	 chain := filter.Chain{}
	 chain.OnEncode(c)
	 chain.OnDecode(c)
	 onRespone(c)
	 // TODO redirect
}

1
2
3
4
5
6
7

Go



201

package filter


import (
	 "github.com/apache/dubbo-go-pixiu/pkg/context/http"
)


type HttpEncodeFilter interface {
	 Encode(*http.HttpContext) FilterStatus
}


type HttpDecodeFilter interface {
	 Decode(*http.HttpContext) FilterStatus
}


type chain struct {
	 decodeFilters      []HttpDecodeFilter
	 decodeFiltersIndex int


	 encodeFilters      []HttpEncodeFilter
	 encodeFiltersIndex int
}


func (c *chain) appendDecodeFilters(f ...HttpDecodeFilter) {
	 c.decodeFilters = append(c.decodeFilters, f...)
}


func (c *chain) appendEncodeFilters(f ...HttpEncodeFilter) {
	 //append encode filters in reverse order
	 for i := len(f) - 1; i >= 0; i-- {
	 	 c.encodeFilters = append(c.encodeFilters, f[i])
	 }
}


func (c *chain) Decode(ctx *http.HttpContext) {
	 for c.decodeFiltersIndex < len(c.decodeFilters) {
	 	 filterStatus := c.decodeFilters[c.decodeFiltersIndex].Decode(ctx)
	 	 if filterStatus == Continue {
	 	 	 continue
	 	 }
	 	 return
	 }
}


func (c *chain) Encode(ctx *http.HttpContext) {
	 for c.encodeFiltersIndex < len(c.encodeFilters) {

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Go



202

```


	 	 filterStatus := c.encodeFilters[c.encodeFiltersIndex].Encode(ctx)
	 	 if filterStatus == Continue {
	 	 	 continue
	 	 }
	 	 return
	 }
}



46
47
48
49
50
51
52
53



203

调研中|Pixiu: Dubbo与SpringCloud互通方案

标题即主题，该主题“Pixiu: Dubbo与SpringCloud互通” 是 天哥 调研后发起的 Pixiu 下一个阶段的产

品功能方向，并提供了一些参考资料方便调研。


当前 Pixiu 已经支持多种 RPC 协议，HTTP to Dubbo，HTTP to SpringCloud， 但市面上还有一些诉

求，希望 Dubbo 服务 与 SpringCloud 服务之间互通，而当前很少有产品可以满足......


Pixiu 实现 Dubbo 与 SpringCloud 服务互通：


调用过程对用户透明


与 Pixiu 其他网关能力集成


最小接入成本


跨注册中心，满足哪些通信场景？


Dubbo to SpringCloud


Dubbo to Dubbo


SpringCloud to Dubbo


SpringCloud to SpringCloud


Dubbo-go 与 SpringCloud 互通:


前言


背景


目的


●

●

●

概述


功能说明


Dubbo-SpringCloud 通信方案（完善中）




204

方案简述


Pixiu 通过 Mock 将跨注册中心的 Dubbo 或 SpringCloud 应用服务信息注册到当前需要互通

的注册中心


Dubbo 与 SpringCloud 之间通过各自的注册中心，正常订阅消费服务，真实请求由 Pixiu 代

理，该过程对服务提供者与消费者完全透明


应用级服务注册与发现


Pixiu 支持多注册中心


Pixiu Mock SpringCloud 应用支持 Dubbo 协议


Pixiu Mock Dubbo 应用支持 SpringCloud 协议


集成当前 Pixiu  Filter、Router 等公共配置


●

○

○

●

○

○

○

○



205

问题


通信协议设计

Dubbo 协议


https://www.processon.com/view/link/617be10f0e3e7416bdf22ee2

https://www.processon.com/view/link/617be10f0e3e7416bdf22ee2


206

基于 dubbo3.0


todo


todo


成本直降50% | 阿里云发布云原生网关，开启下一代网关新进程 


SpringCloud


Pixiu 互通协议


与 Pixiu 现有能力集成


其他

Ref

●

https://developer.aliyun.com/article/792458?spm=a2c6h.13148508.0.0.66504f0e5Zkplj&accounttraceid=09682f4f2ce5483bb213171c4f2f5884zwmj


207

鉴权

目标：Pixiu仅负责通过配置好的公钥JWK认证JWT， 支持local/remote两种方式配置JWKS


参考组件： https://github.com/golang-jwt/jwt


https://mkjwk.org/?spm=a2c4g.11186623.0.0.2aed20e4YpLZqa


一个JWKS公钥的例子


JWT


路由


提取


验证


解析


https://github.com/golang-jwt/jwt
https://mkjwk.org/?spm=a2c4g.11186623.0.0.2aed20e4YpLZqa


208

```


     {"keys":
       [
         {"kty":"EC",
          "crv":"P-256",
          "x":"MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4",
          "y":"4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM",
          "use":"enc",
          "kid":"1"},
         {"kty":"RSA",
          "n": "lalallalaalalalalla",
          "e":"AQAB",
          "alg":"RS256",
          "kid":"2011-04-29"}
       ]
     }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

JSON



209

filter_chains:
  - filter_chain_match:
    domains:
      - api.dubbo.com
      - api.pixiu.com
    filters:
      - name: dgp.filter.httpconnectionmanager
        config:
          route_config:
            dynamic: true
            dynamic_apdter: "springcloud"
            routes:
          http_filters:
            - name: dgp.filter.http.auth.jwt
              config:
                # 配置路由匹配规则
                rules:
                  # Not jwt verification is required for /health path
                  - match:
                      prefix: /health
                  # Jwt verification for provider1 is required for path pr
efixed with "prefix"
                  - match:
                      prefix: /prefix
                    #指定路由对应的providers
                    requires:
                      requires_any:
                        requirements:
                          - provider_name: provider1
                          - provider_name: provider2
                  - match:
                      prefix: /prefix
                    requires:
                      requires_all:
                        requirements:
                          - provider_name: provider1
                          - provider_name: provider2
                #配置providers
                providers:
                  provider1:
                    #可选的,如不为空，则必须与JWT的iss匹配
                    issuer: issuer1
                    #可选的,如不为空，则必须与JWT的aud匹配
                    audiences:
                      - audience1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

YAML



210

```


                      - audience2
                    #远程fetch jwks第一阶段可不实现
                    remote_jwks:
                      http_uri:
                        uri: https://example.com/.well-known/jwks.json
                        cluster: example_jwks_cluster
                        timeout: 1s
                  provider2:
                    issuer: issuer2
                    #从header的某个字段获取token，默认 Authorization: Bearer 
<token>
                    from_headers:
                      - name: Authorization
                        value_prefix: Bearer
                    forward_payload_header: "user-data"
                    local_jwks:
                      inline_string: "{ \"keys\":[ {\"e\":\"AQAB\",\"kid\
":\"DHFbpoIUqrY8t2zpA2qXfCmr5VO5ZEr4RzHU_-envvQ\",\"kty\":\"RSA\",\"n\":\"
xAE7eB6qugXyCAG3yhh7pkDkT65pHymX-P7KfIupjf59vsdo91bSP9C8H07pSAGQO1MV_xFj9V
swgsCg4R6otmg5PV2He95lZdHtOcU5DXIg_pbhLdKXbi66GlVeK6ABZOUW3WYtnNHD-91gVuoe
JT_DwtGGcp4ignkgXfkiEm4sw-4sfb4qdt5oLbyVpmW6x9cfa7vs2WTfURiCrBoUqgBo_-4WTi
ULmmHSGZHOjzwa8WtrtOQGsAFjIbno85jp6MnGGGZPYZbDAa_b3y5u-YpW7ypZrvD8BgtKVjgt
QgZhLAGezMt0ua3DRrWnKqTZ0BJ_EyxOGuHJrLsn00fnMQ\"}]}"



45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60

61



211

DBMesh 实现计划

1. 数据库单库代理


2. 集成分布式事务使代理层具备 TransactionMesh 能力


3. 集成 Sharding 能力使代理层进化为 DBMesh


1. 监听端口解析 mysql 协议（优先支持 mysql，适时考虑其他数据库）


2. 代理 mysql 请求到后端 DB，具备基本的数据分析能力，比如接入 apm 系统监控 sql 执行耗时等。


|----Application


      |----Listener


            |----ProtocalResolver（解析 mysql、pgsql 等协议）


            |----Pipeline（责任链模式、监控等）


            |----Executor（执行 Sql 语句）


首先识别出下面的操作


DBMesh


路线图


完成一阶段工作 todo list


架构抽象


Mysql 协议解析




212

	 mysql.COM_QUERY
	 mysql.COM_PING
	 mysql.COM_INIT_DB
	 mysql.COM_FIELD_LIST
	 mysql.COM_STMT_PREPARE
	 mysql.COM_STMT_EXECUTE
	 mysql.COM_STMT_CLOSE
  mysql.COM_STMT_SEND_LONG_DATA
	 mysql.COM_STMT_RESET
	 mysql.COM_SET_OPTION

1
2
3
4
5
6
7
8
9
10

Plain Text



213

Event Mesh 实现调研 && 实现方案
面向服务容器：


 接口协议：


Event Mesh 实现了 TCP 和 HTTP 协议的接口


Dapr 实现了 HTTP 和 gRPC 协议的接口


（监听端口需要考虑接下来的协议下降到传输层，可以先实现多端口多协议）


基于 URL 去判断使用特定功能： 


a.  POST http://localhost:3500/v1.0/invoke/cart/method 


b.  POST http://localhost:3500/v1.0/publish/shipping/orders 


事件监听功能：使用 websocket / gRPC 双向流 / TCP 长连接 


 支持的存储


Event Mesh 支持了消息队列、对象存储、IMDG（内存数据网格）


目前暂时先支持 RocketMQ / Pulsar ？ Kafka && RocketMQ


 Connector 接口和 SPI 接口规范

向容器请求凭证访问第三方 Key Vault （通过SPI实现） 


 SDK （第一阶段暂时不实现，考虑多语言支持的难度）


Dapr 和 Event Mesh 均实现了 SDK 来完成消息的发送和接收 


实现问题：


基于现有 Router 和 Filter 方案，参考 proxy 的 Filter 实现与 MQ 的互通，但是目前得 

HttpConnectionManager不支持对单个 Router 进行 Filter 的配置，想参考 Dapr 根据 URL 对 Filter 

Chains 进行配置的话会有实现上的问题


实现方案（第一阶段）：


1. 匹配的请求在 Filter 中发布消息


1. 启动时启动一个 Adapter 处理请求发来的订阅请求，请求包括 Topic、消费组 id以及回调 API 地

址（消费者端点），维护起 topic => consumer-group => consumer-endporint => 回调的 web 

hook 的映射关系


2. 通过相关 MQ 的 SDK 去订阅相应的 Topic，然后调用 web hook 发送给真正的消费者进行消费


3. 请求过来通过 FIlter 发送给在后台运行的 Adapter


●

●

●

●

发布：


订阅：


http://localhost:3500/v1.0/
http://localhost:3500/v1.0/


214

架构：




215

Filter 设计



216

const (
	 // Kind is the kind of Fallback.
	 Kind = constant.AccessLogFilter
)


func init() {
	 extension.RegisterHttpFilter(&AccessPlugin{})
}


type (
	 // AccessPlugin is http filter plugin.
	 AccessPlugin struct {
	 }
	 // AccessFilter is http filter instance
	 AccessFilter struct {
	 	 cfg *Config
	 	 alw *model.AccessLogWriter
	 	 alc *model.AccessLogConfig
	 }
	 // Config describe the config of AccessFilter
	 Config struct{}
)


func (ap *AccessPlugin) Kind() string {
	 return Kind
}


func (ap *AccessPlugin) CreateFilter(hcm *http2.HttpConnectionManager, con
fig interface{}, bs *model.Bootstrap) (extension.HttpFilter, error) {
	 alc := bs.StaticResources.AccessLogConfig
	 if !alc.Enable {
	 	 return nil, errors.Errorf("AccessPlugin CreateFilter error the acc
ess_log config not enable")
	 }


	 accessLogWriter := &model.AccessLogWriter{AccessLogDataChan: make(chan
 model.AccessLogData, constant.LogDataBuffer)}
	 specConfig := config.(Config)
	 return &AccessFilter{cfg: &specConfig, alw: accessLogWriter, alc: &alc
}, nil
}


func (af *AccessFilter) PrepareFilterChain(ctx *http.HttpContext) error {
	 ctx.AppendFilterFunc(af.Handle)
	 return nil

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31

32
33
34

35
36

37
38
39
40
41

Go



217

}


func (af *AccessFilter) Handle(c *http.HttpContext) {
	 start := time.Now()


	 c.Next()


	 latency := time.Now().Sub(start)
	 // build access_log message
	 accessLogMsg := buildAccessLogMsg(c, latency)
	 if len(accessLogMsg) > 0 {
	 	 af.alw.Writer(model.AccessLogData{AccessLogConfig: *af.alc, Access
LogMsg: accessLogMsg})
	 }
}

42
43
44
45
46
47
48
49
50
51
52
53

54
55



218

func Init() {
	 manager.RegisterFilterFactory(constant.AccessLogFilter, newAccessLog)
}


type accessLog struct {
	 conf *AccessLogConfig
	 alw  *AccessLogWriter
}


func newAccessLog() filter.Factory {
	 return &accessLog{
	 	 conf: &AccessLogConfig{},
	 	 alw: &AccessLogWriter{
	 	 	 AccessLogDataChan: make(chan AccessLogData, constant.LogDataBu
ffer),
	 	 },
	 }
}


func (a *accessLog) Config() interface{} {
	 return a.conf
}


func (a *accessLog) Apply() (filter.Filter, error) {
	 // init
	 a.alw.Write()


	 return accessLogFunc(a.alw, a.conf), nil
}


// access log filter
func accessLogFunc(alw *AccessLogWriter, alc *AccessLogConfig) filter.Filt
er {
	 return func(c context.Context) {


	 	 start := time.Now()
	 	 c.Next()
	 	 latency := time.Now().Sub(start)
	 	 // build access_log message
	 	 accessLogMsg := buildAccessLogMsg(c, latency)
	 	 if len(accessLogMsg) > 0 {
	 	 	 alw.Writer(AccessLogData{AccessLogConfig: *alc, AccessLogMsg: 
accessLogMsg})
	 	 }
	 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40

41
42

Go



219

讨论问题：


Init 改成 init，然后有一个统一的文件专门匿名import即可


将工厂函数和filter函数统一抽象成Plugin 和 HttpFilter（我这边还有network filter 和 spring 

cloud 的adapter）


将注册Factory改成注册Plugin，因为Networkfilter和Adapter都是统一的Plugin模式，Plugin

中有专门的factory函数


Filter也要抽象成interface，不只是一个Func指针，Filter中专门的Func函数


●

●

○

○

}





43
44
45



220

dubbo 协议转换的 Filter 接口定义问题
之前聊过，之前 Pixiu 的 Filter 分为 NetworkFilter 和 HttpFilter。


这种定义很好适配了原有以 Http 协议为主处理场景。


但是新增了对 dubbo 协议的转换功能，这套机制受到了挑战。


dubbo to triple，http 和 triple to dubbo 这三个协议转换时，最终进行处理的结构体是 

RPCInvocation和 RPCResult。类似于Reuqest 和 Response。


旧的HttpFilter 中的 handle 定义无法使用。


那么，对应这类多协议情况下，Filter 的接口如何定义？


不同协议使用各自不同定义的 Filter；


Filter 扩充函数定义，接收不同的参数。


第一种相当于每一种协议转换对都有一个 Filter，比如说 http to dubbo 和 triple to dubbo，虽然都是

转换到dubbo，但是源协议不同，所以需要两个独立的 Filter


●

●

type HttpFilter interface {
	 Handle(ctx *http.HttpContext)
}

1
2
3

Go



221

第二种相当于只要目标协议相同，就只有一个 Filter，比如说 http to dubbo 和 triple to dubbo，都是

转换到dubbo，所以是一个 Filter，它提供了两个函数，分别两种不同的源协议 http 




222

http -> dubbo 转换策略

支持完全通过配置指定 dubbo 转发所需信息。


所有支持配置的数据如下所示(注册中心的地址等信息需要额外配置)


一、目前 pixiu 支持的策略

1.1 静态配置


- path: '/api/v1/test-dubbo/student/name'
    type: restful
    methods:
      - httpVerb: GET
        onAir: true
        timeout: 1000ms
        inboundRequest:
          requestType: http
        integrationRequest:
          requestType: dubbo
          applicationName: "StudentService"
          interface: "com.dubbogo.server.StudentService"
          method: "GetStudentByName"
          group: "test"
          version: 1.0.0
          clusterName: "test_dubbo"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

YAML

type DubboBackendConfig struct {
	 ClusterName     string `yaml:"clusterName" json:"clusterName"`
	 ApplicationName string `yaml:"applicationName" json:"applicationName"`
	 Protocol        string `yaml:"protocol" json:"protocol,omitempty" defaul
t:"dubbo"`
	 Group           string `yaml:"group" json:"group"`
	 Version         string `yaml:"version" json:"version"`
	 Interface       string `yaml:"interface" json:"interface"`
	 Method          string `yaml:"method" json:"method"`
	 Retries         string `yaml:"retries" json:"retries,omitempty"`
}

1
2
3
4

5
6
7
8
9
10

YAML



223

从指定的 Path、Query、Header和 Body 位置获得 application、interface、method、group 和 

version 等信息。


dubbo框架支持多协议，目前pixiu的只支持 dubbo 协议


1.2 按照配置从 http 请求中转换


二、待讨论问题

2.1 多协议支持


2.2 默认约定策略


name: server
description: server sample
resources:
  - path: '/api/v1/test-dubbo/:application/:interface'
    type: restful
    description: common
    methods:
      - httpVerb: POST
        onAir: true
        timeout: 100s
        inboundRequest:
          requestType: http
        integrationRequest:
          requestType: dubbo
          mappingParams:
            - name: requestBody.values
              mapTo: opt.values
            - name: requestBody.types
              mapTo: opt.types
            - name: uri.application   # 从 path variable 中获取 application
              mapTo: opt.application
            - name: uri.interface
              mapTo: opt.interface
            - name: queryStrings.method   # 从 query variable 中获取 method
              mapTo: opt.method
            - name: queryStrings.group
              mapTo: opt.group
            - name: queryStrings.version
              mapTo: opt.version
          clusterName: "test_dubbo"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

YAML



224

不需要配置，根据默认转换策略从 http 请求中获得元信息，转换为dubbo请求，例如默认将 

application、interface、method等放在Query中。但是这样对于调用方来讲，需要了解的信息太多。




225

http to dubbo规约

1.1 发起泛化调用所需的信息：


applicationName


不需要，gateway统一一个即可


interfaceName


queryVariable


cluster


queryVariable


registry相关的信息


配置固化


protocol


配置固化


methodName


queryVariable


type


body


value


body


泛化调用的返回值是一个map格式的pojo和err。


方案一：将其转换为http response的话，err相关问题转换为httpcode，而map转换为body中。


方案二：将error细分，形成相应的code和map一起放入body中，更加有利于下游对不同的场景进行差

异对待。


一、默认规约


●

○

●

○

●

○

●

○

●

○

●

○

●

○

●

○

{
	 "type": ["org.apache.dubbo.User"],
  "value": [{"id":123,"name":"Tom"}]
}

1
2
3
4

YAML



226

二、泛化调用


3.0 和 1.5


var (
	 appName         = "UserConsumer"
	 referenceConfig = config.ReferenceConfig{
	 	 InterfaceName: "org.apache.dubbo.UserProvider",
	 	 Cluster:       "failover",
	 	 Registry:      "demoZk",
	 	 Protocol:      dubbo.DUBBO, # 如果是triple协议，则serialization必须是hens
sian2
	 	 Generic:       "true",
	 }
)




func callQueryUser() {
  gxlog.CInfo("\n\n\nstart to generic invoke")
    resp, err := referenceConfig.GetRPCService().(*config.GenericService).
Invoke(
      context.TODO(),
      []interface{}{
        "queryUser",
        []string{"org.apache.dubbo.User"},
        []hessian.Object{map[string]hessian.Object{
          "id":   "3213",
          "name": "panty",
          "age":  25,
          "time": time.Now(),
        }},
      },
    )
    if err != nil {
      panic(err)
    }
    gxlog.CInfo("res: %+v\n", resp)
    gxlog.CInfo("success!")
}

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

YAML



227

配置和整体资源抽象

pixiu 在 0.4.0 开发过程中，包括 spring cloud 自动路由转发功能和 http to grpc 协议转换功能，配置

简化功能等，涉及到差异化配置和代码组织问题，考虑到后续还会接入 MQ ，提供更多默认插件等功

能，所以急需对 pixiu 的整体代码架构和配置进行统一抽象，方便各类功能在该架构和配置上进行统

一，避免后续再统一时额外付出的重构成本。


敲定 pixiu 的整体抽象架构和配置组织方式，方便后续功能不断集成。


3.1  envoy xDS 


https://zhuanlan.zhihu.com/p/108846492


Listener(LDS)、Router(RDS)、Cluster(CDS和EDS)和Filter(嵌入上述配置)抽象


3.2 apisix 


https://opentalk-blog.b0.upaiyun.com/prod/2019-10-

28/9de5fe4f15bafec21b063d2e373ab7dd.pdf


摘要：


radixtree 前缀树路由，提高路由性能


全流程插件体系


一、背景


二、目的


三、资料


●

●

●

https://zhuanlan.zhihu.com/p/108846492
https://opentalk-blog.b0.upaiyun.com/prod/2019-10-28/9de5fe4f15bafec21b063d2e373ab7dd.pdf


228

多协议接入，可以转发 http，grpc，MQTT等。
●



229

# upstream
curl "http://127.0.0.1:9080/apisix/admin/upstreams/1" -H "X-API-KEY: edd1c
9f034335f136f87ad84b625c8f1" -X PUT -d '
{
  "type": "roundrobin",
  "nodes": {
    "httpbin.org:80": 1
  }
}'


# plugin
curl "http://127.0.0.1:9080/apisix/admin/consumers" -H "X-API-KEY: edd1c9f
034335f136f87ad84b625c8f1" -X PUT -d '
{
  "username": "john",
  "plugins": {
    "key-auth": {
      "key": "key-of-john"
    }
  }
}'
# route
curl "http://127.0.0.1:9080/apisix/admin/routes/1" -H "X-API-KEY: edd1c9f0
34335f136f87ad84b625c8f1" -X PUT -d '
{
  "uri": "/get",
  "host": "httpbin.org",
  "plugins": {
    "key-auth": {}
  },
  "upstream_id": "1"
}'


# grpc proxy


curl http://127.0.0.1:9080/apisix/admin/routes/1 -H 'X-API-KEY: edd1c9f034
335f136f87ad84b625c8f1' -X PUT -d '
{
    "methods": ["POST", "GET"],
    "uri": "/helloworld.Greeter/SayHello",
    "upstream": {
        "scheme": "grpc",
        "type": "roundrobin",
        "nodes": {
            "127.0.0.1:50051": 1

1
2

3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41

YAML



230

3.3 shenyu&soul


http://events.jianshu.io/p/0ce27807323a


https://shenyu.apache.org/zh/projects/shenyu/flow-control/


https://shenyu.apache.org/zh/projects/shenyu/database-design/


https://shenyu.apache.org/zh/projects/shenyu/custom-plugin/


插件-选择器-规则：细粒度控制


客户端接入体系，网关背后的各类服务通过client接入到shenyu注册中心


支持http->x协议，不支持其他协议proxy ?


●

●

●

        }
    }
}'
grpcurl -insecure -import-path /pathtoprotos  -proto helloworld.proto  \
    -d '{"name":"apisix"}' 127.0.0.1:9443 helloworld.Greeter.SayHello
{
  "message": "Hello apisix"
}


# http to grpc


curl http://127.0.0.1:9080/apisix/admin/routes/111 -H 'X-API-KEY: edd1c9f0
34335f136f87ad84b625c8f1' -X PUT -d '
{
    "methods": ["GET"],
    "uri": "/grpctest",
    "plugins": {
        "grpc-transcode": {
         "proto_id": "1",
         "service": "helloworld.Greeter",
         "method": "SayHello"
        }
    },
    "upstream": {
        "scheme": "grpc",
        "type": "roundrobin",
        "nodes": {
            "127.0.0.1:50051": 1
        }
    }
}'
$ curl -i http://127.0.0.1:9080/grpctest?name=world



42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

http://events.jianshu.io/p/0ce27807323a
https://shenyu.apache.org/zh/projects/shenyu/flow-control/
https://shenyu.apache.org/zh/projects/shenyu/database-design/
https://shenyu.apache.org/zh/projects/shenyu/custom-plugin/


231

自定义插件


一类是单一职责的调用链，不能对流量进行自定义的筛选。


一类是能对匹配的流量，执行自己的职责调用链。


3.4 easegress 


https://github.com/megaease/easegress 


4.1 总述


按照铁城第一个版本的 conf.yaml 和 envoy 的思路，扩充static_resource对应的动态配置 

dynamic_resource，并且调整 api_config.yaml 中配置及其相关逻辑对整个结构的影响。


4.2 conf.yaml


目前，在conf.yaml中的配置如下所示，对应结构体详见 model  文件夹：


●

○

○

四、待讨论方案


https://github.com/megaease/easegress


232

http to grpc


---
static_resources:
  listeners:
    - name: "net/http"
      address:
        socket_address:
          protocol_type: "HTTP"
          address: "0.0.0.0"
          port: 8888
      filter_chains:
        - filter_chain_match:
          filters:
            - name: dgp.filters.http_connect_manager
                http_filters:
                  - name: dgp.filters.http.authority_filter
                    config:
                  - name: dgp.filters.remote_call // 1 原有逻辑，路由依赖api_
config                
                    config:
                server_name: "test_http_dubbo"
                generate_request_id: false
  clusters:
    - name: "test_dubbo"
      lb_policy: "RoundRobin"
      adapter: api_config
  adapter:
     name: api_config
     config:
        - path: conf/api_config.yaml
        - registry:
            "zookeeper":
            protocol: "zookeeper"
            timeout: "3s"
            address: "127.0.0.1:2181"
            username: ""
            password: ""

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

YAML



233

spring cloud 


基于梦超的 Make filter configurable & Centralized management分支代码，


五、详细改动


     filter_chains:
        - filter_chain_match:
          filters:
            - name: dgp.filters.http_connect_manager
              config:
                route_config:
                  name: local_route
                  routes:
                    - match: { prefix: "/helloworld.Greeter" }
                      route: { cluster: grpc, timeout: { seconds: 60 } }
                http_filters:
                  - name: dgp.filters.grpc_translator
                    config:
                      proto_descriptor: "/tmp/proto.pb"
                      services: ["helloworld.Greeter"]
 cluster:
 	  - name: grpc
      address: xxx

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

YAML

       filter_chains:
        - filter_chain_match:
          filters:
            - name: dgp.filters.http_connect_manager
                http_filters:
                  - name: dgp.filters.http.route 
  clusters:
    - name: "spring cloud"
      lb_policy: "RoundRobin"
      adpter: spring cloud
  adpater:
    - name: "consul registry"
      plugin: dgp.plugin.adpater.consul
      config:
      	 address:
        xxx

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

YAML



234

pixiu/listener中routeRequest不应该直接取api_config中配置，而是应该应该经过filters的层层处

理，如果达到remote_call，然后在做进一步更细致的路由和plugin操作(route和filter的先后关系？)


listener,filter[],route[disvoeryservice?],cluster,endpoint的相关manager


adpater 启动流程


pixiu初始化时，api_config相关配置的初始化是否可以延后


●

●

●

●

六、计划时间




235

xDS资料
https://www.envoyproxy.io/docs/envoy/latest/api-v3/api#envoy-v3-api-reference


https://www.servicemesher.com/istio-handbook/


https://www.envoyproxy.io/docs/envoy/latest/api-v3/api#envoy-v3-api-reference
https://www.servicemesher.com/istio-handbook/


236

istio架构

Istio uses an extended version of the Envoy proxy. Envoy is a high-performance proxy developed 

in C++ to mediate all inbound and outbound traffic for all services in the service mesh. Envoy 

proxies are the only Istio components that interact with data plane traffic.


Istiod provides service discovery, configuration and certificate management.


Envoy


Istiod


https://www.envoyproxy.io/


237

Istiod converts high level routing rules that control traffic behavior into Envoy-specific 

configurations, and propagates them to the sidecars at runtime. Pilot abstracts platform-specific 

service discovery mechanisms and synthesizes them into a standard format that any sidecar 

conforming with the Envoy API can consume.


https://www.envoyproxy.io/docs/envoy/latest/api/api


238

istio metric

Istio generates detailed telemetry like metrics, distributed traces, and access 

logs for all service communication within the mesh. Istio generates a rich 

set of proxy-level metrics, service-oriented metrics, and control plane 

metrics.


Earlier, the Istio telemetry architecture included Mixer as a central 

component. But starting with Telemetry v2, features provided by Mixer were 

replaced with the Envoy proxy plugins:





Moreover, Istio generates distributed traces through the Envoy proxies. Istio 

supports a number of tracing backends like Zipkin, Jaeger, Lightstep, and 

Datadog. We can also control the sampling rate for trace generation. Further, 

Istio also generates access logs for service traffic in a configurable set of 

formats.


Observability


https://zipkin.io/
https://www.jaegertracing.io/
https://lightstep.com/
https://www.datadoghq.com/


239

Pilot
在应用从单体架构向微服务架构演进的过程中，微服务之间的服务发现、负载均衡、熔断、限流等

服务治理需求是无法回避的问题。

在 Service Mesh 出现之前，通常的做法是将这些基础功能以 SDK 的形式嵌入业务代码中，但是

这种强耦合的方案会增加开发的难度，增加维护成本，增加质量风险。比如 SDK 需要新增新特

性，业务侧也很难配合 SDK 开发人员进行升级，所以很容易造成 SDK 的版本碎片化问题。如果

再存在跨语言应用间的交互，对于多语言 SDK 的支持也非常的低效。一方面是相当于相同的代码

以不同语言重复实现，实现这类代码既很难给开发人员带来成就感，团队稳定性难以保障；另一方

面是如果实现这类基础框架时涉及到了语言特性，其他语言的开发者也很难直接翻译。

而 Service Mesh 的本质则是将此类通用的功能沉淀至 sidecar 中，由 sidecar 接管服务的流量并

对其进行治理。在这个思路下，可以通过流量劫持的手段，做到代码零侵入性。这样可以让业务开

发人员更关心业务功能。而底层功能由于对业务零侵入，也使得基础功能的升级和快速的更新迭代

成为可能。

Istio 是近年来 Service Mesh 的代表作，而 Istio 流量管理的核心组件就是 Pilot。Pilot 主要功能就

是管理和配置部署在特定 Istio 服务网格中的所有 sidecar 代理实例。它管理 sidecar 代理之间的

路由流量规则，并配置故障恢复功能，如超时、重试和熔断。

Pilot 架构


https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service-mesh
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service-mesh
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#sidecar
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#sidecar
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#istio
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service-mesh
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#istio
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#pilot
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#pilot
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#istio
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#sidecar
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#sidecar


240

图 2.3.1.1.1：Pilot 架构（图片来自Istio官方网站）


根据上图， Pilot 几个关键的模块如下。


为了实现对不同服务注册中心 （Kubernetes、consul） 的支持，Pilot 需要对不同的输入来源的

数据有一个统一的存储格式，也就是抽象模型。

抽象模型中定义的关键成员包括 HostName（service 名称）、Ports（service 端口）、Address

（service ClusterIP）、Resolution （负载均衡策略） 等。


抽象模型 （Abstract Model）


平台适配器 （Platform adapters）


https://www.servicemesher.com/istio-handbook/GLOSSARY.html#pilot
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#istio
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#pilot
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#pilot
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service


241

Pilot 的实现是基于平台适配器（Platform adapters） 的，借助平台适配器 Pilot 可以实现服务注

册中心数据到抽象模型之间的数据转换。

例如 Pilot 中的 Kubernetes 适配器通过 Kubernetes API 服务器得到 Kubernetes 中 service 和 

pod 的相关信息，然后翻译为抽象模型提供给 Pilot 使用。


通过平台适配器模式， Pilot 还可以从 Consul 等平台中获取服务信息，还可以开发适配器将其他

提供服务发现的组件集成到 Pilot 中。


https://www.servicemesher.com/istio-handbook/GLOSSARY.html#pilot
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#pilot
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#pilot
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#pod
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#pilot
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#pilot
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#pilot


242

协议一览

服务简写 全称 描述

LDS
 Listener Discovery Service
 监听器发现服务

RDS
 Route Discovery Service
 路由发现服务

CDS
 Cluster


 Discovery Service


集群发现服务

EDS
 Endpoint Discovery Service
 集群成员发现服务

SDS
 Service


 Discovery Service


v1 时的集群成员发现服务，

后改名为 EDS


ADS
 Aggregated Discovery 

Service


聚合发现服务

HDS
 Health Discovery Service
 健康度发现服务

SDS
 Secret Discovery Service
 密钥发现服务

MS
 Metric Service
 指标发现服务

RLS
 Rate Limit Service
 限流发现服务

https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#cluster
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service
https://www.servicemesher.com/istio-handbook/GLOSSARY.html#service


243

xDS API Flow
对于典型的 HTTP 路由场景，客户端配置的核心资源类型是 Listener、RouteConfiguration、Cluster 

和 ClusterLoadAssignment。每个Listener资源可能指向一个RouteConfiguration资源，

RouteConfiguration资源可能指向一个或多个Cluster资源，每个Cluster资源可能指向一个

ClusterLoadAssignment资源。


 Envoy 在启动时获取所有 Listener 和 Cluster 资源。然后它获取侦听器和集群资源所需的任何 

RouteConfiguration 和 ClusterLoadAssignment 资源。实际上，每个 Listener 或 Cluster 资源都是 

Envoy 配置树的一部分的根。 


非代理客户端（例如 gRPC）可能首先只获取它感兴趣的特定侦听器资源。然后它获取那些侦听器资源

所需的 RouteConfiguration 资源，然后是那些 RouteConfiguration 资源所需的任何集群资源，然后是

集群资源所需的 ClusterLoadAssignment 资源。实际上，原始侦听器资源是客户端配置树的根。




244

pixiu 集成xds技术设计

1. dynamic_resource_manager: 加载管理 dynamic resource的配置信息。


2. cluster_manager/listener_manager....实现对pixiu cluster/listener的动态修改。


3. xds adaptor: 是插件化形式，初始化时，load LDS/CDS/....配置，创建xds client(control-

panel)，同步pixiu admin 中配置的各种资源。


a. xds client：通过xds Delta(gRPC streaming)API，动态获取资源配置的变化。


b. xds adaptor通过cluster manager / listener manager等，动态修改pixiu的cluster和listener.


4. xds server(data-panel) 维护所有pixiu节点的config的snapshot，跟踪节点配置版本。


a. 可以通过admin UI来维护cache中的config。


b. xds server可以管理每一个pixiu节点的配置。


5. pixiu admin cache中的配置是基于protobuf定义的配置信息。




245

LDS集成设计
LDS集成设计




246

Listener 动态配置能力调研
pixiu根据主要组件listener用来接收client端流量，对于listener是否需要动态配置，参考对比其他API 

gateway的listener 配置能力，对比结果只有envoy支持动态配置能力：


nginx
 Config reload


traefik
 在静态配置中指定

entrypoint,


middlewares可以动态配

置


apisix
 By default, the Admin 

API listens to port 9080 

(9443 for HTTPS) when 

APISIX is launched. This 

can be changed by 

modifying your 

configuration file 

(conf/config.yaml).


图片加载失败

图片加载失败

https://github.com/apache/apisix/blob/master/conf/config.yaml


247

envoy
 Generally we 

recommend running a 

single Envoy per 

machine regardless of 

the number of 

configured listeners.


Listeners can also be 

fetched dynamically via 

the listener discovery 

service (LDS).


The listener discovery 

service (LDS) is an 

optional API that Envoy 

will call to dynamically 

fetch listeners. Envoy 

will reconcile the API 

response and add, 

modify, or remove 

known listeners 

depending on what is 

required.


https://www.envoyproxy.io/docs/envoy/latest/c

onfiguration/listeners/lds#config-listeners-lds


https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/lds#config-listeners-lds
https://www.envoyproxy.io/docs/envoy/latest/configuration/listeners/lds#config-listeners-lds


248

go-control-plane 调研
go-control-panel使用golang实现了envoy xDS API server.


项目地址：https://github.com/envoyproxy/go-control-plane


1. 安装envoy

Mac:  brew install envoy


2. 下载代码


git clone https://github.com/envoyproxy/go-control-plane


3. 运行demo


make example


4. 测试：


curl -v http://localhost:10000


curl -v localhost:10000


Trying ::1...


TCP_NODELAY set


Connection failed


connect to ::1 port 10000 failed: Connection refused


Trying 127.0.0.1...


TCP_NODELAY set


Connected to localhost (127.0.0.1) port 10000 (#0)


< HTTP/1.1 301 Moved Permanently


< cache-control: public, max-age=0, must-revalidate

运行demo

●

●

●

●

●

●

●




GET / HTTP/1.1


Host: localhost:10000


User-Agent: curl/7.64.1


Accept: /

https://github.com/envoyproxy/go-control-plane
https://github.com/envoyproxy/go-control-plane
http://localhost:10000/


249

< content-length: 42

< content-security-policy: frame-ancestors 'self';


< content-type: text/plain


< date: Fri, 05 Nov 2021 05:00:48 GMT


< age: 33911


< location: https://www.envoyproxy.io/


< x-nf-request-id: 01FKR7VXRSC2QMTTECDZA1MDK6


< server: envoy


< x-envoy-upstream-service-time: 1439


参考： https://www.envoyproxy.io/docs/envoy/latest/start/quick-start/configuration-dynamic-

control-plane


通过静态资源static_resource配置API Server的位置。


dynamic_resource的各部分（cds|lds|...)通过的api_config_source配置到到对应的

cluster(static_resource)。


服务端提供API 向envoy提供配置：


const (


  ClusterName  = "example_proxy_cluster"


  RouteName    = "local_route"


  ListenerName = "listener_0"

  ListenerPort = 10002


  UpstreamHost = "www.envoyproxy.io"


  UpstreamPort = 80


)


func makeCluster(clusterName string) *cluster.Cluster {


  return &cluster.Cluster{


     Name:                 clusterName,


     ConnectTimeout:       durationpb.New(5 * time.Second),


     ClusterDiscoveryType: &cluster.Cluster_Type{Type: cluster.Cluster_LOGICAL_DNS},


     LbPolicy:             cluster.Cluster_ROUND_ROBIN,


Envoy对于control panel的配置方式


https://www.envoyproxy.io/
https://www.envoyproxy.io/docs/envoy/latest/start/quick-start/configuration-dynamic-control-plane


250

     LoadAssignment:       makeEndpoint(clusterName),


     DnsLookupFamily:      cluster.Cluster_V4_ONLY,


  }


}


func makeEndpoint(clusterName string) *endpoint.ClusterLoadAssignment {


  return &endpoint.ClusterLoadAssignment{


     ClusterName: clusterName,


     Endpoints: []*endpoint.LocalityLbEndpoints{{


        LbEndpoints: []*endpoint.LbEndpoint{{


           HostIdentifier: &endpoint.LbEndpoint_Endpoint{


              Endpoint: &endpoint.Endpoint{


                 Address: &core.Address{


                    Address: &core.Address_SocketAddress{


                       SocketAddress: &core.SocketAddress{


                          Protocol: core.SocketAddress_TCP,


                          Address:  UpstreamHost,


                          PortSpecifier: &core.SocketAddress_PortValue{


                             PortValue: UpstreamPort,


                          },


                       },


                    },


                 },


              },


           },


        }},


     }},


  }


}


func makeRoute(routeName string, clusterName string) *route.RouteConfiguration {


  return &route.RouteConfiguration{


     Name: routeName,


     VirtualHosts: []*route.VirtualHost{{


        Name:    "local_service",


        Domains: []string{"*"},




251

        Routes: []*route.Route{{


           Match: &route.RouteMatch{


              PathSpecifier: &route.RouteMatch_Prefix{


                 Prefix: "/",


              },


           },


           Action: &route.Route_Route{


              Route: &route.RouteAction{


                 ClusterSpecifier: &route.RouteAction_Cluster{


                    Cluster: clusterName,


                 },


                 HostRewriteSpecifier: &route.RouteAction_HostRewriteLiteral{


                    HostRewriteLiteral: UpstreamHost,

                 },


              },


           },


        }},


     }},


  }


}


func makeHTTPListener(listenerName string, route string) *listener.Listener {

  // HTTP filter configuration


  manager := &hcm.HttpConnectionManager{


     CodecType:  hcm.HttpConnectionManager_AUTO,


     StatPrefix: "http",


     RouteSpecifier: &hcm.HttpConnectionManager_Rds{


        Rds: &hcm.Rds{


           ConfigSource:    makeConfigSource(),


           RouteConfigName: route,


        },


     },


     HttpFilters: []*hcm.HttpFilter{{


        Name: wellknown.Router,


     }},


  }




252

  pbst, err := anypb.New(manager)


  if err != nil {


     panic(err)


  }


  return &listener.Listener{


     Name: listenerName,


     Address: &core.Address{


        Address: &core.Address_SocketAddress{


           SocketAddress: &core.SocketAddress{


              Protocol: core.SocketAddress_TCP,


              Address:  "0.0.0.0",


              PortSpecifier: &core.SocketAddress_PortValue{


                 PortValue: ListenerPort,


              },


           },


        },


     },


     FilterChains: []*listener.FilterChain{{


        Filters: []*listener.Filter{{


           Name: wellknown.HTTPConnectionManager,


           ConfigType: &listener.Filter_TypedConfig{


              TypedConfig: pbst,


           },


        }},


     }},


  }


}


func makeConfigSource() *core.ConfigSource {


  source := &core.ConfigSource{}


  source.ResourceApiVersion = resource.DefaultAPIVersion


  source.ConfigSourceSpecifier = &core.ConfigSource_ApiConfigSource{


     ApiConfigSource: &core.ApiConfigSource{


        TransportApiVersion:       resource.DefaultAPIVersion,


        ApiType:                   core.ApiConfigSource_GRPC,




253

        SetNodeOnFirstMessageOnly: true,


        GrpcServices: []*core.GrpcService{{


           TargetSpecifier: &core.GrpcService_EnvoyGrpc_{


              EnvoyGrpc: &core.GrpcService_EnvoyGrpc{ClusterName: "xds_cluster"},


           },


        }},


     },


  }


  return source


}


func GenerateSnapshot() cache.Snapshot {


  snap, _ := cache.NewSnapshot("1",


     map[resource.Type][]types.Resource{


        resource.ClusterType:  {makeCluster(ClusterName)},


        resource.RouteType:    {makeRoute(RouteName, ClusterName)},


        resource.ListenerType: {makeHTTPListener(ListenerName, RouteName)},


     },


  )


  return snap


}


Envoy的配置：


# Base config for a split xDS management server on 18000, admin port on 19000


admin:


 access_log_path: /dev/null


 address:


   socket_address:


     address: 127.0.0.1


     port_value: 19000


dynamic_resources:


 cds_config:


   resource_api_version: V3


   api_config_source:


     api_type: GRPC




254

     transport_api_version: V3


     grpc_services:


     - envoy_grpc:


         cluster_name: xds_cluster


     set_node_on_first_message_only: true


 lds_config:


   resource_api_version: V3


   api_config_source:


     api_type: GRPC


     transport_api_version: V3


     grpc_services:


     - envoy_grpc:


         cluster_name: xds_cluster


     set_node_on_first_message_only: true


node:


 cluster: test-cluster


 id: test-id


static_resources:


 clusters:


 - connect_timeout: 1s


   load_assignment:


     cluster_name: xds_cluster


     endpoints:


     - lb_endpoints:


       - endpoint:


           address:


             socket_address:


               address: 127.0.0.1


               port_value: 18000


   http2_protocol_options: {}


   name: xds_cluster


 - connect_timeout: 1s


   load_assignment:


     cluster_name: als_cluster


     endpoints:


     - lb_endpoints:




255

       - endpoint:


           address:


             socket_address:


               address: 127.0.0.1


               port_value: 18090


   http2_protocol_options: {}


   name: als_cluster


layered_runtime:


 layers:


   - name: runtime-0


     rtds_layer:


       rtds_config:


         resource_api_version: V3


         api_config_source:


           transport_api_version: V3


           api_type: GRPC


           grpc_services:


             envoy_grpc:


               cluster_name: xds_cluster


       name: runtime-0


xDS server 可以通过SnapshotCache.SetSnapshot 方法修改动态把新的配置sync到envoy。


type SnapshotCache interface {


  Cache

  // SetSnapshot sets a response snapshot for a node. For ADS, the snapshots


  // should have distinct versions and be internally consistent (e.g. all


  // referenced resources must be included in the snapshot).


  //


  // This method will cause the server to respond to all open watches, for which


动态修改xDS server的配置, sync到envoy。




256

  // the version differs from the snapshot version.


  SetSnapshot(ctx context.Context, node string, snapshot Snapshot) error


源码解读


// SetSnapshotCacheContext updates a snapshot for a node.


func (cache *snapshotCache) SetSnapshot(ctx context.Context, node string, snapshot 

Snapshot) error {


  cache.mu.Lock()


  defer cache.mu.Unlock()


  // update the existing entry


  cache.snapshots[node] = snapshot


  // trigger existing watches for which version changed


  if info, ok := cache.status[node]; ok {


     info.mu.Lock()


     defer info.mu.Unlock()

     for id, watch := range info.watches {


        version := snapshot.GetVersion(watch.Request.TypeUrl)


        if version != watch.Request.VersionInfo {


           cache.log.Debugf("respond open watch %d%v with new version %q", id, 

watch.Request.ResourceNames, version)


           resources := snapshot.GetResourcesAndTTL(watch.Request.TypeUrl)


           err := cache.respond(ctx, watch.Request, watch.Response, resources, version, false)


           if err != nil {


              return err


           }


           // discard the watch


           delete(info.watches, id)


        }


     }




257

     // We only calculate version hashes when using delta. We don't


     // want to do this when using SOTW so we can avoid unnecessary


     // computational cost if not using delta.


     if len(info.deltaWatches) > 0 {


        err := snapshot.ConstructVersionMap()


        if err != nil {


           return err


        }


     }


     // process our delta watches


     for id, watch := range info.deltaWatches {


        res, err := cache.respondDelta(


           ctx,


           &snapshot,


           watch.Request,


           watch.Response,


           watch.StreamState,


        )


        if err != nil {


           return err


        }


        // If we detect a nil response here, that means there has been no state change


        // so we don't want to respond or remove any existing resource watches


        if res != nil {


           delete(info.deltaWatches, id)


        }


     }


  }


  return nil


}




258

xDS server扩展

xDS 服务分层


服务栈


server
 go-control-panel/pkg/server


--- sotw (SoTW (State of The World))


--- rest (grpc gateway)


--- grpc (v3)




259

API
 endpointservice.EndpointDiscoveryServiceServer


clusterservice.ClusterDiscoveryServiceServer


routeservice.RouteDiscoveryServiceServer


routeservice.ScopedRoutesDiscoveryServiceServer


listenerservice.ListenerDiscoveryServiceServer


discoverygrpc.AggregatedDiscoveryServiceServer


secretservice.SecretDiscoveryServiceServer


runtimeservice.RuntimeDiscoveryServiceServer


extensionconfigservice.ExtensionConfigDiscoveryServiceServer


--------------


type (xxxxxxx|Endpoint)DiscoveryServiceServer interface {


  // The resource_names field in DiscoveryRequest specifies a list of clusters


  // to subscribe to updates for.


  StreamEndpoints(EndpointDiscoveryService_StreamEndpointsServer) error


  DeltaEndpoints(EndpointDiscoveryService_DeltaEndpointsServer) error


  FetchEndpoints(context.Context, *v3.DiscoveryRequest) 

(*v3.DiscoveryResponse, error)


}


Impl


-------

----


Cache


SnapShot


 // Cache is a generic config cache with a watcher.


type Cache interface {


  ConfigWatcher


  ConfigFetcher


}


// ConfigFetcher fetches configuration resources from cache


type ConfigFetcher interface {


  // Fetch implements the polling method of the config cache using a non-

empty request.


  Fetch(context.Context, *Request) (Response, error)


}




260

方案选择


-----------------


func (cache *snapshotCache) Fetch(ctx context.Context, request *Request) 

(Response, error) {


  nodeID := cache.hash.ID(request.Node)


  cache.mu.RLock()


  defer cache.mu.RUnlock()


  if snapshot, exists := cache.snapshots[nodeID]; exists {


     // Respond only if the request version is distinct from the current snapshot 

state.


     // It might be beneficial to hold the request since Envoy will re-attempt the 

refresh.


     version := snapshot.GetVersion(request.TypeUrl)


     if request.VersionInfo == version {


        cache.log.Warnf("skip fetch: version up to date")


        return nil, &types.SkipFetchError{}


     }


     resources := snapshot.GetResourcesAndTTL(request.TypeUrl)


     out := createResponse(ctx, request, resources, version, false)


     return out, nil


  }


  return nil, fmt.Errorf("missing snapshot for %q", nodeID)


}


resource


(Data)


Config 

Model


go-control-panel/envoy/config/(accesslog|bootstrap|cluster......)




261

1. 使用envoy的Extension Resource


使用envoy/core/v2/TypedExtensionConfig 对自定义的pb模型进行封装


type TypedExtensionConfig struct {


    state         protoimpl.MessageState


    sizeCache     protoimpl.SizeCache


    unknownFields protoimpl.UnknownFields


    // The name of an extension. This is not used to select the extension, instead


    // it serves the role of an opaque identifier.


    Name string `protobuf:"bytes,1,opt,name=name,proto3"        json:"name,omitempty"`


    // The typed config for the extension. The type URL will be used to identify


    // the extension. In the case that the type URL is *xds.type.v3.TypedStruct*


    // (or, for historical reasons, *udpa.type.v1.TypedStruct*), the inner type


    // URL of *TypedStruct* will be utilized. See the


    // :ref:`extension configuration overview


    // <config_overview_extension_configuration>` for further details.


    TypedConfig *any.Any 

`protobuf:"bytes,2,opt,name=typed_config,json=typedConfig,proto3" 

json:"typed_config,omitempty"`


}


示例代码 （server）




262

func GenerateSnapshot2() cache.Snapshot {


any, _ := anypb.New(&envoy_extensions_common_tap_v3.AdminConfig{ConfigId: 

"pixiu.config.test"})


	 snap, _ := cache.NewSnapshot("2",


	 map[resource.Type][]types.Resource{


	 	 resource.ClusterType:  {makeCluster2(ClusterName2)},


	 	 resource.RouteType:    {makeRoute2(RouteName2, ClusterName2)},


	 	 resource.ListenerType: {makeHTTPListener2(ListenerName2, RouteName2)},


	 	 resource.ExtensionConfigType: {&core.TypedExtensionConfig{


	 	 	 Name:        "pixiu.cluster",


	 	 	 TypedConfig: any,


	 	 	 }},


	 	 },


	 )


	 return snap


}


示例代码 (client)




263

2. 增加pixu API,修改 Server，增加 Model


3. 完全直接做grpc server.


cdsClient := 

extensionpb.NewExtensionConfigDiscoveryServiceClient(conn)//clusterpb.NewClusterDiscove

ryServiceClient(conn)


clsRsp, err := cdsClient.FetchExtensionConfigs(context.Background(), 

&discoverypb.DiscoveryRequest{


	   VersionInfo: "",


	   Node: &envoy_config_core_v3.Node{


	      Id:            "test-id",


	      Cluster:       "test-cluster",


	      UserAgentName: "ma-test-agent",


	   },


	   //ResourceNames: []string {"pixiu.cluster"},


	   TypeUrl: resource.ExtensionConfigType,


	 })


	 


if err != nil {


  panic(err)


}


log.Printf("==> result %v\n", clsRsp)




264

xDS-data-panel方案调研+POC
data-panel访问xDS-control-panel(xDS management server)，通过gRPC（早期也有restful）协

议，获取CDS,LDS等配置，根据配置设置data-panel的服务。


本文主要内容：


1. 收集汇总相关技术资料


a. data-panel-api: envoy的api定义。


b. grpc-xds: grpc官方xDS library。


c. go-control-panel: envoy提供golang实现xDS server。


2. POC：实现xDS-data-panel的POC，与go-control-panel通讯完成配置读取（模拟envoy）。


3. pixiu 实现xDS-data-panel 和 xDS-control-panel(admin)需要做哪些工作。


1. 使用go-data-panel的example创建简单的sample。


POC

POC 1: 创建client 获取xDS server的配置


创建的resource


func GenerateSnapshot2() cache.Snapshot {


snap, _ := cache.NewSnapshot("2",


map[resource.Type][]types.Resource{


resource.ClusterType:  {makeCluster2(ClusterName2)},


resource.RouteType:    {makeRoute2(RouteName2, ClusterName2)},


resource.ListenerType: {makeHTTPListener2(ListenerName2, 

RouteName2)},


},


)


return snap


}




265

1. 使用envoy xDS API(gRPC)创建client，获取cluster的配置。


创建server (:18000)


………..


……….


snapshot2 := example.GenerateSnapshot2()


if err := snapshot.Consistent(); err != nil {


l.Errorf("snapshot inconsistency: %+v\n%+v", snapshot2, err)


os.Exit(1)


}


// Add the snapshot to the cache


if err := cache.SetSnapshot(context.Background(), nodeID, snapshot2); err 

!= nil {


l.Errorf("snapshot error %q for %+v", err, snapshot2)


os.Exit(1)


}


…….


……….


ctx := context.Background()


cb := &test.Callbacks{Debug: l.Debug}


srv := server.NewServer(ctx, cache, cb)


example.RunServer(ctx, srv, port)


通过基本通过的方式连接grpc




266

creds := insecure.NewCredentials()


if *xdsCreds {


log.Println("Using xDS credentials...")


var err error


if creds, err = 

xdscreds.NewClientCredentials(xdscreds.ClientOptions{FallbackCreds: 

insecure.NewCredentials()}); err != nil {


log.Fatalf("failed to create client-side xDS credentials: %v", err)


}


}


conn, err := grpc.Dial(*target, grpc.WithTransportCredentials(creds))


if err != nil {


log.Fatalf("grpc.Dial(%s) failed: %v", *target, err)


}


defer conn.Close()


查询cluster 配置，并进行读取信息




267

POC 2: watch Cluster配置，动态更新client配置（todo).


cdsClient := clusterpb.NewClusterDiscoveryServiceClient(conn)


clsRsp, err := cdsClient.FetchClusters(context.Background(), 

&discoverypb.DiscoveryRequest{


VersionInfo:   "",


Node:          &envoy_config_core_v3.Node{


Id:                   "test-id",


Cluster:              "test-cluster",


UserAgentName:        "ma-test-agent",


},


TypeUrl:       resource.ListenerType,


})


if err != nil {


panic(err)


}


log.Printf("==> result %v\n", clsRsp)


for _, _resource := range clsRsp.Resources {


clsConfig := cluster.Cluster{}


err := _resource.UnmarshalTo(&clsConfig)


if err != nil {


panic(err)


}


log.Printf("==> resource %v\n", clsConfig.LoadAssignment)


}




268

1. 使用xDS 要对齐 envoy的xDS API。


2. 要扩展xDS API：有些配置是标准API无法支持的,如dubbo的endpoint配置(todo, 需要调研一

下扩展）。


3. pixiu各种资源动态配置。


4. admin使用go-control-panel lib，创建xDS server，对接界面。


1. https://github.com/grpc/grpc-go/tree/master/examples/features/xds grpc-go的xDS实

现, 为了帮助应用层使用xDS 进行服务调用，而不是通过envoy来建立mesh。


2. https://github.com/grpc/proposal/blob/master/A27-xds-global-load-

balancing.md#xdsclient-and-bootstrap-file grpc-xDS 技术架构


1. https://github.com/envoyproxy/data-plane-api  v2 API definitions as a standalone 

repository


使用xDS需要完成的工作：


参考资料：


图片加载失败

https://github.com/grpc/grpc-go/tree/master/examples/features/xds
https://github.com/grpc/proposal/blob/master/A27-xds-global-load-balancing.md#xdsclient-and-bootstrap-file
https://github.com/envoyproxy/data-plane-api


269

2. https://blog.envoyproxy.io/the-universal-data-plane-api-d15cec7a xDS怎么来的。


3. https://www.youtube.com/watch?v=IbcJ8kNmsrE grpc-xds视频介绍


图：基于sidecar的mesh支持（envoy）


图片加载失败

图片加载失败

https://blog.envoyproxy.io/the-universal-data-plane-api-d15cec7a
https://www.youtube.com/watch?v=IbcJ8kNmsrE


270

图： 基于gRPC library的mesh支持


相关项目


https://github.com/envoyproxy/envoy/tree/main/api - canonical read/write home for 

the APIs.


https://github.com/envoyproxy/data-plane-api - read-only mirror of 

https://github.com/envoyproxy/envoy/tree/main/api, providing the ability to consume 

the data plane APIs


●

●

https://github.com/envoyproxy/envoy/tree/main/api
https://github.com/envoyproxy/data-plane-api
https://github.com/envoyproxy/envoy/tree/main/api


271

pixiu 支持类 xDS 协议远程配置

admin 提供 grpc server 用于远程配置管理，pixiu 监听消息进行对应配置变更，类似于 pilot 和 envoy

的关系


pixiu 目前本地yaml文件配置，类似于 envoy 配置，但是细节有些区别


一、目标


二、现状


2.1 pixiu




272

目前基础配置不支持远程，只有dubbo 协议解析部分的api_config配置支持admin的远程配置。


2.2 admin


static_resources:
  listeners:
    - name: "net/http"
      address:
        socket_address:
          protocol_type: "HTTP"
          address: "0.0.0.0"
          port: 8888
      filter_chains:
        - filter_chain_match:
          domains:
            - api.dubbo.com
            - api.pixiu.com
          filters:
            - name: dgp.filter.httpconnectionmanager
              config:
                route_config:
                  routes:
                    - match:
                        prefix: "/user"
                      route:
                        cluster: "user"
                        cluster_not_found_response_code: 505
                http_filters:
                  - name: dgp.filter.http.httpproxy
                    config:
                  - name: dgp.filter.http.response
                    config:


  clusters:
    - name: "user"
      lb_policy: "lb"
      endpoints:
        - id: 1
          socket_address:
            address: 127.0.0.1
            port: 1314
  

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

YAML



273




目前是将配置数据存放在 etcd，将用户等数据存放在 mysql，pixiu 从 etcd中获取key-value 数据并监

听对应路径数据。


遇到一些问题：


key-value不容易满足复杂数据格式


etcd 的 event 只有set 和 rm，编码上不容易处理


类似上图，不过 admin 和 xDS server 可以放在一起。pixiu 从 xDS server 中获取配置数据，并且 

spring cloud adapter 和 dubbo registry 后续可以迁移到admin处


●

●

三、方案




274

类似 envoy, static_resource 的cluster 定义 xDS server 信息，然后dynamic_resource 中配置对应的

监听对象


https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/dynamic-configuration-control-

plane

# envoy configuration
dynamic_resources:
  ads_config:
    api_type: GRPC
    transport_api_version: V3
    grpc_services:
    - _grpc:
        cluster_name: xds_cluster
  cds_config:
    resource_api_version: V3
    ads: {}
  lds_config:
    resource_api_version: V3
    ads: {}
    
static_resources:
  clusters:
  - type: STRICT_DNS
    typed_extension_protocol_options:
      envoy.extensions.upstreams.http.v3.HttpProtocolOptions:
        "@type": type.googleapis.com/envoy.extensions.upstreams.http.v3.Ht
tpProtocolOptions
        explicit_http_config:
          http2_protocol_options: {}
    name: xds_cluster
    load_assignment:
      cluster_name: xds_cluster
      endpoints:
      - lb_endpoints:
        - endpoint:
            address:
              socket_address:
                address: my-control-plane
                port_value: 18000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

YAML

https://www.envoyproxy.io/docs/envoy/latest/start/sandboxes/dynamic-configuration-control-plane


275

分工：


admin 侧，提供 xDS api，并提供增删改查配置的api接口


pixiu 侧，引入static_resource，监听xDS server 进行对应的配置变更


如何和api_config进行统一


统一的API抽象和多样性的功能之间的冲突


listener


后续多协议，filter可能会有几套，估计是不同的抽象，则需要不同的配置


●

●

四、问题


●

●

○

○

五、参考




276

待解决问题

直接使用 http server 监听端口，所以只支持七层协议的HTTP，在request和response层面进行处理，

是否应该处理四层tcp协议，处理帧，方便后续扩展其他七层协议


改为第四层上进行监听，需要socket 编程。虽然工作量可能会较大，但是如果想要在后期可以支持各种

grpc，amqp等协议，还是需要做出这个改动。现阶段需要定一下做的时间点；


Owner：张天


梦超的filter的reload提供了更新能力，但是整体配置 listener、cluster、router(api_config目前支持)不

支持配置远程配置和更新替换能力，后续流量动态管理功能都依赖于此。


冯振宇先把api_config 作为全局变量搞个pr跟大家商量看看


目前同一个httpconnectionmanager下的所有请求都会走相同的http-filter-chain，是否需要根据route

走不同的filter。


如果需要，则这些 filter 是多个实例还是一个实例，这些filter的配置是共用的，还是要分别配置


一、Listener监听


二、整体热更新机制


三、可选Filter-chain，Filter实例的数量问题，Filter的共用配置




277

目前有一些隐含的规则需要实际用户知晓，比如：


目前httpproxy、grpcproxy、dubboproxy分别对应不同协议，但是都需要再加一个responsefilter

负责返回响应。


如果如果不配置httpproxy、grpcproxy、dubboproxy等协议，实际无法进行转发


单一的Handle抽象，必须显示调用next，以next的前后区分pre还是post 处理。


owner: 吕梦超


振宇大佬提议使用字典树来对route匹配path进行优化


四、filter更清晰的细分


●

●

●

五、route 的优化


参考




278






279

🚀 Dubbo-go-pixiu 与 SpringCloud 服务发现自动

映射路由

项目排期


功能点
 Owner
 开始时间


项目框架改

在设计


pixiu接入 SpringCloud 插件

化设计方案


岳枫博


启动加载流程插件化解耦设

计：使用引导，初始化加载

各个实现（饥饿加载）


岳枫博


请求处理流程插件化解耦设

计：服务发现Service实现 

统一放到服务引导启动阶段

初始化配置；流程主要负责 

handle request；特殊懒加

载诉求除外


岳枫博


貔貅服务启

动阶段


sc获取所有服务实例信息接

口


sc获取指定服务实例信息根

据serviceId接口


sc服务注册-将自己注册到注

册中心


sc服务心跳实现，刷新缓存

服务实例信息




280

自动隐射本地配置的服务信

息、过滤器等


貔貅请求代

理阶段


服务发现，兼容本地配置的

services信息及sc 服务发现


Canary 灰度流程逻辑，根据

权重获取一个serverInfo ，

再从服务信息中过滤得到符

合的 service instance 集合


负载均衡实现，轮询负载均

衡获取一个 instance 


protocol: invoke remote , 

HTTP 远程调用




281

public interface DiscoveryClient extends Ordered {


	 /**
	  * Default order of the discovery client.
	  */
	 int DEFAULT_ORDER = 0;


	 /**
	  * A human-readable description of the implementation, used in HealthI
ndicator.
	  * @return The description.
	  */
	 String description();


	 /**
	  * Gets all ServiceInstances associated with a particular serviceId.
	  * @param serviceId The serviceId to query.
	  * @return A List of ServiceInstance.
	  */
	 List<ServiceInstance> getInstances(String serviceId);


	 /**
	  * @return All known service IDs.
	  */
	 List<String> getServices();


	 /**
	  * Can be used to verify the client is valid and able to make calls.
	  * <p>
	  * A successful invocation with no exception thrown implies the clien
t is able to make
	  * calls.
	  * <p>
	  * The default implementation simply calls {@link #getServices()} - cl
ient
	  * implementations can override with a lighter weight operation if the
y choose to.
	  */
	 default void probe() {
	 	 getServices();
	 }


	 /**
	  * Default implementation for getting order of discovery clients.
	  * @return order

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32

33

34
35
36
37
38
39
40
41

Java



282

该项目最初是因为涂鸦有场景需要 网关通过服务发现自动映射调用 HTTP Server 服务，社区当时也希

望做 SpringCloud 的支持，所以刚好也能支持涂鸦的诉求。后社区多人与涂鸦张永红等拉会确认后，了

解涂鸦的现状与目的：业务方自己申请了域名来暴露http服务，想要把服务迁移到网关统一管理。简单

来说，想要网关去管理服务域名实现路由即可。


所以，经与社区 张训 确认，本项目核心聚焦于对 SpringCloud 的支持上，实现 SpringCloud 服务发现

自动映射路由。


项目边界：解决 Pixiu 与 SpringCloud 的支持能力，只需要解决 Pixiu 的服务注册发现。区别于 

Dubbo-go 与 SpringCloud 打通（这需要另起一个项目）。


1. 涂鸦真实使用场景的需要，调用链有 Client(http) → Serve(http) , 也有 Client(http) → Pixiu-

Gateway →Serve(dubbo)  的应用场景。


2. Pixiu 当前对 SpringCloud 服务发现并没有很好的支持。


3. 有 Issure 提到 Dubbogo 对 SpringCloud 的支持。


- 替代springcloud gateway中的一个微服务 #684


替代springcloud gateway中的一个微服务 · Issue #684 · apache/dubbo-go


- How to call the service of spring cloud #833


How to call the service of spring cloud · Issue #833 · apache/dubbo-go


@zouyx  : There is not support call the spring cloud service .Because there is some 

🌏 项目介绍


概述


项目背景


	  */
	 @Override
	 default int getOrder() {
	 	 return DEFAULT_ORDER;
	 }


}

42
43
44
45
46
47
48

https://github.com/apache/dubbo-go/issues/684
https://github.com/apache/dubbo-go/issues/833
https://dubbogoproxy.yuque.com/zouyx


283

problems in go-client of eureka . 


@AlexStocks  : dubbogo spring cloud client 无法保证数据一致性 


实现 Pixiu-Gateway 与 Eureka、Nacos、Consul、Zookeeper 的 服务发现自动映射路由，支持与

SpringCloud 互相调用。同时也可以支持一些最佳实践，比如基于网关的能力，Server 层 Dubbogo 服

务可直接替换 SpringCloud 服务或其他最佳实践场景。


实现 Pixiu 与原生 SpringCloud 项目打通，基于 Pixiu 的服务发现自动映射路由调用 SpringCloud 服

务。


@ChengJiapeng @PhilYue


Pixiu 网关仓库地址：https://github.com/apache/dubbo-go-pixiu


Pixiu Admin地址：dubbogo/pixiu-admin


项目目标


🧭 项目方案


●

项目现状


项目结构


https://dubbogoproxy.yuque.com/AlexStocks
https://github.com/apache/dubbo-go-pixiu
https://github.com/dubbogo/pixiu-admin


284

.
├── CHANGE.md
├── LICENSE
├── Makefile
├── NOTICE
├── README.md
├── README_CN.md
├── before_ut.sh
├── before_validate_license.sh
├── build
├── cmd
│   └── pixiu
├── configs
│   ├── api_config.yaml
│   ├── conf.yaml
│   └── log.yml
├── docs
├── dubbo-go-pixiu
├── go.mod
├── go.sum
├── integrate_test.sh
├── logs
├── pkg
│   ├── client
│   ├── common
│   ├── config
│   ├── context
│   ├── filter
│   ├── initialize
│   ├── logger
│   ├── model
│   ├── pixiu
│   ├── pool
│   ├── registry
│   ├── router
│   └── service
├── samples
│   ├── admin
│   ├── dubbogo
│   ├── http
│   └── plugins
├── start.sh
└── start_integrate_test.sh

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Go



285

有注册中心的代码实现，待确认当前情况 @张天 @张训


pkg/registry/load.go


服务发现自动映射路由：网关注册，获取服务信息，自动映射路由


服务发现配置化手动映射路由


服务自动映射开关：关闭从注册中心获取到的服务路由（屏蔽单个、多个、或全部应用）


服务网关路由通过前缀 ﻿/api﻿ 区分API路由还是内容路由


静态URL手动映射路由


动态重新加载路由配置


服务超时


远程调用协议支持：rest


当前有注册中心的代码实现


项目功能点


🔧 技术方案


Pixiu 整体架构


// Loader this interface defined for load services from different kinds reg
istry, such as nacos,consul,zookeeper.
type Loader interface {
	 // LoadAllServices load all services registered in registry
	 LoadAllServices() ([]*common.URL, error)
	 // GetCluster get the registry name
	 GetCluster() (string, error)
}

1

2
3
4
5
6
7

Go



286

请求流程


https://www.processon.com/view/link/60db20b61e08532a43c572f4

https://www.processon.com/view/link/60db20b61e08532a43c572f4


287

处理请求流程（现状）


https://www.processon.com/view/link/60e17cb00e3e745b08a608bd

https://www.processon.com/view/link/60e17cb00e3e745b08a608bd


288

RD视角方案TODO


todo


自动映射路由信息


https://www.processon.com/view/link/60e2f889f346fb04d2db5fd8

https://www.processon.com/view/link/60f6d766e401fd09d480bbc9

https://www.processon.com/view/link/60e2f889f346fb04d2db5fd8
https://www.processon.com/view/link/60f6d766e401fd09d480bbc9


289

本项目优先基于 Zookeeper 注册中心，打通与 SpringCloud 服务的依赖。


实现与 SpringCloud 服务发现自动映射路由能力，分为几个阶段：


1、注册。Pixiu 作为Client，注册到 与SpringCloud应用统一的注册中心 


2、发现。Pixiu 作为调用方，订阅SpringCloud应用信息、地址


3、调用&管理。Pixiu 作为网关，自动映射 SpringCloud 应用路由信息，实现 rest 协议调用，同

时支持网关的其他特性能力（Loadbalance，Ratelimit ...）


todo 技术方案细化

注册能力基本能力：


Register：服务注册，提供自身的元数据，比如IP地址、端口，运行状况指示符URL，主页


Renew：服务续约，每隔30秒发送一次心跳来续约，通过续约来告知注册中心，该服务仍然存在，

没有出现问题。


Fetch Registries：获取注册列表信息


Cancel：服务下线，客户端实例信息将从服务器的实例注册表中删除


Eviction：服务剔除，心跳超时（未送达），注册中心将该服务实例从服务注册列表删除，即服务

剔除


SpringCloud 服务注册接口类：


项目核心功能


服务注册


●

●

●

●

●



290

public interface ServiceRegistry<R extends Registration> {


	 /**
	  * Registers the registration. A registration typically has informatio
n about an
	  * instance, such as its hostname and port.
	  * @param registration registration meta data
	  */
	 void register(R registration);


	 /**
	  * Deregisters the registration.
	  * @param registration registration meta data
	  */
	 void deregister(R registration);


	 /**
	  * Closes the ServiceRegistry. This is a lifecycle method.
	  */
	 void close();


	 /**
	  * Sets the status of the registration. The status values are determin
ed by the
	  * individual implementations.
	  * @param registration The registration to update.
	  * @param status The status to set.
	  * @see org.springframework.cloud.client.serviceregistry.endpoint.Serv
iceRegistryEndpoint
	  */
	 void setStatus(R registration, String status);


	 /**
	  * Gets the status of a particular registration.
	  * @param registration The registration to query.
	  * @param <T> The type of the status.
	  * @return The status of the registration.
	  * @see org.springframework.cloud.client.serviceregistry.endpoint.Serv
iceRegistryEndpoint
	  */
	 <T> T getStatus(R registration);


}

1
2
3
4

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26

27
28
29
30
31
32
33
34
35

36
37
38
39

Java



291

todo 技术方案细化

实现 SpringCloud 基于注册中心 Zookeeper，Consul，Nacos，Eureka 的服务发现能力


多注册中心注册订阅，优先实现 Zookeeper 的服务注册发现。


调用协议扩展，rest 


SpringCloud 服务发现接口类：


服务发现


●

●



292

todo 


自动映射路由


public interface DiscoveryClient extends Ordered {


	 /**
	  * Default order of the discovery client.
	  */
	 int DEFAULT_ORDER = 0;


	 /**
	  * A human-readable description of the implementation, used in HealthI
ndicator.
	  * @return The description.
	  */
	 String description();


	 /**
	  * Gets all ServiceInstances associated with a particular serviceId.
	  * @param serviceId The serviceId to query.
	  * @return A List of ServiceInstance.
	  */
	 List<ServiceInstance> getInstances(String serviceId);


	 /**
	  * @return All known service IDs.
	  */
	 List<String> getServices();


	 /**
	  * Default implementation for getting order of discovery clients.
	  * @return order
	  */
	 @Override
	 default int getOrder() {
	 	 return DEFAULT_ORDER;
	 }


}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Java



293

Eureka 服务注册信息


注册中心功能对比

Nacos
 Eureka
 Consul
 Zookeeper


一致性协议
 CP+AP
 AP
 CP
 CP


健康检查
 TCP/HTTP/MY

SQL/Client 

Beat


Client Beat
 TCP/HTTP/gR

PC/Cmd


Keep Alive


负载均衡策略
 权

重/metadata/S

elector


Ribbon
 Fabio
 —


雪崩保护
 有
 有
 无
 无


自动注销实例
 支持
 支持
 不支持
 支持


访问协议
 HTTP/DNS
 HTTP
 HTTP/DNS
 TCP


监听支持
 支持
 支持
 支持
 支持


多数据中心
 支持
 支持
 支持
 不支持


跨注册中心同步
 支持
 不支持
 支持
 不支持


SpringCloud集

成


支持
 支持
 支持
 支持


Dubbo集成
 支持
 不支持
 不支持
 支持


K8S集成
 支持
 不支持
 支持
 不支持




294

[
  {
    "uri": "http://172.18.153.43:9000",
    "secure": false,
    "metadata": {
      
    },
    "instanceInfo": {
      "instanceId": "172.18.153.43:spring-cloud-producer:9000",
      "app": "SPRING-CLOUD-PRODUCER",
      "appGroupName": null,
      "ipAddr": "172.18.153.43",
      "sid": "na",
      "homePageUrl": "http://172.18.153.43:9000/",
      "statusPageUrl": "http://172.18.153.43:9000/info",
      "healthCheckUrl": "http://172.18.153.43:9000/health",
      "secureHealthCheckUrl": null,
      "vipAddress": "spring-cloud-producer",
      "secureVipAddress": "spring-cloud-producer",
      "countryId": 1,
      "dataCenterInfo": {
        "@class": "com.netflix.appinfo.InstanceInfo$DefaultDataCenterInfo"
,
        "name": "MyOwn"
      },
      "hostName": "172.18.153.43",
      "status": "UP",
      "leaseInfo": {
        "renewalIntervalInSecs": 30,
        "durationInSecs": 90,
        "registrationTimestamp": 1625476088459,
        "lastRenewalTimestamp": 1625477588519,
        "evictionTimestamp": 0,
        "serviceUpTimestamp": 1625476087664
      },
      "isCoordinatingDiscoveryServer": false,
      "metadata": {
        
      },
      "lastUpdatedTimestamp": 1625476088459,
      "lastDirtyTimestamp": 1625476087596,
      "actionType": "ADDED",
      "asgName": null,
      "overriddenStatus": "UNKNOWN"
    },

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

JSON



295

TODO: 


SpringCloud 集成插件化 shenyu  ==》岳枫博


启动阶段，监听注册中心目录变化 ==》岳枫博


Pixiu框架设计插件化 ==》张天主R调研，周会讨论


从设计上，流程阶段边界清晰，可以在不同的流程处挂载钩子，兼容多个注册中心：


📈项目排期


●

●

●

    "host": "172.18.153.43",
    "port": 9000,
    "serviceId": "SPRING-CLOUD-PRODUCER"
  }
]

45
46
47
48
49



296

功能点
 Owner
 开始时间


项目框架设

计


貔貅服务启

动阶段


服务注册-将自己注册到注册

中心，兼容多个


服务心跳实现（周期性任

务，考虑加锁，或者任务队

列实现）


缓存所有的注册中心的服务

到本地注册表，周期性任务

与心跳一起


服务发现接口提供：获取所

有的服务，获取指定的服务

By ServiceID


貔貅请求代

理阶段


服务发现- discovery by 

serviceId ，获取所有的服务

信息


Canary 灰度流程逻辑，根据

权重获取一个serverInfo ，

再从服务信息中过滤得到符

合的 service instance 集合


负载均衡实现，轮询负载均

衡获取一个 instance 




297

Dubbo Spring Cloud https://github.com/alibaba/spring-cloud-alibaba/wiki/Dubbo-Spring-

Cloud


go-eureka-client https://github.com/ArthurHlt/go-eureka-client


🛸 参考资料

●

●

protocol: invoke remote , 

HTTP 远程调用


https://github.com/alibaba/spring-cloud-alibaba/wiki/Dubbo-Spring-Cloud
https://github.com/ArthurHlt/go-eureka-client


298

grpc proxy

pixiu 支持代理 grpc 协议，为后续功能组件提供基础协议功能


一、listener 目前仅支持 http协议，需要将其进行扩充，支持多种协议。


监听 socket 接口，其他协议在 tcp 基础上进行包解析


提供 protocl 字段，根据字段值使用不同API进行接口监听


二、filter 等抽象如何复用


目前 filter 使用 httpcontext，是否要换回顶层 context 抽象。


三、stream模式


unary ， post filter 是否要对 stream 模式的 server 返回进行处理


可以参考开源项目 https://github.com/mwitkow/grpc-proxy


https://stackoverflow.com/questions/52002623/golang-tcp-server-how-to-write-http2-data


https://undertow.io/blog/2015/04/27/An-in-depth-overview-of-HTTP2.html


目标


问题


●

●

案例


https://github.com/mwitkow/grpc-proxy
https://stackoverflow.com/questions/52002623/golang-tcp-server-how-to-write-http2-data
https://undertow.io/blog/2015/04/27/An-in-depth-overview-of-HTTP2.html


299

pixiu 支持 http to grpc 特性

1. 本阶段实现外部http/json请求通过 pixiu 调用内部的 grpc server unary服务


2. 【后续】外部 grpc client 和 内部 grpc server 的proxy，支持 unary，stream等


参考：


https://github.com/apache/apisix/blob/baf843403461883c1334e63d15a6bb3622c31940/do

cs/zh/latest/plugins/grpc-transcode.md apisix 的http to grpc 功能，需要上传 proto 配置


https://github.com/fullstorydev/grpcurl 类似curl的grpccurl命令行工具，主要参考，从 grpc 

reflect server 中获取 proto 配置 


https://github.com/Windfarer/dynamic-protobuf-example/blob/master/main.go 代码构造 

proto 配置


https://github.com/jhump/protoreflect  主要使用库


https://github.com/mwitkow/grpc-proxy grpc proxy


根据调研，需要 proto 定义才能发送 grpc 请求的，只不过获取 proto 定义的方式有三种：


在网关映射配置时，直接上传 proto 定义，比如 apisix


grpc server 开启了反射功能，可以通过请求从 server 处获取 proto 定义，比如 grpccurl


可以通过代码构造 proto 定义，所以可以通过 api_config 中约定特殊配置进行生成。


实现的 demo


https://github.com/ztelur/dubbo-go-pixiu/blob/feature-support-

grpc/pkg/client/grpc/grpc_test.go


和 dubbo-go grpc 泛化调用关系


dubbo-go 的 grpc 泛化调用目前是指 POJO 不同协议序列化场景，和 pixiu 支持 http 转换为 grpc 并

不合拍。


TODO


3.1 api_config 配置


一、需求


二、原理


●

●

●

●

●

●

●

●

三、pixiu 代码实现


https://github.com/apache/apisix/blob/baf843403461883c1334e63d15a6bb3622c31940/docs/zh/latest/plugins/grpc-transcode.md
https://github.com/fullstorydev/grpcurl
https://github.com/Windfarer/dynamic-protobuf-example/blob/master/main.go
https://github.com/jhump/protoreflect
https://github.com/mwitkow/grpc-proxy
https://github.com/ztelur/dubbo-go-pixiu/blob/feature-support-grpc/pkg/client/grpc/grpc_test.go


300

3.2 client/dubbo


  - path: '/api/v1/test-dubbo/user'
    type: restful
    description: user
    timeout: 100ms
    plugins:
      pre:
        pluginNames:
          - rate limit
          - access
      post:
        groupNames:
          - group2
    methods:
      - httpVerb: GET
        onAir: true
        timeout: 1000ms
        requestType: grpc
        destination: /pb.UserService/checkPassword
        inputType: LoginRequest
        outputType: LoginResponse
        queryStrings:
        - name: name
            required: true
        - password: password
            required: true
        

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

YAML



301

类似网关系统

上下线设置服务是否暴露出去


访问级别, 设置鉴权方式


流控保护, 接口限流


自动发现服务


服务组流控鉴权配置


●

●

●

单接口流控设置




302




url 映射分自动映射和手动映射


自动映射会根据服务 版本、组、接口信息， 自动拼装一个URL


添加单接口虚拟URL 映射


●

●

appKey 管理


appKey 服务授权




303



304

pixiu 功能简介和问题

http to dubbo 目前支持 http 协议和 dubbo 协议，支持接口级别服务注册模式，使用 api_config 

配置映射关系


http to grpc unary 模式，使用 google cloud http to grpc transcode 默认规约进行参数转换


http to http http 代理


cors 跨域


csrf 跨站


metric 数据聚合 opentelemetry


ratelimit 限流


proxy rewrite http 请求修改(删除 path 前缀)

tracing tracing 分布式链路追踪 jaeger


seata 分布式事务


通过 dubbo 服务注册中心自动生成路由 


zk 


通过 springcloud 服务注册中心自动生成路由和集群信息


nacos


通过 webhook 进行消息的接收和发送


mysql 协议解析


一、功能

1.1 协议代理或转换

●

●

●

1.2 filter 功能

●

●

●

●

●

●

●

1.3 生态集成

●

○

●

○

1.4 eventmesh

●

1.5 dbmesh

●

二、问题




305

api_config 用于 http to dubbo 功能，pixiu 的 filter 配置如下所示。


其中 dpg.filter.http.apiconfig 是用于 http to dubbo 的路由和元信息映射规则


dgp.filter.http.dubboproxy 则是用于最终发送 dubbo 泛化调用请求(在dubbo协议时)，其下为 

dubbo 注册中心的相关配置


apiconfig filter 需要指定本地路径下的 api_config 配置文件


2.1 api_config 和 route 问题

现状


●

●

- name: dgp.filter.http.apiconfig
    config:
    path: $PROJECT_DIR/pixiu/api_config.yaml
- name: dgp.filter.http.dubboproxy
    config:
    dubboProxyConfig:
        registries:
        "zookeeper":
            protocol: "zookeeper"
            timeout: "3s"
            address: "127.0.0.1:2181"
            username: ""
            password: ""
        timeout_config:
        connect_timeout: 5s
        request_timeout: 5s
- name: dgp.filter.http.response
    config:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

YAML



306

如上配置，表示了路径为 /api/v1/test-dubbo/user 且 method 为 POST 的http请求要转换成调用 

com.dubbogo.pixiu.UserServic 的 CreateUser 方法的 dubbo 调用，还包括 mappingParams 等参数

转换规则。


对 http to dubbo 的 samples 可以参考 /samples/dubbogo/simple下的例子，有更多高级别用法。


而更加通用的 route 则用于 http to http 和 http to grpc。由 routes 给出路由规则，然后 grpcproxy 

或者 httpproxy 进行实际转发。


resources:
  - path: '/api/v1/test-dubbo/user'
    type: restful
    description: user
    methods:
      - httpVerb: POST
        enable: true
        timeout: 1000ms
        inboundRequest:
          requestType: http
        integrationRequest:
          requestType: dubbo
          mappingParams:
            - name: requestBody._all
              mapTo: 0
              mapType: "object"
          applicationName: "UserProvider"
          interface: "com.dubbogo.pixiu.UserService"
          method: "CreateUser"
          group: "test"
          version: 1.0.0
          clusterName: "test_dubbo"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

YAML



307

如上配置，routes 表示将 path 前缀为 /api/v1 的 http 请求转发到 test-grpc 集群。而 test-grpc 集

群下有一地址为 127.0.0.1的 endpoint。


更加具体的 samples 可以参考 samples/http 下的例子


api_config 和 route 导致有两套路由规则，诸如前缀树路由性能优化等工作要分别为二者进行适

配；


api_config 其实缺少了对 cluster 信息的维护，交由 dubbo 自身机制去路由到具体 upstream 和

负载；


route 缺少参数转换功能；


引入 http to dubbo 默认规约 https://www.yuque.com/docs/share/4f82b71e-fa2b-4e65-

8007-ba3afe2a1740?# 后，是否可以将 api_config 去掉？


增加 filter，进行对应的 request 参数转换功能


问题


●

●

●

解决方案？


●

●

config:
  route_config:
    routes:
    - match:
        prefix: "/api/v1"
        route:
        cluster: "test-grpc"
        cluster_not_found_response_code: 505
  http_filters:
    - name: dgp.filter.http.grpcproxy
    config:
        path: $PROJECT_DIR/proto
    - name: dgp.filter.http.response
    config:
....


  clusters:
    - name: "test-grpc"
      lb_policy: "RoundRobin"
      endpoints:
        - socket_address:
            address: 127.0.0.1
            port: 50001
            protocol_type: "GRPC"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

YAML

https://www.yuque.com/docs/share/4f82b71e-fa2b-4e65-8007-ba3afe2a1740?#


308

是否可以不使用 dubbo 的泛化调用


原因


refereconfig 初始化时用时去查询服务注册中心获取 upstream 的数据，是每次调用都再

次查询，upstream 无法精确控制，效率上可能会下降


治理功能全部依赖 dubbo 机制，pixiu 无法深入


反驳


自己维护一套和dubbo兼容的请求生成机制的复杂性


目前模仿 envoy，pixiu 包括了 network filter 和 http filter，具体接口定义可参考 

pkg/common/extension/filter/filter.go


network filter 是指入度网络协议相关的 filter，比如专门接受 http 请求的

httpconnectionmanager，它会挂在 listener 的 filter_chains 下；


http filter 单指和 http 请求相关的 filter，可以看做是 httpconnectionmanager 下的子 filter 种

类。


二者的关系和配置案例如下所示


对于 http_filters 的定义如下


●

○

■

■

○

■

2.2 filter 的定义

现状


●

●

  listeners:
    - name: "net/http"
      address:
        socket_address:
            ....
      filter_chains:
        - filter_chain_match:
          filters:
            - name: dgp.filter.httpconnectionmanager
                http_filters:
                  - name: dgp.filter.http.grpcproxy
                    config:
                      path: $PROJECT_DIR/proto
                  - name: dgp.filter.http.response
                    config:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

YAML



309

比如说对于分布式链路追踪的 tracing filter 来讲。


在初始化阶段：


// HttpFilter describe http filter
	 HttpFilter interface {
        
        // 处理请求相关


	 	 // PrepareFilterChain add filter into chain
        // 请求将要过来时调用，用来判断filter是否处理此次调用，或者是否可以进行其他操
作

        // 可以调用接口将自身加入到filter-chain，表示需要处理此次请求
	 	 PrepareFilterChain(ctx *http.HttpContext) error 


	 	 // Handle filter hook function
        // 真正处理请求 
	 	 Handle(ctx *http.HttpContext) 


        // 初始化阶段


        // filter 配置数据填充后，pixiu 会调用该函数，让filter 进行初始化
	 	 Apply() error


        // pixiu 获取 filter 的config，会自动进行配置数据填充
	 	 Config() interface{}
	 }

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Go



310

在请求处理阶段：


// 返回 config 变量，让 pixiu 自动注入配置
func (m *TraceFilter) Config() interface{} {
	 return m.cfg
}
// 进行自身初始化，此处是根据tc.URL生成 Jaeger 相关结构体
func (m *TraceFilter) Apply() error {
	 // init
	 tc := m.cfg
	 switch tc.Type {
	 case TracingType_Jaeger:
	 	 tp, err := newTracerProvider(tc.URL)
	 	 if err != nil {
	 	 	 log.Fatal(err)
	 	 }
	 	 otel.SetTracerProvider(tp)
	 default:
	 	 panic("unsupported tracing")
	 }
	 return nil
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Go



311

需要 filter 在 handle 中调用 hc.Next 来让下一个 filter 处理；


以 hc.Next 的调用位置来区分 pre 和 post 阶段，无法处理 grpc stream 或者 event 等请求和响

应不一一对应的场景；


参数为 HttpContext，导致 http-filter 几乎无法复用到其他 network-filter下。


将 pre 和 post 阶段的处理函数分开；


由 pixiu 控制 chain 处理链的推进；


优化参数定义？


支持多协议的 listener 如何实现：


根据type 分别建立对应的 http、http2或tcp server 进行分配监听；


监听 tcp ，接收包交由 network filter 进行协议解析处理。


问题：


●

●

●

解决方案？


●

●

●

2.3 listener 定义


●

●

func (mf *TraceFilter) PrepareFilterChain(ctx *contexthttp.HttpContext) er
ror {
	 ctx.AppendFilterFunc(mf.Handle)
	 return nil
}


func (f TraceFilter) Handle(hc *contexthttp.HttpContext) {
    // http 处理的 pre 阶段，生成 span
	 spanName := "HTTP " + hc.Request.Method
	 tr := otel.Tracer(traceName)
	 ctx := extractTraceCtxRequest(hc.Request)
	 ctxWithTid, span := tr.Start(ctx, spanName, trace.WithSpanKind(trace.S
panKindServer))


	 hc.Request = hc.Request.WithContext(ctxWithTid)
    // 需要filter 调用next，让下一个filter处理
	 hc.Next()
    // 处理的 post 阶段，完成 span
	 span.End()
}

1

2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18

Go



312

目前使用第一种方案推进。


Auth filter 功能


cluster 和 route 的动态更新能力


grpc 协议代理能力支持


更多 filter 能力


https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filter

s


通过webhook 进行消息的接收和发送


sharding 能力 ？


dubbo


默认http to dubbo 规约支持 https://www.yuque.com/docs/share/4f82b71e-fa2b-4e65-

8007-ba3afe2a1740?#


3.0 支持 


springcloud 和 dubbo 互通


dubbo 应用级模式支持


网关mock服务注册能力 https://developer.aliyun.com/article/792458?

spm=a2c6h.13148508.0.0.66504f0e5Zkplj


dubbo to http 请求转换


参考：


https://dubbogoproxy.yuque.com/docs/share/dbb648c6-af1a-4fd5-86fa-943e3ce68f05?#

 《待解决问题》


https://dubbogoproxy.yuque.com/dubbogoproxy/blxg8g/xwrmpi

三、后续


3.1 网关功能

●

●

●

●

○

3.2 eventmesh

●

3.3 dbmesh

●

3.4 生态

●

○

○

●

○

○

○

●

●

●

https://www.envoyproxy.io/docs/envoy/latest/configuration/http/http_filters/http_filters
https://www.yuque.com/docs/share/4f82b71e-fa2b-4e65-8007-ba3afe2a1740?#
https://developer.aliyun.com/article/792458?spm=a2c6h.13148508.0.0.66504f0e5Zkplj
https://dubbogoproxy.yuque.com/docs/share/dbb648c6-af1a-4fd5-86fa-943e3ce68f05?#
https://dubbogoproxy.yuque.com/dubbogoproxy/blxg8g/xwrmpi


313



314

roadmap

cli 工具替换为 cobra


登陆和用户管理


默认 root 用户登陆


用户管理界面 CRUD


用户权限


0.4.0需求确定


一、开源之夏天


●

●

○

○

○

●



315

配置粒度细化

细粒度配置，细粒度存储，细粒度更新


root path


规则：{namespace}/{group}/config/{version} 


例如：dubbo/pixiu/config/{version}


note：version暂时不处理


整体都存储在根目录key下


按照 基础信息，resources 和 plugin三大块进行存储(Definitions看着目前没有用了)


{root}/base => Name,Description etc.


{root}/resources/{pathID} => path,type,description etc.


{root}/resources/{pathID}/plugins


{root}/resources/{pathID}/methods/{method}


{root}/plugin => PluginFilePath and PluginsGroup


一、etcd 存储设计


1.1全量存储


1.2 细粒度存储




316

name: pixiu
description: pixiu sample
resources:
  - path: '/api/v1/test-dubbo/user'
    type: restful
    description: user
    plugins:
      pre:
        pluginNames:
          - rate limit
          - access
      post:
        groupNames:
          - group2
    methods:
      - httpVerb: GET
        onAir: true
        timeout: 1000ms
        inboundRequest:
          requestType: http
          queryStrings:
            - name: name
              required: true
        integrationRequest:
          requestType: http
          host: 127.0.0.1:8889
          path: /UserProvider/GetUserByName
          mappingParams:
            - name: queryStrings.name
              mapTo: queryStrings.name
          group: "test"
          version: 1.0.0
      - httpVerb: POST
        onAir: true
        timeout: 1000ms
        inboundRequest:
          requestType: http
          queryStrings:
            - name: name
              required: true
        integrationRequest:
          requestType: http
          host: 127.0.0.1:8889
          path: /UserProvider/CreateUser
          group: "test"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

YAML



317

默认{namespace}/{group}/config/current 路径是主路径，


pixiu默认从该版本获取配置。


admin设置相关配置后，需要进行发布，将最新版本数据覆盖到该路径


可以直接全部覆盖


也可以覆盖change部分


使用 etcd 将root目录下的所有kv全部获取，然后初始化。并且watch root 目录下的kv变更，然后根据

对应的pluginID或者resourceID进行配置变更。


二、版本和发布


●

●

○

○

三、pixiu 初始化和监听配置


          version: 1.0.0
pluginFilePath: ""
pluginsGroup:
  - groupName: "group1"
    plugins:
      - name: "rate limit"
        version: "0.0.1"
        priority: 1000
        externalLookupName: "ExternalPluginRateLimit"
      - name: "access"
        version: "0.0.1"
        priority: 1000
        externalLookupName: "ExternalPluginAccess"
  - groupName: "group2"
    plugins:
      - name: "trace"
        version: "0.0.1"
        priority: 1000
        externalLookupName: "ExternalPluginTrace"
        
        
 dubbo/pixiu/config/current/  'name: pixiu\ndescription: pixiu sample'
 dubbo/pixiu/config/current/resources/user 'path: '/api/v1/test-dubbo/use
r'\ntype: restful\ndescription: user'
 dubbo/pixiu/config/current/resources/user/GET 

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69



318

涉及discovery_service 的运行时更新，可以使用copy on write 方式进行数据变更，或者直接加锁进行

变更。


根据1，2小节，前端要对接的操作如下。


查看和编辑基础信息，名称描述等


查看、新增，编辑和删除插件配置列表和文件位置


查看、新增、编辑和删除 resource列表


查看、新增、编辑和删除某一resource下的method列表


发布配置变更


单一watch，然后区分add，modify和delete处理。


问题就是如何通过key来判断具体路径


四、运行时更新


五、前端对接


●

●

●

○

●

六、pixiu watch


c.rawClient.Get(c.ctx, k, clientv3.WithPrefix())
c.rawClient.Watch(c.ctx, prefix, clientv3.WithPrefix())

1
2

Go



319

Admin 测试文档

一、源代码运行


admin_config.yaml的默认配置如下


一、部署文档

1.1 下载代码


1.2 部署etcd


1.3 运行admin


cd /root/
git clone https://github.com/dubbogo/pixiu-admin.git

1
2

Bash

docker run -d -p2379:2379 --env ALLOW_NONE_AUTHENTICATION=yes --name etcd b
itnami/etcd


# m1/m1 pro 运行
# docker run -d -p2379:2379 --platform linux/amd64 --env ALLOW_NONE_AUTHENT
ICATION=yes --name etcd bitnami/etcd:3.5.1

1

2
3
4

Bash

cd /root/pixiu-admin-master/cmd/admin/
# 直接运行
go run admin.go -c /root/pixiu-admin-master/configs/admin_config.yaml
# 后台运行
nohup go run admin.go -c /root/pixiu-admin-master/configs/admin_config.yam
l &

1
2
3
4
5

Bash



320

具体部署方案详见 web/README.md


admin-web的配置文件见 web 目录下的 vue.config.js，有关后端 server 地址配置片段如下所示：


1.4 测试运行 admin-web


server:
  address: 127.0.0.1:8081 // 服务地址
etcd:
  address: 127.0.0.1:2379 // etcd 地址
  path: /pixiu/config/api // etcd 键值的默认路径，需要和 pixiu 中的配置对应

1
2
3
4
5

Bash

cd /root/pixiu-admin-master/web/
yarn install # 安装依赖
yarn run serve # 测试运行

1
2
3

Bash

devServer:{
        host: '0.0.0.0',
        port: 8080, // web 应用的地址
        hot: true,
        https: false,
        open: false,
        disableHostCheck: true,
        proxy: {
            "/config": {
                target: "http://127.0.0.1:8081", // 后端服务地址
                ws: true, // 是否启用websockets
                changOrigin: true, //开启代理
                //将api替换为空
                // pathRewrite:{
                //     '^/api':''
                // },
            },
        }


    },

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Vue



321

运行成功后，可以浏览器访问 http://127.0.0.1:8081/login.html#/Overview


1 点击映射配置，进入映射配置列表界面，会展示当前配置的映射列表，点击右上角新增按钮可以创建

新的映射配置。


2 在代码编辑器中键入对应的映射配置，点击确认进行创建。


配置yaml具体如下，需要注意整体锁进格式


二、相关操作

2.1 管理映射(Resource)


http://127.0.0.1:8081/login.html#/Overview


322

path: '/api/v1/test-dubbo/user'
type: restful
description: user
filters:
  - filter0
methods:
  - httpVerb: GET
    onAir: true
    timeout: 1000ms
    inboundRequest:
      requestType: http
      queryStrings:
        - name: name
          required: true
    integrationRequest:
      requestType: dubbo
      mappingParams:
        - name: queryStrings.name
          mapTo: 0
          mapType: "java.lang.String"
      applicationName: "UserProvider"
      interface: "com.ic.user.UserProvider"
      method: "GetUserByName"
      group: "test"
      version: 1.0.0
      clusterName: "test_dubbo"
  - httpVerb: POST
    onAir: true
    timeout: 10s
    inboundRequest:
      requestType: http
    integrationRequest:
      requestType: dubbo
      mappingParams:
        - name: requestBody._all
          mapTo: 0
          mapType: "object"
      applicationName: "UserProvider"
      interface: "com.ic.user.UserProvider"
      method: "CreateUser"
      group: "test"
      version: 1.0.0
      clusterName: "test_dubbo"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

YAML



323

确认进行创建后，列表刷新会展示当前的映射列表，可以对其进行查看和删除操作。


点击删除会删除该映射配置，点击查看会跳转到映射配置详情界面。


可以在上方编辑区直接修改 Resource 的基础信息，然后点击右侧修改按钮进行修改


此外，可以在下方区域对 Resource 对应的方法映射进行增删改，点击右侧新增按钮，会弹出方法映射

编辑框


具体的配置示例如下所示：




324

点击确认后，会创建新的方法映射(method)，列表也会进行刷新。


方法映射处有查看和删除两个操作，点击删除会直接删除对应的方法映射，点击查看则弹出编辑框，全

量展示方法映射相关配置并可以进行修改。


比如，将第二个方法映射的 httpVerb 从 POST 修改为 DELETE。


httpVerb: PUT
onAir: true
timeout: 10s
inboundRequest:
  requestType: http
integrationRequest:
  requestType: dubbo
  mappingParams:
    - name: requestBody._all
      mapTo: 0
      mapType: "object"
  applicationName: "UserProvider"
  interface: "com.ic.user.UserProvider"
  method: "CreateUser"
  group: "test"
  version: 1.0.0
  clusterName: "test_dubbo"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

YAML



325

注意：id不能进行修改，即使修改保存后也会改变为旧值。点击确定后，会更新该方法映射。


点击左侧插件配置菜单项，可以查看插件相关配置。


2.2 管理插件组



326

点击右上方新增，可以创建新的插件组。


具体插件组配置可以查阅插件配置相关文档，演示示例具体配置如下所示：


点击保存后，会创建新的插件组，并且刷新列表。


groupName: "group2"
plugins:
    - name: "rate limit"
      version: "0.1.0"
      priority: 1000
      externalLookupName: "ExternalPluginRateLimit"
    - name: "log"
      version: "0.2.0"
      priority: 2000
      externalLookupName: "ExternalPluginLog"

1
2
3
4
5
6
7
8
9
10

YAML



327

和映射配置类似，点击查看会弹出编辑框，可以对插件组配置进行修改；点击删除会删除整个插件组配

置。


点击左侧限流配置菜单项，可以进行限流组件相关配置。有关限流组件原理和配置，详见限流相关文

档。


可以直接在编辑框中进行编辑，然后点击保存。点击删除则会删除当前的限流配置。


2.3 管理限流配置




328

启动 Pixiu，需要配置程序参数，指定 Pixiu 配置文件地址。


具体的配置文件中需要定义对应的远程配置 etcd 地址和主路径：


三、Pixiu 远程配置

3.1 启动和配置


resources:
- name: test-http
  items:
  - pattern: /api/v1/test-dubbo/user
  - matchStrategy: 1
    pattern: /api/*/test-dubbo/user
rules:
- flowRule:
    id: ""
    resource: ""
    tokencalculatestrategy: 0
    controlbehavior: 0
    threshold: 100
    relationstrategy: 0
    refresource: ""
    maxqueueingtimems: 0
    warmupperiodsec: 0
    warmupcoldfactor: 0
    statintervalinms: 1000
  enable: true



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

YAML

-a /XXX/dubbo-go-proxy/samples/admin/proxy/api_config.yaml1

YAML



329

首先，我们在 admin 中新建如下 resource 配置。


3.2 测试


api_meta_config:
  address: "127.0.0.1:2379"
  api_config_path: "/pixiu/config/api"

1
2
3

YAML



330

path: '/api/v1/test-dubbo/user'
type: restful
description: user
filters:
  - filter0
methods:
  - httpVerb: GET
    onAir: true
    timeout: 1000ms
    inboundRequest:
      requestType: http
      queryStrings:
        - name: name
          required: true
    integrationRequest:
      requestType: dubbo
      mappingParams:
        - name: queryStrings.name
          mapTo: 0
          mapType: "java.lang.String"
      applicationName: "UserProvider"
      interface: "com.ic.user.UserProvider"
      method: "GetUserByName"
      group: "test"
      version: 1.0.0
      clusterName: "test_dubbo"
  - httpVerb: POST
    onAir: true
    timeout: 10s
    inboundRequest:
      requestType: http
    integrationRequest:
      requestType: dubbo
      mappingParams:
        - name: requestBody._all
          mapTo: 0
          mapType: "object"
      applicationName: "UserProvider"
      interface: "com.ic.user.UserProvider"
      method: "CreateUser"
      group: "test"
      version: 1.0.0
      clusterName: "test_dubbo"

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

YAML



331

根据上文中的配置，可以执行如下命令查看 Pixiu 是否可以正常转发。


此时，pixiu 可以找到对应的映射配置，会尝试转发该请求，如果能找到对应服务，则返回服务返回

值；如果未找到对应服务的返回值如下所示


而当我们用 PUT 指令时，网关找不到对应转发配置则会返回如下值


为了让上述转发上述命令，我们可以在 admin 中将 httpverb 从 post 改为 put，再一次执行上述命

令，发现情况发生变化。


接着我们再将 put 方法映射删除，再次执行 curl -XPUT，则返回值又变回了 404。


然后，我们新建一个 put 方法映射，再次执行 curl -XPUT，则可以进行转发。


curl "http://127.0.0.1:8888/api/v1/test-dubbo/user?name=tc"
curl -XPOST "http://127.0.0.1:8888/api/v1/test-dubbo/user?name=tc"

1
2

YAML

curl "http://127.0.0.1:8888/api/v1/test-dubbo/user?name=tc"


{"message":"Failed to invoke the method $invoke. No provider available for 
the service dubbo://:@:/?interface=com.ic.user.UserProvider\u0026group=test
\u0026version=1.0.0 from registry zookeeper://127.0.0.1:2181?group=\u0026re
gistry=zookeeper\u0026registry.label=true\u0026registry.preferred=false\u00
26registry.role=0\u0026registry.timeout=3s\u0026registry.ttl=\u0026registr
y.weight=0\u0026registry.zone=\u0026simplified=false on the consumer 192.16
8.1.84 using the dubbo version 1.5.6 .Please check if the providers have be
en started and registered."}

1
2
3

YAML

curl -XPUT "http://127.0.0.1:8888/api/v1/test-dubbo/user?name=tc"


404 page not found%

1
2
3

YAML



332

后端API接口文档
配置postman 导入文件一起使用 一起使用


返回值：


{


"code":


"data": 一般为yaml格式


}


code：


10001 成功


10002 未找对对应的数据


10003 并发操作，刷新页面重试


GET /config/api/base HTTP/1.1


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: deb6b451-f211-41fd-8cdb-0801b13bab69


可能返回值：


{


    "code": "10001",


    "data": "name: pixiu\ndescription: pixiu111 sample\npluginFilePath: \"\"\n"


}


POST /config/api/base HTTP/1.1


Host: 127.0.0.1:8080


Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW


cache-control: no-cache


Postman-Token: a5867037-5bc0-4b9f-aef2-57980ddc9dbf


一、基础信息

1、获取基础信息


2、创建或者修改基础信息




333

Content-Disposition: form-data; name="content"


name: pixiu


description: pixiu111 sample


------WebKitFormBoundary7MA4YWxkTrZu0gW--


GET /config/api/resource/list HTTP/1.1


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: 19ffe51c-8193-4722-b94b-88d2502e3046


GET /config/api/resource/detail?resourceId=1 HTTP/1.1


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: 6b97b70d-70fc-4633-9ba7-dee3e08d7468

需要注意：methods中的resourcePath要和resource的path相同


POST /config/api/resource/ HTTP/1.1


Host: 127.0.0.1:8080


Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW


cache-control: no-cache


Postman-Token: 4e7b85b1-a969-46a4-b3d2-3df5d2f2073e


Content-Disposition: form-data; name="content"


    path: '/api/v1/test-dubbo/friend2'


    type: restful


二、Resource

2.1 获取 Resource 列表


2.2 获取 Resource 详情


2.3 创建 Resource 




334

    description: user


    timeout: 100ms


    plugins:


      pre:


        pluginNames:


          - rate limit


          - access


      post:


        groupNames:


          - group2


    methods:


      - httpVerb: GET


        resourcePath: '/api/v1/test-dubbo/friend2'


        onAir: true


        timeout: 1000ms


        inboundRequest:


          requestType: http


          queryStrings:


            - name: name


              required: true


        integrationRequest:


          requestType: http


          host: 127.0.0.1:8889


          path: /UserProvider/GetUserByName


          mappingParams:


            - name: queryStrings.name


              mapTo: queryStrings.name


          group: "test"


          version: 1.0.0


------WebKitFormBoundary7MA4YWxkTrZu0gW--


PUT /config/api/resource? HTTP/1.1

Host: 127.0.0.1:8080


cache-control: no-cache


2.3 修改 Resource 




335

Postman-Token: 67d3fb19-bb66-4e92-be1b-419fdd3bcb28


Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW


Content-Disposition: form-data; name="content"


    id: 1


    path: '/api/v1/test-dubbo/friend'


    type: restful


    description: update


    timeout: 1000ms


    plugins:


      pre:


        pluginNames:


          - rate limit


          - access


      post:


        groupNames:


          - group2


    methods:


      - httpVerb: GET


        onAir: true


        timeout: 1000ms


        inboundRequest:


          requestType: http


          queryStrings:


            - name: name


              required: true


        integrationRequest:


          requestType: http


          host: 127.0.0.1:8889


          path: /UserProvider/GetUserByName


          mappingParams:


            - name: queryStrings.name


              mapTo: queryStrings.name


          group: "test"


          version: 1.0.0




336

------WebKitFormBoundary7MA4YWxkTrZu0gW--


DELETE /config/api/resource/?resourceId=2 HTTP/1.1


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: faed927d-2857-40a2-9cfb-1a3ce2f704e4


GET /config/api/resource/method/list?resourceId=1 HTTP/1.1


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: 90c3df1d-02b4-42af-8846-f4c74a36fdae


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: 6d0909cc-1585-46c5-975f-e4a0d0b2f490


POST /config/api/resource/method/?resourceId=1 HTTP/1.1


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: 0d5e2885-67e6-41cb-84e8-777a8d077384


Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW


Content-Disposition: form-data; name="content"


httpVerb: PUT


resourcePath: '/api/v1/test-dubbo/friend'


2.4 删除 Resource


三、Method 相关

3.1 查询某个 Resource 下的 Method 列表


3.2 查询 method 详情


GET /config/api/resource/method/detail?resourceId=1&amp; methodId=2 HTTP/1.1


3.3 创建 method 




337

onAir: true


timeout: 1000ms


inboundRequest:


    requestType: http


    queryStrings:


    - name: name


      required: true


integrationRequest:


    requestType: http


    host: 127.0.0.1:8889


    path: /UserProvider/GetUserByName


    mappingParams:


    - name: queryStrings.name


      mapTo: queryStrings.name


    group: "test"


    version: 1.0.0


------WebKitFormBoundary7MA4YWxkTrZu0gW--


PUT /config/api/resource/method/?resourceId=1 HTTP/1.1


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: 9a635d6d-b52a-4cf5-8f1a-a7d450cc3552


Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW


Content-Disposition: form-data; name="content"


id: 2


httpVerb: PUT


resourcePath: '/api/v1/test-dubbo/friend'


onAir: true


timeout: 300ms


inboundRequest:


    requestType: http


    queryStrings:


    - name: name


      required: true


3.4 修改 method




338

integrationRequest:


    requestType: http


    host: 127.0.0.1:8889


    path: /UserProvider/GetUserByName


    mappingParams:


    - name: queryStrings.name


      mapTo: queryStrings.name


    group: "test"


    version: 1.0.0


------WebKitFormBoundary7MA4YWxkTrZu0gW--


DELETE /config/api/resource/method/?resourceId=1&amp; methodId=2 HTTP/1.1


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: 83930da3-7ab5-47b4-a47e-ef0ceeb6e9af


GET /config/api/plugin_group/list HTTP/1.1


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: f48aa74f-38c9-4ee9-87a3-c4a35a2350f9


GET /config/api/plugin_group/list HTTP/1.1


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: 739ee1d2-7801-4005-90a3-cc2dfb03b5e7


POST /config/api/plugin_group/ HTTP/1.1


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: 1e41964b-989b-4f03-8512-9dc7e9b7635d


3.5 删除 method


四、PluginGroup和plugin相关

4.1 查看 PluginGroup 列表


4.2 查看详情


4.3 创建




339

Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW


Content-Disposition: form-data; name="content"


groupName: "group1"


plugins:


    - name: "rate limit"


      version: "0.0.1"


      priority: 1000


      externalLookupName: "ExternalPluginRateLimit"


    - name: "access"


      version: "0.0.1"


      priority: 1000


      externalLookupName: "ExternalPluginAccess"


------WebKitFormBoundary7MA4YWxkTrZu0gW--


PUT /config/api/plugin_group/ HTTP/1.1


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: 5166a7df-b838-4941-add3-5073a6e430f0


Content-Type: multipart/form-data; boundary=----WebKitFormBoundary7MA4YWxkTrZu0gW


Content-Disposition: form-data; name="content"


groupName: "group1"


plugins:


    - name: "rate limit"


      version: "0.0.2"


      priority: 1000


      externalLookupName: "ExternalPluginRateLimit"


    - name: "access"


      version: "0.0.1"


      priority: 1000


      externalLookupName: "ExternalPluginAccess"


------WebKitFormBoundary7MA4YWxkTrZu0gW--


4.4 修改


4.5 删除




340

DELETE /config/api/plugin_group/?name=group1 HTTP/1.1


Host: 127.0.0.1:8080


cache-control: no-cache


Postman-Token: d761e1fa-02c4-4693-b765-b16ce389c9b2


5.1 梦超的限流配置 TODO


可以将其保存为 admin.json，然后导入postman


五、其他


六、postman导出文件




341

{
	 "info": {
	 	 "_postman_id": "cb35ad41-ccb3-4c7c-a3a8-ebbd2f60f7da",
	 	 "name": "pixiu admin",
	 	 "schema": "https://schema.getpostman.com/json/collection/v2.1.0/colle
ction.json"
	 },
	 "item": [
	 	 {
	 	 	 "name": "设置基础信息",
	 	 	 "request": {
	 	 	 	 "method": "POST",
	 	 	 	 "header": [
	 	 	 	 	 {
	 	 	 	 	 	 "key": "Content-Type",
	 	 	 	 	 	 "name": "Content-Type",
	 	 	 	 	 	 "value": "application/json",
	 	 	 	 	 	 "type": "text"
	 	 	 	 	 }
	 	 	 	 ],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "formdata",
	 	 	 	 	 "formdata": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "content",
	 	 	 	 	 	 	 "value": "name: pixiu\ndescription: pixiu111 sample",
	 	 	 	 	 	 	 "type": "text"
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/base",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "base"
	 	 	 	 	 ]

1
2
3
4
5

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

JSON



342

	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "获取基础信息",
	 	 	 "request": {
	 	 	 	 "method": "GET",
	 	 	 	 "header": [],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "raw",
	 	 	 	 	 "raw": ""
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/base",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "base"
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "获取resource列表",
	 	 	 "request": {
	 	 	 	 "method": "GET",
	 	 	 	 "header": [],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "raw",
	 	 	 	 	 "raw": ""
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/resource/list",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92



343

	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "resource",
	 	 	 	 	 	 "list"
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "创建resource",
	 	 	 "request": {
	 	 	 	 "method": "POST",
	 	 	 	 "header": [
	 	 	 	 	 {
	 	 	 	 	 	 "key": "Content-Type",
	 	 	 	 	 	 "name": "Content-Type",
	 	 	 	 	 	 "value": "application/json",
	 	 	 	 	 	 "type": "text"
	 	 	 	 	 }
	 	 	 	 ],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "formdata",
	 	 	 	 	 "formdata": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "content",
	 	 	 	 	 	 	 "value": "    path: '/api/v1/test-dubbo/friend2'\n    typ
e: restful\n    description: user\n    timeout: 100ms\n    plugins:\n    
  pre:\n        pluginNames:\n          - rate limit\n          - access
\n      post:\n        groupNames:\n          - group2\n    methods:\n   
   - httpVerb: GET\n        resourcePath: '/api/v1/test-dubbo/friend2'\n 
       onAir: true\n        timeout: 1000ms\n        inboundRequest:\n   
       requestType: http\n          queryStrings:\n            - name: na
me\n              required: true\n        integrationRequest:\n          
requestType: http\n          host: 127.0.0.1:8889\n          path: /UserP
rovider/GetUserByName\n          mappingParams:\n            - name: quer
yStrings.name\n              mapTo: queryStrings.name\n          group: 
\"test\"\n          version: 1.0.0",
	 	 	 	 	 	 	 "type": "text"
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/resource/",

93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124
125
126
127
128
129



344

	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "resource",
	 	 	 	 	 	 ""
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "获取resource配置详情(yaml格式)",
	 	 	 "request": {
	 	 	 	 "method": "GET",
	 	 	 	 "header": [],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "raw",
	 	 	 	 	 "raw": ""
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/resource/detail?resour
ceId=1",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "resource",
	 	 	 	 	 	 "detail"
	 	 	 	 	 ],
	 	 	 	 	 "query": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "resourceId",
	 	 	 	 	 	 	 "value": "1"

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176



345

	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "修改资源",
	 	 	 "request": {
	 	 	 	 "method": "PUT",
	 	 	 	 "header": [],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "formdata",
	 	 	 	 	 "formdata": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "content",
	 	 	 	 	 	 	 "value": "    id: 1\n    path: '/api/v1/test-dubbo/frien
d'\n    type: restful\n    description: update\n    timeout: 1000ms\n    
plugins:\n      pre:\n        pluginNames:\n          - rate limit\n     
     - access\n      post:\n        groupNames:\n          - group2\n    
methods:\n      - httpVerb: GET\n        onAir: true\n        timeout: 10
00ms\n        inboundRequest:\n          requestType: http\n          que
ryStrings:\n            - name: name\n              required: true\n     
   integrationRequest:\n          requestType: http\n          host: 127.
0.0.1:8889\n          path: /UserProvider/GetUserByName\n          mappin
gParams:\n            - name: queryStrings.name\n              mapTo: que
ryStrings.name\n          group: \"test\"\n          version: 1.0.0",
	 	 	 	 	 	 	 "type": "text"
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/resource",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "resource"
	 	 	 	 	 ],
	 	 	 	 	 "query": [
	 	 	 	 	 	 {

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214



346

	 	 	 	 	 	 	 "key": "content",
	 	 	 	 	 	 	 "value": "",
	 	 	 	 	 	 	 "disabled": true
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "删除resource",
	 	 	 "request": {
	 	 	 	 "method": "DELETE",
	 	 	 	 "header": [],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "raw",
	 	 	 	 	 "raw": ""
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/resource/?resourceId=
2",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "resource",
	 	 	 	 	 	 ""
	 	 	 	 	 ],
	 	 	 	 	 "query": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "resourceId",
	 	 	 	 	 	 	 "value": "2"
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "获取某个资源下的method列表",
	 	 	 "request": {

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261



347

	 	 	 	 "method": "GET",
	 	 	 	 "header": [],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "raw",
	 	 	 	 	 "raw": ""
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/resource/method/list?r
esourceId=1",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "resource",
	 	 	 	 	 	 "method",
	 	 	 	 	 	 "list"
	 	 	 	 	 ],
	 	 	 	 	 "query": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "resourceId",
	 	 	 	 	 	 	 "value": "1"
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "创建新的method",
	 	 	 "request": {
	 	 	 	 "method": "POST",
	 	 	 	 "header": [],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "formdata",
	 	 	 	 	 "formdata": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "content",
	 	 	 	 	 	 	 "value": "httpVerb: PUT\nresourcePath: '/api/v1/test-dubbo/
friend'\nonAir: true\ntimeout: 1000ms\ninboundRequest:\n    requestType: 
http\n    queryStrings:\n    - name: name\n      required: true\nintegrat
ionRequest:\n    requestType: http\n    host: 127.0.0.1:8889\n    path: /

262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305



348

UserProvider/GetUserByName\n    mappingParams:\n    - name: queryStrings.
name\n      mapTo: queryStrings.name\n    group: \"test\"\n    version: 
1.0.0",
	 	 	 	 	 	 	 "type": "text"
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/resource/method/?resou
rceId=1",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "resource",
	 	 	 	 	 	 "method",
	 	 	 	 	 	 ""
	 	 	 	 	 ],
	 	 	 	 	 "query": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "resourceId",
	 	 	 	 	 	 	 "value": "1"
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "获取method详情",
	 	 	 "request": {
	 	 	 	 "method": "GET",
	 	 	 	 "header": [],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "raw",
	 	 	 	 	 "raw": ""
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/resource/method/detai
l?resourceId=1&methodId=2",
	 	 	 	 	 "protocol": "http",

306
307
308
309
310
311

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

348



349

	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "resource",
	 	 	 	 	 	 "method",
	 	 	 	 	 	 "detail"
	 	 	 	 	 ],
	 	 	 	 	 "query": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "resourceId",
	 	 	 	 	 	 	 "value": "1"
	 	 	 	 	 	 },
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "methodId",
	 	 	 	 	 	 	 "value": "2"
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "修改method",
	 	 	 "request": {
	 	 	 	 "method": "PUT",
	 	 	 	 "header": [],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "formdata",
	 	 	 	 	 "formdata": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "content",
	 	 	 	 	 	 	 "value": "id: 2\nhttpVerb: PUT\nresourcePath: '/api/v1/test
-dubbo/friend'\nonAir: true\ntimeout: 300ms\ninboundRequest:\n    request
Type: http\n    queryStrings:\n    - name: name\n      required: true\nin
tegrationRequest:\n    requestType: http\n    host: 127.0.0.1:8889\n    p
ath: /UserProvider/GetUserByName\n    mappingParams:\n    - name: querySt
rings.name\n      mapTo: queryStrings.name\n    group: \"test\"\n    vers
ion: 1.0.0",
	 	 	 	 	 	 	 "type": "text"
	 	 	 	 	 	 }
	 	 	 	 	 ]

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

388
389
390



350

	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/resource/method/?resou
rceId=1",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "resource",
	 	 	 	 	 	 "method",
	 	 	 	 	 	 ""
	 	 	 	 	 ],
	 	 	 	 	 "query": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "resourceId",
	 	 	 	 	 	 	 "value": "1"
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "删除method",
	 	 	 "request": {
	 	 	 	 "method": "DELETE",
	 	 	 	 "header": [],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "raw",
	 	 	 	 	 "raw": ""
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/resource/method/?resou
rceId=1&methodId=2",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],

391
392
393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

430
431
432
433
434
435
436



351

	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "resource",
	 	 	 	 	 	 "method",
	 	 	 	 	 	 ""
	 	 	 	 	 ],
	 	 	 	 	 "query": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "resourceId",
	 	 	 	 	 	 	 "value": "1"
	 	 	 	 	 	 },
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "methodId",
	 	 	 	 	 	 	 "value": "2"
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "获取pluginGroupList",
	 	 	 "request": {
	 	 	 	 "method": "GET",
	 	 	 	 "header": [],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "raw",
	 	 	 	 	 "raw": ""
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/plugin_group/list",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "plugin_group",
	 	 	 	 	 	 "list"
	 	 	 	 	 ]
	 	 	 	 }

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484



352

	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "创建新的pluginGroup",
	 	 	 "request": {
	 	 	 	 "method": "POST",
	 	 	 	 "header": [],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "formdata",
	 	 	 	 	 "formdata": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "content",
	 	 	 	 	 	 	 "value": "groupName: \"group1\"\nplugins:\n    - name: \"ra
te limit\"\n      version: \"0.0.1\"\n      priority: 1000\n      externa
lLookupName: \"ExternalPluginRateLimit\"\n    - name: \"access\"\n      v
ersion: \"0.0.1\"\n      priority: 1000\n      externalLookupName: \"Exte
rnalPluginAccess\"",
	 	 	 	 	 	 	 "type": "text"
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/plugin_group/",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "plugin_group",
	 	 	 	 	 	 ""
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "修改pluginGroup",
	 	 	 "request": {
	 	 	 	 "method": "PUT",
	 	 	 	 "header": [],
	 	 	 	 "body": {

485
486
487
488
489
490
491
492
493
494
495
496
497
498

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528



353

	 	 	 	 	 "mode": "formdata",
	 	 	 	 	 "formdata": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "content",
	 	 	 	 	 	 	 "value": "groupName: \"group1\"\nplugins:\n    - name: \"ra
te limit\"\n      version: \"0.0.2\"\n      priority: 1000\n      externa
lLookupName: \"ExternalPluginRateLimit\"\n    - name: \"access\"\n      v
ersion: \"0.0.1\"\n      priority: 1000\n      externalLookupName: \"Exte
rnalPluginAccess\"",
	 	 	 	 	 	 	 "type": "text"
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/plugin_group/",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "plugin_group",
	 	 	 	 	 	 ""
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 },
	 	 {
	 	 	 "name": "删除pluginGroup",
	 	 	 "request": {
	 	 	 	 "method": "DELETE",
	 	 	 	 "header": [],
	 	 	 	 "body": {
	 	 	 	 	 "mode": "raw",
	 	 	 	 	 "raw": ""
	 	 	 	 },
	 	 	 	 "url": {
	 	 	 	 	 "raw": "http://127.0.0.1:8080/config/api/plugin_group/?name=gro
up1",
	 	 	 	 	 "protocol": "http",
	 	 	 	 	 "host": [
	 	 	 	 	 	 "127",

529
530
531
532
533

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

569
570
571



354

https://www.yuque.com/docs/share/7668bb7c-3901-4b3e-9a04-73ef3525e9b5?# 《设计文档 

- 前端》


七、 登录注册 


	 	 	 	 	 	 "0",
	 	 	 	 	 	 "0",
	 	 	 	 	 	 "1"
	 	 	 	 	 ],
	 	 	 	 	 "port": "8080",
	 	 	 	 	 "path": [
	 	 	 	 	 	 "config",
	 	 	 	 	 	 "api",
	 	 	 	 	 	 "plugin_group",
	 	 	 	 	 	 ""
	 	 	 	 	 ],
	 	 	 	 	 "query": [
	 	 	 	 	 	 {
	 	 	 	 	 	 	 "key": "name",
	 	 	 	 	 	 	 "value": "group1"
	 	 	 	 	 	 }
	 	 	 	 	 ]
	 	 	 	 }
	 	 	 },
	 	 	 "response": []
	 	 }
	 ]
}

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

https://www.yuque.com/docs/share/7668bb7c-3901-4b3e-9a04-73ef3525e9b5?#


355

问题反馈



356

具体实现

在 control.go 启动时，会根据 bootstrap 的配置来决定是从远程加载  还是从本地文件读取 

api_config。


一、整体示意图


二、具体源码实现


2.1 Proxy 启动加载远程配置




357

config.LoadAPIConfig 函数会根据 APIMetaConfig 来初始化 etcdclient ，从 etcd 读取对应的 

api_config 内容，并注册监听的 watch


discovery_service 初始化时会向 config 注册监听 api_config 变化的 listener


当 etcd 中的 api_config 内容发生变化时，会通知到 proxy 的 watch 监听中，然后 proxy 会通过 

listener 通知相关的涉众，也就是 discovery_service，discovery_service就重新进行初始化。


2.2 Proxy 感知变更修改配置




358

admin 是一个简单的网络服务器，监听特定端口，提供 get/set两个功能。内部具体实现则是从 etcd 

中读取和设置对应数据。


2.3 Admin 操作




359

使用文档

详见 dubbo-go/dubbo-go-proxy/samples/admin文件夹


## 一、准备etcd环境


使用docker或者本地启动 etcd，然后初始化 etcd 中的 api_config 配置


- 注意 etcdctl 的api 的版本，export ETCDCTL_API=3


- 如果使用 docker 启动的 etcd， 可以提前将 api_config.yaml 文件拷贝到 docker 中。使用如下命

令`docker cp api_config.yaml mycontainer:/path` 


- 在 api_config.yaml 所在路径下，执行如下命令 `cat api_config.yaml | etcdctl put 

"/proxy/config/api"` 设置 etcd 中目标路径的值，也就是 api_config 的值


## 二、启动 Server


设置如下环境变量，注意 XXX 路径为自己环境下的路径


- CONF_PROVIDER_FILE_PATH=/XXX/dubbo-go-

proxy/samples/admin/server/config/server.yml


- APP_LOG_CONF_FILE=/XXX/dubbo-go-proxy/samples/admin/server/config/log.yml


运行 samples/admin/server/app/server.go


## 三、启动 dubbo-go-proxy


配置如下 program arguments：


- -c /XXX/dubbo-go-proxy/samples/admin/proxy/conf.yaml 


注意注意，在 conf.yaml 文件中，定义了 api_meta_config 相关的配置，即配置 etcd 的地址和对应

api_config的path。供 proxy 使用，向 etcd 中查询对应的值。


```yaml


  api_meta_config:


    address: "127.0.0.1:2379"


    api_config_path: "/proxy/config/api"




360

```


执行 cmd/proxy/proxy.go


## 四、第一次验证


执行如下 curl 命令 curl "http://127.0.0.1:8888/api/v1/test-dubbo/user?name=tc" ， 可以得到如下

结果


```json


{


    "age": 18,


    "id": "0001",


    "name": "tc"


}


```


## 五、启动 admin 


配置如下 program arguments，设置 admin 自身的一些参数，比如端口，etcd path等。


- -c /XXX/dubbo-go-proxy/samples/admin/admin/admin_config.yaml 


执行 cmd/admin/admin.go


## 六、验证 admin 的功能和 api_config 配置自动变更 功能


- 执行如下命令 `curl 127.0.0.1:8080/config/api` 可以从admin获得当前proxy的api_config配置


- 修改 api_config.yaml 内容, 比如将请求的path `test-dubbo/user` 修改为`test-dubbo/user_new`


- 执行如下命令，将修改后的 api_config.yaml 文件通过 admin 更改到 etcd 中 `curl 

"127.0.0.1:8080/config/api/set" -X POST --data-binary "@/xx/xx/dubbo-go-

proxy/samples/admin/proxy/api_config.yaml"`


！注意，是将文件的内容作为request body 传入，postman配置如下图示。




361

- 再次执行如下命令, `curl "http://127.0.0.1:8888/api/v1/test-dubbo/user?name=tc"` ， 会得到 

404 的结果


- 执行如下命令 `curl "http://127.0.0.1:8888/api/v1/test-dubbo/user_new?name=tc"` ，则可以获

得正确的返回




362

Local Plugins实现方案

配置文件路径：configs/api_config.yaml


此配置为.so的存放路径，例如：configs/plugins/extern_filter.so


注意：so文件加载，只能有一个文件，意味着所有的扩展函数（externalLookupName），必须都要放

在同一个so文件中。


插件组配置，继续往下看。


组名称，resources中plugins配置有groupNames和pluginNames，其中groupNames可以配置整组的

plugins，全局唯一，且依赖名称查找组。


plugin的集合，下面的四个配置组成一个完整的plugin。


plugin的名称，全局唯一，且依赖名称查找对应的plugin。


plugin的版本号，版本号大的优先，结合remote plugin配合使用有效，第一期未实现（跟remote 

plugin一起实现）。


plugin的优先级，值越大，优先级越高，结合remote plugin配合使用有效，第一期未实现（跟remote 

plugin一起实现）。


需要加载的扩展插件名称，参见samples/plugins/plugin.go中的export filter。


配置


pluginFilePath


pluginsGroup


groupName


plugins


name


version


priority


externalLookupName




363

从配置中读取path对应的插件集合到内存中去：


参见：pkg/filter/plugins/plugins.go源码


输入参数：groups和filePath


filePath：对应api_config.yaml中的pluginFilePath


groups：对应api_config.yaml中的pluginsGroup


切入点

初始化插件


























#pkg/service/api/discovery_service.go

func InitAPIsFromConfig(apiConfig config.APIConfig) error {

   ...

// load pluginsGroup


plugins.InitPluginsGroup(apiConfig.PluginsGroup, apiConfig.PluginFilePath)

// init plugins from resource    

plugins.InitAPIURLWithFilterChain(apiConfig.Resources)

   ...

}

应用插件






















#pkg/proxy/listener.go

func addFilter(ctx *h.HttpContext, api router.API) {

...

// load plugins   

 filterChain := plugins.GetAPIFilterFuncsWithAPIURL(ctx.Request.URL.Path)

ctx.AppendFilterFunc(filterChain...)

...

}

实现


对外接口

InitPluginsGroup




364

加载filePath对应的.so文件，并将配置中groups的插件函数映射到本地字典groupWithPluginsMap中。


输入参数：resources


将resources中path用到扩展插件一一映射到字典apiURLWithPluginsMap中key为fullPath，value为需

要要执行插件函数。


输入参数：url


根据url（fullPath）从apiURLWithPluginsMap中获取对应要执行的插件函数。


由InitAPIURLWithFilterChain调用，解析resources中fullPath对应的插件函数。


由InitPluginsGroup调用，加载so文件中具体对应插件函数，主要实现如下：


由pairURLWithFilterChain调用，根据groupNames和pluginNames查找so中对应的插件函数，具体可

参见代码。


测试比较简单，参见源码：pkg/filter/plugins/plugins_test.go


InitAPIURLWithFilterChain


GetAPIFilterFuncsWithAPIURL


内部接口

pairURLWithFilterChain


loadExternalPlugin











sb, err := pl.Lookup(p.ExternalLookupName)

if nil != err {

   panic(err)


}


sbf := sb.(func() filter.Filter)


return sbf().Do()

getApiFilterFuncsWithPluginsGroup


测试




365

参见：samples/plugins/bulid.txt


对应要编译的go文件：samples/plugins/plugin.go


编译SO



go build -o plugin.so -buildmode=plugin .



366

Plugin调研与方案

第一次讨论


郑先乐提出的整体架构

第二次讨论




367

吕梦超同学主导


目标：实现在独立打包的可配置可动态插拔与升级的插件型Filter


Go plugin还未成熟，若要实现在Proxy项目外打包，受制于以下几个条件


插件实现和主应用程序都必须使用完全相同的 Go 工具链版本和完全相同的 GOPATH 构建


解决方案：提供镜像用于打包插件，插件源文件需放置在对应的目录下。


在插件中的任何直接依赖项应该与主应用程序中的依赖项版本相同


解决方案：提取公共依赖项 filter interface至https://github.com/dubbogo/dubbo-go-proxy-filter，

插件引用的interface需要与Proxy引用的版本一致。


Logger有没有必要提取出来？


插件不可卸载


解决方案: 会占用内存，但不影响插拔


方案实现步骤：


提取filter interface


配置不可插拔的插件


Samples


插件可配置参数


动态插拔（依赖于配置中心）


●

●

●

https://github.com/dubbogo/dubbo-go-proxy-filter


368

具体实现

 https://github.com/dubbogo/dubbo-go-proxy-filter


//直接提取即可


Do() context.FilterFunc


}


//需要提取Context


type FilterFunc func(Context)


    ...      //忽略无依赖的func


   API(router.API) // router.API 需要提取


   GetAPI() *router.API


   Api(api *api.Api) //api.API 需要提取


   GetApi() *api.Api


}


type API struct {


   URLPattern    string `json:"urlPattern" yaml:"urlPattern"`


   //config.Method需要提取


Filter interface

















原则：提取的接口，尽量少提取type，不提取不必要的Method

需要提取的有三大类：

● Filter interface

● router.API

● api.APi

type Filter interface {


type Context interface {


router.API 


https://github.com/dubbogo/dubbo-go-proxy-filter


369

   config.Method `json:"method,inline" yaml:"method,inline"`


   Headers       map[string]string `json:"headers,omitempty" yaml:"headers,omitempty"`


}


config.Method


//config\api_config.go


API config 中分为两类，struct互相依赖全部提取，初始化与加载留在Proxy.


Proxy中剩余的api_config.go


提取至fitler的，link





var (


   apiConfig *fc.APIConfig


   once      sync.Once


)


// LoadAPIConfigFromFile load the api config from file


func LoadAPIConfigFromFile(path string) (*fc.APIConfig, error) {}


// GetAPIConf returns the initted api config


func GetAPIConf() fc.APIConfig {


   return *apiConfig


}

api.Api





type Api struct {


   Name          string      `json:"name" yaml:"name"`


   ITypeStr      string      `json:"itype" yaml:"itype"`


   IType         ApiType     `json:"-" yaml:"-"`


   OTypeStr      string      `json:"otype" yaml:"otype"`


   OType         ApiType     `json:"-" yaml:"-"`


   Status        Status      `json:"status" yaml:"status"`


   Metadata      interface{} `json:"metadata" yaml:"metadata"`


   Method        string      `json:"method" yaml:"method"`


   RequestMethod `json:",omitempty" yaml:"-"`


}

https://github.com/dubbogo/dubbo-go-proxy-filter/blob/master/pkg/api/config/api_config.go


370

整个提取，并把base.go中所有相关type提取




371

pixiu精简配置技术方案

目前pixiu项目的配置是用户编写yaml文件并指定文件路径进行导入，存在以下问题：


pixiu作为网关，需要配置的选项多且杂，用户配置可能难以抓住重点，容易被劝退。


yaml文件对填写格式有较严格的要求，用户在编写和修改配置文件时容易出错。


因此，为了让用户在配置时少走弯路，需要对pixiu的配置进行精简，同时提供更多符合用户使用习惯的

配置方式。


回归pixiu本质，resources模块作为必填配置，用户只需配置提供协议转换的配置，即可实现最简单的

跨协议调用。其它如：listener、router、filter作为可选配置，由pixiu设置初始值，用户可自行修改。

配置规则如下：


若必填配置项有缺失，直接抛出panic。

可选配置不填则设定为默认值，默认值由pixiu指定。


yaml，api（TODO）


协议转换配置是必须的，下面通过“#”注释掉的部分表示可以优化掉。


api_config.yaml


背景


●

●

思路


●

●

必填配置（10%）

配置方式


配置项




372

yaml


listener、router、filter可选，不填为系统默认值。尤其是对于timeout、log、port这类信息，绝大多数

情况下用户不会修改配置，由pixiu提供较通用的默认配置。


api_config.yaml


可选配置（90%）

配置方式


配置项


resources:
  - path: '/api/v1/test-dubbo/userByName'		
    type: restful		 	 	 	 	 	 	 	 	 	 	 	 #可选值：restful、grpc，下面reques
tType就不用再选择
    #description: user	
    methods:
      - httpVerb: GET
        #onAir: true
        #timeout: 100s
        #inboundRequest:
          #requestType: http
        integrationRequest:
          requestType: dubbo
          mappingParams:
            - name: queryStrings.name
              mapTo: 0
              mapType: "string"
          applicationName: "UserService"
          interface: "com.dubbogo.pixiu.UserService"	 	 #不明白interface代
表

          method: "GetUserByName"
          #group: "test"
          #version: 1.0.0
          #clusterName: "test_dubbo"	 	 	 	 	 #可选，不填则默认路由到本地

1
2
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22

YAML



373

conf.yaml


rateLimit:
  resources:
    - name: test-dubbo
      items:
        #Exact
        - matchStrategy: 0
          pattern: "/api/v1/test-dubbo/user"
        #Regex
        - matchStrategy: 1
          pattern: "/api/v1/test-dubbo/user/*"
  rules:
    #qps sample At most 100 requests can be passed in 1000ms, so qps is 10
0
    - enable: true
      flowRule:
        #the resource's name
        resource: "test-dubbo"
        threshold: 100
        statintervalinms: 1000

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18

YAML



374

static_resources:
  listeners:
    - name: "net/http"
      address:
        socket_address:
          protocol_type: "HTTP"
          address: "0.0.0.0"
          port: 8888
      filter_chains:
        - filter_chain_match:
            domains:
              - api.dubbo.com
              - api.pixiu.com
          filters:
            - name: dgp.filters.http_connect_manager
              config:
                route_config:
                  routes:
                    - match:
                        prefix: "/api/v1"
                        headers:
                          - name: "X-DGP-WAY"
                            value: "dubbo"
                      route:
                        cluster: "test-dubbo"
                        cluster_not_found_response_code: 505
                        cors:
                          allow_origin:
                            - "*"
                          enabled: true
                  authority_config:
                    authority_rules:
                      - strategy: "Blacklist"
                        limit: "IP"
                        items:
                          - "127.0.0.1"
                      - strategy: "Whitelist"
                        limit: "App"
                        items:
                          - "test_dubbo"
                http_filters:
                  - name: dgp.filters.http.authority_filter
                    config:
                server_name: "test_http_dubbo"
                generate_request_id: false

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

YAML



375

log.yaml


      config:
        idle_timeout: 5s
        read_timeout: 5s
        write_timeout: 5s
  clusters:
    - name: "test_dubbo"
      lb_policy: "RoundRobin"
      registries:
        "zookeeper":
          protocol: "zookeeper"
          timeout: "3s"
          address: "127.0.0.1:2181"
          username: ""
          password: ""
  timeout_config:
    connect_timeout: "5s"
    request_timeout: "10s"
  shutdown_config:
    timeout: "60s"
    step_timeout: "10s"
    reject_policy: "immediacy"
  pprofConf:
    enable: true
    address:
      socket_address:
        address: "0.0.0.0"
        port: 6060
  accessLog:
    enable: true
    outputpath: C:\Users\60125\Desktop\dubbo-go\logs\dubbo-go-pixiu-access
metric:
  enable: true
  prometheus_port: 2222

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78



376

考虑引入XML、JSON、pixiu api等配置方式，或者多种配置方式相结合。


其它配置方式（TODO）


level: "debug"
development: true
disableCaller: false
disableStacktrace: false
sampling:
encoding: "console"


# encoder
encoderConfig:
  messageKey: "message"
  levelKey: "level"
  timeKey: "time"
  nameKey: "logger"
  callerKey: "caller"
  stacktraceKey: "stacktrace"
  lineEnding: ""
  levelEncoder: "capitalColor"
  timeEncoder: "iso8601"
  durationEncoder: "seconds"
  callerEncoder: "short"
  nameEncoder: ""


outputPaths:
  - "stderr"
errorOutputPaths:
  - "stderr"
initialFields:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

YAML


